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We consider the late-time tails of spherical waves propagating on even-dimensional Minkowski
spacetime under the influence of a long range radial potential. We show that in six and higher even
dimensions there exist exceptional potentials for which the tail has an anomalously small amplitude and
fast decay. Tails outside higher-dimensional Schwarzschild black holes are also discussed.
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I. INTRODUCTION

It is well-known that sharp propagation of free waves
along light cones in even-dimensional flat spacetimes,
known as Huygens’ property, is blurred by the presence
of a potential. Physically, the spreading of waves inside the
light cone is caused by the backscattering off the potential.
If the potential falls off exponentially or faster at spatial
infinity, then the backscattered waves decay exponentially
in time, while the long range potentials with an algebraic
fall-off give rise to tails which decay polynomially in 1=t.
The precise description of these tails is an important issue
in scattering theory. There are two main approaches to this
problem in the literature. On the one hand, there are
mathematical results in the form of various decay esti-
mates. These results are rigorous, however they rarely
give optimal decay rates inside the light cone and provide
very poor information about the amplitudes of tails. The
notable exception is the work of Strauss and Tsutaya [1]
(recently strengthened by Szpak [2]) where the optimal
pointwise decay estimate for the tail was proved in four
dimensions. Unfortunately, to the best of our knowledge,
there is no analogous result in higher dimensions.

On the other hand, there are nonrigorous results in the
physics literature based on perturbation theory. The most
complete work in this category was done by Ching et al. [3]
who derived first-order approximations of the tails for
radial potentials. Although these results were originally
formulated for partial waves in four dimensions, they can
be easily translated to spherical waves in higher dimen-
sions. Ching et al. noticed that there are exceptional po-
tentials for which the first-order tail vanishes, however they
did not pursue their analysis to the second order, apart from
giving some dimensional arguments. The main purpose of
this paper is to analyze the tails for such exceptional
potentials in more detail.

One of the physical motivations behind our work stems
from the fact that these kinds of potentials arise in the study
of linearized perturbations of higher even-dimensional
Schwarzschild black holes. The behavior of tails on the
Schwarzschild background is well-known in four dimen-
sions (see [4–8]), but not in higher even dimensions (de-

spite statements to the contrary in the literature [9]).
Although our analysis is restricted to the flat background,
it sheds some light on the problem of tails on the black hole
background because the properties of tails are to some
extent independent of what happens in the central region.

The rest of the paper is organized as follows. In Sec. II
we construct the iterative scheme for the perturbation
expansion of a spherically symmetric solution of the linear
wave equation with a potential. This scheme is applied in
Sec. III to derive the first- and second-order approxima-
tions of the tails for radial potentials which fall off as pure
inverse-power at infinity. In Sec. IV we discuss the mod-
ifications caused by subleading terms in the potential.
Section V contains numerical evidence confirming the
analytic formulas from Secs. III and IV. Finally, in
Sec. VI we give a heuristic argument to predict the behav-
ior of tails outside Schwarzschild black holes in higher
even dimensions. Technical details of most calculations are
given in the appendix.

Throughout the paper we use the succinct notation and
summation techniques from the excellent book by Graham
et al. [10]. In particular, we shall frequently use the follow-
ing abbreviations:

 x0 :� 1; xk :� x�x� 1� � � � �x� �k� 1��; k > 0;

(1)

 x0 :� 1; xk :� x�x� 1� � � � �x� �k� 1��; k > 0:

(2)

II. ITERATIVE SCHEME

We consider the wave equation with a potential in even-
dimensional Minkowski spacetime Rd�1,

 @2
t �� ��� �V� � 0: (3)

The prefactor � is introduced for convenience—through-
out the paper we assume that � is small which allows us to
use it as the perturbation parameter. The precise assump-
tions about the fall-off of the potential will be formulated
below. We restrict attention to spherical symmetry, i.e., we
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assume that � � ��t; r� and V � V�r�. Then, Eq. (3) be-
comes

 L�� �V�r�� � 0; L :� @2
t � @

2
r �

d� 1

r
@r:

(4)

We are interested in the late-time behavior of ��t; r� for
smooth compactly supported (or exponentially localized)
initial data

 ��0; r� � f�r�; @t��0; r� � g�r�: (5)

To determine the asymptotic behavior of solutions we
define the perturbative expansion (Born series)

 � �
X
n�0

�n�n; (6)

where �0 satisfies initial data (5) and all �n with n > 0
have zero initial data. Substituting this expansion into
Eq. (4) we get the iterative scheme

