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We revisit the calculation of gravitational radiation through the use of Weyl scalars. We point out
several possible problems arising from gauge and tetrad ambiguities and ways to address them. Our
analysis indicates how relatively simple corrections can be introduced to remove these ambiguities.
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I. INTRODUCTION

The definition of gravitational radiation involves a fair
amount of work so as to distinguish variations in the metric
that are purely coordinate effects from true signals prop-
agating on a background which itself must be well estab-
lished. At finite (but sufficiently far) distances from an
isolated source several approaches exist to do so provided
a suitable background can be identified [1–5]. For suffi-
ciently generic cases the unambiguous identification of the
gravitational radiation can only be done at future null
infinity (I�). This is possible since when studying an
isolated system, future null infinity is the asymptotic region
of an asymptotically flat spacetime. There the metric is
exactly flat and disturbances around it can be associated
with outgoing gravitational waves subject to singling out a
preferred frame. This issue arises as there is no unique flat
asymptotic metric. In fact there are as many of them as
there are supertranslations in the Bondi-Metzner-Sachs
group: the asymptotic symmetry group. Nevertheless there
is a well-defined notion of gravitational radiation which
exploits the algebraic notion of asymptotic flatness [6]
which in turn implies the existence of the gravitational
radiation fields �0

4 and �0
3. The existence of these fields

can also be deduced from stronger conditions, like peeling
[7,8]. Then, after a careful choice of coordinates, radiation
can be unambiguously defined.

Unfortunately, numerical applications dealing with
black hole spacetimes cannot yet reach I� unless
Cauchy-characteristic extraction is employed [9,10] for
the extraction procedure or Cauchy-characteristic match-
ing [11,12] (see also [13]) or the conformal formulations
[14] are fully realized to model the whole spacetime.
Without adopting any of these options a commonly em-
ployed approach for obtaining gravitational waves relies
on applying the infrastructure developed for I� at finite
distances. Here, several compromises are made as natural
quantities defined at I� need to be translated somehow to
finite distances where they need not be well defined.

The purpose of this article is to point out difficulties that
likely arise in this approach and a route to address them.

II. REVIEW OF THE APPROACH

The calculation of gravitational radiation at I� is based
on the foundational works of Bondi [15] and Sachs [16] as
an approximation expansion at infinite distances and by the
work of Penrose [17] as a geometrical construct at the
boundary of the physical spacetime. Under reasonable
assumptions one can show that the spacetime is asymptoti-
cally flat and time-dependent perturbations close to the
boundary are either due to gravitational waves or coordi-
nate effects. In order to disentangle coordinate with physi-
cal effects, care must be taken in dealing with the
asymptotic symmetry group and fixing a convenient frame
with respect to which inertial observers can define
radiation.

Our goal here is not to revisit this approach (of which
descriptions have been presented in, e.g., [8,18–22]), but
simply to state the crucial ingredients which are missing
when the strategy is employed at finite distances. In the
next sections we will carry out an analysis of what correc-
tions are required when key assumptions described below
are missing.

These ingredients are,
(i) Peeling is assumed, this means that suitable Weyl

curvature components behave asymptotically in a
well-defined manner.

(ii) Outgoing null hypersurfaces, parametrized by u,
intersect I� defining a sequence of S2 surfaces.

(iii) Each of these surfaces is conformal to a unit sphere
metric; off this surface (into the spacetime) the de-
parture from it is of lower order. Namely the angular
metric in a neighborhood of I� can be expressed as
gAB � r2hAB � r2�qAB=V2 � cAB=r�O�r�2��,
with V a conformal factor, qAB a unit sphere metric,
and r a suitably defined radial distance.

(iv) A null tetrad f‘a; na;ma; �mag satisfying ‘ana �
�ma �ma � 1 (with all other products being 0). The
spacetime metric can be expressed as gab �
2l
�anb� � 2m

�a �mb�, and suitable projections of the
Weyl tensor can be defined.

(v) Using standard [23,24] conventions for the Riemann
tensor and spinor dyad, particularly useful scalars
obtained from them are
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 �4 � Cabcdn
a �mbnc �md (1)

 �3 � Cabcd‘
anb �mc �nd (2)

 �2 � Cabcd‘
amb �mcnd (3)

 � � mambralb: (4)

(vi) A suitable (Bondi type) expansion in terms of 1=r
coupled to coordinates chosen such that V � 1,
g0
ur � 1 and g0

uA � 0 (xA labeling angular coordi-
nates at u � const, r! 1) gives rise to several
important relations [6,8]. In particular,

 �0
4 � � ���0 (5)

 �0
3 � �ð _��0 (6)

 

_� 0
2 � ð�0

3 � �
0�0

4; (7)

where the supra-index ‘‘0’’ indicates leading order in
an expansion in the radial coordinate and ð is the
edth operator [23] of the unit sphere.

With this structure at hand, the following results are ob-
tained. Given any section S at future null infinity, the Bondi
momentum is given by

 Pa � �
1

4�

Z
S
l̂a��0

2 � �
0 _��0�dS2; (8)

where l̂a � �1; sin��� cos���; sin��� sin���; cos���� when
expressed in standard angular coordinates ��;��. The so-
called Bondi mass M is the timelike component of this
vector; namely

 M � �
1

4�

Z
S
��0

2 � �
0 _��0�dS2: (9)

It is interesting to note that the Bondi momentum can also
be expressed in the terms of the Psi supermomentum [25]
� � �0

2 � �
0 _��0 � ð2 ��0 by

 Pa � �
1

4�

Z
S
l̂a�dS2; (10)

since it has a couple of useful properties; namely, it is real,
�� � �, and its time derivative is simply

 

_� � _�0 _��0: (11)

Therefore, the time variation of the Bondi momentum, in
terms of time Bondi coordinate, is just given by

 

_P a � �
1

4�

Z
S
l̂a _�0 _��0dS2: (12)

Notice that due to relation (5) one might choose to
replace any appearance of _�0 by the time integral of �0

4.
This is commonly done in numerical simulations [26–35];

however, one should notice that (5) is only valid in terms of
a Bondi tetrad and coordinate system.

