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A higher order theory of dilaton gravity is constructed as a generalization of the Einstein-Lovelock
theory of pure gravity. Its Lagrangian contains terms with higher powers of the Riemann tensor and of the
first two derivatives of the dilaton. Nevertheless, the resulting equations of motion are quasilinear in the
second derivatives of the metric and of the dilaton. This property is crucial for the existence of brane
solutions in the thin wall limit. At each order in the derivatives the contribution to the Lagrangian is
unique up to an overall normalization. Relations between symmetries of this theory and the O�d; d�
symmetry of the string-inspired models are discussed.
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I. INTRODUCTION

The equations of motion in the Einstein theory of gravity
in 4 space-time dimensions are the most general
divergence-free tensor (rank 2) equations bilinear in the
first derivatives and linear in the second derivatives of the
metric. They can be obtained from the Hilbert-Einstein
action which is linear in the Riemann tensor. In more
than 4 space-time dimensions, this theory can be general-
ized to contain higher powers of the Riemann tensor in the
action. The corresponding equations of motion involve
higher powers of the first derivatives of the metric and
are quasilinear in the second derivatives (all terms are at
most linear in the second derivatives, while multiplied by
powers of the first derivatives). It has been shown that the
contribution to the action of a given order in the Riemann
tensor is unique up to an overall normalization. The qua-
dratic contribution is called the Gauss-Bonnet action or the
Lanczos action [1]. It has been generalized to higher orders
by Lovelock [2]. The quasilinearity is a very important
feature of the Einstein-Lovelock equations of motion. It
guarantees that they can be formulated as a Cauchy prob-
lem with some constraints on the initial data [3]. On the
other hand, it is crucial for the existence of nonsingular
domain wall solutions in the thin wall limit. This problem
for arbitrary order in derivatives was discussed in [4].
Many aspects of the Einstein-Lovelock gravity were dis-
cussed in the literature.1

Higher derivative corrections to the gravity interactions
are present in effective Lagrangians obtained from string
theories. The first correction has exactly the form of the
Gauss-Bonnet term [9,10]. The lowest order dilaton inter-
actions were added to the Gauss-Bonnet theory in [11].
However, the �0 expansion in string theories predicts
higher derivative corrections not only for the gravitational

interactions; such corrections appear also for the dilaton.
The effective action for the dilaton gravity with terms up to
four derivatives was given in [12,13]. The effective action
with six derivatives was presented in [14], but its gravita-
tional part has a form different from that of the correspond-
ing Einstein-Lovelock action.

The dilaton gravity at the field theory level has been
investigated by many authors. Some of them included also
certain higher order corrections. Yet in most cases such
corrections were considered only for gravitational interac-
tions and not for the dilaton. Some higher derivative cor-
rections for both the dilaton and the gravitational
interactions were considered in [15–21] (certain
Riemann tensor combinations with dilaton dependent co-
efficients were analyzed in [22–25]). The terms predicted
by superstrings up to four derivatives have also been con-
sidered in [26–28].

The purpose of the present work is to find a general-
ization of the lowest order dilaton gravity theory to an
arbitrary order in derivatives. We start with the Einstein-
Lovelock higher order gravity and couple it to the dilaton.
There are many ways to do this but we are only interested
in the theories where dilaton and gravity interactions are as
similar to each other as possible. Equations of motion in
such a theory are presented in Sec. II. We begin with
formulating the conditions which should be fulfilled by
such equations. Most of them are simple generalizations of
the conditions fulfilled by the Einstein-Lovelock equations
of motion. One condition is added in order to eliminate at
least some of the possible theories in which the dilaton
interactions are not related to the gravitational ones. The
equations of motion satisfying all those conditions are
constructed in Sec. II C. It turns out that at each order those
equations are unique up to a numerical normalization.
Moreover, they can be obtained by the standard Euler-
Lagrange procedure from the Lagrangian presented in
Sec. III. Section IV contains the proof that our equations
of motion are quasilinear in the second derivatives of both
the metric and the dilaton. The relation between the gravity
and the dilaton interactions is discussed in Sec. V. We point
out that the Lagrangian of our higher order dilaton gravity

1Quasilinearity of the Einstein-Gauss-Bonnet theory was re-
viewed in [5]. A discussion of general quasilinear differential
equations can be found in [6]. For a review on brane-world
gravity see e.g. [7]. For a discussion of the Lovelock gravity in
the context of the equivalence of the Palatini and metric for-
mulations see e.g. [8].
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can be obtained in a simple way from the pure gravity
Einstein-Lovelock Lagrangian. We also discuss the rela-
tion of the resulting theory to the O�d; d� symmetric theo-
ries. We conclude in Sec. VI. The appendix contains the
explicit formulas for the Lagrangian and the equations of
motion up to terms of the sixth order in derivatives.

