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gravity in which the local Lorentz spacetime group is extended to the local general linear group.
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I. INTRODUCTION

As is well known, the Noether theorem establishes a
relation between the symmetries and conservation laws of
a physical model. It tells that conserved currents arise from
the invariance of the classical action when the fields are
transformed under the action of the symmetry groups.
There are two types of symmetries: the internal ones
[like the Abelian U�1� phase transformations, or the non-
Abelian isotopic SU�2� transformations, as well as their
generalizations] that act in spaces of internal degrees of
freedom, and the external symmetries that act on the space-
time manifold itself and on its related geometrical struc-
tures. In particular, gravity theories are normally based on
the covariance principle, which in technical terms means
that the action is invariant under spacetime diffeomor-
phisms. Since diffeomorphisms are generated by vector
fields, one can expect that every vector field should give
rise to conserved quantities.

In the previous paper [1], we have proposed a general
definition of invariant conserved quantities for gravity
theories with general coordinate and local Lorentz sym-
metries. More exactly, we have demonstrated that, indeed,
every vector field � on spacetime generates, in any dimen-
sion n, for any Lagrangian of gravitational plus matter
fields and for any (minimal or nonminimal) type of inter-
action, a current J ��� with the following properties: (i) the
current �n� 1�-form J ��� is constructed from the
Lagrangian and the generalized field momenta, (ii) it is
conserved, dJ ��� � 0, when the field equations are sat-
isfied, (iii) J ��� � d���� ‘‘on shell,’’ (iv) the current
J ���, the superpotential ����, and the conserved charge
Q��� �

R
J ��� are invariant under diffeomorphisms and

the local Lorentz group. This construction generalizes the

results known for models that are invariant under the
diffeomorphism group only [2] and improves and clarifies
the earlier facts about the conserved quantities associated
with a vector field [3–13] that were discovered for specific
Lagrangians (usually, for the Hilbert-Einstein one) and for
specific types of vector fields (usually, for Killing or gen-
eralized Killing ones). It is also possible to extend the
analysis to the case of quasi-invariant models that are
described by Lagrangians which change by a total deriva-
tive under the action of the symmetry groups [14,15]. In
this case, however, there seems to be no clear way to define
invariant conserved currents.

Several remarks are in order. We use the physical termi-
nology throughout this paper. In particular, we refer to the
equation dJ � 0 as a conservation law. Being an �n�
1�-form, in the local coordinates fxig the current can be
expanded as J � J i�i with respect to the natural basis
�i �

1
�n�1�! �ij1...jn�1

dxj1 ^ . . . ^ dxjn�1 of the �n� 1�-forms
(where �i1...in is the totally antisymmetric Levi-Civita sym-
bol on an n-manifold). Then dJ � 0 is equivalent to the
divergence equation @iJ i � 0 for the components of the
vector density J i. In physics, J i is called a conserved
current when it satisfies @iJ i � 0. In the mathematical
language, a form with the property dJ � 0 is called closed,
but we prefer to use the standard physical terminology.

It is well known that in diffeomorphism-invariant mod-
els one can associate a conserved current to a vector field �
on the spacetime manifold. This can be done in various
ways. One example is to consider a symmetric energy-
momentum tensor Tj

i and a Killing vector field � � �i@i
that generates an isometry of the spacetime. Since the
energy-momentum tensor is covariantly conserved in
diffeomorphism-invariant theories, one then straightfor-
wardly verifies that J i � �jTj

i �������
�g
p

is a conserved cur-
rent, i.e., @iJ i � 0. A further example is provided by a
general scheme [2] in which a conserved current �n�
1�-form is derived for any solution of a diffeomorphism-
invariant model even when � is not a Killing field. All such
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�n� 1�-form currents are scalars under general coordinate
transformations, as well as the corresponding charges de-
rived from them. They proved to be useful for the compu-
tation of the total energy and angular momentum of various
gravitational field configurations, and for the discussion of
the thermodynamic laws of the black holes in gravity
models.

The interpretation of the vector field � is an important
geometrical and physical issue. For example, when � is
timelike, the corresponding charge has the meaning of the
energy of the gravitating system with respect to an observer
moving along the integral lines of �, with 4-velocity u �
�=j�j, cf. [16]. In this way, the dependence of the charges
on � describes the usual dependence of the energy of a
system on the choice, and on the dynamics, of a physical
observer. In particular, the invariant charge Q��� �R
S J

i�i is then the integral of the projection of the
energy-momentum density along the vector �. This charge
reduces to the usual expression

R
S T0

0 �������
�g
p

dx1 ^ . . . ^
dxn�1 in coordinates adapted to � such that � � @0, and
the hypersurface S is defined by x0 � constant. Such an
approach to the definition of the energy of a gravitating
system as a scalar (that is, invariant depending on some
vector field) closely follows the well-known construction
for point particles (see Sec. 2.8, and, in particular,
Eq. (2.29) of [17]).

However, the situation becomes more complicated
when, besides the diffeomorphism symmetry, the gravita-
tional model is also invariant under some additional gauge
group. For example, there is a large class of theories which
are invariant under the local Lorentz group SO�1; n� 1�,
including the gauge gravity models [6], the supergravity,
and the so-called first order formulation of standard gen-
eral relativity. The problem of defining the corresponding
conserved quantities associated with a vector field was
analyzed previously [6–12] for specific Lagrangians (usu-
ally, for the Hilbert-Einstein one) and for specific types of
vector fields (usually, for Killing or generalized Killing
ones). Moreover, the resulting conserved quantities were
often discovered to be not invariant under the local Lorentz
group (e.g., in [12]).

We have shown in [1] that for models with arbitrary
Lorentz-invariant Lagrangians it is possible to define in-
variant conserved currents for every vector field �. These
conserved currents do not depend on the coordinate system
or the tetrad frame used to compute them. They depend
only on the field configuration and on the choice of the
vector field �.