III. CONNECTION WITH FINITE DISTANCES

The above expressions provide a well-defined infrastruc-
ture with which gravitational radiation can be defined.
However, to obtain them one has introduced key ingre-
dients, otherwise the expressions would be significantly
more involved. In particular without choosing the confor-
mal frame and/or radial distance such that the leading part
of the angular metric is indeed that of the unit sphere,
several changes arise even when all other properties are
satisfied. For instance, if the angular metric were given by
gAB � r2�qAB=V�u; �; ��

2 �O�r�1�� then, instead of (5)
one would have

 �0
4 � � ���0 �

1

V
�ð2 _V �

2

V2
�ð _V �ðV �

2

V3
_V��ðV�2

�
1

V2
_V �ð2V �

3

V2
_V2 ��0 �

1

V
�V ��0 �

3

V
_V _��0

� � ���0 � �ð2
_V
V
�

3

V2
_V2 ��0 �

1

V
�V ��0 �

3

V
_V _��0: (13)

Therefore, if we call ~�0
4 the inertial (Bondi) radiation field

one would have the relation

 

~� 0
4 �

1

V3

�
� ���0 � �ð2

_V
V
�

3

V2
_V2 ��0 �

1

V
�V ��0 �

3

V
_V _��0

�
;

(14)

where the factor V�3 results from one of the corrections
which we discuss in this work. Notice that this is not a
perverse circumstance, rather it can be generically ex-
pected as surfaces at u � const, r � const define a 2-
sphere whose metric is always conformally related to the
unit sphere.

Certainly, in principle coordinate conditions can be
adopted so that at the extraction sphere the simplifying
conditions hold; these conditions need not be those that are
convenient for the numerical implementations. Indeed,
coordinate conditions are exploited in a nontrivial manner
to aid in the numerical simulation [36–38]. Therefore, one
is then left with having to consider how to correctly iden-
tify suitable coordinates and/or a frame to extract the
desired quantity. Here, one of two options can be adopted.
One approach is motivated from a perturbative point of
view and relies in extracting a suitable Kinnersley tetrad
[39] from the numerically generated spacetime [40–44].
The so-called Kinnersley tetrads are null tetrads that were
constructed for the study of type D vacuum spacetimes and
later similarly defined tetrds were applied to the extraction
of gravitational radiation. A delicate point in the construc-
tion of this tetrad is the suitable fixing of the spin/boost
freedom, and ongoing work is directed towards this goal
[45,46]
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A different approach is to consider the asymptotic struc-
ture of asymptotically flat spacetimes and define the analog
quantities at finite distances together with the conditions
adopted at future null infinity to single out the appropriate
frame. This approach, which we adopt here, does not rely
on obtaining background quantities correctly; rather one
needs only to identify a suitable inertial Bondi frame which
will essentially be unambiguous as long as the extraction
worldtube is sufficiently far. We will not concern ourselves
with how far the extraction worldtube must be; rather we
assume one is able to place it sufficiently far for the peeling
property, in the extracted quantities, of the Weyl scalars to
be observed. Under this assumption we analyze what con-
sequences, and most important, modifications one must
take into account when calculating physical observables
with the coordinates naturally induced on the extraction
worldtube in a numerical simulation.

To this end, it will be important to calculate the induced
metric on the extraction worldtube and evaluate different
quantities which play a key role. We begin by following
precisely the same procedure commonly employed in nu-
merical simulations (see for instance [26,30,47]). First a
Cartesian extraction worldtube is defined by x2 � y2 �
z2 � R2. Observers at this worldtube are defined by their
trajectories on the worldtube given by (t, x � const, y �
const, z � const). Then, �4 is calculated on the hypersur-
face �t (defined by t � const) by suitably adopting a tetrad
frame. This tetrad is chosen in a straightforward manner by
adopting three orthonormal spatial vectors fra; �a; �ag on
�t (which are the analogs to the radial and tangents vectors
to the sphere) and combine them with the unit normal
vector Na to the hypersurface. Once �4 is obtained, an
interpolation on to the extraction sphere is carried out. At
this point it is useful to recall that the extraction must be
done along null rays, thus any comparison (or refinements
of the extracted quantities [48]) at different worldtubes
should contemplate suitable time offsets. This offset re-
flects the arrival time of a null signal from a given internal
worldtube to the next.

As mentioned, this procedure need not give rise to a
structure fully compatible with those mentioned in Sec. I.
In particular the induced angular sphere metric need not be
sufficiently close to that of the unit sphere; inertial observ-
ers’ coordinates might ‘‘shift‘‘ in time around the world-
tube and their associated times might tick at different rates.
At finite distances these issues are even more relevant since
the waves themselves will influence the geometry of the
extraction worldtube as they propagate across it. In the next
section we discuss the corrections required and will illus-
trate their application in Sec. V. As we will see, even in
linearized problems these issues can play a nontrivial role.

