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We construct an exact stationary solution of black-hole–bubble sequence in the five-dimensional
Kaluza-Klein theory by using solitonic solution-generating techniques. The solution describes two
stationary black holes with topology S3 on a Kaluza-Klein bubble and has a linear momentum component
in the compactified direction. We call the solution boosted black holes on Kaluza-Klein bubble because it
has the linear momentum. The Arnowitt-Deser-Misner mass and the linear momentum depend on the two
boosted velocity parameters of black holes. In the effective four-dimensional theory, the solution has an
electric charge which is proportional to the linear momentum. The solution includes the static solution
found by Elvang and Horowitz. The small and the big black holes limits are investigated. The relation
between the solution and the single boosted black string are considered.
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I. INTRODUCTION

Kaluza-Klein (KK) theory is the five-dimensional theory
of gravity which unifies Einstein’s four-dimensional theory
of gravity and Maxwell’s electromagnetic theory [1,2]. The
spacetime is asymptotically the product of the four-
dimensional Minkowski spacetime M3;1 and a circle S1.
The extra dimension with S1 is compactified too small for
us to observe it. This type of compactification of the extra
dimensions are also extended to the supergravity theories
and the superstrings.

The studies on black holes in the KK theory have
attracted much attention since they admit much richer
structures than asymptotically flat higher dimensional
black holes. For example, such black holes can have the
horizons with the topologies of the squashed S3 and the
lens space L�2; 1� � S3=Z2 [3,4]. Another exciting aspects
of the KK theory are the existence of KK bubbles. In
Ref. [5], a large class of five- and six-dimensional static
solutions which describe the sequences of the black holes
and KK bubbles were constructed and analyzed. The KK
bubble was first found by Witten as the end state of the KK
vacuum decay [6]. The first solution of the sequence of
black holes and bubbles is the combination of the static
black hole and KK bubble [7]. Elvang and Horowitz found
and analyzed the two black holes sitting on the KK bubble
[8]. The static equilibrium of the spacetime is maintained
by the existence of the KK bubbles which balance the
attractive force of black holes.

In the previous article, we obtained the new five-
dimensional vacuum solution of rotating black holes on
the KK bubble [9]. This solution is the extension of the
static solution found by Elvang and Horowitz to a sta-
tionary solution, which has an Arnowitt-Deser-Misner
(ADM) mass and an ADM angular momentum. We used
two different types of solution-generating methods to ob-
tain the solution. One is called Bäcklund transformation

[10,11], which is basically the technique to generate a new
solution of the Ernst equation. The other is the inverse
scattering technique, which Belinski and Zakharov [12]
developed as an another type of solution-generating tech-
nique. In several years, these techniques have been applied
to generate and to reproduce five-dimensional black hole
solutions with asymptotically flatness [13–22]. The rela-
tion between these two methods was examined in the
context of the five-dimensional spacetime [23]. It was
shown that the two-solitonic solutions generated from an
arbitrary diagonal seed by the Bäcklund transformation
coincide with those with a single angular momentum gen-
erated from the same seed by the inverse scattering
method.

In this article we generate another type of stationary
solution which describes boosted black holes on the KK-
bubble as a vacuum solution in the five-dimensional
Einstein equations by using both solitonic methods. It
should be noted that this solution cannot be generated by
the simple boost transformation of the static solution be-
cause the boosted solution always has closed timelike
curves around the bubble. Both black holes of the solution
are topologically S3 because of the existence of the KK
bubble. Also they are considered to be rotating black holes
in the context of the rod structure near the horizons.
However, the solution has a linear momentum in the com-
pact direction and does not have an ADM angular momen-
tum. This means that the asymptotic observer observes
boosted objects in this spacetime. Therefore we call the
solution boosted black holes on KK bubble even though the
black holes are rotating. In the four-dimensional effective
theory, the solution with linear momentum has an electric
charge which is proportional to the linear momentum. One
of the two black holes has zero Komar angular momentum.
This black hole rotates because of the gravitational frame-
dragging effect of the other intrinsically rotating black
hole. When we take the small limit of the intrinsically
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rotating black hole, it approaches the maximally rotating
black hole. When we increase the size of black holes, we
find that the black holes cannot merge if we fix the asymp-
totic metric. To achieve the limit of single black hole
without KK bubble in this solution, we have to redefine
the size of KK circle. This limiting solution exactly corre-
sponds to the simply boosted black string [24–27] whose
thermodynamical properties are studied recently [28]. It is
known that there is an unstable mode of boosted black
string [29]. We compare the entropy of the boosted black
holes with the boosted black string. The result of this
analysis shows that the spontaneous decay of the boosted
black string to the boosted black holes on KK bubble is
unlikely. The solution with two momentum components
will be generated by the inverse scattering method.

