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The physical representation of the general double–Reissner–Nordström solution is obtained by
rewriting the N � 2 Bretón–Manko–Aguilar electrostatic metric in the Varzugin–Chistyakov parame-
trization �Mi;Qi; R�. A concise analytical formula is derived for the interaction force between two
arbitrary Reissner–Nordström constituents, and an example of the equilibrium configuration involving
two oppositely charged particles which confirms earlier Bonnor’s prediction of the existence of such
configurations is given.
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I. INTRODUCTION

The history of exact solutions of the Einstein–Maxwell
equations for two aligned charged masses of the Reissner–
Nordström type [1,2] begins in 1917 with the two-body
electrostatic solution of Weyl’s class [3], which is able to
describe constituents whose masses Mi and charges Qi,
i � 1, 2 satisfy the relation M1Q2 �M2Q1 � 0. When the
parameters Qi are defined by the equalities Q1 � �M1,
Q2 � �M2, the resulting solution belongs to the
Majumdar–Papapetrou family of extreme black holes
[4,5], and in that case the constituents are in equilibrium
which is independent of the coordinate distance R separat-
ing them. The study of the general exact model character-
ized by arbitrary Mi and Qi was started only a decade ago
by Perry and Cooperstock [6] who adjusted a known sta-
tionary axisymmetric electrovac solution [7] for investigat-
ing the double–Reissner–Nordström equilibrium problem.
The solution analyzed in [6] was not presented in a closed
analytical form since the parameters �n it contained were
implicit functions of the parameters of the axis data. A year
later the multisoliton electrostatic solution [8] representing
a system of N aligned Reissner–Nordström particles was
constructed with the aid of Sibgatullin’s integral equation
method [9] in a concise analytical form thanks to the use of
the objects �n as arbitrary parameters. Its N � 2 special-
ization, henceforth referred to as the BMA solution, fully
describes the general 5-parameter double–Reissner–
Nordström spacetime, the corresponding subclass of equi-
librium configurations being defined by a very simple
balance equation.

In a recent paper [10] Alekseev and Belinski have been
able to parametrize the 4-parameter subfamily of the BMA
solution representing two Reissner–Nordström particles in
equilibrium in terms of the Komar masses and charges of
the constituents, the coordinate distance separating the
balancing particles being a function of the mass and charge
parameters. Since no technical details of the derivation
have been provided in [10], it is one of the motivations
of the present paper to demonstrate that Alekseev and
Belinski’s results are obtainable straightforwardly, and by

purely algebraic manipulations, as a particular case of the
formulas of the paper [8] rewritten in the parametrization
discovered and elaborated for the double–Reissner–
Nordström problem by Varzugin and Chistyakov [11].
For instance, for obtaining Eq. (10) of [10], one only needs
to rewrite the coefficient a12 of the BMA solution [see
Eqs. (2) and (9) below] in the new parameters.

However, the removal of mystery from Alekseev and
Belinski’s article is not the main objective of our research.
The present paper has as its principal goal the presentation
of the entire 5-parameter BMA family of electrostatic
solutions in the Varzugin–Chistyakov parametrization
and derivation on its basis of the formula for the interaction
force between two arbitrary Reissner–Nordström constit-
uents. The extreme technical complexity of this task proba-
bly explains why neither Varzugin and Chistyakov
themselves—nor later on Alekseev and Belinski—have
been able to accomplish it. Fortunately, the difficulties of
the analytic computer processing, which at first glance look
insuperable, can be circumvented with the aid of some
special tricks. To give an idea about the scale of these
difficulties, it is sufficient to mention that, for instance,
an attempt to directly rewrite and then factorize the coef-
ficient a13 in terms of the new parameter set exhausts the
memory of a 12 Gb RAM computer.

The paper is organized as follows. In the next section the
BMA electrostatic solution in its original ‘‘�� �’’ pa-
rametrization is briefly reviewed. Sec. III is devoted to the
Varzugin–Chistyakov parametrization and its relation to
the parameters of the BMA solution. In Sec. IV the general
double–Reissner–Nordström spacetime is written in terms
of the coordinate distance R and physical parameters Mi
and Qi, after which the derivation of the formula for the
interaction force is carried out. Concluding remarks are
given in Sec. V.