A short summary of what these corrections entail is (in
addition to the standard first-step to calculate �4):

(i) Assuming that the extraction worldtube has been
chosen far enough [49], calculate the leading order

behavior �0
4 from �4 � �0

4r
�1 �O�r�2�; where r

is an appropriate asymptotic radial coordinate, such
that r � R at the extraction worldtube.

(ii) In a similar way, obtain the leading order behavior of
the induced metric g� on the sphere at the extraction
worldtube defined by t � const, r � R, from g� �
�qR2V�2 �O�r1�, where q is the unit sphere
metric.

(iii) Obtain the leading order behavior g0
ur from the ex-

pansion gur � g0
ur �O�r�1�, which measures the

time observers of �4 have.
(iv) Obtain the leading order behavior g0

uA from the
expansion guA � g0

uA �O�r
�1�, which measures

the coordinate shift in time observers of �4 have
around the worldtube.

(v) Bondi’s radiation ~�0
4 is then obtained by relatively

simple correction factors from the knowledge of
fg0
ur; g

0
uA; Vg. In the particular case where g0

uA ’ 0
the expression is

 

~� 0
4 �

1

�g0
ur�

2V3 �0
4: (15)

IV. ASYMPTOTIC STRUCTURE OF
ASYMPTOTICALLY FLAT SPACETIMES

In this section we examine which corrections must be
taken into account to remove the ambiguities described
previously. To this end, we will examine how the relevant
quantities transform among different coordinate systems
compatible with the asymptotic structure. Then, by adopt-
ing one of these systems to be a Bondi one, we will be able
to extract the correcting terms. For the sake of simplicity in
the derivation we adopt the spinor-calculus approach,
though the results obtained are completely independent
of this technique.

We begin by determining key relations between different
frames, to do so it is convenient to have at hand some basic
equations of the asymptotic structure.

A. Basic variables

The asymptotic geometry can be expressed in terms of a
complex null tetrad �‘a;ma; �ma; na� with the properties:

 gab‘
anb � �gabm

a �mb � 1 (16)

and all other possible scalar products being zero, the metric
can be expressed by

 gab � ‘anb � na‘b �ma �mb � �mamb: (17)

Such a null tetrad is easily related to a dyad of spinors
�oA; �A�. The relation of the null tetrad with a spinor dyad is
given by ‘a , oAoA

0
, ma , oA�A

0
, �ma , �AoA

0
and na ,

�A�A
0
. Thus, determining how the tetrad transforms one

infers the transformation of �oA; �A�. In our discussion, to
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make a direct contact with the standard literature on the
subject we also adopt a null polar coordinate system
�x0; x1; x2; x3� � �u; r; �� � ���; 1

i �� �
����. However, as op-

posed to the standard discussions we will not make use of
the available coordinate freedom to simplify the treatment
at the onset. Rather, we will adopt coordinates consistent
with those employed in the extraction procedure at finite
distances and deal with the consequences of this choice.

In most numerical applications, one normally works
with finite size regions and would like to estimate the
asymptotic fields in terms of null tetrads based on a choice
of coordinate system. At the extraction worldtube, one
assumes that a coordinate system �t; r; �; ��� can be con-
structed. Let � be the timelike surface defined by (r � R �
const). On �, a null tetrad ‘, n, m, �m can be defined in the
following way. First, define the null function u such that on
� one has u � t, and ‘ � du everywhere. The function u is
chosen such that the future-directed vector ‘ points out-
wards with respect to the 2-surfaces (t � const, r � R),
which are, topologically, two-dimensional spheres.

The complex vectors m and �m are defined to be tangent
to the spheres (t � const, r � const). Furthermore, one can
choose m to be proportional to @

@� and �m to be proportional
to @

@ ��
in the asymptotic region for large r.

Then, by requiring the standard normalization condi-
tions given in (16) one settles the remaining null vector na.

The coordinate system �u; r; �; ��� is thus straightfor-
wardly related to the one commonly employed in numeri-
cal efforts �t; R; �;��, though we will continue our
discussion with the former as it is the one employed in
the standard literature on the subject. The conclusion,
however, will be independent of this choice.

Keeping (� � const) and ( �� � const) on the null hyper-
surface u � const, and increasing r, one moves along a
null direction. Since ‘ is contained on the hypersurface
u � const, one deduces that ‘ is proportional to @

@r . Then,
one can write

 �‘a� �
�

1

gur

@
@r

�
a
: (18)

The appearance of gur in the denominator is the first
correction to be accounted for due to the structure induced
at � not necessarily conforming to a Bondi frame. The
intersection of the null hypersurface u � const with future
null infinity defines a two-dimensional surface denoted by
S. A natural null tetrad is then completed with,

 ‘a � �du�a (19)

 ma � �i
�
@
@xi

�
a

(20)

 

�ma � ��i
�
@
@xi

�
a

(21)

 na �
�
@
@u

�
a
�U

�
@
@r

�
a
� Xi

�
@
@xi

�
a

(22)

with i � 2, 3 and components �i, U and Xi are

 �2 �
�2

0

r
�O

�
1

r2

�
; �3 �

�3
0

r
�O

�
1

r2

�
; (23)

with

 �2
0 �

���
2
p
P0V; �3

0 � �i�
2
0; (24)

where V � V�u; �; ��� and the square of P0 �
�1�� ���

2 is the
conformal factor of the unit sphere;

 U � rU00 �U0 �
U1

r
�O

�
1

r2

�
; (25)

where (for the case gur � 1) one has

 U00 �
_V
V
; U0 � �

1

2
KV; U1 � �

�0
2 �

��0
2

2
;