 L�n � �V�n�1; ��1 � 0; (7)

which can be solved recursively. The zeroth-order solution
is given by the general regular solution of the free radial
wave equation which is a superposition of outgoing and
ingoing waves [11]

 �0�t; r� � �ret
0 �t; r� ��

adv
0 �t; r�; (8)

where
 

�ret
0 �t; r� �

1

rl�1

Xl
k�0

�2l� k�!
k!�l� k�!

a�k��u�

�v� u�l�k
;

�adv
0 �t; r� �

1

rl�1

Xl
k�0

��1�k�1 �2l� k�!
k!�l� k�!

a�k��v�

�v� u�l�k
;

(9)

and u � t� r, v � t� r are the retarded and advanced
times, respectively. Here and in the following, instead of d,
we use the index l defined by d � 2l� 3 (remember that
we consider only odd space dimensions d). Note that for
compactly supported initial data the generating function
a�x� can be chosen to have compact support as well (this
condition determines a�x� uniquely).

To solve Eq. (7) for the higher-order perturbations we
use the Duhamel representation for the solution of the
inhomogeneous equation L� � N�t; r� with zero initial
data,

 ��t; r� �
1

2rl�1

Z t

0
d�

Z t�r��

jt�r��j
�l�1Pl���N��; ��d�;

(10)

where Pl��� are Legendre polynomials of degree l and

� � �r2 � �2 � �t� ��2�=2r� (note that �1 � � � 1
within the integration range). This formula can be readily
obtained by integrating out the angular variables in the
standard formula � � Gret � N, where Gret�t; x� �
�2�l�1��1��t���l��t2 � jxj2� is the retarded Green’s func-
tion of the wave operator in d� 1 dimensions (see, for
example, [12]).

It is convenient to express (10) in terms of null coordi-
nates � � �� � and 	 � �� �:

 

��t; r� �
1

2l�3rl�1

Z t�r

jt�rj
d	

Z t�r

�	
�	� ��l�1Pl���

	 N��; 	�d�; (11)

where now � � �r2 � �	� t��t� ���=r�	� ��. Using
this representation we can rewrite the iterative scheme
(7) in the integral form

 

�n�t; r� � �
1

2l�3rl�1

Z t�r

jt�rj
d	

Z t�r

�	
�	� ��l�1Pl���

	 V����; 	���n�1��; 	�d�: (12)

This ‘‘master’’ equation will be applied below to evaluate
the first two iterations for a special class of potentials. It is
natural to expect that for sufficiently small � these iter-
ations provide good approximations of the true solution.

III. PURE INVERSE-POWER POTENTIALS AT
INFINITY

In this section we consider the simple case (below
referred to as type I) when the potential is exactly V�r� �
r�
 for r greater than some r0 > 0. We assume that 
> 2.
The modifications caused by subleading corrections to the
pure inverse-power decay of the potential will be discussed
in Sec. IV.

A. Generic case

We wish to evaluate the first iteration �1�t; r� near time-
like infinity, i.e., for r � const and t! 1. Thanks to the
fact that�0��; 	� has compact support we may interchange
the order of integration in (12) and drop the advanced part
of �0��; 	� to obtain

 

�1�t; r� � �
2


2l�3rl�1

Z 1
�1

d�
Z t�r

t�r
�	� ��l�1�
Pl���

	�ret
0 ��; 	�d	; (13)

where we have substituted V � 2
�	� ���
. Plugging (9)
into (13), after a long calculation (see the appendix for the
technical details), we get
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�1�t; r� � �2
�3l�1

�

� 3

2

�
l
�


2

�
l Z �1
�1

d�a���
�t� ��
�2


�t� ��2 � r2�
�1�l

X
0�n�b�
�2�=2c

��1�n
22n�l� n�!

n!�2l� 2n� 1�!

	

�
�

� 2

2
� l� 1

�
n
�

� 1

2
� l� 1

�
n X
n�m�n�l

��1�m
l

m� n

 !
�� 


2 � 1�m

�
2�
m

�
r

t� �

�
2m
: (14)

Asymptotic expansion of (14) near timelike infinity yields
the following first-order approximation of the tail:

 ��t; r� � ��1�t; r�

� �
C�l; 
�

t
�2l

�
A� �
� 2l�

B
t
�O

�
1

t2

��
; (15)

where

 C�l; 
� � �
2
�2l�1

�2l� 1�!!