In the present paper, we further develop our approach
and replace the local Lorentz group with an arbitrary gauge
Lie group G. This includes two subcases: (i) the group G
acts in a space of internal degrees of freedom, and (ii) the
group G acts on the spacetime manifold and the local
Lorentz group is its subgroup SO�1; n� 1� 2 G. The par-
ticular choice of the general linear group G � GL�n; R� is

of special importance since this group underlies the gauge
formulation of the so-called metric-affine gravity (MAG)
theory. As a result, we give a general construction of the
invariant conserved quantities for gravity theories with
general coordinate (diffeomorphism) and local gauge G
symmetries. We again show that for every vector field � on
spacetime, and any Lagrangian of gravitational plus matter
fields there exists a conserved current �n� 1�-form that is
a true scalar under both diffeomorphisms and G.

There is an important difference between the cases when
G is an internal symmetry group and when it is the general
linear group. In the latter case, i.e., in the framework of
MAG, there exist a well-defined way to construct the
conserved current by making use of the Yano choice of
the generalized Lie derivative that appears in the Lagrange-
Noether derivation of the conservation law. Such a Yano
derivative (see [18], and cf. the previous derivations in [1])
is always defined in MAG in terms of the coframe, which is
a dynamical field (‘‘translational potential’’) in this ap-
proach. In contrast to this situation, in the models where
G is an internal symmetry group, one cannot come up with
a suitable counterpart of the Yano derivative, in general.
Sometimes, a similar construction is possible, and we
explicitly demonstrate this for the case of G � U�1�, for
the models that include a Higgs-type complex scalar field.
However, at the moment it is unclear whether an appro-
priate non-Abelian generalization can be found with the
help of a suitable Higgs multiplet.

Previously [1], we demonstrated that our approach
works nicely for the calculation of the total mass (energy)
and the total angular momentum for the solutions of
the gravitational field equations without and with torsion.
The corresponding resulting values of the mass and
angular momentum were shown to be consistent with the
calculations obtained by alternative methods, see for ex-
ample [19,20] and the references therein. In order to test
the generalized formalism, we apply it to the analogous
computation of the mass and angular momentum of the
exact solutions in MAG with nontrivial torsion and
nonmetricity.

Our general notations are the same as in [21]. In par-
ticular, we use the Latin indices i; j; . . . for local holonomic
spacetime coordinates and the Greek indices �;�; . . . label
(co)frame components. Particular frame components are
denoted by hats, 0̂, 1̂, etc. As usual, the exterior product is
denoted by ^, while the interior product of a vector � and a
p-form � is denoted by �c�. The vector basis dual to the
frame 1-forms #� is denoted by e� and they satisfy
e�c#

� � ���. Using local coordinates xi, we have #� �
h�i dx

i and e� � hi�@i. We define the volume n-form by
� :� # 0̂ ^ � � � ^ #n̂. Furthermore, with the help of the
interior product we define �� :� e�c�, ��� :� e�c��,
���� :� e�c���, etc., which are bases for �n� 1�-, �n�
2�- and �n� 3�-forms, etc., respectively. Finally,
��1����n � e�n c��1����n�1

is the Levi-Civita tensor density.
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The �-forms satisfy the identities

 #� ^ �� � ����; (1.1)

 #� ^ ��	 � ��	�� � �
�
��	; (1.2)

 #� ^ ���	 � �����	 � �
�
��	� � �

�
	���; (1.3)

 

#� ^ ����	 � ��	���� � �
�
����	 � �

�
����	 � �

�
����	;

(1.4)

etc. The line element ds2 � g��#� 	 #� is defined by the
spacetime metric g�� of signature ��;�; � � � ;��.

II. GENERAL FORMALISM IN CONDENSED
NOTATION

Let us consider the most general case of a gravitational
theory with the diffeomorphism and an additional arbitrary
gauge symmetry. As a matter of fact, all gravitational
theories are special cases of metric-affine gravity with
the gravitational field described by the three basic varia-
bles: the metric g��, the coframe #�, and the linear
connection ��

�. In addition, the nongravitational sector
of the theory contains the usual matter fields  (scalars and
spinors of any rank that describe massive particles) and the
gauge fields A of a certain internal symmetry group (these
are one-forms with values in the corresponding Lie alge-
bra, or p-forms, in general).

Taking this into account, we denote the total symmetry
group by G. It is defined as a direct product of the internal
symmetry group and the spacetime symmetry group. The
former can be any Abelian or non-Abelian Lie group,
acting via a suitable representation on the multiplet of
matter fields. The spacetime symmetry group can be a
Lorentz, linear, conformal, de Sitter group or other, acting
on the geometric objects on the spacetime manifold.
Accordingly, we will denote the gauge fields of internal
symmetries A together with the gravitational connection �
by a collective gauge field Aa which is a one-form taking
values in the Lie algebra G of the group G. The index a
runs through both the gravitational and nongravitational
sectors and labels the corresponding infinitesimal parame-
ters "a of G. In a similar way, we will denote all the
covariant fields of the model by a collective field �. The
latter includes the gravitational sector (for example, g��,
#�) and the matter fields  A. Finally, we collect all the
fields of the model into a single object �I � f�;Ag,
where the index I runs over all the components of the
fields in all sectors.

After these preliminaries, we can describe the general-
ization of the construction [1] of conserved currents for
theories invariant under diffeomorphisms and an arbitrary
gauge group G. As before, we start with the total
Lagrangian n-form V tot��I; d�I� and define the general-

ized field momenta and the energy terms by

 HI :� �
@V tot

@d�I ; EI :�
@V tot

@�I : (2.1)

The total variation of the Lagrangian then reads

 �V tot � ��I ^F I � d���I ^HI�; (2.2)

where the variational derivative is defined by

 F I :�
�V tot

��I � ��1�p�I�DHI � EI: (2.3)

Here p�I� denotes the rank (in the exterior sense) of the
corresponding sector of the collective field.