(26)

where KV is the Gaussian curvature, given by
 

KV � 2V �ððV � 2ðV �ðV � V2� Vr2V �riVriV � V2

� V2r2 lnV � V2; (27)

of the 2-metric

 dS2 �
1

V2P2
0

d�d �� ; (28)

where the regular conformal metric restricted to S is pre-
cisely ~g jS� �dS

2; r2 � riri is the Laplacian operator
of the unit sphere metric andri its covariant derivative. Let
us emphasize that V � 1 makes dS2 in (28) the unit sphere
metric. Finally, the other components of the vector na have
the asymptotic form

 X2 � X0
2 �O

�
1

r2

�
; X3 � X0

3 �O
�

1

r2

�
: (29)

B. Asymptotic gauge freedom, restricted case

At this point, we find it convenient to restrict to a
simplified case before describing the general one. We
will assume here that X0

2 � X0
3 � 0, which in an alternative

view implies that angular coordinates at � do not shift in
time as g0

uA � 0. Our discussion will center around the
allowed transformations between the induced coordinates
at the worldtube �u; r; �; ��� and the Bondi system
�~u; ~r; ~�; �~��.

1. Coordinate and tetrad transformations I

Let us consider the main gauge freedom admitted in our
calculation which is of the form

LUIS LEHNER AND OSVALDO M. MORESCHI PHYSICAL REVIEW D 76, 124040 (2007)

124040-4



 ~u � ��u; �; ��� �
~u1�u; �; ���

r
�O

�
1

r2

�
; (30)

 ~r �
r

w�u; �; ���
�O�r0�; (31)

 

~� � � �O
�
1

r

�
; (32)

with _�> 0. The possible further transformation of the
coordinates of the sphere ��; ��� into itself is not needed
at this point.

The condition g~u ~r � 1 in a Bondi system imposes the
relation

 w �
_�

g0
ur
: (33)

This asymptotic coordinate transformation is associated
to a corresponding null tetrad transformation, which to
leading orders is given by

 

~‘ � d~u � _�du� ��d� � � ��d �� �O
�
1

r

�

� _�‘�
ðV�
r

�m�
�ðV�
r
m�O

�
1

r

�
; (34)

 

~n �
@
@~u
�O

�
1

r

�
�

1

_�
@
@u
�O

�
1

r

�
�

1

_�
n�O

�
1

r

�
; (35)

 ~m �

���
2
p

~P
~r

@

@~�
�O

�
1

r2

�

�

���
2
p
P0

~Vw
r

�
�
��

_�
@
@u
�

@
@�

�
�O

�
1

r2

�

� �

���
2
p
P0

~Vw
r

��
_�
n�

~Vw
V
m�O

�
1

r2

�
; (36)

since the metric expressed in terms of the new null tetrad
must coincide with the metric expressed in terms of the
original null tetrad, it is deduced that

 

~V �
V
w
�
Vg0

ur

_�
; (37)

therefore

 ~m � m�
ðV�
r _�

n�O
�

1

r2

�
: (38)

The null tetrad transformation equations can be used to
write the leading order transformation relations for the
spinor dyad associated to the null tetrad [22,23]; namely

 ~o A �
����
_�

p �
oA �

ðV�
r _�

�A
�

(39)

and

 ~� A �
1����

_�
p �A; (40)

where ðV is the edth operator of the metric (28). Taking
into account higher order transformations would include an
equation of the form

 ~� A �
1����

_�
p ��A � hoA�; (41)

where in principle h could be of order O�r0�.
The regular dyad at future null infinity in terms of the

spacetime one, can be given by

 ô A � ��1oA; (42)

 �̂ A � �A: (43)

Then, the transformed regular dyad at future null infinity
is given by

 ~̂o A � ~��1 ~oA �
r
w

����
_�

p �
oA �

ðV�
r _�

�A
�

�
1����

_�
p

�
ôA �

ðV�
_�
�̂A
�
; (44)

 ~̂� A � ~�A �
1����

_�
p �̂A; (45)

where we are using � � 1
r .

As a side comment, while the use of the dyad frame
might seem to be an unnecessary complication at this
stage, we note that the calculation of �4 only involves
one of the dyad spinors, namely �A (for completeness we
also include oA). As we will see in the following section, by
obtaining the asymptotic behavior of �A, it will straightfor-
wardly provide the transformation properties we seek.
Certainly one could directly consider the transformation
of the frame itself, but the power of the spinor formalism
allows for carrying the required calculations in a simpler
manner. The answers, of course, are exactly the same.

2. Transformation of �0
4

We can now easily calculate the component �4 of the
Weyl tensor, in leading orders, with respect to the new null
tetrad, obtaining

 

~� 0
4 �

~��1�ABCD~̂�A~̂�B~̂�C~̂�D �
1

w _�2 �0
4 �

g0
ur

_�3 �0
4: (46)

The appearance of the factor ~��1 in this equation is related
to the asymptotic properties of the Weyl tensor in a general
asymptotically flat spacetime [6], when expressed in terms
of a regular tetrad or a regular dyad. More specifically, a
regular tetrad (with hat) at future null infinity is related to
the standard tetrad in the asymptotic region by

 ‘̂ a � ‘a; (47)
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 m̂ a � �ma; (48)

 n̂ a � �2na; (49)

and

 ‘̂ a � ��2‘a; (50)

 m̂ a � ��1ma; (51)

 n̂ a � na; (52)

where � is the conformal factor that defines the regular
metric ĝab � �2gab at future null infinity. Normally one
takes � � 1

r where r is the affine parameter of a congru-
ence of null geodesics that reach the asymptotic region.