This article is organized as follows: In Sec. II, we give a
new solution generated by the solitonic methods. We in-
troduce only the construction by the Bäcklund transforma-
tion in this section, while the other construction is briefly
mentioned in the Appendix. In Sec. III, we investigate the
properties of the solution. In Sec. IV, we give the summary
and discussion of this article. In the Appendix, we give the
solution generated by the inverse scattering method and the
relation between these solutions.

II. SOLUTIONS

At first we briefly present the solution obtained by the
Bäcklund transformation which was applied the five-
dimensional case [13]. Using this method, we can generate
axially symmetric solutions of five-dimensional vacuum
Einstein equations. See [13] for the detail of the solution-
generating method.

We start from the following form of a seed static metric:
 

ds2 � e�T
�0�
��eS

�0�
�dt�2 � e�S

�0�
�2�d��2

� e2��0��S�0� �d�2 � dz2�� � e2T�0� �d �2; (1)

with seed functions

 S�0� � U�� � ~U�1� � 2 ~U�2�

� � ~U�� � ~U�1� � 2 ~U�2� � ln� (2)

 T�0� � U�� � ~U�1� � �
~U�� � ~U�1� � ln�; (3)

where we assume �1 <�2 <�1< �< 1 and �> 0. The
functionUd is defined asUd :� 1

2 ln�Rd � �z� d�� and the
function ~Ud is defined as ~Ud :� 1

2 ln�Rd � �z� d��, where

Rd :�
�����������������������������
�2 � �z� d�2

p
. Here we take the coordinate � as a

Kaluza-Klein compactified direction. As explained later,
the solitonic solution has two event horizons at �1� � z �
�2� and �� � z � �� and a Kaluza-Klein bubble at
�2� � z � ��, where the Kaluza-Klein circles shrink
to zero. The metric of the solitonic solution can be written
in the following form:
 

ds2 � e�T��eS�dt�!d��2 � e�S�2�d��2

� e2��S�d�2 � dz2�� � e2T�d �2: (4)

The function T is derived from the seed functions

 T � � ~U�� � ~U�1� � ln�: (5)

The other metric functions for the five-dimensional metric
(4) are obtained by using the formulas shown by [30]

 eS � eS
�0� A
B
; (6)

 ! � 2�e�S
�0� C
A
� C1; (7)

 e2� � C2�x
2 � 1��1Ae2�0 ; (8)

whereC1 andC2 are constants and A, B, and C are given by
 

A �
1

�2��2
f�e2 ~U�� � e2U���e2 ~U� � e2U����1� ab�2 � �e2 ~U�� � e2 ~U���e2U� � e2U����b� a�2g;

B �
1

�2��2
f��e2 ~U�� � e2U�� � �e2 ~U� � e2U���ab�2 � ��e2 ~U�� � e2 ~U��a� �e2U� � e2U���b�2g;

C �
1

�2��3
f�e2 ~U�� � e2U���e2 ~U� � e2U����1� ab���e2U� � e2U���b� �e2 ~U�� � e2 ~U��a�

� �e2 ~U�� � e2 ~U���e2U� � e2U����b� a���e2 ~U�� � e2U�� � �e2 ~U� � e2U���ab�g:

The functions a and b, which are auxiliary potential to
obtain the new Ernst potential by the transformation, are
given by

 a � �

�������������������������������������������������������������
�e2 ~U�� � e2U���e2U� � e2U���

�e2 ~U� � e2U����e2 ~U�� � e2 ~U��

vuut e ~U��

e2U� � e2 ~U��

	
e

~U�1�

e2U� � e2 ~U�1�

�
e2U� � e2 ~U�2�

e
~U�2�

�
2
; (9)