�

� 3

2

�
l
�


2

�
l
; (16)

and

 A �
Z �1
�1

a���d�; B �
Z �1
�1

a����d�: (17)

In general A � 0 and the tail decays as t�
�2l, however
there are nongeneric initial data for which A � 0 and then
the tail decays as t�
�2l�1; in particular, this happens for
time symmetric initial data for which a�x� is an odd
function.

Remark 1. It is easy to check that if the function ��t; r�
satisfies Eq. (4), then the function  � rl�1� satisfies the
radial wave equation for the lth multipole

 �@2
t � @2

r � l�l� 1�=r2� � �V�r� � 0: (18)

The late-time tails for this equation were studied by Ching
et al. [3] who derived the formula equivalent to (15) via the
Fourier transform methods.

B. Exceptional case

It follows from (15) that if 
 is an odd integer satisfying
3 � 
 � 2l� 1, then �1�t; r� vanishes identically due to
the factor �
�3

2 �
l in (16) and there is no (polynomial) tail

whatsoever in the first order. Thus, in order to compute the
tail in this exceptional case we need to go to the second
order of the perturbation expansion.

Using (12) and proceeding as above we get the second
iteration
 

�2�t; r� � �
2


2l�3rl�1

Z 1
�1

d�
Z t�r

t�r
�	� ��l�1�
Pl���

	�ret
1 ��; 	�d	; (19)

where �ret
1 is the outgoing solution of the inhomogeneous

equation

 L�1 � �V�0: (20)

In general �1 is a sum of the solution of the homogeneous
equation and the particular solution of the inhomogeneous
equation. The homogeneous part has the form (9) (with a

different generating function than a, but still compactly
supported), thus for the same reason as above it gives no
contribution to the tail. The particular solution of the
inhomogeneous Eq. (20) reads

 �NH
l �

1

2�
� 1�r
�l
Xl�
=2�1=2

q�0

�l� 
=2� 1=2�q

	
2q�
=2�q


q
�H
l�1�q

rq
; (21)

where �H
l�1�q denotes the solution of the homogeneous

equation with d � 2�l� 1� q� � 3 and the same generat-
ing function a as in �0 [see (9)]. The formula (21) can be
easily derived by the method of undetermined coefficients
(we emphasize that this formula is valid only for odd 

satisfying 3 � 
 � 2l� 1). Substituting (21) into (19),
after a long calculation (see the appendix for the technical
details), we obtain the following asymptotic behavior near
timelike infinity:

 ��t; r� � �2�2�t; r�

� �2 D�l; 
�

t2�
�l�1�

�
A� 2�
� l� 1�

B
t
�O

�
1

t2

��
;

(22)

where the coefficients A and B are defined in (17) and (see
Table I)
 

D�l; 
� �
22�
�l�2�

�2l� 1�!!
�
�2
� 3�

2�
� 1�

�

�

5

2

�
l�1
�
� 2� l�l�1

	 F
�l� 
=2� 1=2; 
=2; 2
� 2; 1


;
;
� l� 1=2

��������1

 !
:

(23)

Here F stands for the generalized hypergeometric function

 F
a1; . . . ; am
b1; . . . ; bn

��������z
� �

�
X
k
0

ak1; . . . ; akm

bk1; . . . ; bkn

zk

k!
: (24)

TABLE I. The first few coefficients D�l; 
�.


 � 3 
 � 5 
 � 7 
 � 9

l � 1 4
l � 2 �8=5 2240=3
l � 3 96=35 1792 2 523 136=5
l � 4 �64=7 �17 920=9 16 580 608=5 4 638 965 760=7
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We remark that the behavior O��2�t�2�l�
�1� of the tail
(22) was conjectured before by Ching et al. [3] on the basis
of dimensional analysis.

IV. GENERAL POLYNOMIALLY DECAYING
POTENTIALS

In this section we analyze how the presence of sublead-
ing corrections to the pure inverse-power asymptotic be-
havior of the potential affects the results obtained in
Sec. III. We restrict ourselves to the most interesting and
common case (below referred to as type II) when near
infinity:

 V�r� �
1

r


�
1�

�
r�

�
� o

�
1

r
��

�
; � > 0: (25)

If C�
; l� � 0, then the dominant behavior of the tail is of
course the same as in (15):

 ��t; r� � �AC�l; 
�t��
�2l�: (26)

However, in the exceptional case, when C�
; l� � 0, the
situation is more delicate. As we showed above, in this case
there is the second-order contribution to the tail given by
(22),

 �2�t; r� � AD�l; 
�t�2�
�l�1�: (27)

In contrast to the type I case where the first-order tail
vanishes identically, in the type II case the subleading
term in the potential produces the first-order contribution
which is given by (15) with 
 replaced by 
� �:

 �1�t; r� � �AC�l; 
� ��t��
���2l�; (28)

assuming that 
� � is not an odd integer� d� 2 (other-
wise one has to repeat the analysis for the next subleading
term in the potential).