II. THE BMA SOLUTION IN THE ‘�� �’
PARAMETRIZATION

The Ernst potentials E and � [12] of the BMA solution
describing two aligned Reissner–Nordström particles, and
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the corresponding metric functions f��; z�, ���; z� entering the static axisymmetric line element

 ds2 � f�1�e2��d�2 � dz2� � �2d’2� � fdt2; (1)

where � and z are Weyl’s cylindrical coordinates, are defined by the formulas [8]
 

E �
A� B
A� B

; � �
C

A� B
; f �

A2 � B2 � C2

�A� B�2
; e2� �

A2 � B2 � C2

K2
0r1r2r3r4

; A �
X

1	i<j	4

aijrirj;

B �
X4

i�1

biri; C �
X4

i�1

ciri; K0 �
X

1	i<j	4

aij;

aij � ��1�i�j��i � �j�
��������
��k � �2�h1��k� ��l � �2�h1��l�

��k � �1�h2��k� ��l � �1�h2��l�

��������; �i < j; k < l; l � i; j�;

bi � ��1�i�1

����������������

D��k� D��l� D��m�

��k � �2�h1��k� ��l � �2�h1��l� ��m � �2�h1��m�

��k � �1�h2��k� ��l � �1�h2��l� ��m � �1�h2��m�

����������������
;

ci � ��1�i�1

����������������

D��k�f��k� D��l�f��l� D��m�f��m�

��k � �2�h1��k� ��l � �2�h1��l� ��m � �2�h1��m�

��k � �1�h2��k� ��l � �1�h2��l� ��m � �1�h2��m�

����������������
; �k < l < m; k; l;m � i�;

rn �
��������������������������������
�2 � �z� �n�2

q
:

(2)

In the above formulas the arbitrary parameters are �n, n � 1; 4, and �l, l � 1, 2, which can take on arbitrary real values or
occur in complex conjugate pairs, all other constant quantities, i.e.,D��n�, f��n�, and hl��n�, being defined in terms of �n
and �l through the relations
 

D��n� 
 ��n � �1���n � �2�; f��n� 

f1

�n � �1
�

f2

�n � �2
;

h1��n� 
 e1 � 2f1f��n�; h2��n� 
 e2 � 2f2f��n�;
(3)

where

 e1 � ��2s4 � ��1 � �2�s3 � 2�1�2s2 � �
2
1�3�2 � �1�s1 � 2�3

1��1 � 2�2����1 � �2�
�3 � 2f1f2��1 � �2�

�1;

e2 � �2s4 � ��1 � �2�s3 � 2�1�2s2 � �2
2�3�1 � �2�s1 � 2�3

2��2 � 2�1����1 � �2�
�3 � 2f1f2��1 � �2�

�1;

s1 :�
X4

i�1

�i; s2 :�
X

1	i<j	4

�i�j; s3 :�
X

1	i<j<k	4

�i�j�k; s4 :� �1�2�3�4;

(4)

and

 f2
1 �

Q4
n�1��1 � �n�

��1 � �2�
2 ; f2

2 �

Q4
n�1��2 � �n�

��1 � �2�
2 : (5)

On the upper part of the symmetry axis the potentials E
and � behave themselves as

 E �� � 0; z� � 1�
e1

z� �1
�

e2

z� �2
;

��� � 0; z� �
f1

z� �1
�

f2

z� �2
;

(6)

and it is worth mentioning that e1, e2, f1, f2, together with
the simple poles �1 and �2, can in principle be used as
arbitrary parameters of the solution, but then the parame-

ters �n would be implicit functions of el, fl, �l defined as
roots of an algebraic quartic equation (see [8] for details),
and in such a case one would need to estimate them
numerically in applications.

In view of the invariance of the field equations with
respect to an arbitrary constant shift z0 along the z-axis,
the set f�n; �lg consisting of 6 parameters can define only 5
physical characteristics of the binary system since the
constants �n determining the location of sources on the
symmetry axis can be always set to satisfy, say, the equa-
tion

P
�n � 0.