The Eq. (2.2) describes how the Lagrangian changes
under the change of the fields. This includes two cases:
(i) when the variations of the fields are arbitrary, and
(ii) when the fields are transformed under the action of
the symmetry group. In the first case, when the action is
stationary (i.e., �V tot � 0) under the arbitrary variations
��I, one finds from (2.2) the field equations

 F I � 0: (2.4)

However, in the second case the variation ��I is not
arbitrary, and the invariance of the action gives rise to the
conservation laws. The total variation of the field variables
under diffeomorphisms and the gauge symmetry reads

 ��I � ‘�&���
I � ��&"��

I �: &L�;"�I: (2.5)

Here & is an arbitrary infinitesimal constant parameter,
‘� � �cd� d�c is the ordinary Lie derivative, and the
second term describes the gauge transformation

 �&"�I � &�"a�
a�IJ�
J � ��a�Id"a�: (2.6)

This reduces to the well-known law for the case of the
Lorentz symmetry. The generators 
a satisfy the commu-
tation relation �
a; 
b�IJ � fcab�
c�

I
J with the structure

constants fcab of the Lie algebra G. It is worthwhile to note
that ��a�I � �Ia is a unit matrix in the gauge sector and is
trivial in the covariant sector.

We will call L�;"�I defined by (2.5) a generalized Lie
derivative of the multifield �I.

After these preliminary steps, we can derive the conser-
vation law and introduce the conserved current. Namely,
for the general models under consideration, we define the
generalized current

 J��; "� :� �cVtot � �L�;"�I� ^HI: (2.7)

As for the case of the local Lorentz symmetry (cf. [1]), it
satisfies

 dJ��; "� 
 �L�;"�I� ^F I: (2.8)

This is just the total variation formula (2.2) in a different
form. By using the Noether identities (which we do not
write down here explicitly, see the subsequent discussion
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of the internal symmetry in Sec. III and of the general
linear group in Sec. V), we can recast this current as

 J��; "� 
 d��I��; "� ^HI� ��I��; "� ^F I: (2.9)

Here we denoted

 �I��; "� :� �c�I � "a�Ia: (2.10)

When the field Eqs. (2.4) are satisfied, the generalized
current (2.7) is conserved, dJ��; "� � 0, and hence one can
define the corresponding charge by the integrals

 Q��; "� �
Z
S
J��; "� �

Z
@S

�I��; "� ^HI (2.11)

over a spacelike �n� 1�-hypersurface S with an �n�
2�-dimensional boundary @S. The Eq. (2.11) arises, as
usual, when we integrate the conservation law dJ��; "� �
0 over the n-volume domain with the boundary S1 � S2 �
T, where S1 and S2 are �n� 1�-dimensional spacelike
hypersurfaces (which correspond to the arbitrary time
values t1 and t2, respectively) and T is a timelike surface
that connects them. Then assuming that the fields satisfy
the boundary conditions such that

R
T J � 0, we find that

Q��; "� �
R
S�t� J��; "� is constant. Using subsequently

(2.9), one finds (2.11) with the help of the Stokes theorem.
We will always assume the appropriate asymptotic behav-
ior of the geometric and matter fields that makes the
conserved charges well-defined objects. Since we deal
with a general scheme without specifying a Lagrangian,
the necessary boundary conditions appropriate for all theo-
ries cannot be given explicitly. They depend on the par-
ticular model and should be chosen after a case-by-case
inspection of a theory.

The functions "a parametrize a family of conserved
currents (2.7) and charges (2.11) associated with a vector
field �. In order to select invariant conserved quantities, we
will have to specialize to a particular choice of ". The
trivial choice "a � 0 yields a noninvariant current and
charge. Indeed, then Lf�;"g� � ‘��, and the last term in
(2.7) is not gauge invariant, since the ordinary Lie deriva-
tive ‘� of a covariant object is not covariant under gauge
transformations. In [1] it was shown that one can define
covariant conserved currents (and charges) with the help of
an appropriate choice of "���. Unfortunately, there seems
to be no general recipe how to choose "��� for an arbitrary
internal and external symmetry group. Accordingly, the
situation should be studied on a case-by-case basis. In
the next sections we analyze separately the models with
internal gauge symmetries (Sec. III) and the metric-affine
gravity (Sec. V).

III. CONSERVED CURRENTS IN GAUGE
THEORIES

First we consider the class of theories that are invariant
under the diffeomorphism group and an arbitrary local
(gauge) Lie group G. We denote the corresponding Lie

algebra G. Its generators 
a, a � 1; . . . ; dim�G�, satisfy the
commutator relations

 �
a; 
b� � fcab
c; (3.1)

with the structure constants fcab. We also consider matter
p-form fields �A transforming covariantly under the action
of G, such that

 �"�A � �"a�
a�AB�B; (3.2)

where "a�x� are the parameters of the transformation, and
�
a�

A
B denote the matrix representation of the generators


a acting in the vector space of the matter fields �A. The
covariant derivative is then defined by

 D�A :� d�A � Aa�
a�
A
B ^�B; (3.3)

where Aa denotes the gauge field potential one-form. The
corresponding gauge field strength reads

 Fa :� dAa � 1
2f
a
bcA

b ^ Ac: (3.4)

The latter, as usual, may be derived from the commutator
of the covariant derivatives, DD�A � �Fa�
a�

A
B�B. For

completeness, let us recall the transformation laws of the
potential and the field strength:

 �"Aa � �d"a � fabcA
b"c; (3.5)

 �"F
a � �"bfabcF

c: (3.6)

Now, let V��A; Aa;D�A; Fa� be a general Lagrangian
n-form. We define

 HA :� �
@V

@D�A ; EA :�
@V

@�A ; (3.7)

 Ha :� �
@V
@Fa

; Ea :�
@V
@Aa

: (3.8)

Then a total variation of the Lagrangian is
 

�V � ��A ^F A � �Aa ^F a

� d���A ^HA � ��a ^Ha�; (3.9)

where we introduced the variational derivatives
 

F A :�
�V

��A � ��1�pDHA � EA;

F a :�
�V
�Aa

� �DHa � Ea:

(3.10)

Here p denotes the rank (in the exterior sense) of the matter
field �A. Assuming that the action is stationary for the
arbitrary variations of the fields, from the above we derive
the system of field equations

 F A � 0; F a � 0: (3.11)

We assume that the action of the theory is invariant
under diffeomorphism and gauge transformations. The
total infinitesimal symmetry variation of the dynamical
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fields then consists of two terms:

 ��A � &Lf�;"g�A :� ‘�&���A � ��&"��A; (3.12)

 �Aa � &Lf�;"gAa :� ‘�&��Aa � ��&"�Aa: (3.13)

The first terms on the right-hand sides come from a diffeo-
morphism generated by a vector field �, and ‘� is the Lie
derivative along that field.