Now, comparing the decay rates in (27) and (28) we
conclude that the leading asymptotics of the tail is given by
the first-order term ��1�t; r� if � � 
� 2 (we call it
subtype IIa), but otherwise, i.e. for � > 
� 2
(subtype IIb), the second-order term �2�2�t; r� is dominant
for t! 1.

Remark 2. In the context of Eq. (18) a formula analogous
to (28) was obtained by Hod who studied tails in the
presence of subleading terms in the potential (see
subgroup IIIb in [13]). However, Hod’s analysis, restricted
to the first-order approximation, was inconclusive because,
as we just have shown, without the second-order formula
(27) one is not in position to make assertions about the
dominant behavior of the tail.

V. NUMERICS

In order to verify the above analytic predictions we
solved numerically the initial value problem (4) and (5)
for various potentials and initial data. Our numerical algo-
rithm is based on the method of lines with finite differ-
encing in space and explicit fourth-order accurate Runge-
Kutta time stepping. As was pointed out in [3], a reliable
numerical computation of tails requires high-order finite-
difference schemes, since otherwise the ghost potentials
generated by discretization errors produce artificial tails
which might mask the genuine behavior. The minimal
order of spatial finite-difference operators depends on the
fall-off of the potential—for the cases presented below the
fourth-order accuracy was sufficient, but for the faster
decaying potentials a higher-order accuracy is needed. To
eliminate high-frequency numerical instabilities we added
a small amount of Kreiss-Oliger artificial dissipation. All
computations were performed using quadruple precision
which was essential in suppressing round-off errors at late
times.

The numerical results presented here were produced for
initial data of the form

 ��0; r� � exp��r2�; @t��0; r� � exp��r2�: (29)

As follows from (9) the generating function for these data
is

 

a�x� � 2��l�2��1� 2x� exp��x2�;

hence A �
Z �1
�1

a�x�dx �
����
�
p

=2l�2:
(30)

We considered the following potentials:

 

V�r� �
tanh
�2r

r

�type I� (31a)

V�r� �
tanh
�2r

r

�1�

tanh�r
r�
� �type II� (31b)

for various values of 
 and �. The regularizing factor
tanh�r� introduces exponentially decaying corrections to
the pure inverse-power behavior at infinity but such cor-
rections do not affect the polynomial tails. The numerical
verification of the formulas (15), (22), and (28) is shown in
Tables II and III. The observed decay rates agree perfectly
with analytic predictions, while small errors in the ampli-
tudes are due to (neglected) higher-order terms in the
perturbation expansion.

VI. SCHWARZSCHILD BACKGROUND

Consider the evolution of the massless scalar field out-
side the d� 1 dimensional Schwarzschild black hole
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 ds2 � �

�
1�

1

rd�2

�
dt2 �

�
1�

1

rd�2

�
�1
dr2 � r2d�2

d�1;

(32)

where d�2
d�1 is the round metric on the unit sphere Sd�1

and d 
 5 is odd. Here we use units in which the horizon
radius is at r � 1. Introducing the tortoise coordinate x,
defined by dr=dx � 1� 1=rd�2, and decomposing the
scalar field into multipoles, one obtains the following
reduced wave equation for the jth multipole [14]:

 @2
t  � @2

x �U�x� � 0;

U �
�
1�

1

rd�2

��
�2j� d� 3��2j� d� 1�

4r2 �
�d� 1�2

4rd

�
:

(33)

Note that (33) is the 1� 1 dimensional wave equation on
the whole axis �1< x<1. For large positive x we have

 r � x�
1

d� 3

1

xd�3
�

d� 2

�2d� 5��d� 3�

1

x2d�5

�O

�
1

x3d�7

�
; (34)

which implies that
 

U�x� �
�2j� d� 3��2j� d� 1�

4x2 � V�x�;

V�x� �
a

xd
�

b

x2d�2
�O

�
1

x3d�4

�
as x! 1;

(35)

with

 a � �
�d� 1�j�j� d� 2�

d� 3
and b � �

�2d� 3���d� 3��d� 2�2�d� 1� � 4j�j� d� 2��1� d�d� 3���

4�2d� 5��d� 3�2
: (36)