3. Transformations to a Bondi system

Having analyzed how to transform among different
frames we can now consider our main task, to relate �4

calculated in an arbitrary frame to that which would be
obtained in a Bondi frame. This frame satisfies g~u ~r � 1
and ~V � 1, which implies

 _� � Vg0
ur; _� � wg0

ur; (53)

which fixes both w and _� and indicates how different
quantities are to transform. In particular,

 

~� 0
4 �

1

V3�g0
ur�

2 �0
4: (54)

Thus, knowledge of both g0
ur and V allows one to obtain ~�4

in terms of the more directly calculated �4. We defer to
Sec. VI and the discussion of how to obtain g0

ur and V.

C. Coordinate and tetrad transformations

After examining the simpler case, we concentrate now
on the general case; namely, we will include the possibility
of XA0 � 0. As before, the task at hand is to transform to an
asymptotic Bondi coordinate �~u; ~r; ~�; �~�� and tetrad frame
�~‘; ~n; ~m; �~m�. This transformation is of the form

 ~u � ��u; �; ��� �
~u1�u; �; ���

r
�O

�
1

r2

�
; (55)

 ~r �
r

w�u; �; ���
�O�r0�; (56)

 

~� � ~�0�u; �; ��� �O
�
1

r

�
; (57)

with _�> 0.
If one assumes that � is an stereographic coordinate of

the conformal unit sphere (t � const, r � const) it is only
necessary to consider an angular transformation of the
form

 

~� � ~�0�u; �� �O
�
1

r

�
: (58)

The stronger statement is as follows.
The stereographic coordinates of the sphere can be

thought of as a map of the extended complex plane. In
the asymptotic sphere defined by this setting, the angle
transformation, at u � const, must be conformal. But, a
map of the extended complex plane onto itself is conformal
if and only if it is a Möbius transformation; that is, a
transformation of the form

 

~� �
a� � b
c� � d

; (59)

with ab� bc � 0.
We proceed in two stages.
First, note that the contravariant metric components for

the standard Bondi-like coordinate system are given by
equations (3.13–18) of [6], whose inverse is given by
equations (3.19–24) of the same reference. The only dif-
ference is that for the general tetrad here considered

 gur �
1

gur
; (60)

with gur not necessarily being equal to 1. In order to
deduce the required relations we start from the null tetrad
defined by (19),

 �‘a� �
�
A
@
@r

�
a
; (61)

(20) and (22). Then the contravariant components of the
metric (the inverse metric), are given by

 guu � 0; (62)

 gur � A; (63)

 gui � 0; (64)

 grr � 2AU; (65)

 gri � AXi; (66)

 gij � ���i ��j � ��i�j�: (67)

Then the metric is given by

 gur �
1

A
; (68)

 grr � 0; (69)

 gri � 0; (70)

 guu � �2
U
A
� XiXjgij; (71)
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 gui � �gijX
j; (72)

 gij � �gij��1 � �d	ik	jl��i ��j � ��i�j�; (73)

with i, j, k, l � 2, 3, d � det�gij�, 	ij � �	ji and 	23 � 1.
In particular, defining the quantity

 
 � 	ij�
i ��j; (74)

one has that

 d �
1

j
j2
: (75)

We will be interested in calculating the transformation of
the radiation field component �0

4; which depends on the
transformation properties of the dyad spinor �A. This can
be read off from the transformation properties of the tetrad
vector n. A straightforward calculation reveals that the
one-form na is
 

�na� � �gabnb�

� gurdr� guudu� guidxi �Ugrudu

� Xigiudu� Xigijdxj

�
1

A
dr�

�
�2

U
A
� XiXjgij �U

1

A

� Xi��gijX
j�

�
du� ��gijX

j � Xjgij�dx
i

�
1

A
�dr�Udu�: (76)

In the Bondi frame the following relations are satisfied:

 �~‘a� � d~u; (77)

 � ~ma� �
1
~

	ij ~�i ~Xjd~u�

1
~

	ij ~�id~xj; (78)

 �~na� � d~r� ~Ud~u: (79)

Additionally, in terms of the original coordinate system,
the one-forms associated to the Bondi coordinates, to
leading order, are given by

 d~u � _�du� ��d� � � ��d �� �O
�
1

r

�
; (80)

 d~r �
1

w
dr�

r

w2 � _wdu� w�d� � w ��d ��� �O�r0�; (81)

and

 d~� � _~�du� ~��d� � ~� ��d �� �O
�
1

r

�
: (82)

Therefore from the contribution to the metric of ~‘a~nb,
one deduces that

 _�
1

w
� g0

ur; (83)

that is, w is determined by the choice of � and the value of
g0
ur.
In order to study the asymptotic transformation of the

spinors ~�A, we examine first the tetrad one-form ~na.
 

d~r� ~Ud~u�
1

w
dr�

r

w2 � _wdu�w�d� �w ��d ��� �O�r0�

� ~U
�

_�du���d� �� ��d �� �O
�
1

r

��

�
1

w

�
dr�

�
r
w

_w� ~U _�
�
du
�

�
r

w2 �w�d� �w ��d ��� � �lower orders�: (84)

It is important to note that in the general case, the vector
na, in the asymptotic region, will have a nonzero compo-
nent in the direction of the spacelike direction given by the
conformal Bondi vectors ~̂m and �̂~m. Then, since in the
asymptotic region

 � ~ma� �
~r���

2
p

~P0
~V
d �~� �O�~r0�; (85)

one can deduce

 n̂ a� ~̂ma� �
1���

2
p

~P0
~V
�

_�~� � X �� �~� �� � �O�~r
�1�: (86)

Let us note that extending the hypersurface u � const in
the asymptotic region, one defines a section S of future null
infinity; in which by construction the vectors ��1ma and
��1 �ma are tangent. Also, the regular extension of ‘,
namely ��2‘a, is orthogonal to S. But, since future null
infinity is a null hypersurface, one has that na, which is a
null vector orthogonal to S, must be tangent to future null
infinity. Since that regular extension of the Bondi frame to
future null infinity is such that ��1 ~ma and ��1 �~ma will be
tangent to future null infinity, one deduces that the function
�0 must be chosen such that

 

_�~� � X �� �~� �� � 0; (87)

since the vector ~̂ma must be orthogonal to na at future null
infinity.