Putting � � 0 and assuming "a completely arbitrary, we
straightforwardly derive from (3.9) the Noether identities
for the gauge symmetry:

 Ea 
 �
a�
A
B�B ^HB � f

b
caA

c ^Hb; (3.14)

 dEa � �
a�AB�B ^F A � fbcaAc ^F b 
 0: (3.15)

Analogously, putting "a � 0 and assuming an arbitrary
vector field �, we find from (3.9) the Noether identities
for the diffeomorphism symmetry:

 e�cV � e�cd�A ^HA � e�cdA
a ^Ha


 e�c�A ^ EA � e�cAa ^ Ea; (3.16)

 

e�cd�A ^F A � ��1�pe�c�
A ^ dF A � e�cdA

a ^F a

� e�cA
a ^ dF a 
 0: (3.17)

The last identity is equivalent to
 

‘e��A ^F A � ‘e�A
a ^F a 
 d�e�c�A ^F A

� e�cAa ^F a�: (3.18)

After these preliminaries, we are now in a position to
derive the generalized conserved current associated with
any vector field �. The condition of the invariance of the
theory under a general variation (3.12) follows directly
from (3.9) and reads

 d��cV� � �Lf�;"g�A� ^F A � �Lf�;"gAa� ^F a

� d��Lf�;"g�
A� ^HA � �Lf�;"gA

a� ^Ha�:

(3.19)

Introducing the current �n� 1�-form

 J��; "� :� �cV � �Lf�;"g�
A� ^HA � �Lf�;"gA

a� ^Ha;

(3.20)

we see from (3.19) that

 dJ��; "� � �Lf�;"g�
A� ^F A � �Lf�;"gA

a� ^F a: (3.21)

Hence, this current is conserved, dJ��; "� � 0, for any �
and "a, when the field Eqs. (3.11) are satisfied.

Using (3.12) and (3.20), and the Noether identities of the
diffeomorphism symmetry (3.16), (3.17), and (3.18), we
rewrite the current (3.20) as

 J��; "� � d���; "� � �c�A ^F A ��a��; "� ^F a:

(3.22)

Here we introduced the superpotential �n� 2�-form

 ���; "� :� �c�A ^HA ��a��; "� ^Ha (3.23)

and defined [cf. the general definition (2.10)]

 �a��; "� :� �cAa � "a: (3.24)

Accordingly, on the solutions of the field Eqs. (3.11), the
conserved charge is computed as an integral over an �n�
2�-boundary:

 Q��; "� �
Z
S
J��; "� �

Z
@S

���; "�: (3.25)

As before, the functions "a parametrize a family of con-
served currents and charges associated with a vector field
�. These conserved quantities are not scalars, in general.
They are invariant under the diffeomorphisms, but they
become invariant under local gauge transformations only
for certain special choices of the parameters "a���. One
choice that is always possible is to take a nondynamical (or
background) gauge field �Aa and define "a � �c �Aa. Then
�a � �c�Aa � �Aa� is obviously a gauge-covariant quan-
tity, and consequently the conserved current and charge are
true scalars.

Other choices are also possible, in general, with a co-
variant �a constructed from the dynamical fields available
in a particular model. The simplest is a ‘‘natural’’ choice
with "a � �cAa but then �a � 0, and the corresponding
contribution to the current is trivial. As another example,
recall [1] that we have demonstrated how one can use the
coframe field in order to define the so-called Yano deriva-
tive which leads to the invariant conserved currents. A
similar construction is outlined in the next section for the
Abelian gauge field model.

IV. ABELIAN MODEL: DEFINING A
COVARIANT �

Let us consider an Abelian model with the local gauge
symmetry group G � U�1�. Then, besides the choice " �
�c �A, a nontrivial field "��� can be defined, provided a
U�1�-covariant scalar field � is available. We assume
that under a U�1� transformation with parameter 
 (with

 2 �0; 2��), the field � transforms as �0 � ei
�. Using
�, we can construct "��� from the assumption that

 L �;"� � 0: (4.1)

A 0-form � (a complex scalar field) usually plays the role
of a Higgs field in such models. The condition (4.1) reads
explicitly

 ‘��� i"� � 0 (4.2)

By multiplying this by�y, we solve (4.2) for ". This yields
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 " � i
�y‘��

�y�
: (4.3)

The solution " is real, for every �, when �y� � const.
Then we can always choose the normalization such that
�y� � 1, and recast (4.3) as

 " �
i
2
��y�‘��� � �‘��y���

�
i
2
�c��y�d�� � �d�y���: (4.4)

It is interesting to notice that the right-hand side of (4.4) is
proportional to the U�1� current of a free complex scalar
field �.

A. Complex scalar field on a background spacetime

Consider now the model with a complex scalar field  
coupled to the electromagnetic field A and the gravitational
field. The latter can be treated as a curved background,
since at the moment we are concerned primarily with the
aspects of the local U�1� invariance. The covariant deriva-
tive is given, as usual, by D � d � iA . Let us take the
total Lagrangian V tot � Vtot� ;D ; dA�, where we have
written explicitly only the dynamical fields  , A, whereas a
fixed metric g is assumed. Since  is a 0-form, the super-
potential (3.23) reduces to

 ���; "� � ��cA� "�H; H � �
@V
@F

: (4.5)

Clearly, in this case the natural choice " � �cA leads to
trivial conserved quantities.

However, we can use the dynamical (Higgs-type) field  
to construct a nontrivial conserved quantity using (4.4). If
we take

 � �
 ����������
 y 

q ; (4.6)

then �y� � 1 and we obtain

 " �
i
2
�c
�
 y�d � � �d y� 

 y 

�
�
m
e

1

 y 
�cjfree; (4.7)

where jfree �
ie
2m � 

y�d � � �d y� � is the electric current
density one-form of a free complex scalar field (@ � c �
1). Using (4.7), we find

 � � �cA� " � �
m
e

1

 y 
�cj; (4.8)

where now j � ie
2m � 

y�D � � �D y� � is the invariant
current of the field  interacting with the electromagnetic
field. Thus, we obtain finally

 ���� � �
m
e

1

 y 
��cj�H: (4.9)

The corresponding conserved quantityQ��� �
R
@S ���� is

gauge invariant and a scalar under general coordinate
transformations.