II. EQUATIONS OF MOTION

A. Notation

Let us start with introducing certain generalizations of
the Kronecker delta and the trace operator which will be
used later to make the formulas more compact. The gen-
eralized Kronecker delta is defined by

 �j1j2���jn
i1i2���in

� det

������������������

�j1
i1

�j1
i2
� � � �j1

in
� � � � � �

� � � � � �

�jni1 �jni2 � � � �jnin

������������������
; (1)

and should be only employed when the space-time dimen-
sionality D is sufficient: D � n. Using this definition it is
easy to prove some relations among Kronecker deltas of
different order. For example:
 

��j1j2...jn
�i1i2...in

� ����
j1j2...jn
i1i2...in

� ��i1�
j1j2...jn
�i2...in

� ��i2�
j1j2...jn
i1�...in

� . . .

� ��in�
j1j2...jn
i1i2...� : (2)

The generalized Kronecker delta can be used to define the
following tracelike linear mapping from tenors of rank
�n; n� into numbers:

 T �M� � �j1j2���jn
i1i2���in

Mi1i2���in
j1j2���jn

; (3)

which reduces to the ordinary trace for n � 1. We will also
employ an extension of this operation which maps tensors
of rank �n; n� into tensors of rank (1, 1):

 

�T �
��M� � ��j1j2���jn

�i1i2���in
Mi1i2���in
j1j2���jn

: (4)

In the following we will often use T and �T evaluated for
products of tensors. In order to clearly distinguish between
tensors and their contracted counterparts, we will use �
indices to indicate the rank of a tensor. For example, R��

��

denotes the rank (2, 2) Riemann tensor, and ���� denotes
the rank (1, 1) second derivative of the dilaton, while R is
the Ricci scalar and �� the D’Alembertian acting on the
dilaton. Thus, for example,
 

T ��R��
���

2������
2� � ��1�2�3�4�5�6

�1�2�3�4�5�6 R�1�2
�1�2

�R�3�3
�3�4 �

�5
�5��

�6
�6�; (5)

where we used the notation R�1�2
�1�2 �R�1�2

�1�2
and

�
�
�� � r�@�� to make the formula more compact. It is

easy to see that the sequence of tensors appearing in the
product argument of T is not important. Changing such an
order is equivalent to interchanging the appropriate col-

umns of indices in the generalized Kronecker delta. On the
other hand, interchanging two such columns of indices is
equivalent to interchanging the corresponding 2 rows and 2
columns in the determinant in definition (1). Each inter-
change of two columns (or two rows) changes the sign of
the determinant, hence an even number of interchanges
leaves the determinant unchanged.

B. Conditions

Now we want to construct the n-th order dilaton gravity
equations of motion. They are to be of the form

 T�n��� � 0; W�n� � 0; (6)

where the tensor T�n��� and the scalarW�n� satisfy the follow-
ing conditions:

(i) They are combinations of terms with exactly 2n
derivatives acting on the metric tensor g�� and on
the dilaton field �. There are no derivatives higher
than second acting on one object;

(ii) Tensor T�n��� is symmetric in its indices;
(iii) The covariant derivative of the tensor is proportional

to the scalar: r�T
��n�
� � const � �@���W�n� (the

energy-momentum tensor is covariantly conserved
if the dilaton equation of motion is fulfilled).

It is clear that the above conditions are not sufficient to
determine something which could be regarded as an ex-
tension of the higher order gravity theory to the dilaton
gravity case. For example, all the above conditions are
fulfilled by the Einstein-Gauss-Bonnet gravity with only
the lowest order terms for the dilaton. We are interested in a
theory where the dilaton and the metric are treated in a
more symmetric way. It is not obvious how such a sym-
metry should be defined, because it ought to relate a scalar
to a second rank tensor. Or, more precisely, it is supposed
to relate the first and second derivatives of the scalar field
to the Riemann tensor and its contractions. A simple ob-
servation concerning the gravity part is that it contains
even-rank tensors only. On the other hand, the first deriva-
tive of a scalar is a rank-1 tensor. Hence one can expect that
in a gravity-dilaton symmetric theory, the first derivative of
the dilaton appears only as a 0-rank tensor: g��@��@��.
However, the feature mentioned above is not invariant
under change of variables. Thus, we should specify in
which frame it is fulfilled. The theory which relates the
dilaton to gravity is the string theory so the string frame
seems to be a natural choice. Hence our last condition
reads:

(iv) In the stringlike frame, in which the pure gravity
term is multiplied by exp����, the first order derivatives of
the dilaton appear in the combination �@����@��� only.
The relation of this condition to the O�d; d� symmetry
present in many string-inspired theories will be discussed
in Sec. V.
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C. Construction

We start our construction with a term in T��n�� where all
2n derivatives act on the metric tensors. The only pure
gravity tensor satisfying conditions (i)–(iii) (with W�n� �
0) is, up to normalization, equal to the n-th order Lovelock
tensor [2]. Because of condition (iv), it is most natural to
work in the frame in which the gravity term is multiplied
by exp����. Consequently, the tensor T��n�� starts with

 T��n�� � �2��n	1�e�����1...�2n
��1...�2nR

�1�2
�1�2 � � �R

�2n�1�2n
�2n�1�2n 	 . . .