By studying the asymptotic coordinate transformation
one can obtain the leading order behavior of ~na, namely

 

~n �
@
@~u
�O

�
1

r

�
�

1

_�� X�0�� � X
��

0� ��

n�O
�
1

r

�

�
1

n0���
n�O

�
1

r

�
; (88)

where n0 is the leading order behavior of the vector n.
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One then can deduce the transformation

 ~� A �
1������������
n0���

p �A: (89)

Consequently the radiation component �0
4 transforms in

the following way:

 

~� 0
4 �

~��1�ABCD~̂�A~̂�B~̂�C~̂�D �
1

w
1

�n0����2
�0

4

�
g0
ur

_��n0����2
�0

4: (90)

Let us emphasize that ~�0 is chosen to make ~X0 � 0,
while � is chosen to make ~V � 1.

This complicated transformation of the radiation field
indicates the convenience of adapting the numerical code

such that Xi � 0�O�r�1�, so that _~� � 0. Otherwise the
determination of �, needed in (90), would be a delicate
issue.

V. EXAMPLES

A. Conventions and formulae. Factors of 2

In Sec. I we presented the standard expressions for the
radiated four-momentum. Yet, there are differences in
factors with the definitions employed in numerical imple-
mentations. The difference arises from the frame adopted
for the extraction procedure. The analysis presented in this
work can be used to clarify these differences. In a Bondi
frame, the expression for the radiated four-momentum Pa

is

 

_P a � �
1

4�

Z
S
l̂a _�0 _��0dS2 (91)

(with _ denoting a derivative with respect to ~u). This, can be
reexpressed in terms of �0

4 by employing the identity valid
in a Bondi frame ~�0

4 � � ���0. We have used the~to denote a
quantity obtained in a Bondi frame (we do not do that for
�0 as here we only use it as obtained in the Bondi frame).

 

_P a � �
1

4�

Z
S
l̂a
��������
Z ~u

�1

~�0
4d~u0

��������
2
dS2: (92)

In a numerical implementation, as discussed, the readily
available �0

4 differs from the Bondi one by

 

~� 4 �
�4

�g0
ur�

2V3 : (93)

Thus

 

_P a � �
1

4�

Z
S
l̂a
��������
Z ~u

�1

�4

�g0
ur�

2V3 d~u0j2dS2: (94)

Standard approach, boost ambiguity and resulting
factors of 2

We recall that the null tetrads are not uniquely defined as
they have the boost freedom ‘a ! ‘a
�1, na ! na
 and
spin freedom ma ! maei� [23]. This freedom can bring
about additional factors in the resulting expression for the
Weyl scalars; fortunately, a Bondi frame naturally fixes this
ambiguity. In what follows we illustrate how this freedom
is fixed by ensuring a Bondi tetrad frame is adopted in a
simple example. This, in passing, will make evident the
different factors encountered in commonly employed for-
mulae. In the extraction procedure it has become custom-
ary to introduce a tetrad frame in the following form [47].
First an extraction worldtube is defined as the Cartesian
x2 � y2 � z2 � R2. Then, three vectors (labeled by J) ~viJ at
a hypersurface slice are adopted in the following way:

 ~v i
1 � ��y; x; 0�; ~vi2 � �x; y; z�

i;

~vi3 � det����1=2��ij	jlmvl1v
m
2 ;

where �ij is the induced metric on the spacelike hypersur-
face at a given time. In our present case, this reduces to

 ~v i
1 � @i�; ~vi2 � @ir; ~vi3 � @i�: (95)

The next step involves a Gram-Schmidt procedure to con-
struct three orthonormal vectors viJ with respect to �ij.
Finally, four spacetime vectors are easily constructed by
ra � �0; v2�, �a � �0; v3�, �a � �0; v1�, which together
with Na (the unit timelike vector normal to the hypersur-
face) can be employed to construct the tetrad as

 ‘0a �
1���
2
p �Na � ra� n0a �

1���
2
p �Na � ra�

m0a �
1���
2
p ��a � i�a�;

with r2 � x2 � y2 � z2. Consider the simplest case of a
spacetime whose metric is given by gab � �ab � hab with
hab a sufficiently fast decaying function at far distances
and �ab a flat metric in Cartesian coordinates. In this case,
to leading order, the tetrad resulting from the standard
procedure is

 ‘0a �
1���
2
p �@at � @aR�; (96)

 n0a �
1���
2
p �@at � @

a
R�; (97)

 m0a �
1

r
���
2
p

�
@a� �

i
sin���

@a�

�
: (98)

The main difference with the previous tetrads is that in the
former one has used a null coordinate u that in this case
would be of the form u � t� R, with the first null tetrad
vector given by ‘a � dua. Therefore, one has ‘0a � 1��

2
p ‘a
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in this case and so �0A � 21=4�A. Then, in the calculation of
the radiation component of the Weyl tensor one would have
�04 � 2�4. The expression for the radiated momentum in
these coordinates results in

 

_P a � �
1

16�

Z
S
l̂a
��������
Z u

�1
�04d~uj2dS2: (99)

This then explains the factor of 4 difference in the expres-
sions cited in [27,30,31] with that in Eq. (12) (and those in
the standard literature [18,26], etc.).