For large negative x (near the horizon) the potential is
exponentially small, so one expects that the backscattering
off the left edge of the potential can be neglected. If so, the

decay rate (but not the amplitude) should follow from the
analysis of Sec. IV. Comparing Eq. (33) for large positive x
to Eq. (18) with the potential (25) and using (35) we find

TABLE III. The exceptional case: comparison of analytic and numerical parameters of the
tails for the potential (31b) (the first two columns) and (31a) (the third column) with 
 � 3,
� � 0:1, and initial data (29). The analytic results are given by the formula (28) for the
subtype IIa potential, and by the formula (27) for the type I and IIb potentials. Note that
although the dominant tails for the type I and the subtype IIb potentials are theoretically the
same, in the case IIb there is an additional first-order error due to the subdominant term
O���t��2l�
��� which accounts for a slight difference in numerical accuracy between these two
cases.

� � 1=2 (subtype IIa) � � 1:75 (subtype IIb) (type I)
Theory Numerics Theory Numerics Theory Numerics

d � 5 Exponent 5.5 5.4993 6 6.002 6 6.0000
Amplitude �0:0731 �0:0696 0.008 86 0.008 62 0.008 86 0.008 43

d � 7 Exponent 7.5 7.4998 8 8.0003 8 7.9999
Amplitude 0.0603 0.0579 �0:001 77 �0:001 75 �0:001 77 �0:001 72

d � 9 Exponent 9.5 9.4999 10 9.9957 10 9.9997
Amplitude �0:1131 �0:1115 0.001 52 0.001 45 0.001 52 0.001 49

TABLE II. The generic case: numerical verification of the analytic formula (15) for the
potential (31a) (� � 0:1) and initial data (29). Comparing the second column of this table
(corresponding to 
 � 3:01) with the last column of Table III one can see the discontinuity of
the decay rate at 
 � 3 (for d � 5 and 7).


 � 2:5 
 � 3:01 
 � 4
Theory Numerics Theory Numerics Theory Numerics

d � 3 Exponent 2.5 2.499 3.01 3.009 4 4.00002
Amplitude �0:1253 �0:0881 �0:1785 �0:1518 �0:3545 �0:3320

d � 5 Exponent 4.5 4.501 5.01 5.0101 6 5.9999
Amplitude 0.0261 0.0235 �0:000 89 �0:000 85 �0:2363 �0:2318

d � 7 Exponent 6.5 6.501 7.01 7.01 8 7.9999
Amplitude �0:0294 �0:0276 0.000 89 0.000 87 0.1418 0.1404
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that l � j� �d� 3�=2 and the potential V is of the
subtype IIa with 
 � d and � � d� 2. Thus, applying
(28) we get the first-order tail

  �t; x� � t��2j�3d�5�: (37)

This prediction has been verified numerically for d � 5.
Remark 3. Late-time tails outside higher-dimensional

Schwarzschild black holes were studied in [9], however
in the even-dimensional case the reasoning presented there
is not correct, even though the result agrees with (37). The
reason is that the analysis of [9] is based on the application
of Ching et al.’s conjecture about the decay of the second-
order tail t��2l�2
�2� which for l � j� �d� 3�=2 and 
 �
d gives t��2j�3d�5�. Unfortunately, this conjecture does not
apply to the problem at hand. For j � 0 this is evident
because the leading term in V (proportional to x�d) van-
ishes (since by (36) a � 0), while the subleading term
(proportional to x��2d�2�) is of generic type. For j > 0
this follows from the fact that the potential is of the
subtype IIa. Thus, for all j 
 0 the dominant (first-order)
contribution to the tail comes from the subleading term in
the potential. The agreement of the decay rate obtained in
[9] with (37) is accidental and due to the fact that the

subdominant term in (35) (not considered in [9]) is on a
borderline between subtypes IIa and IIb.

Admittedly, the handwaving argument leading to (37) is
far from satisfactory. Unfortunately, we have not been able
to carry over the analysis from Secs. II, III, and IV in the
case of Eq. (33). There are two difficulties in this respect.
First, in contrast to the spherical case, Huygens’ principle
is not valid for the free wave equation in 1� 1 dimensions.
Second, there is no natural small parameter in the problem.
In the impressive tour de force work [7], Barack showed
how to overcome these difficulties for a restricted class of
initial data in four dimensions. It would be interesting to
generalize Barack’s approach to higher even-dimensional
Schwarzschild spacetimes.
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APPENDIX

Throughout the appendix we use the notation of [10] in which the square bracket around a logical expression returns a
value 1 if the expression is true and a value 0 if the expression is false:

 
condition� �
�

1 if condition � true
0 if condition � false

:

In order to derive the asymptotic behavior of the iterations (13) and (19) near timelike infinity (fixed r and t! 1) we need
to evaluate the following expression:
 

F �t; r;�;L� � �
2�

4rl�1

XL
k�0

cL;k
Z �1
�1

d�
Z t�r

t�r
d	

Pl���

�	� ����L�k
a�k����; (A1)

where

 cL;k �
�2L� k�!
k!�L� k�!