The total mass M and total charge Q of the system are
given by the expressions

 M � �1
2�e1 � e2�; Q � f1 � f2; (7)
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and these formulas play an important role in the repara-
metrization, which will be carried out in the next section.

Although the BMA solution is analytically extended and
therefore describes any combination of the black-hole and
hyperextreme constituents, in what follows we shall be
mainly concerned with the case of two black holes because
of its greater physical importance, making where necessary
only brief explanatory remarks about the binary systems
involving hyperextreme constituents. In the subextreme
case, all �n are real constants to which one can assign,
without loss of generality, the order

 �1 � �2 >�3 � �4; (8)

and the locations of the upper and lower constituents are
defined, respectively, by the segments � � 0, �2 	 z 	
�1, and � � 0, �4 	 z 	 �3 of the symmetry axis. The
part � � 0, �3 < z< �2 of the axis represents a Weyl strut
[13,14] which prevents the constituents from falling onto
each other. The strut is absent in the cases when the metric
function � is zero on the above-mentioned interval sepa-
rating the constituents and, as was shown in [8], this
happens when the parameters of the BMA solution satisfy
the equation a12 � a34 � 0. The latter equation, as was
already remarked in [15], can be further trivialized by
observing that a34 � a12, so that the condition of equilib-
rium of two Reissner–Nordström constituents due to the
balance of the gravitational and electrostatic forces is
defined by vanishing of the coefficient a12 alone:
 

a12 � 0, �a3 � �2��a4 � �1�h1��3�h2��4�

� �a3 � �1��a4 � �2�h1��4�h2��3� � 0: (9)

By assigning particular values to �1, �2, �3, �4, �1 and
finding numerically the corresponding value of �2 from
Eq. (9), the equilibrium configurations between a sub- and
a hyperextreme constituent were found in [8], thus con-
firming Perry and Cooperstock’s earlier results [6] ob-
tained with the aid of an exact solution, and Bonnor’s
analysis of the approximate charged two-body problem
[16]. Although the Komar masses and charges [17] of the
balancing constituents were also calculated in [8], it was
not observed there that the ‘‘�� �’’ parametrization is
ideally appropriate for the introduction of the Komar quan-
tities explicitly into the double–Reissner–Nordström
spacetime.

III. THE VARZUGIN–CHISTYAKOV
PARAMETRIZATION

Following the main ideas of Varzugin’s study of the
stationary vacuum case [18], in the paper [11] Varzugin
and Chistyakov extended Carter’s analysis of a single black
hole [19] to the system of N aligned charged rotating black
holes supported by struts. They succeeded in relating their
boundary-value problem, parametrized in terms of the
individual Komar quantities and some additional parame-

ters such as angular velocities of the horizons or electric
potentials, to the matrix Riemann–Hilbert problem which
they were solving on the z-axis. They used the properties of
the reduced monodromy matrix T�k� to obtain the non-
linear algebraic constraints on the parameters of the
boundary-value problem, thus introducing the independent
parameters in terms of which all other parameters might be
expressible. Varzugin and Chistyakov applied their ap-
proach to the case of two arbitrary Reissner–Nordström
black holes and obtained the expressions for black holes’
irreducible masses in terms of the individual Komar
masses Mi, Komar charges Qi, and the coordinate distance
R between the constituents (5 independent parameters in
total), formulas (46) constituting the central result of the
paper [11]. As will be seen below, the knowledge of
irreducible masses in terms of Mi, Qi, and R is sufficient
for reparametrizing the BMA solution in terms of the latter
quantities, so it will be correct to call the parameter set
fM1;M2; Q1; Q2; Rg the Varzugin–Chistyakov parametri-
zation of the double–Reissner–Nordström problem, even
though Varzugin and Chistyakov have never taken an
interest in solving that problem outside the symmetry axis.