B. Teukolsky waves and wave extraction

As a second example, we adopt linearized waves on flat
spacetime as given by the so-called Teukolsky waves [50].
We adopt this example coupled with a possible coordinate
transformation to illustrate the differences that may arise
when suitable contact with a Bondi frame is missing. We
adopt the simplest expression for the line element given by

 ds2 � dt2 � �1� Afrr�dr
2 � 2Bfr�drd�� �1� 3Cf1

��

� A�r2d�2 � �1� 3Cf1
�� � Af

2
���r

2 sin���2d�2

(100)

where

 frr � 2� 3 sin���2; fr� � �3 sin��� cos���

f1
�� � �f

1
�� � f2

�� � 1 � 3 sin���2

and

 A � 3
�
F�2�

r3 �
3F�1�

r4 �
3F

r5

�
(101)

 B � �
�
F�3�

r2 �
3F�2�

r3 �
6F�1�

r4 �
6F

r5

�
(102)

 C �
1

4

�
F�4�

r
�

2F�3�

r2 �
9F�2�

r3 �
21F�1�

r4 �
21F

r5

�
(103)

with F � F�t� r�, F�n� � �d
nF�x�
dxn �x�t�r.

The Riemann tensor for such a line element can be
straightforwardly constructed. Since to leading order the
line element is just the flat metric, it is straightforward to
identify the Bondi frame. A simple calculation gives

 

~� 0
4 �

3

8
sin���2F�6��t� r�: (104)

On the other hand, we can calculate �4 with the standard
procedure. We consider two cases: (I) calculating �4 in the
coordinates �t; r; �; �� and (II) considering the transforma-
tion ~r! rg�t� which induces a nontrivial V�t�. The in-
duced tetrads, to the order that enters in the calculation of
the leading order of �4, are

 ‘a �
1���
2
p

�
@at �

1

g
�1� r _g�@aR

�
;

na �
1���
2
p

�
@at �

1

g
�1� r _g�@aR

�
;

ma �
1

rg
���
2
p �@a� � i@

a
��:

Taking g � 1 gives the tetrad for case (I). A straightfor-
ward calculation gives in this case,

 �0
4 �

3

4
F�6��t� r� sin���2; (105)

while for case (II)

 �0
4 �

3

4

F�6��t� rg� sin���2

g
: (106)

Notice a difference of a factor g�1 appearing in case (II)
in addition to a factor of 2 when compared to Eq. (104).
These factors result from V � g�1 and g0

ur �
���
2
p
g. The

corrections described in Sec. IV can be used to reconcile
these differences and obtain Bondi’s expression in a way
mostly independent of gauge issues. In the next section we
discuss how the different factors involved can be obtained
in generic settings.

VI. OBTAINING THE MISSING LINKS

From our previous discussion, it is clear that one must
take into account the effects caused by the conformal factor
V and the induced metric components gur, gui. These later
factors can be read off from the expression of the null one-
form ~na in the induced null coordinates at �. Namely, la �
dua defines the function u, and the transformation from the
�t; r; �; ��� to the �u; r; �; ��� coordinates can be employed to
express na in this system. Then, g�1

ur � ladra; Xi � nadxia.
The extraction of the conformal factor V involves more

work but can be obtained by considering a conformal
transformation of the sphere and evaluating its curvature
scalar [51]. Recall that any metric on S2 is conformally
related to that of the unit sphere; thus it must be the case
that ĝij � gijR

�2 � !�2qij. Thus, the unit sphere metric
and the induced metric at the worldtube at a constant time
are related by a conformal factor !. With our conventions
then V � !. A way to solve for this factor is to compute
the scalar curvature of the cut S on the worldtube. This
gives rise to the following relation

 R � 2�V2 �DADA lnV�; (107)

where R is the Ricci scalar curvature and Di is the
covariant derivative of the metric ĝij. Let us observe that
in two dimensions one has R � 2KV .

This equation can be solved to obtain V. Notice that this
equation admits more than one solution due to the rota-
tional group of transformations. One way to solve it and
implicitly fix this freedom is motivated in techniques in-

DEALING WITH DELICATE ISSUES IN WAVEFORM . . . PHYSICAL REVIEW D 76, 124040 (2007)

124040-9



troduced to find apparent horizons in numerical simulation
[52,53]. In this approach we express V (or a related quan-
tity) in terms of a spherical-harmonic expansion, and then
obtain a recursive relation to solve for the expansion co-
efficients. We begin by considering [54]

 W � V2 � �lmalmYlm (108)

with Ylm spherical harmonics satisfying �r2Ylm � �l�l�
1�Ylm with �r2 the Laplacian operator with respect to the
unit sphere metric expressed in the same coordinates as
those where ĝij is known (we will refer to this as �qij). The
solution we seek satisfies H�W� � 0 with

 H � 2W �DiDi lnW �R: (109)

Next, we consider the equation

 
H�W� � �r2W � �r2W (110)

with 
 a function to be determined in a suitable manner.
The solution we seek turns the equation above into an
identity. Consider now integrating this equation over the
sphere having replaced our anzats for W. This will provide
a recursion relation for obtaining the parameters alm (for
l � 0) as,