(7)

The reason for such a normalization will be explained in
the next section. Calculating the divergence of (7), we get
 

r�T
��n�
� � 2��n	1�e���@����

��1...�2n
��1...�2nR

�1�2
�1�2 � � �R

�2n�1�2n
�2n�1�2n

	 . . . (8)

The above term is produced when the derivative acts on
e�� (derivatives of the Riemann tensor do not contribute
due to the Bianchi identity).

The first term in T��n�� shown explicitly in (7) cannot be
the only one. The reason is that the right-hand side (RHS)
of (8) is not a product of @�� and a scalar, as condition (iii)
requires. Using Eq. (2) we can rewrite the RHS of (8) as a
combination of (2n	 1) terms. The one containing the first
term from the RHS of (2) is of the desired form but the
remaining 2n terms have different structures of the index
contractions. It turns out that similar terms are also present
in the following covariant derivative:
 

r�
e
�����1...�2n�1

��1...�2n�1R
�1�2
�1�2 ���R

�2n�3�2n�2
�2n�3�2n�2 �

�2n�1
�2n�1��

��e���@����
��1...�2n�1
��1...�2n�1R

�1�2
�1�2 ���R

�2n�3�2n�2
�2n�3�2n�2 �

�2n�1
�2n�1�

	e�����1...�2n�1
��1...�2n�1R

�1�2
�1�2 ���R

�2n�3�2n�2
�2n�3�2n�2�r�r

�2n�1@�2n�1
��:

(9)

The second term on the RHS may be rewritten as
 

e�����1...�2n�1
��1...�2n�1R

�1�2
�1�2 � � �R

�2n�3�2n�2
�2n�3�2n�2

�

�
�

1

2
��2n
�2nR

�2n�1�2n
�2n�1� @�2n

�
�

� �
1

2
e���@������2n

��1...�2n�1�2n
�1...�2n�1�

�R�1�2
�1�2 � � �R

�2n�3�2n�2
�2n�3�2n�2R

�2n�1�2n
�2n�1�2n ; (10)

where in the last step we interchanged the names of the
contracted indices � and �2n and rearranged the indices in
the generalized Kronecker delta. A term exactly of this
structure must be added to (8) in order to obtain an ex-
pression proportional to @��. From Eqs. (2) and (8) it
follows that the coefficient should be equal to (� n2�n)
instead of the (� 1=2) present in (10). This fixes the
coefficient of the term in T��n�� which contains (n� 1)
Riemann tensors and one second derivative of the dilaton.

Now we know the first two terms of the tensor T��n�� . Using
the notation introduced in (3) and (4), they can be written
as

 T��n�� � �2��n	1�e�� �T
�
���R

��
���

n�

� 2��n�1�ne�� �T
�
���R

��
���
�n�1������ 	 . . . (11)

Their covariant derivative reads
 

r�T
��n�
� � 2��n	1�e���@���

�T ��R��
���

n�

	 2��n�1�ne���@���
�T
�
���R

��
���
�n�1������

	 . . . (12)

The first term has the structure required by condition (iii)
and determines the first term of the scalar equation of
motion2 W�n�. However, the second term in (12) is not of
the appropriate structure. It means that some additional
terms, whose covariant derivatives are products of (n� 1)
Riemann tensors with one second derivative of the dilaton,
are necessary in T��n�� . Two such terms are possible:
 

c3e
�� �T

�
���R

��
���
�n�2�������

2�

	 c4e��
�T
�
���R

��
���
�n�1���@��2: (13)

However, it is not enough to have terms with appropriate
powers of the Riemann tensor and the dilaton, because
their covariant divergences must contain the correct com-
binations of the generalized Kronecker deltas. To check
whether this is possible, we calculate the covariant diver-
gence of (13). When the derivative acts on ���� in the first
term in (13), it gives an additional Riemann tensor multi-
plied by @� and a pair of new indices. Those new indices
are contracted with just one ordinary Kronecker delta and
are not under the overall antisymmetrization. Similarly,
when the covariant derivative acts on �@��2 in the second
term in (13), it gives the second derivative of the dilaton
multiplied by @� and a pair of new indices. Those two
covariant derivatives should combine with the second term
on the RHS of (12) to give an expression proportional to
@��. This fixes the numerical coefficients c3 and c4. The
explicit calculation gives c3 � �2�2�n�n�n� 1�, c4 �

2�nn. Thus, we have found the first four terms of T��n�� :
 

T��n�� � �2��n	1�e��
 �T
�
���R

��
���

n�

	 4n �T
�
���R

��
���
�n�1������

	 8n�n� 1� �T
�
���R

��
���
�n�2�������2�

� 2n �T
�
���R

��
���
�n�1���@��2� 	 . . . (14)

The covariant divergence of those terms reads

2Up to an overall normalization. The choice of the relative
normalizations of T�n��� and W�n� shall become clear when the
Lagrangian is introduced in Sec. III.
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r�T
��n�
� �@��f2

��n	1�e��
T ��R��
���

n�

	4nT ��R��
���
�n�1�������g

	@��2�2�n�n�n�1�e�� �T
�
���R

��
���
�n�2�������

2�

�@��2�nne�� �T
�
���R

��
���
�n�1���@��2	 . . .