V. INVARIANT CONSERVED CURRENTS FOR
METRIC-AFFINE GRAVITY

The geometry of MAG is described by the curvature
two-form R�

�, the nonmetricity one-form Q�� :�
�Dg��, and the torsion two-form T� :� D#� which are
the gravitational field strengths for the linear connection
��

�, metric g��, and coframe #�, respectively. The cor-
responding physical sources are the three-forms of canoni-
cal energy-momentum �� and hypermomentum ��

�. The
latter includes the dilation, shear, and spin currents asso-
ciated to matter. The field equations and the formalism are
comprehensively described in [21,22].

The MAG theory is invariant under diffeomorphisms
and the local general linear group G � GL�n; R� that acts
on the geometric objects (that describe the gravitational
field) as

 �#� � "��#
�; ���

� � �D"��;

�g�� � �"��g�� � "��g��;
(5.1)

and on the matter fields  A as

 � A � "���

�
��
A
B 

B: (5.2)

Here the elements of the matrix "���x� are the n2 arbitrary
local parameters, and 
�� are the generators of the general
linear group in a corresponding representation.

A. Lagrangian formalism

We assume that the total Lagrangian n-form
Vtot�g��; dg��; #

�; d#�;��
�; d��

�;  A; d A� is invariant
under local transformations (5.1). Then one can verify [21]
that it always has the form

 V tot � V tot�g��;Q��; #
�; T�; R�

�;  ;D �; (5.3)

where D A denotes the covariant exterior derivative of the
matter field  A. In accordance with the general scheme, we
denote

 H � :� �
@V tot

@T�
; H �

� :� �
@V tot

@R��
;

M�� :� �2
@V tot

@Q��
:

(5.4)

Furthermore, we also introduce

 E � :�
@V tot

@#�
; E�� :�

@V tot

@��
� ; ��� :� 2

@V tot

@g��
:

(5.5)
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Then a general variation of the total Lagrangian reads
 

�V tot � �#� ^F �����
� ^F �

��
1

2
�g��f��

�� A ^F A�d
�
��#� ^H �����

� ^H �
�

�
1

2
�g��M���� A ^

@V tot

@D A

�
; (5.6)

where we have defined the variational derivatives with
respect to the gravitational potentials:

 F � :�
�V tot

�#�
� �DH � � E�; (5.7)

 F �
� :�

�V tot

���
� � �DH

�
� � E��; (5.8)

 f�� :� 2
�V tot

�g��
� �DM�� ����; (5.9)

 F A :�
�V tot

� A
�
@V tot

@ A
� ��1�p

@V tot

@D A
: (5.10)

When the action is demanded to be stationary with
respect to arbitrary variations of the variables, we find
from (5.6) the system of field equations:

 F � � 0; F �
� � 0; f�� � 0; F A � 0:

(5.11)

B. Noether identities for the local GL�n;R� and
diffeomorphisms

Substituting (5.1) and (5.2) into (5.6), one derives the
Noether identities for the local linear symmetry:

 #� ^F � �DF
�
� � f

�
� � �


�
��
A
B 

B ^F A 
 0;

(5.12)

 E �
� � #

� ^H � �M�
� � �


�
��
A
B 

B ^
@V tot

@D A

 0:

(5.13)

The second identity can be used as a tool for the practical
calculation of E�� (in order to circumvent a difficult direct
computation). On the other hand, the identity (5.12) shows
that the so-called 0th field equation of MAG, Eq. (5.9), is a
consequence of the 1st and the 2nd field equations, (5.7)
and (5.8) and of the equation of motion of matter (5.10).

For a diffeomorphism generated by an arbitrary vector
field �, we find:

 

‘�Vtot �
1

2
�‘�g������ �

1

2
�‘�Q��� ^M��

� �‘�#
�� ^ E� � �‘�T

�� ^H �

� �‘�R��� ^H �
� � �‘� 

A� ^
@V tot

@ A

� �‘�D A� ^
@V tot

@D A
: (5.14)

This equation does not look invariant under the action of
the local GL�n; R�. However, if we make an actual linear
transformation of all the fields in (5.14) by substituting
(5.1) and (5.2), we find that the right-hand side is changed
by
 

��cd"���
�
#� ^F � �DF

�
� � f

�
� � �


�
��
A
B 

B ^F A

�D
�
E�� � #

� ^H � �M�
�

� �
���
A
B 

B ^
@V tot

@D A

��
: (5.15)

This is zero in view of the Noether identities (5.12) and
(5.13).

C. Generalized Lie derivatives and covariant Noether
identities

As a result, we can proceed like in the previous paper
[1], and take an arbitrary gl�n; R�-valued 0-form B�����
and add to (5.14) a zero term,
 

B��
�
#� ^F � �DF �

� � f
�
� � �


�
��
A
B 

B ^F A

�D
�
E�� � #

� ^H � �M�
�

� �
���
A
B 

B ^
@V tot

@D A

��
: (5.16)

As is easily verified, this addition is equivalent to the
replacement of the usual Lie derivative ‘� with a general-
ized Lie derivative L� :� ‘� � B�

�
�� when applied to
all geometric and matter fields. This generalized derivative
will be covariant provided B�� transforms according to

 B0� � �L�1�
�B
�L�� � �L�1�����cdL���; (5.17)

when the coframe is changed as #� ! # 0� � L��#
�,

with L�� 2 GL�n; R�.
There are three convenient choices: (i) B�

� � �c��
�

with the dynamical linear connection ��
�,

(ii) B�
� � �c�

fg

�
�

with the Riemannian connection �
fg

�
�

,
and (iii) the Yano choice B�

� � �e�c‘�#�. Each of these
options give rise to the covariant Lie derivatives:

 8� :� ‘� � �c��
�
�� � �cD�D�c; (5.18)
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 8
fg

� :� ‘� � �c�
fg

�
�

�� � �cD

fg

�D
fg

�c; (5.19)