 

Z
S

�Ylm�
H � �r2W�d� � �l�l� 1�alm: (111)

Thus, starting with trial values for falmg a new set can be
obtained through the equation above. Two ingredients
remain to be provided however: one is how a00 is to be
set and the other a plausibility argument for the conver-
gence of the method. We describe first the latter issue and
then discuss the former. This argument relies on concen-
trating on the principal part of the system �
H � �r2W�
and to exploit 
 to our advantage. Inspection of these terms
allows one to reexpress them as Mij �Di

�DjW � S with

 Mij �


W
ĝij � �qij (112)

 S � 

�
2W �

1

W
ĝijCkij �DkW �

1

W2 ĝ
ij �DiW �DjW �R

�

(113)

with �D the covariant derivative associated with �qij and Ckij
the tensor relating the connections �Di with Di. Notice now
that Eq. (110) can be formally solved by the iteration
scheme

 W�n�1� � � �r2��1�
H � �r2�W�n�: (114)

Here the standard argument applies; the Laplacian operator
smooths out high frequencies and by properly adjusting
Mij such that the highest order derivatives are removed the
successive solutions will be smoother which is a require-
ment for convergence. The factor 
 can be chosen so as to
cancel particular terms in the second-order derivatives, or

to try to cancel as much as possible Mij (see the discussion
in [52]). For instance, if �qij ’ qij the trivial choice 
 � �1
is ideally suited for this purpose.

Last we comment on how a00 is obtained. At the first
step of the iteration, a useful choice is induced by assuming
W�1� � a1

00Y00. Then, one simply has

 0 �
Z
�2W�1� �R�Y00d� � 2a1

00 �
Z

RY00d�: (115)

At subsequent steps, having fixed an�1
lm for l > 0, Eq. (111)

can be employed to fix an�1
00 . However, due to the nonline-

arities of the equation this might turn out to be difficult. A
simpler, more direct route is to do so from

 

Z
S
��2W�n�1�� �DiDi lnW�n� �R�Y00d� � 0; (116)

which can be used to determine an�1
00 after all other coef-

ficients have been obtained.

VII. FINAL COMMENTS

In this work we have reexamined the issue of computing
gravitational radiation effects through the use of Weyl
scalars. The analysis reveals which correcting factors are
to be accounted for if the coordinates adopted do not con-
form to a Bondi system. To date while these corrections
have not been taken into account in numerical efforts, the
waveforms obtained both appear quite reasonable and,
most important, agreeing across different implementations.
What is then the expected contribution of the corrections
indicated here or the relevance of the present discussion in
light of these observations?

First, at least the formalism presented in this work
allows for easily enforcing consistency among different
implementations. Namely, while coordinates typically
used vary among different efforts, considering the trans-
formation to a Bondi system provides a common frame for
the computation. As a result, comparison of obtained sig-
nals from different codes would be expedited. Second, the
correcting terms will have generically nontrivial angular
dependence. Therefore, the decomposition on different
multipolar moments would be affected. In the case of
nonspinning equal-mass black holes symmetry considera-
tions indicate this might not be a significant issue. On the
other hand, for different masses and/or spinning compact
objects the contribution should be nontrivial, especially in
light of significant kicks observed which indicate a strong
direction dependent of the radiated waves.

It is important to stress here that the corrections are case-
by-case dependent as they are both sensitive to the gauge
and initial data employed. Consequently it is difficult to
assess the role the corrections indicated here might have.
Nevertheless, consistency with the calculation formalism
and a simplified frame of comparison among different
implementations are already key reasons for the relevance
of the discussion.
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Notice that the obtained result for correcting �0
4 does

not contain any contributions from the other Weyl compo-
nents, like �0

2 for example. This is related to the way this
calculation is carried out, and the assumption of the ex-
traction being done sufficiently far. From a geometrical
point of view one can observe that the worldtube defined in
a numerical calculation gives rise to a natural null tetrad
and coordinate system (that we have discussed here) which
in general does not conform with an asymptotic inertial
Bondi reference frame. In searching for the relation be-
tween these two systems, we explicitly use the asymptotic
structure of general asymptotically flat spacetimes [6].
This indicates that a convenient tetrad that has a regular
extension to future null infinity is to be chosen so that one
of the vectors (say na) is asymptotic to the generators of
future null infinity. Therefore, asymptotically, both tetrads
are related by a null rotation around this null vector. It is
probably worth mentioning that from the physical point of
view, it is this asymptotic null vector na which indicates the
appropriate rate of the time coordinate. In other words, it is
not sufficient to seek a gauge invariant definition for the
radiation field, but one must also take into account what the
gravitational radiation detectors will measure, using the
physical time of the asymptotic region of the sources. The
Bondi frame is defined precisely to satisfy these condi-
tions. However, we stress again the importance of the
correct extraction of the leading order behavior �0

4 of the

component �4 of the Weyl tensor, along null directions.
Our treatment assumes this has been performed.

As a side comment we want to stress we have employed
a convention based on a (� 2) signature following [23,24],
which is the standard signature employed in studies of
asymptotically flat spacetimes.

Last, short of considering the corrections discussed in
this work, as discussed in [55], one could estimate whether
these effects may play a role by evaluating the norms
jjR� 2jj, jjgur � �jj (with � � 1 or

���
2
p

depending on
the boost freedom adopted for ‘a) and jjguAjj. If these
norms are at the order of the truncation error in a simula-
tion, then the correcting factors would certainly not be
essential. We will examine these issues for different binary
systems in a forthcoming work [56].
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