The Varzugin–Chistyakov formulas for the irreducible
masses �i written in Alekseev and Belinski’s manner [10]
have the form [11]

 �1 �
��������������������������������������
M2

1 �Q
2
1 � 2�Q1

q
;

�2 �
��������������������������������������
M2

2 �Q
2
2 � 2�Q2

q
; � :�

M2Q1 �M1Q2

M1 �M2 � R
;

(10)

and we refer the reader to the paper [11] for all the details
of their derivation. Note that the irreducible masses are
denoted here as �i instead of Varzugin and Chistyakov’s
mi because these quantities take pure imaginary values in
the hyperextreme case and hence should not be confused
with the genuine masses.

Formulas (10) provide us with the immediate reparamet-
rization of the constants �n of the BMA solution:

 �1 �
1
2R� �2; �2 �

1
2R� �2;

�3 � �
1
2R� �1; �4 � �

1
2R� �1;

(11)

because, by definition,

 �1 �
1
2��3 � �4�; �2 �

1
2��1 � �2�;

R � 1
2��1 � �2 � �3 � �4�;

(12)

where R is the coordinate distance between the centers of
the black-hole horizons. We mention that we have chosen
the origin of the coordinate system in such a way thatP
�n � 0, and we place the constituent denoted by index

2 above the constituent with index 1 to meet the conven-
tions of papers [10,11].

Our next objective is to express the remaining parame-
ters of the BMA solution, the poles �1 and �2, in terms of

DOUBLE-REISSNER-NORDSTRÖM SOLUTION AND THE . . . PHYSICAL REVIEW D 76, 124032 (2007)

124032-3



Mi,Qi, and R. This can be done in the following way. First,
the substitution of e1 and e2 from (4) into the first formula
in (7) yields the equation

 �1 � �2 �
1
2s1 �M � �M; (13)

because s1 
 0 by virtue of our choice of �n. Then,
denoting the right-hand sides of the first and second equal-
ities in (5) as !1 and !2, respectively, we pass from the
second formula in (7), namely, Q � f1 � f2, to the equa-
tion

 �!1 �!2 �Q2�2 � 4!1!2 � 0; (14)

the left-hand side of which, after substituting into it the
explicit expressions for �n, !1, !2, and also �2 from (13),
factorizes into a pair of polynomials quadratic in �1. The
solution which is consistent with the second equality in (7)
is

 

�1 ��
1
2�M�D�;

D�
��������������������������������������������������������������������������������������������������������
R2��M1�M2��M1�M2� 2R�� 4Q2�Q1� 2��

q
;

(15)

where M � M1 �M2. The expression for �2 is now read-
ily obtainable from (13), yielding

 �2 � �
1
2�M�D�: (16)

Once the constants �n and �l are reparametrized in
terms of Mi, Qi, and R, no difficulty arises in rewriting
the quantities fl and el defined by formulas (4) and (5) in
terms of the new parameter set. Observe that from (5) and
(7) it follows that

 f2
1 � f

2
2 � Q�f1 � f2� � !1 �!2 )

f1 � f2 � �!1 �!2�Q
�1;

(17)

so that the expressions for fl are most easily obtainable
through the formulas

 f1 �
1
2�Q� �!1 �!2�Q

�1�;

f2 �
1
2�Q� �!1 �!2�Q�1�;

(18)

giving as the result

 f1 � �QD� �M1 �M2 � R��Q1 �Q2� � 4M1Q2�

� �2D��1;

f2 � �QD� �M1 �M2 � R��Q1 �Q2� � 4M1Q2�

� �2D��1;

(19)

where Q � Q1 �Q2.
For el we readily get from (4):

 e1 � ��M�M�D� � R�M1 �M2� � 2�Q�D�1;

e2 � �M�M�D� � R�M1 �M2� � 2�Q�D�1:
(20)

Therefore, we have obtained all the necessary formulas
for being able to rewrite the BMA solution in the
Varzugin–Chistyakov parametrization.

IV. THE BMA SOLUTION IN THE PHYSICAL
PARAMETRIZATION AND THE FORMULA FOR

THE INTERACTION FORCE

The simplest application of the formulas obtained in the
previous section is rewriting the BMA equilibrium condi-
tion (9) in terms of the new parameters. The substitution of
(3), (10), (11), (15), (19), and (20) in Eq. (9) immediately
leads to

 M1M2 � �Q1 ����Q2 ��� � 0; (21)

and no computational problem arises during this calcula-
tion. One easily recognizes in (21) the balance equa-
tion (10) of the paper [10].