 L � :� ‘� �	�
�
��; with 	�

� :� e�c‘�#�:

(5.20)

We are free to use in (5.14) any generalized (covariant)
Lie derivative instead of the usual (noncovariant) ‘�. One
can straightforwardly demonstrate that the choice (5.18)
yields the following Noether identities:

 DF � 
 e�cT
� ^F � � e�cR�

� ^F �
� �

1
2�e�cQ���f

��

� �e�cD A� ^F A � ��1�p�e�c A� ^DF A;

(5.21)

 

E� 
 e�cV
tot � e�cT

� ^H � � e�cR�
� ^H �

�

�
1

2
�e�cQ���M

�� � �e�cD A� ^
@V tot

@D A

� �e�c A� ^
@V tot

@ A
: (5.22)

For the second choice (5.19), in accordance with the
above general analysis, see (5.16), a zero term is added that
is proportional to

 N�� :� �
fg

�
� � ��

�: (5.23)

This quantity is known as distortion one-form. In particu-
lar, the torsion is recovered from it as T� � �N�

� ^ #�,
whereas the nonmetricity arises as Q�� � �2N����. It is
straightforward to verify the explicit formula

 N�� � �
1
2Q�� � e��cn��; (5.24)

 n� :� 2T� �Q�� ^ #
� � 1

2e�c�T� ^ #
��: (5.25)

As we see, the symmetric part of the distortion is deter-
mined by the nonmetricity, while the skew-symmetric part
is constructed from the two-form n�. The latter has the
property

 n� ^ #� �
1
2T� ^ #

�: (5.26)

The corresponding (total and Riemannian) curvature two-
forms are related via

 R�� � R
fg

�
� �D

fg

N�� � N�� ^ N��: (5.27)

Using these facts, we can verify that the diffeomorphism
Noether identity can be recast in the alternative form

 

D
fg

�F � �F �
�e�cN�

�� 
 �e�cR
fg

�
� � 8

fg

�N��� ^F �
�

� �e�cD
fg

 A� ^F A

� ��1�p�e�c A� ^D
fg

F A:

(5.28)

The identities (5.21) and (5.28) are equivalent, but in con-
trast to the usual (5.21), the alternative form (5.28) is less
known. The Lorentz-covariant version of this identity was
derived previously in [23] using a different method, see
also [1]. Although actually (5.28) was used in [24] for the
analysis of the dynamics of test matter in MAG, the
derivation of this identity is published here for the first
time.

D. Yano derivative and the invariant conserved current
for MAG

Directly from the definition (5.20), we can calculate the
Yano derivative for the covariant derivative of the matter
field, of the torsion, nonmetricity and curvature:

 L �D A � D�L� A� � �L���
�� ^ �
���

A
B 

B; (5.29)

 L �T� � D�L�#�� � �L���
�� ^ #�; (5.30)

 L �Q�� � �D�L�g��� � �L���
��g�� � �L���

��g��;

(5.31)

 L �R�
� � D�L���

��: (5.32)

Furthermore, it is straightforward to find the explicit ex-
pressions for the Yano derivatives of the geometric and
matter fields:

 L �#
� � D�� � �cT� ���

�#� 
 0; (5.33)

 L ���
� � D��

� � �cR��; (5.34)

 L �g�� � ��cQ�� � 2�����; (5.35)

 L � A � D��c A� � �cD A ���
��
���

A
B 

B: (5.36)

Here we denote, as usual, �� :� �c#�, and

 ��
� :� �c��� �	�

�: (5.37)

This is the MAG version of the general definition (2.10).
Now, we replace in (5.14) the ordinary Lie derivatives ‘�

with the Yano derivatives L�, make use of (5.29), (5.30),
(5.31), and (5.32), and take into account the Noether iden-
tity (5.13). Then we can recast the identity (5.14) as
 

L���
� ^F �

� �
1
2L�g�� ^ f

�� �L� 
A ^F A

� dJ ��� � 0; (5.38)
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where we introduced the scalar �n� 1�-form

 

J ��� :� �cV tot �L���
� ^H �

� �
1

2
L�g�� ^M��

�L� A ^
@V tot

@D A
: (5.39)

Note that neither (5.38) nor (5.39) contain the terms pro-
portional to the Yano derivative of the coframe (cf. with
[1]) because the latter is zero, cf. (5.33). By making use of
the Yano derivative (5.33), (5.34), (5.35), and (5.36), and
taking into account the Noether identities (5.13) and (5.22),
we recast this current into the equivalent form

 

J ��� � d
�
��H � ���

�H �
� � �c 

A ^
@V tot

@D A

�
� ��F � ���

�F �
� � �c 

A ^F A: (5.40)

When the gravitational and matter variables satisfy the
field Eqs. (5.11), we find that the current (5.39) is con-
served, dJ ��� � 0, for any vector field �. By construction,
this conserved current is invariant under both diffeomor-
phism and local linear transformations. Moreover, when
(5.11) are satisfied, the current �n� 1�-form is expressed in
terms of a superpotential �n� 2�-form, (5.40). The corre-
sponding conserved current then can be calculated via the
integral

 Q ��� �
Z
@S

�
��H � ���

�H �
� � �c 

A ^
@V tot

@D A

�
(5.41)

over an �n� 2�-dimensional boundary @S of an �n�
1�-hypersurface S.

VI. EXAMPLES OF MAG SOLUTIONS

Let us now apply the general formalism to the exact
solutions that can be obtained with the help of the so-called
triplet ansatz in the class of models with quadratic
Lagrangians in n � 4 dimensions. Such solutions are de-
scribed, for instance, in [25–30]. The most general scheme
for the triplet ansatz technique was developed in [26], and
the overview of the exact solutions in MAG models can be
found in [31].