(A2)

and

 � �
�	� t��t� �� � r2

r�	� ��
: (A3)

From (9) and (13) we have

 �1�t; r� � F �t; r;
; l�; (A4)

and from (19) and (21) we have

 �2�t; r� �
1

2�
� 1�r
�l
Xl�
=2�1=2

q�0

�l� 
=2� 1=2�q �
2q�
=2�q


q
F �t; r; 2
� 1� q; l� 1� q�: (A5)

Since a��� has compact support, it is advantageous to begin with integration by parts,
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Z �1
�1

d�
Pl���

�	� ����L�k
a�k���� �

Z �1
�1

d���1�k
dk

d�k

�
Pl���

�	� ����L�k

�
a���:

For � as defined in (A3) and for any function g��� the following identity holds:

 

dk

d�k

�
g���

�	� ���

�
�
Xk
j�0

k
j

� �
��� k� 1�k�j

�
r2 � �t� 	�2

r

�
j g�j����

�	� ����k�j
; (A6)

hence

 F �t; r;�;L� � �
2�

4rl�1

Z �1
�1

d�a���
X

0�j�k�L

��1�k
k
j

� �
cL;k��� L� 1�k�j

1

rj
Z t�r

t�r
d	
�r2 � �t� 	�2�j

�	� ����L�j
P�j�l ���: (A7)

The sum over k can be evaluated explicitly:

 

XL
k�j

��1�k
k
j

� �
�2L� k�!
k!�L� k�!

��� L� 1�k�j � ��1�L
L
j

� �
��� 2�L�j: (A8)

Let us define

 I :�
1

rj
Z t�r

t�r
d	
�r2 � �t� 	�2�j

�	� ����L�j
P�j�l ���: (A9)

Changing the integration variable from 	 to � and integrating by parts, we get

 

I � ��1�j
rj�1�t� ����2�L�j


�t� ��2 � r2���1�L

Z �1

�1
d�Pl���

dj

d�j

�
�1��2�j

�
1�

r
t� �

�
�
��2�L�j

�
: (A10)

Using the identity [15]

 �k �
X

l�k;k�2;k�4;...

�2l� 1�k!

2�k�l�=2�k�l2 �!�k� l� 1�!!
Pl���; (A11)

and expanding dj

d�j 
�1��2�j�1� r
t����

��2�L�j� in Taylor series we get

 

I � ��1�j
rj�1�t� ����2�L�j


�t� ��2 � r2���1�L

X��2�L

n�0

�j� n�j
Z �1

�1
d�Pl����

n

	
Xb�j�n�=2c

m�0

j

m

 !
�� 2� L� j

j� n� 2m

 !
��1�j�n�m

�
r

t� �

�
j�n�2m

�
rl�1�t� ����2�L�l


�t� ��2 � r2���1�L

Xb���2�L�l�=2c

n�0

�j� l� 2n�j
Z �1

�1
d�Pl����

l�2n

	
Xb�j�l�2n�=2c

m�0

j

m

 !
�� 2� L� j

j� l� 2n� 2m

 !
��1�l�m

�
r

t� �

�
2j�2n�2m

�
rl�1�t� ����2�L�l


�t� ��2 � r2���1�L

Xb���2�L�l�=2c

n�0

�j� l� 2n�j2l�1 �l� 2n�!�l� n�!
n!�2l� 2n� 1�!

	
Xb�j�l�2n�=2c

m�0

j

m

 !
�� 2� L� j

j� l� 2n� 2m

 !
��1�l�m

�
r

t� �

�
2j�2n�2m

: (A12)

Collecting the results of (A8), (A10), and (A12) and plugging them into (A7) we get
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 F �t; r;�;L� � �
2��l�1

4

Z �1
�1

d�a���
�t� ����2�L�l


�t� ��2 � r2���1�L

Xb���2�L�l�=2c

n�0

�l� 2n�!�l� n�!
n!�2l� 2n� 1�!