Turning now to the presentation of the reparametrized
general BMA solution, it can be remarked that the main
technical difficulty during the rewriting of the coefficients
bi and ci from (2) was finding their concise expressions
that would replace the cumbersome intermediate formulas.
The coefficients a12 and a34, which enter the expression for
A, are the simplest ones for working out (besides, a34 �
a12) and are obtainable at once in their final form. On the
other hand, we did not succeed in a straightforward evalu-
ation of the coefficients a13, a14, a23, and a24; the only
reasonable way of finding their reparametrized form was to
process them by smaller fractions. The reparametrized
BMA solution eventually takes a concise form by introduc-
ing the constant objects � and � defined by

 � :� R2 � �2
1 � �

2
2 � 2�2;

� :� M1M2 � �Q1 ����Q2 ���;
(22)

with which formulas (2) of Sec. II take the following
elegant final form in terms of the physical parameters
Mi, Qi, and R:
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E �
A� B
A� B

; � �
C

A� B
; f �

A2 � B2 � C2

�A� B�2
; e2� �

A2 � B2 � C2

16�2
1�

2
2��� 2��2r1r2r3r4

;

A � �1�2���r1 � r2��r3 � r4� � 4��r1r2 � r3r4�� � ��2�� 2�2��r1 � r2��r3 � r4�;

B � 2�1�2���M1 � 2�M2��r1 � r2� � ��M2 � 2�M1��r3 � r4��

� 2�1����Q2 ��� � 2��RM2 ��Q1 ��2���r1 � r2� � 2�2����Q1 ��� � 2��RM1 ��Q2 ��2���r3 � r4�;

C � 2�1�2f���Q1 ��� � 2��Q2 �����r1 � r2� � ���Q2 ��� � 2��Q1 �����r3 � r4�g

� 2�1���M2 � 2���M1 � RQ2 ��R���r1 � r2� � 2�2���M1 � 2���M2 � RQ1 ��R���r3 � r4�;

(23)

where �i are determined by formulas (10), while the reparametrized form of the functions rn is
 

r1 �
�������������������������������������������
�2 � �z� 1

2R� �2�
2

q
; r2 �

�������������������������������������������
�2 � �z� 1

2R� �2�
2

q
;

r3 �
�������������������������������������������
�2 � �z� 1

2R� �1�
2

q
; r4 �

�������������������������������������������
�2 � �z� 1

2R� �1�
2

q
;

(24)

r1 and r2 referring to the upper constituent endowed with Komar quantities M2, Q2 and r3 and r4 referring to the lower
constituent endowed with M1, Q1. Formulas (10) and (22)–(24) fully describe the BMA solution in the Varzugin–
Chistyakov parametrization.

One can see that in the case of balancing constituents � � 0 and the expressions (23) simplify further. Thus, the Ernst
potentials E and � take the form

 

E � E�=E�; � � C=E�;

E� � �1�2�r1 � r2 � 2M2��r3 � r4 � 2M1� � ���r1 � r2� � 2�2�Q1 �������r3 � r4� � 2�1�Q2 ����;

C � 2�1�2��Q1 ����r1 � r2� � �Q2 ����r3 � r4�� � 2��M2�1�r1 � r2� �M1�2�r3 � r4��;

(25)

while for the corresponding metric functions f and � we have
 

f �
N

E2
�

; e2� �
N

16�2
1�

2
2r1r2r3r4

;

N � ��2
1�r1 � r2�

2 � 4�2
1��

2 � �2
2� ��

2�r3 � r4�
2���2

2�r3 � r4�
2 � 4�2

2��
2 � �2

1� ��
2�r1 � r2�

2�;
(26)

and the expressions for �, f, and f�1 exp�2�� written in
specific bipolar coordinates have already been given in
[10]. It should be emphasized that the Ernst potentials
(25) satisfy the field equations only when the balance
condition (21) holds, i.e., when the distance R is defined
by the formula
 