A. Gravitational field equations

We consider the Lagrangian [26] that generalizes the
models studied in [25,28,30,32,33],

 

VMAG �
1

2�

�
�a0�R�� ^ ��� � 2
��

� T� ^
�
�X3

I�1

aI
�I�T�

�
� 2

�X4

I�2

cI
�I�Q��

�

^ #� ^ �T� �Q�� ^
�
�X4

I�1

bI �I�Q��
�

� b5�
�3�Q�� ^ #

�� ^ ���4�Q�� ^ #��
�

�
1

2
z4R�� ^ ��4�Z��: (6.1)

Here, the coupling constants a0; . . . ; a3; c2; c3;
c4; b1; . . . ; b5; z4 are dimensionless, � :� 8�G=c3 is the
standard Einstein gravitational constant, and 
 is the cos-
mological constant. The segmental curvature is denoted by
�4�Z�� :� 1

4g��R�
�; it is a purely post-Riemannian piece.

This Lagrangian is constructed from the irreducible
parts of the torsion and nonmetricity. Namely, let us recall
that the torsion two-form can be decomposed into three
irreducible pieces, T� � �1�T� � �2�T� � �3�T�, where

 

�2�T� :� 1
3#

� ^ T; (6.2)

 

�3�T� :� �1
3
��#� ^ P�; (6.3)

 

�1�T� :� T� � �2�T� � �3�T�: (6.4)

The torsion trace (covector) and pseudotrace (axial covec-
tor) one-forms are defined, respectively, by

 T :� e�cT�; P :� ��T� ^ #��: (6.5)

Analogously, the nonmetricity one-form can be decom-
posed into four irreducible pieces, Q�� �

�1�Q�� �
�2�Q�� �

�3�Q�� �
�4�Q��, with

 

�2�Q�� :�
2

3
��#�� ^
���; (6.6)

 

�3�Q�� :� 4
9�#��e��c��

1
4g����; (6.7)

 

�4�Q�� :� g��Q; (6.8)

 

�1�Q�� :� Q�� �
�2�Q�� �

�3�Q�� �
�4�Q��: (6.9)

Here the shear covector part and the Weyl covector are,
respectively,

 � :� #�e�c %Q��; Q :� 1
4g
��Q��; (6.10)

where %Q�� � Q�� �Qg�� is the traceless piece of the
nonmetricity. The two-form 
� is defined by 
� :�
	� �

1
3 e�c�#

� ^	�� with 	� :� ��%Q�� ^ #��. We can
prove that e�c
� � 0 and #� ^
� � 0.
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In order to write down the field Eqs. (5.7), (5.8), and
(5.11), we need the field momenta (5.4) and the generalized
potentials (5.5). A straightforward computation yields for
the Lagrangian (6.1):
 

M�� � �
2

�

�
�
�X4

I�1

b�I�I Q
��
�

�
1

2
b5

�
#�� ^ ��Q ^ #��� �

1

4
g����3Q���

�
� c2#�� ^ ��1�T�� � c3#�� ^ ��2�T��

�
1

4
�c3 � c4�g

���T
�
; (6.11)

 H � � �
1

�

�
��X3

I�1

aI
�I�T�

�
�

�X4

I�2

cI
�I�Q�� ^ #

�
��
;

(6.12)

 H �
� �

a0

2�
��� � z4

���4�Z���; (6.13)

and, in accordance with the Noether identities (5.13) and
(5.22),
 

E� � e�cVMAG � �e�cT�� ^H �

� �e�cR�
�� ^H �

� �
1
2�e�cQ���M

��; (6.14)

 E �
� � �#

� ^H � �M�
�: (6.15)

As we already mentioned, the equation which arises from
the variation of the Lagrangian with respect to the metric
turns out to be redundant.

B. Triplet ansatz and effective system

The triplet ansatz specifies a particular structure for the
post-Riemannian sector of the MAG model. Namely, it is
assumed that this sector is totally described by the three
covectors: the one-form of the torsion trace T, the Weyl
one-form Q, and the nonmetricity one-form �, defined in
(6.5) and (6.10). Moreover, they are all proportional to an
auxiliary one-form:

 Q � k0AMAG; � � k1AMAG; T � k2AMAG;

(6.16)

with constant coefficients k0, k1, k2; the one-form AMAG is
a new variable to be determined from the field equations.
Accordingly, �1�T� � �3�T� � 0 and �1�Q�� �

�2�Q�� � 0.
Substituting the triplet ansatz into the MAG field equa-

tions, we find the explicit form of the above coefficients in
terms of the coupling constants of the MAG Lagrangian:

 k0 �

�
a2

2
� a0

�
�8b3 � a0� � 3�c3 � a0�

2; (6.17)

 k1 � �9
�
�a0 � b5�

�
a2

2
� a0

�
� �c3 � a0��c4 � a0�

�
;

(6.18)

 k2 �
3
2�3�a0 � b5��c3 � a0� � �8b3 � a0��c4 � a0��;

(6.19)

and in addition,

 � 4k0b4 �
k1

2
b3 � k2c4 �

a0

2
k � 0; (6.20)

with k :� 3k0 � k1 � 2k2.
As a result, the MAG field Eqs. (5.7) and (5.8), for the

Lagrangian (6.1) reduce to the effective Einstein-Maxwell
system:

 

1
2

~R�	 ^ ���	 � 
�� � ��MAG
� ; (6.21)

 d�FMAG � 0: (6.22)

Here FMAG � dAMAG, and the effective energy-
momentum form reads

 �MAG
� �

YMAG

2
�FMAG ^ �e�c

�FMAG� �
�FMAG

^ �e�cFMAG��: (6.23)

The effective ‘‘vacuum constant’’ is defined by YMAG :�
�z4k2

0=a0, and the tilde as usual denotes the objects con-
structed from the Riemannian (Christoffel) connection.