 

b � �

�������������������������������������������������������������
�e2 ~U�� � e2U���e2 ~U�� � e2 ~U��

�e2 ~U� � e2U����e2U� � e2U���

vuut e2U�� � e2 ~U��

e ~U��

	
e2U�� � e2 ~U�1�

e
~U�1�

�
e

~U�2�

e2U�� � e2 ~U�2�

�
2
: (10)

In addition the function �0 is obtained as
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�0 � �0�;� � �
0
��;�� � �

0
��;�� � �

0
�1�;�1� � �

0
�2�;�2�

� 2�0�;�� � �
0
�;�� � �

0
�;�1� � 2�0�;�2� � �

0
��;��

� �0��;�1� � 2�0��;�2� � �
0
��;�1�

� �0��;�2�

� �0�1�;�2� �
~U� � ~U�� � 2 ~U�� � ~U�1�

� ~U�2� � ln�; (11)

where
 �0cd �

1
2

~Uc �
1
2

~Ud �
1
4 ln�RcRd � �z� c��z� d� � �2�:

(12)

The constants C1 and C2 are chosen as follows:

 C1 � 0; C2 �
1

�1� ���2
; (13)

to avoid the global boost of the spacetime and to set the
period of  to 2	, respectively. Also the integration con-
stants � and � should be decided as

 �2 �
�1� ���1� �1�

�1� �2�
2 ; � � 0; (14)

to remove the singularity at z � � on z-axis and closed
timelike curves around the bubble, respectively.

III. PROPERTIES

In this section, we investigate the properties of the
solution satisfying the conditions (13) and (14). At first,
we study the asymptotic structure, the asymptotic charge of
the solution and the geometry of two black-hole horizons
and a bubble. Next, to consider the effects of the linear
momentum, we investigate several limits of the solution
and the entropy of it.

A. Asymptotic structure

In order to investigate the asymptotic structure of the
solution, let us introduce the coordinate �r; 
� defined as

 � � r sin
; z � r cos
; (15)

where 0 � 
 < 2	 and r is a four-dimensional radial
coordinate in the neighborhood of the spatial infinity. For
the large r! 1, each component behaves as

 gtt ’ �1�
�2� �1 � �2��

r
; (16)

 g�� � gzz ’ 1�
��� �1��

r
; (17)

 gt� ’ �
2��
r

; (18)

 g�� ’ 1�
�2� �2 � ���

r
; (19)

 g  ’ r
2sin2


�
1�
��1 � ���

r

�
: (20)

Hence, the leading order of the metric takes the form

 ds2 ’ �dt2 � dr2 � r2�d
2 � sin2
d 2� � d�2: (21)

Therefore, the spacetime has the asymptotic structure of
the direct product of the four-dimensional Minkowski
spacetime and S1. The S1 at infinity is parametrized by �
and the size �� is given in III C.

B. Mass and momentum

Next, we compute the total mass and the linear momen-
tum of the spacetime. It should be noted that since the
asymptotic structure is M3;1 	 S1, the ADM mass and
momentum are given by the surface integral over the
spatial infinity with the topology of S2 	 S1. In order to
compute these quantities, we introduce asymptotic
Cartesian coordinates �x; y; z;��, where x � � cos and
y � � sin . Then, the ADM mass and momentum in the �
direction are given by

 MADM �
1

16	

Z
S2	S1

�@jhij � @ihjj�dSi; (22)

 P � �
1

16	

Z
S2	S1

@ih0�dSi (23)

respectively. (See, for example, [31].) Here h�� is devia-
tion from the five-dimensional flat metric ��� near infinity,

 g�� � ��� � h��: (24)

The Latin indices i, j run x, y, z and � and the Greek
indices�, �,� and� label t, x, y, z and�. Then, the ADM
mass of the solution is computed as

 MADM �
��� 2�1 � �2 � 2��

4
��: (25)

It should be noted that the ADM mass is non-negative. The
linear momentum becomes

 P � �
��
2

��: (26)