(15)

The terms in the curly bracket above are the first two terms
of the scalar W�n� we are looking for.

Equation (15) shows that the procedure of finding T��n��

andW�n� must be continued. The last two terms on the RHS
of (15) do not have the required form, so more terms must
be added to T��n�� . From the steps described so far, it should
be clear that each of such new terms must contain exactly 3
(first or second order) derivatives of the dilaton. There are
two such terms:

 c5e��
�T
�
���R

��
���
�n�3�������3�

	 c6e��
�T
�
���R

��
���
�n�2�������@��2: (16)

The coefficients c5 and c6 can be fixed in the same way as
c3 and c4.

This procedure can be continued step by step for the
terms containing higher and higher powers of the dilaton
field with the derivatives acting on it. Eventually, one
obtains the term with the maximal number of dilaton fields,
namely ce�����
�@��2�n. This is the first term in T��n�� , the
covariant derivative of which need not to be corrected by
contributions from any additional terms. This covariant
derivative reads

 r�
e�����
�@��2�n� � ��@���e��
�@��2�n

	 2ne���r�@����@���

� 
�@��2��n�1�: (17)

The second term on the RHS is used to cancel some
unwanted part of r�
e��

�T
�
���

�
���
�@��2��n�1��, which

fixes c to be equal to 1
2 ��1��n	1�. The first term on the RHS

of (17) has already the required structure of the product of
@�� and a scalar. Thus, the procedure can stop here.

The above iterative procedure gives T�n��� and W�n� sat-
isfying all the four imposed conditions. The resulting
gravitational and dilaton equations of motion can be writ-
ten in the following relatively simple form:

 

T�n��� � �
1

2
e��

Xn
a�0

Xn�a
b�0

2b�an!

a!b!�n� a� b�!

� �T ����R
��
���

a������b����@��2�n�a�b � 0; (18)

 

W�n� � �e��
Xn
a�0

Xn�a
b�0

2b�an!

a!b!�n� a� b�!

�T ��R��
���

a������
b����@��2�n�a�b � 0: (19)

The existence of T�n��� and W�n� is a nontrivial result,
because in our iterative procedure there are more condi-
tions than available constants. A priori it could happen that
there were no solutions other than a trivial one with van-
ishing T�n��� and W�n�. However, the solution exists and is
unique up to an overall normalization. Hence any dilaton
gravity equations of motion, satisfying conditions (i)–(iv),
which contain at least one term present in (18) and (19)
must also contain all the other terms with uniquely deter-
mined coefficients.

III. LAGRANGIAN

It is interesting to check whether the equations of motion
constructed in Sec. II can be obtained from some
D-dimensional action. In such case, T�n��� and W�n� would
satisfy

 �g��S
�n� � �g��

Z
dDx

�������
�g
p

L�n� �
Z

dDx
�������
�g
p

T�n����g��;

(20)

 ��S�n� � ��
Z

dDx
�������
�g
p

L�n� �
Z

dDx
�������
�g
p

W�n���:

(21)

It turns out that indeed the equations of motion (18) and
(19) can be obtained from the action with the Lagrangian
density given by
 

L�n� � e��
Xn
a�0

Xn�a
b�0

2b�an!

a!b!�n� a� b�!
T ��R��

���
a������

b�

� ���@��2�n�a�b: (22)

It is important to underline that for conditions (i)–(iv)
not to be violated, the terms coming from the n-th
Lagrangian can appear only in the space-times with di-
mensionality D � 2n. Moreover, one should be careful
when calculating (20) for D � 2n, as the generalized
Kronecker delta (1) can not be employed in (18) for the
term of the highest order in the Riemann tensor. The
coefficient of that term should be replaced with

 ���1�2...�2n
��1�2...�2n !D�2n

����
�1�2...�2n
�1�2...�2n � �

�
�1
��1�2...�2n
��2...�2n

� ���2
��1�2...�2n
�1�...�2n � . . .� ���2n

��1�2...�2n
�1�2...� : (23)

Now we can comment on the overall normalization of
the tensors T�n���. The reason for this particular normaliza-
tion is that the term e��Rn (with R being the Ricci scalar)
appears in the Lagrangian with the coefficient 1. This
corresponds to the standard normalizations of the
Hilbert-Einstein and Gauss-Bonnet Lagrangians.
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Proving that the equations of motion derived from the
Lagrangian (22) really have the form (6) with T�n��� andW�n�

as given in (18) and (19) is a straightforward but quite
tedious calculation. One of the reasons is that apparently
several integrations by parts are required. This can be
somewhat simplified if one observes that not all those
integrations by parts have to be performed explicitly. In
case of (21), the reason is as follows. Under the integral
(21) there are first (second) derivatives of �� coming from
the variation of the first (second) derivatives of the dilaton.
In general, the terms containing second derivatives of ��
should be integrated by parts twice. However, one can
notice that the result of a single integration and the terms
containing the first derivatives of �� cancel each other
exactly.