R � �M�
M2Q1 �M1Q2

2�M1M2 �Q1Q2�

� �Q1 �Q2 �
����������������������������
Q2 � 4M1M2

q
�; (27)

M and Q denoting, respectively, the total mass and total
charge of the system. In view of this, the constant object �
entering Eqs. (25) and (26) is given by the formula

 � �
2�M1M2 �Q1Q2�

Q1 �Q2 �
����������������������������
Q2 � 4M1M2

p ; (28)

and the choice of the appropriate sign in the denominator
of � depends on the analysis of a concrete equilibrium
position. Thus, by choosing ‘‘�’’ in the formula (27), it is
easy to confirm Bonnor’s prediction about the possibility of

the equilibrium of oppositely charged particles he made
with the aid of an approximation method [16]. An example
of such equilibrium state is the following: M1 ’ 0:2017,
Q1 ’ �0:2852, M2 � 1, Q2 � 2, R ’ 0:4688 (the ap-
proximate numerical values are given up to four decimal
places). The corresponding values for �1 and �2

2 are �1 ’
0:4409, �2

2 ’ �1:3513, which means that the upper and
lower constituents are, respectively, the hyperextreme and
subextreme ones; besides, R> �1, so that the constituents
do not overlap.

We now turn to the physically most important result
which can be obtained with the aid of the general formulas
(23). As was already mentioned in Sec. II, two arbitrary
Reissner–Nordström constituents are held apart by a strut
when the parameters of the BMA solution do not satisfy the
balance condition (9). The analysis of the energy-
momentum tensor associated with this strut permits one
to introduce the interaction force between the constituents
via the formula [14,20]

 F � 1
4�e
��0 � 1�; (29)

where �0 is the constant value of the metric function � on
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the strut. In our case, formulas (23) and (29) conveniently
give us the following expression for F :

 F �
�

�� 2�
�

M1M2 � �Q1 ����Q2 ���

R2 � �M1 �M2�
2 � �Q1 �Q2�

2 ; (30)

and it is surprising how remarkably simple this result is,
which is applicable to any pair of the Reissner–Nordström
constituents. When Q1 � Q2 � 0 (the pure vacuum limit),
one obtains from (30) the known expression for the inter-
action force between two Schwarzschild black holes [20]:

 F �
M1M2

R2 � �M1 �M2�
2 : (31)

At large separation distances, formula (30) gives the
Newtonian expression for the force between two charged
particles. It should be also pointed out that the equilibrium
condition (21) is a direct consequence of the formula (30)
if one demands F � 0.

V. CONCLUSION

In the present paper we have succeeded in working
out the physical representation of the general double–
Reissner–Norström solution by rewriting the 5-parameter
BMA electrostatic metric in the Varzugin–Chistyakov pa-
rametrization. Formulas (10) and (22)–(24) contain all
known exact solutions for two nonextreme Reissner–
Nordström constituents and are very suitable for use in
concrete applications. The 4-parameter subclass of the
BMA solution representing the balancing constituents is
a special case picked out by the equilibrium condition (21),
and it is worth mentioning that this subclass does not

contain equatorially symmetric solutions because, apart
from the Majumdar–Papapetrou extreme case, equilibrium
is only possible between a black hole and a hyperextreme
object. The formula for the interaction force obtained in
this paper is applicable to any pair of the Reissner–
Nordström constituents, which is a reflection of the analyti-
cally extended character of the BMA solution.

Since Varzugin and Chistyakov’s approach to the pa-
rametrization of the multi-black-hole configurations has
proved to be efficient in the electrostatic case, it would
be also likely to use it, probably with some amendments, in
application to the stationary axisymmetric electrovac so-
lutions. As is known, the general system ofN aligned Kerr-
Newman black holes is described by the Ruiz-Manko-
Martı́n multisoliton electrovac metric [21], and we expect
that at least some of its particular cases representing the
two-body configurations can be worked out in the physical
parametrization by establishing the relationship between
the canonical parameters of the multisoliton solution and
the Komar quantities introduced in the paper [11] via the
boundary Riemann–Hilbert problem.
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