The boosted black string has an electric charge which is
proportional to the linear momentum in the four-
dimensional effective theory. Because the asymptotic be-
havior of the solution is the same as the boosted black
string, we can define the electric charge of the solution as

 Q4 � ��: (27)

C. Black holes and bubble

Here, for the solution, we consider the rod structure
developed by Harmark [32] and Emparan and Reall [7].
The rod structure at � � 0 is illustrated in Fig. 1. (i) The
finite timelike rod ��1�;�2�� and ���;��� denote the
locations of black-hole horizons. These timelike rods have
directions v1 � �1;�1; 0� and v2 � �1;�2; 0�. We call �1

and �2 boost velocity parameters. These are given by

 �1 �
2�

1� �1
; (28)
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for �1�< z < �2� and

 �2 �
��1� �2�

2

2�1� �1�
; (29)

for��< z < ��. Here, it should be noted that �1 and �2

have the same signature and j�1j< j�2j for �2 <�1.
Therefore, two black holes are boosted along the same
direction. (ii) The finite spacelike rod ��2�;��� which
corresponds to a Kaluza-Klein bubble has the direction
v � �0; 1; 0�. In order to avoid conical singularity for z 2
��2�;��� and � � 0, � has the periodicity of

 

��
2	
� lim

�!0

�������������
�2g��
g��

vuut

� 2�
�2 � 1

�2 � 1

�������������������������������������������������������
��� �1���� �2���1 � 1�

�1 � 1

s
: (30)

(iii) The semi-infinite spacelike rods ��1; �1�� and
���;1� have the direction v � �0; 0; 1�. In order to avoid
conical singularity,  has the periodicity of

 � � 2	: (31)

The local structures around the finite timelike rods are
similar to that of the S3 black hole rotating around the
�-plane. Therefore the solution has two rotating S3 event
horizons at either end of the KK bubble. As we have
confirmed above, however, the solution has the linear
momentum in the direction of the KK circle and not the
angular momentum. In this meaning we call the solution
boosted black holes on KK bubble.

Here, we write the induced metrics of the event horizons
and the bubble. For �1�< z < �2�, the induced metric
becomes

 gtt �
�2

1�z� ���z� ���z� �2��

�z� ����z� ��2 ��2
1�z� �1���z� �2��2

;

(32)

 gt� � �
�1�z� ���z� ���z� �2��

�z� ����z� ��2 ��2
1�z� �1���z� �2��

2 ;

(33)

 gzz �
�2�1� �1���2 � �1���� �1���z� ����z� ��

2 ��2
1�z� �1���z� �2��

2�

�1� �1��z� ���z� ���z� �1���z� �2���z� ���
; (34)

 g�� �
�z� ���z� ���z� �2��

�z� ����z� ��2 ��2
1�z� �1���z� �2��

2 ; (35)

 g  � �4�z� �1���z� ���: (36)

Since the� circles shrink to zero at z � �2� and circles shrink to zero at z � �1�, the spatial cross section of this black-
hole horizon is topologically S3. The area of the event horizon is

 A1 � 4	�2

�����������������������������������������������������������
�1� �1���� �1���2 � �1�

3

�1� �1

s
�� � 16	2�3 �1� �1���1� �2���2 � �1�

3=2��� �1���� �2�
1=2

��1� �1��1� �2�
: (37)

For ��< z < ��, the induced metric takes the following form:

FIG. 1. Rod structure of boosted black holes on a Kaluza-
Klein bubble. The finite timelike rods ��1�;�2�� and
���; ��� correspond to black holes with boost velocities �1

and �2, respectively. The finite spacelike rod ��2�;��� denotes
a Kaluza-Klein bubble, where Kaluza-Klein circles shrink to
zero.
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 gtt �
�2

2�z� ���z� ���z� �2��

�z� ����z� �2��2 ��2
2�z� ��

2�z� �1��
; (38)

 gt� � �
�2�z� ���z� ���z� �2��

�z� ����z� �2��2 ��2
2�z� ��

2�z� �1��
; (39)

 gzz � �
4�2�1� �1���1 � ����2 � ����z� ����z� �2��2 ��2

2�z� ��
2�z� �1���

�1� �2�
2�1� ���z� ���z� ���z� �1���z� �2���z� ���

; (40)

 g�� �
�z� ���z� ���z� �2��

�z� ����z� �2��
2 ��2

2�z� ��
2�z� �1��

;