The situation is a little bit more complicated in case of
the gravitational equation of motion. Under the integral
(20), there are second derivatives of �g�� coming from the
variation of the Riemann tensor and first derivatives of
�g�� coming from the variation of the second covariant
derivative of the dilaton. Similarly as in the case of the
dilaton equation of motion, the terms containing second
derivatives of �g�� have to be integrated by parts only
once. And although the cancellation of the resulting terms
is not complete this time, only some residual integration by
parts has to be performed additionally.

Of course, the Lagrangian density (22) is not unique.
First, one can rewrite L�n� changing the variables g�� and
�. Second, one can add to L�n� any total divergence
without changing the resulting equations of motion.
However, the form given in Eq. (22) is especially simple
and interesting. It is very similar to the form of T�n��� and
W�n�. The energy-momentum tensor T�n��� can be obtained
from L�n� by replacing the generalized trace T with its
tensor extension �T �� and multiplying the result by �1=2.
In the case of the dilaton equation of motion, the analogous
relation is even simpler: W�n� � �L�n�.

We were not able to find any other similarly simple form
of the Lagrangian by adding total derivative terms or by
changing the variables. For example, we examined the
form of the Lagrangian and of the equations of motion in
the Einstein-like frame in which the common factor e�� is
absorbed by a suitable Weyl transformation. The results are
very complicated and will not be presented here. One of the
reasons for such complications is that the Weyl transfor-
mation depends on the dimensionality D of the space-time.
Thus, many different functions of D appear in the Einstein
frame, while there is no explicit dependence on D in our
stringlike frame.

IV. QUASI-LINEARITY

It is easy to show that the equations of motion (18) and
(19) are quasilinear in the second derivatives of the metric
and the dilaton. Let us introduce in the D-dimensional

space-time a (D� 1)-dimensional hypersurface � defined
by its unit normal vector n�. The metric induced at this
hypersurface is given by

 h�� � g�� �
n�n�
n2 ; (24)

where n2 � n�n
�. The components of the D-dimensional

Riemann tensor R��
�� corresponding to the full metric g��

can be expressed as

 R ��
�� � R���� � n�2�2K
�


�K
��
�� 	 4n
�D
�K

��
��

	 4n
�D

�K��

�� � 	 n
�4�4n
�n


�K��
j�jK

�
��

� 4n
�n

�LnK

��
�� �; (25)

where: R���� is the (D� 1)-dimensional Riemann tensor
corresponding to the induced metric h��; K is the extrinsic
curvature given by

 K�� �
1

2
Lnh��; (26)

D� is the covariant derivative with respect to the induced
metric h��; Ln is the Lie derivative along the vector field
n�. Similarly we can write the D-dimensional second
covariant (with respect to the metric g��) derivative of
the dilaton

 

r�r�� � D�D��	 n�2�K��Ln�	 2n��D��Ln�

� 2n��K�
��D���

	 n�4n�n��L2
n�� �n

�r�n
��r���: (27)

We want to check how the second Lie derivatives of the
metric h�� (present in LnK��) and of the dilaton � appear
in the equations of motion (18) and (19). Such second
derivatives are present in (25) and (27) but in both cases
they are multiplied by coefficients bilinear in the vector n.
After substituting the decompositions (25) and (27) into
(18) and (19), one can immediately see that, due to the
antisymmetrization present in T�n��� and W�n�, the equations
of motion contain terms at most bilinear in n. Thus, the
equations of motion (18) and (19) contain terms at most
linear in the second Lie derivatives of h�� and �.

We have shown that the equations of motion are quasi-
linear in the second Lie derivatives ‘‘perpendicular’’ to the
hypersurface �. This quasilinearity has very important
consequences. For � with a timelike n, this allows us to
define a standard Cauchy problem with the initial condi-
tions (values and first Lie derivatives of h�� and �) given
at �. For a spacelike n, the quasilinearity is necessary to
have nonsingular brane solutions even in the thin wall
limit.
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V. SYMMETRIES

The equations of motion presented in Sec. II were
obtained assuming some kind of symmetry between the
metric and the dilaton. Now we are in a position to inves-
tigate such a symmetry in more detail.