��1�L�lL!S��;L�; (A13)

where

 S��;L� �
XL
j�0

�� 2
L� j

� �
j� l� 2n

j

� � Xb�j�l�2n�=2c

m�0

��1�m
j
m

� �
�� 2� L� j
j� l� 2n� 2m

� ��
r

t� �

�
2j�2n�2m

: (A14)

1. First-order approximation

To evaluate the first iteration �1�t; r� we apply the formula (A13) with � � 
 and L � l. Then

 S�
; l� �
Xl
j�0


� 2
l� j

� �
l� 2n� j

j

� � Xj�n
m��j�l�=2

��1�j�n�m
j

j� n�m

� �

� 2� l� j
l� j� 2m

� ��
r

t� �

�
2m
; (A15)

where we shifted the summation index m! j� n�m. Next, we interchange the order of summation according to
 


0 � j�
j � l�
m� n � j�
j � 2m� l�

,

�
�
l
2
� m< 0

�

0 � j � l� 2m� � 
0 � m< n�
0 � j � l� � 
n � m � l� n�
m� n � j � l�;

and convert the sum over j into a generalized hypergeometric function [10]. Defining

 tj � ��1�j�n�m

� 2
l� j

� �
l� 2n� j

j

� �
j

j� n�m

� �

� 2� l� j
l� j� 2m

� �
;

we see that t0 � 0 iff n � m; thus the sums for 
� l
2 � m< 0� and 
0 � m< n� do not contribute to (A15) and we are left

with
 

S�
; l� �
Xn�l
m�n

�
r

t� �

�
2m Xl�n�m

j�0

��1�j

� 2

l� n�m� j

 !
l� n�m� j

j�m� n

 !
j�m� n

j

 !

� 2� l� n�m� j

l� n�m� j

 !
;

(A16)

where we shifted the summation index j! j�m� n. Defining

 

~t j � ��1�j

� 2

l� n�m� j

� �
l� n�m� j
j�m� n

� �
j�m� n

j

� �

� 2� l� n�m� j

l� n�m� j

� �
;

we see that

 

~t 0 �
�
� 2�l�n�m

�l� n�m�!
�
�l� n�m�!

�m� n�!�l� 2n�!
�
�
� 2� l� n�m�l�n�m

�l� n�m�!

and

 

~tj�1

~tj
�

�j� �l� n�m���j� �l� n�m���j� �l� n�m� 1��

�j� ��
� 1� � �l� n�m����j� ���
� 2� � �l� n�m����j� 1�
;

hence
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S�
; l� �
Xn�l
m�n

�
r

t� �

�
2m �
� 2�l�n�m

�l� n�m�!
�
�
� 2� l� n�m�l�n�m

�m� n�!�l� 2n�!

	 F
��l� n�m�;��l� n�m�; �l� n�m� 1�

�
� 1� � �l� n�m�;��
� 2� � �l� n�m�

��������1

 !

�
Xn�l
m�n

�
r

t� �

�
2m

21�2�l�n�m��
�
� 2�l�n�m

�l� n�m�!
�
�
� 2� l� n�m�l�n�m

�m� n�!�l� 2n�!

	
����
� 2� � �l� n�m�����
� 1� � �l� n�m��

��� 
�3
2 �m����


�2
2 � �l� n����



2 �m���


�1
2 � �l� n��

; (A17)

where in the last equation we used the identity

 F
a� 1;�a; �b� c� 1�=2

b; c

��������1
� �

� 22��b�c��
��b���c�

��b�a2 ���
c�a

2 ���
1�b�a

2 ���1�c�a2 �
:

Substituting

 �
� 2�l�n�m���
� 1� � �l� n�m�� � ��
� 1�

and

 �
� 2� l� n�m�l�n�m����
� 2� � �l� n�m�� � ��1�l�n�m���
� 2� 2m�

into (A17), we get

 S�
; l� �
Xn�l
m�n

�
r

t� �

�
2m ��1�l�n�m21�2�l�n�m��
�l� n�m�!�m� n�!�l� 2n�!

��
� 1����
� 2� 2m�

��
2 �m����

�3

2 �m����

�2

2 � �l� n����

�1

2 � �l� n��
:

The last equation can be still simplified due to the identity

 

��
� 1����
� 2�

��
2����

�3

2 ����

�2

2 � l���

�1

2 � l�
�
��1�l

2�

�

� 3

2

�
l
�


2

�
l
: (A18)

We have
 

���
� 2� 2m� � ��
� 2�2m���
� 2�;

�
�
�

� 3

2
�m

�
�

�
�

� 3

2

�
m

�
�
�

� 3

2

�
;

�
�
�

� 2

2
� l� n

�
�

��� 
�2
2 � l�

�� 
�2
2 � l� 1�n

;

�
�

� 1

2
� l� n

�
�

��
�1
2 � l�

�
�1
2 � l� 1�n

;

�
�


2
�m

�
�

�


2

�
m

�
�


2

�
;

and

 

��
� 2�2m

�� 
�3
2 �

m
� 22m

�
�


2
� 1

�
m
;

so finally
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 S�
; l� �
Xn�l
m�n

�
r

t� �

�
2m ��1�n�m22�l�n�

�l� n�m�!�m� n�!�l� 2n�!