C. Axially symmetric solution

Let us choose standard Boyer-Lindquist coordinates
�t; r; �; ’�. Then we straightforwardly can verify that the
MAG field equations admit the generalized Kerr-Newman
solution with cosmological constant. It is described by the
coframe

 # 0̂ �

����
�

�

s
�cdt� j0
sin2�d’�; (6.24)

 # 1̂ �

����
�

�

s
dr; (6.25)

 # 2̂ �

����
�

f

s
d�; (6.26)

 # 3̂ �

����
f
�

s
sin���j0cdt�
�r2 � j2

0�d’�; (6.27)

and by the one-form that describes post-Riemannian triplet
sector

 AMAG � u# 0̂: (6.28)

Here � � ��r�, � � ��r; ��, f � f���, u � u�r; ��, and
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j0 and 
 are constant. The field equations yield the follow-
ing explicit functions:

 � � �r2 � j2
0�

�
1�



3
r2

�
� 2mr�

�YMAG

2
N2; (6.29)

 � � r2 � j2
0cos2�; (6.30)

 f � 1�


3
j2

0cos2�; (6.31)

 u �
Nr��������
��
p : (6.32)

Here 
 � �1� 
j2
0=3��1, m � GM=c2, with the arbitrary

integration constants M and N.
For completeness, let us write down explicitly the post-

Riemannian two-form
 

FMAG � Nd
�

r��������
��
p # 0̂

�

�
N

�2 ��r
2 � j2

0cos2��# 0̂ ^ # 1̂ � 2j0r cos�# 2̂ ^ # 3̂�:

(6.33)

D. Invariant conserved charges for the axially
symmetric solution

In order to calculate the conserved charge (5.41), we
need the explicit translational and linear field momenta.
Using the triplet ansatz in (6.12) and (6.13), we find

 H � � �
a0k
3�

��#� ^ AMAG� �
a0k
3�

e�c�AMAG; (6.34)

 H �
� �

a0

2�
��� �

z4

8
���
�dQ

�
a0

2�
��� �

z4k0

8
���
�FMAG: (6.35)

From (5.33) we have explicitly ��
� � e�c�D�

� � �cT��.
However, it is more convenient to start directly from the
definition (5.37), and substitute (5.23) in it. We then find

 ��
� � D

fg

��
� � �cN�

�: (6.36)

By making use of (5.24), we then can easily compute the
contractions:

 ��
� � D

fg

��� � 2�cQ; (6.37)

 ������ �
��d���#�� � ��n� �

1
2�c�T� ^ #

���: (6.38)

Furthermore, in the triplet ansatz framework, these formu-
las reduce to

 ��
� � D

fg

��
� � 2k0�cAMAG; (6.39)

 ������ �
�d���#

�� �
k
3
�c�AMAG: (6.40)

Now we are in a position to compute the conserved
invariant charges. Substituting (6.34), (6.39), (6.40), and
(5.41), we find the general expression for the invariant
charge in the quadratic MAG model with a triplet ansatz:
 

Q��� �
a0

2�

Z
@S
��d���#�� � k��c�AMAG��

�
z4k0

8

Z
@S
�D
fg

��� � 2k0�cAMAG�
�FMAG: (6.41)

On the axially symmetric solution (6.24), (6.25), (6.26),
(6.27), (6.28), (6.29), (6.30), (6.31), and (6.32), the last
integral is zero for � � �i@i with the constant components
�i. The asymptotic behavior of the physical and geometri-
cal quantities is as follows (keeping the leading terms in
1=r):

 �cAMAG �
N
r
��0 � �3
j0sin2��; (6.42)

 

�AMAG �
Nr
�
dr ^ sin�d� ^ ��j0cdt�
�r2 � j2

0�d’�;

(6.43)

 

�FMAG � �N
 sin�d� ^ d’: (6.44)

Substituting this, we can verify that the second line in
(6.41) vanishes, and for 
 � 0 the invariant conserved
charges read

 Q �@t� � a0Mc2=2; Q�@’� � �a0Mcj0: (6.45)

When the coupling constant in the MAG Lagrangian (6.1)
has its standard value a0 � 1, these conserved charges
reduce to the well-known results of Komar [1]. Note that
a0 cannot vanish, otherwise the quadratic MAG model
does not have an Einsteinian limit and the triplet ansatz
is not applicable. For the solutions with nontrivial cosmo-
logical constant 
 � 0, the conserved charges are formally
infinite. Accordingly, like in the case of the theories with
local Lorentz symmetry, a regularization is required.
Unfortunately, the usual regularization via relocalization
with the help of the topological boundary term is not
possible since in MAG there is no analogue [34] of the
Euler invariant. We will analyze the regularization problem
elsewhere.

VII. DISCUSSION AND CONCLUSION

In this paper, the approach, developed earlier in [1], is
generalized to the case when the local Lorentz group is
replaced by an arbitrary local gauge group. The scheme
includes the Maxwell and Yang-Mills fields coupled to
gravity with Abelian and non-Abelian local internal sym-
metries. However, in the case of internal symmetries there
seems to be no natural way to define nontrivial covariant
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Lie derivatives. In the gravitational case, on the other hand,
the frame field, transforming covariantly under the sym-
metry group, is the key ingredient to construct covariant
generalized (Yano) Lie derivatives and therefore, invariant
conserved quantities. The existence of the frame field in
gravitational theories can be understood in terms of the so-
called soldering procedure. In Sec. III we have studied a
particular case in which a scalar field plays a role analo-
gous to the frame field for the external symmetries, allow-
ing to construct U�1�-invariant conserved quantities.

Another important case is the metric-affine gravity in
which the local Lorentz spacetime group is extended to the
local general linear group. We have developed the corre-
sponding general formalism for MAG in Sec. V. This
scheme generalizes and refines the partial results available
in the earlier literature [35– 41]. In order to illustrate how
the formalism works, we applied it to the computation of
the conserved charges for an exact MAG solution in
Sec. VI. The results obtained are consistent with the deri-
vations for the general relativity and for the models with
local Lorentz symmetry.
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APPENDIX A: GENERALIZED LIE DERIVATIVES

Here, we collect some useful identities satisfied by the
generalized Lie derivative L�;". They generalize the results
found in Appendix A of [1].

We defined the generalized Lie derivative by the formula

 L �;"!A :� ‘�!A � "a�
a�AB!
B (A1)

when acting on any (gauge-)covariant p-form !A. We also
define the generalized Lie derivative of the gauge field by

 L �;"A
a :� ‘�A

a � d"a � fabcA
b"c: (A2)

With these definitions, one can prove that the general-
ized Lie derivative commutes with the exterior derivative,
i.e. �L�;"; d� � 0, as well as the following identities:

 L �;"Aa 
 D��cAa � "a� � �cFa; (A3)

 L �;"Fa 
 D�L�;"Aa�; (A4)

 �L�;"; D�!A 
 �L�;"Aa��
a�AB ^!
B: (A5)
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