It is quite amazing that the Lagrangian (22) as well as the
equations of motion (18) and (19) can be expressed as
functions of n-th perfect ‘‘power’’ of one simple
n-independent quantity. Namely:

 L �n� � �W�n�

� e��T
��

1

2
R��
�� � 2���� � ��1��@��2

�
n
�
; (28)

 T�n��� � �
1

2
e�� �T ��

��
1

2
R��
�� � 2���� � ��1��@��2

�
n
�
:

(29)

One can treat these equations as just a new notation allow-
ing us to rewrite the double sums from (18), (19), and (22)
in a compact way.3 Yet, on the other hand, it helps to show
that the action and the equations of motion depend on some
combinations of the dilaton derivatives and tensors ob-
tained from the metric only. In each round parenthesis in
Eqs. (28) and (29), there are the rank-4 Riemann tensor, the
rank-2 tensor of the second derivatives of the dilaton, and
the rank-0 tensor built from the first derivatives of the
dilaton:

 

1

2
R��
�� � 2���� � ��1��@��2: (30)

All those tensors are under the generalized traces T and
�T ��. Some of the terms present in these mappings contain

traces of the tensors from (30). There are two different
rank-2 tensors coming from (30). The first is just ����. The
second is the Ricci tensor R�

� which can be obtained from
the Riemann tensor by contraction of its two indices. There
are four different ways to contract one pair of indices in
R��
��, thus in the final result the rank-2 tensors appear

always in the combination (2R�
� 	 2����). There are three

different scalars originating from (30): �@��2, ��, and the
curvature scalar R. There are two different constructions
giving R, so the final results depend on a single following
scalar combination: R	 2��� �@��2.

The above observation allows us to relate our dilaton
gravity equations to the corresponding equations in the

pure Einstein-Lovelock gravity:
 

L�n� � �W�n�

� e��L�n�E�L
R
��
��; �R�

� 	�����;

�R	 2��� �@��2��; (31)

 

T�n��� � e���T�n�E�L���
g��;R
��
��; �R

�
� 	�����;

�R	 2��� �@��2��: (32)

The recipe for the higher order dilaton gravity can be as
follows: Start with the higher order pure gravity Einstein-
Lovelock theory. Write the Lagrangian density L�n�E�L and
the equations of motion �T�n�E�L��� in terms of the Riemann
tensor, Ricci tensor, and the curvature scalar by performing
all internal (within a given Riemann tensor) contractions of
indices. Then make the substitutions

 R �
� ! 
R

�
� 	��

���; (33)

 R ! 
R	 2��� �@��2�: (34)

Finally, multiply the result by exp����. The dilaton equa-
tion of motion, absent in the pure gravity case, is simply
L�n� � 0.

It occurs that the form of the Lagrangian and the tensor
T�n��� given in (31) and (32) is very closely related to the
string O�d; d� symmetry.4 To show this, we consider the
D-dimensional block-diagonal metric of the form

 g�� �
~g�	 0
0 Gmn

� �
; (35)

where �, 	 � 1; . . . ; �D� d�; m, n � �D� d	
1�; . . . ; D. We assume that the metric components ~g�	
and Gmn and the dilaton field � do not depend on the
last d coordinates xm. In such a case, we obtain the follow-
ing expressions for the second derivatives of the dilaton

 �
	
�� � ~�	

��; (36)

 �n
m� �

1

2
�G�1@�G�

n
m@

��; (37)

 �� � ~��	
1

2
�@� ln detG�@��; (38)

and for the Ricci tensor and the curvature scalar

 R 	
� � ~R	

� �
1

2
~�	
� ln detG

�
1

4
Tr
G�1�@�G�G

�1�@	G��; (39)

3One could say that Eqs. (28) and (29) make no sense because
they contain a sum of tensors of different ranks. To make this
mathematically sensible, we should consider a simple sum of
spaces of tensors of a given rank. Then the tensors in (28) and
(29) should be understood as elements of such a sum space with
all but one component set to zero. Finally, the generalized traces
T and �T �� should be further extended in such a way that when
acting on an element of this big space they give the result being
the sum of generalized traces of all components.

4For a review on O�d; d� symmetry, see e.g. [29] and the
references therein.
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Rn
m � �

1

4
�@� ln detG��G�1@�G�nm �

1

2
�G�1 ~�G�nm

	
1

2

G�1�@�G�G�1�@�G��nm; (40)

 

R � ~R�
1

4
�@� ln detG��@� ln detG� � ~� ln detG

�
1

4
Tr
G�1�@�G�G

�1�@�G��; (41)

where tilde denotes quantities related to the (D� d)-
dimensional metric ~g�	, G should be understood as a d�
d matrix (and not its determinant), and Tr and det are the
trace and the determinant (acting on d� d matrices).