�

� 3

2

�
l
�


2

�
l �� 


2 � 1�m�� 
�2
2 � l� 1�n�
�1

2 � l� 1�n

�
2�
m

:

(A19)

Plugging (A19) into (A13) with � � 
 and L � l we get the expression (14).

2. Second-order approximation

The calculation in the second order (� � 2
� 1� q and L � l� 1� q) is only a slight modification of what we have
already done in the first order. Following the same steps which led us from (A15) to (A18) we get

 S��;L� �
Xn�L
m�n

�
r

t� �

�
2m ��1�l�n�m21�2�L�n�m��
�L� n�m�!�m� n�!�l� 2n�!

	
���� 1������ 2� l� L� 2m�

���2 �
l�L

2 �m����
��3

2 �
l�L

2 �m����
��2

2 � �
l�L

2 � n����
��1

2 � �
l�L

2 � n��
: (A20)

The last equation can be simplified due to the identity

 

���� 1������ 2� l� L�

���2 �
l�L

2 ����
��3

2 �
l�L

2 ����
��2

2 �
l�L

2 ���
��1

2 �
l�L

2 �
�
��1�l

2�

�
�� 3� �l� L�

2

�
L
�
�� l� L

2

�
L
��� 2�l�L; (A21)

which for L � l reduces to (A18). We have

 

����� 2� l� L� 2m� � ���� 2� l� L�2m����� 2� l� L�;

�
�
�
�� 3

2
�
l� L

2
�m

�
�

�
�
�� 3

2
�
l� L

2

�
m

�
�
�
�� 3

2
�
l� L

2

�
;

�
�
�
�� 2

2
�
l� L

2
� n

�
�

��� ��2
2 �

l�L
2 �

�� ��2
2 �

l�L
2 � 1�n

;

�
�
�� 1

2
�
l� L

2
� n

�
�

����1
2 �

l�L
2 �

���1
2 �

l�L
2 � 1�n

;

�
�
�
2
�
l� L

2
�m

�
�

�
�
2
�
l� L

2

�
m

�
�
�
2
�
l� L

2

�
;

and

 

���� 2� l� L�2m

�� ��3
2 �

l�L
2 �

m
� 22m

�
�
�
2
�
l� L

2
� 1

�
m
;

hence

 S��;L� �
Xn�L
m�n

�
r

t� �

�
2m ��1�n�m22�L�n�

�L� n�m�!�m� n�!�l� 2n�!

�
�� 3� �l� L�

2

�
L
�
�� l� L

2

�
L
��� 2�l�L

	
�� �

2 �
l�L

2 � 1�m�� ��2
2 �

l�L
2 � 1�n���1

2 �
l�L

2 � 1�n

��2 �
l�L

2 �
m

: (A22)

Plugging (A22) into (A13) we get
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F �t; r; 2
� 1� q; l� 1� q� � ��1�q
22
�3l�2�q

4

�

�

5

2

�
l�1�q

	 �
� 2� l�l�1�q�2
� 3�1�q
Z �1
�1

d�a���
�t� ��2
�4


�t� ��2 � r2�2
�3�l

	
X
�2

n�0

��1�n
22n�l� n�!

n!�2l� 2n� 1�!
��
� 1� l�n

�

�

3

2
� l� q

�
n

	
Xn�l�1�q

m�n

��1�m
l� 1� q

m� n

 !
��
� 2�m

�
� q�m

�
r

t� �

�
2m
: (A23)

Substituting this into (A5) and expanding in 1=t we have

 

�2�t; r� �
1

2�
� 1�
�

22
�2l�2

4�2l� 1�!!
�

1

t2
�2l�2

�
A� 2�
� l� 1�

B
t
�O

�
1

t2

��

	

� Xl��
�1�=2

q�0

��1�q�l� p�q
2q�
=2�q


q

�

�

5

2

�
l�1�q

�
� 2� l�l�1�q�2
� 3�1�q
�
; (A24)

with A and B defined in (17). Converting the sum over q into the generalized hypergeometric function we get (22).
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