A necessary condition for the O�d; d� symmetry is that
the dilaton field � appears only in the O�d; d� invariant
combination

 � � ��
1

2
ln detG: (42)

Hence any derivative of the dilaton � must be accompa-
nied by an appropriate derivative of 
ln detG�. It is easy to
see that there are only three combinations of Eqs. (36)–
(41) and the first derivatives of � which depend on � and

ln detG� only through the combination �:

 R 	 2��� �@��2 � ~R	 2 ~��� @��@��

�
1

4
Tr
G�1�@�G�G�1�@�G��;

(43)

 R 	
� 	�

	
�� � ~R	

� 	 ~�	
��

�
1

4
Tr
G�1�@�G�G

�1�@	G��; (44)

 R n
m 	�n

m� �
1

2
�@����G�1@�G�nm �

1

2
~r��G�1@�G�nm:

(45)

These are exactly the combinations which, together with
the Riemann tensor with uncontracted indices, appear in
the formulation given in Eqs. (31) and (32). Hence the
higher derivative contributions to the dilaton gravity theory
found in the present paper fulfill the necessary condition
for the O�d; d� symmetry formulated before Eq. (42). This
does not mean yet that our theory is a part of some O�d; d�
symmetric theory. One should check whether all terms
depending on G other than 
ln detG� form only O�d; d�
invariant combinations. Actually, one can calculate that it
is really the case for n � 1 and n � 2. The lowest order
theory was analyzed from this point of view for the first
time in [30]. Our second order Lagrangian L�2� differs
from the one found in [31] (for a vanishing tensor field
H) by some total derivatives only. Thus, for n � 1, 2 the
equations of motion presented in Sec. II are the same as the

dilaton and gravity part of the equations obtained as ap-
propriate approximations from the superstring theories.
The relation to the O�d; d� symmetry for n > 2 will be
discussed elsewhere [32].

The above discussion shows that condition (iv) from
Sec. II B can be treated as a necessary one for the dilaton
gravity model to be part of someO�d; d� symmetric theory.
The reason is that there are no O�d; d� invariant expres-
sions containing the first derivatives of the dilaton other
than the combination �@����@���.

VI. CONCLUSIONS

We have generalized the Einstein-Lovelock theory by
adding interactions with the dilaton. The corresponding
Einstein and dilaton equations of motion can be written
as series in the number of derivatives acting on the fields:

 T�� �
X
n


nT
�n�
�� � 0; (46)

 W �
X
n


nW�n� � 0: (47)

The n-th contributions T�n��� and W�n� are sums of terms
containing products of the Riemann tensor and the first and
second derivatives of the dilaton field. There are 2n de-
rivatives in each such term. We have found the most
general equations of motion satisfying conditions (i)–(iv)
given in Sec. II B. The first three conditions are the stan-
dard properties of the dilaton gravity theories. The last one
was added in order to find the theories in which the dilaton
and the metric are treated, as much as possible, on the same
footing. Accordingly, we assumed that the rank-1 tensor
containing the first derivatives of the dilaton can appear
only in the scalar combination �@����@���, as there is no
way to build an odd-rank tensor from the metric and the
Riemann tensor. It is necessary to specify the frame in
which such a condition is to be fulfilled. We have chosen
the string frame where the n-th order term from the
Einstein-Lovelock theory is multiplied by e��. The reason
is quite simple: symmetries relating the dilaton and the
metric are present in string-motivated theories.

We have shown that at each order T�n��� and W�n� are
unique up to a normalization. General expressions for T�n���
and W�n� for arbitrary n are given in Sec. II C. The explicit
formulas for n 
 3 are presented in the appendix. It occurs
that the higher order dilaton gravity equations of motion
have properties similar to those of the pure Einstein-
Lovelock gravity. Namely:

(i) There is an upper limit on the number of terms in
(46) and (47) which can be nonzero. For a
D-dimensional space-time it is given by the inequal-
ity 2n 
 D (the corresponding limit for pure gravity
is 2n < D)
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(ii) The equations of motion are quasilinear in the sec-
ond derivatives. This allows us to treat them as a
standard Cauchy initial conditions problem. It is
crucial also for the existence of brane-type solutions
in the thin wall limit.

There is also another very interesting feature of those
equations. The form of the scalar and Einstein equations
is very similar when written with the help of the general-
ized Kronecker delta. The tensor T�n��� can be obtained from
the scalar W�n� simply by adding a pair of extra indices �
and � to each generalized Kronecker delta and dividing by
2.

Our dilaton gravity equations of motion can be obtained
from an appropriate Lagrangian. Of course, such a
Lagrangian can be determined only up to some total de-
rivatives. However, we have found that there is one par-
ticularly interesting form of it:

 L � �W: (48)

Moreover, this Lagrangian is related in a simple way to the
Einstein-Lovelock one (the same is true also for the gravi-
tational equations of motion). First, one has to write the
Einstein-Lovelock Lagrangian as a function of the
Riemann tensor, the Ricci tensor and the curvature scalar
by performing all internal (within the same Riemann ten-
sor) contractions of indices. Next, one should replace the
curvature scalar with the combination R	 2��� �@��2,
and the Ricci tensor with R�

� 	�
��
� . The result is the

dilaton gravity Lagrangian.
The property that the Lagrangian can be written in terms

of only three tensors: one scalar R	 2��� �@��2, one
rank-2 tensor R�

� 	�
��
� , and the rank-4 Riemann tensor

is quite important. We have shown that this is a necessary
condition for the dilaton gravity to be a part of any string-
motivated theory with the O�d; d� symmetry. It turns out
that for n � 1, 2 it is also a sufficient one. The contribu-
tions L�1� and L�2� to our Lagrangian are, up to total
derivatives, the same as those found from demanding the
O�d; d� symmetry [30,31]. It would be interesting to in-
vestigate the relation of L�n� to string theories for n > 2
[32].

Most of the interesting features of the Lagrangian and
the equations of motion are visible in the string frame only.
The theory looks more complicated in other frames. For
example, in the most often used Einstein frame there are no
simple relations between tensors built from the metric and
from the dilaton derivatives and also many coefficients
become explicitly D-dependent. The advantages of the
string frame should not be surprising. For example, much
more explicit solutions in the lowest order dilaton gravity
were found in the string frame [33] than in the Einstein one

(discussions concerning the relation between the string and
the Einstein frames are reviewed in [34]). Our results show
that the string frame is the most convenient one to inves-
tigate dilaton gravity also at higher orders.
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APPENDIX

The dilaton gravity Lagrangian and the corresponding
equations of motion can be written as a series in the
number of derivatives

 L �
X
D=2�

n�0


nL
�n�; (A1)

 T�� �
X
D=2�

n�0


nT
��n�
� � 0; (A2)

and the dilaton equation of motion W � �L � 0.
The 0th order terms correspond to the cosmological

constant:

 e�L�0� � 1; (A3)

 e�T��0�� � �
1

2
���: (A4)

The 1st order contribution is the standard Einstein gravity
interacting with the dilaton:

 e�L�1� �R	 2��� �@��2; (A5)

 e�T��1�� � �
1

2
���e

�L�1� 	 �R�
� 	��

���: (A6)

The next two orders are given by the following expres-
sions:
 

e�L�2� � �e�L�1��2 � 4�R�2
�1 	�

�2
�1���R

�1
�2 	�

�1
�2��

	R�2�4
�1�3R

�1�3
�2�4 ; (A7)
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 e�T��2�� � �
1

2
���e�L�2� 	 2�R�

� 	��
���e�L�1� � 4�R�

� 	�
�
����R�

� 	��
��� � 4R��2

��1�R
�1
�2 	�

�1
�2��

	 2R�1�3
��2 R

��2
�1�3 ; (A8)

 

e�L�3� � 3�e�L�2���e�L�1�� � 2�e�L�1��3 	 16�R�2
�1 	�

�2
�1���R

�3
�2 	�

�3
�2���R

�1
�3 	�

�1
�3��

	 24�R�2
�1 	�

�2
�1���R

�4
�3 	�

�4
�3��R

�1�3
�2�4 � 24�R�2

�1 	�
�2
�1��R

�1�5
�3�4R

�3�4
�2�5

� 8R�2�4
�1�3R

�1�6
�2�5R

�3�5
�4�6 	 2R�2�4

�1�3R
�1�3
�5�6R

�5�6
�2�4 ; (A9)

 

e�T��3�� ��
1

2
���e

�L�3� 	 3�R�
�	��

���e
�L�2� � 12R�R�

�	�
�
����R�

�	��
��� � 12RR��2

��1�R
�1
�2 	�

�1
�2��

	 6RR�1�3
��2 R

��2
�1�3 	 24�R�1

� 	�
�1
� ���R�

�2
	��

�2
���R�2

�1 	�
�2
�1�� 	 24R��2

��1�R
�3
�1 	�

�3
�1���R

�2
�3 	�

�2
�3��

	 24R��2
��1R

�1�4
�2�3�R

�3
�4 	�

�3
�4�� 	 24R�1�3

��2 �R
�
�1
	��

�1
���R�2

�3 	�
�2
�3�� � 12R�1�3

��2 R
�4�2
�1�3�R

�
�4
	��

�4
��

	 24R��3
�1�2�R

�1
� 	�

�1
� ���R

�2
�3 	�

�2
�3�� � 12R��3

�1�2R
�1�2
�4�3�R

�4
� 	�

�4
� �� � 24R�1�3

��2 R
��2
�1�4�R

�4
�3 	�

�4
�3��

� 12R�1�3
��2 R

��3
�4�2�R

�4
�3 	�

�4
�3�� � 12R��2

��1R
�1�5
�3�4R

�3�4
�2�5 	 6R�1�3

��2 R
��2
�4�5R

�4�5
�1�3 � 24R�1�3

��2 R
��5
�4�3R

�4�2
�1�5 :

(A10)
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