(41)

 g  � �4�z� �1���z� ���: (42)

Since the � circles shrink to zero at z � �� and  circles
shrink to zero at z � ��, the spatial cross section of this
black-hole horizon is also topologically S3. The area of this
event horizon is

 A2�8	�2

������������������������������������������������������������������
�1��1�����1�����2����1�

p
1��2

��

�32	2�3 �1��1���1��2�����1�����2����1�1=2

�1��2�
2��1��1�

1=2
:

(43)

For �2�< z <��, the induced metric on the bubble
can be written in the form

 gtt � �
�z� ���z� �2��
�z� ���z� �1��

; (44)

 gt� � �
�2�2�

2

�z� ���z� �2���z� ���
; (45)

 gzz � �2 �1� �1��1� �2�
2��� �1���� �2��z� ��

�1� �1��1� �2�
2�z� ���z� �2���z� ���

;

(46)

 g�� � �
�z� ���2

4�z� �2���z� ����z� ��
; (47)

 g  � �4�z� �1���z� ���: (48)

The � circle vanishes for z 2 ��2�;��� and � � 0,
which means that there exists a Kaluza-Klein bubble in
this region. Since the  circle does not vanish at z � �2�
and z � ��, this bubble on the time slice is topologically a
cylinder S1 	 R. Therefore, there exists a Kaluza-Klein
bubble between two boosted black holes with topology
of S3. The proper distance between the two black holes is

 

s � �
��2 � 1�

��2 � 1�

�������������������������������������������������������
��1 � 1���� �1���� �2�

��1 � 1�

s

	
Z ��
�2�

dz

�������������������������������������������������������������
�

z� �
�z� ���z� �2���z� ���

s
: (49)

The Kaluza-Klein bubble is significant to keep the balance
of two black holes and achieve the solution without any
strut structures and singularities. This property resembles
that of the solution given by Elvang and Horowitz [8] and
the extension of it with rotation [9]. In the next subsection,
we will show that the static limit of the solution coincides
with the solution given by Elvang and Horowitz.

Because the horizons rotate in the local point of view,
there appear ergo regions around the horizons. In Fig. 2 we
numerically plot the ergo regions for �1 � �3, �2 � �2
and � � 0:9, 0,�0:9. The right black hole has a larger ergo
region than the left black hole. These two ergo regions join
for the case of a sufficiently small and fast right black hole.
These ergo regions cannot adhere to the bubble because gtt
of Eq. (44) is negative for �2�< z <��. This can be
explained by the fact that the bubble plays a role of rota-
tional plane of black holes.

In Fig. 3 we examine the relation between the ergo
region of the left black hole and the separation of the black
holes. The ergo region of the left black hole gradually
shrinks as the black holes are away from each other. This
fact suggests that the left black hole rotates by the influence
of the intrinsic rotation of the right black hole. This is
consistent with the fact that the ratio of the velocities of the
horizons only depends on the parameter �2,

4 3 2 1 0 1 2
0

0.5

1

1.5

2

ρ ρ ρ

0.9

4 3 2 1 0 1 2
0

0.5

1

1.5

2
0

4 3 2 1 0 1 2
0

0.5

1

1.5

2
0.9

FIG. 2. Ergo regions for the cases of � � 0:9, 0, �0:9 with
�1 � �3, �2 � �2, and � � 1. In the shaded region the values
of gtt are positive.
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�1

�2
�

4

�1� �2�
2 ; (50)

and decreases according to �2 ! �1. To show that the
rotation of the left black hole is a consequence of gravita-
tional frame dragging, we calculate the Komar angular
momenta of black holes [22]:

 

JKomar;i �
1

16	

Z
Hi

dzd d�
1���������������
� detg
p gzzg  

	 ��g��@�gt� � gt�@�g���: (51)

We obtain the Komar angular momenta of left and right
black holes as

 JKomar;1 � 0; JKomar;2 � �
��
2

��; (52)

respectively. The left black hole has no intrinsic rotation.
The Komar angular momentum of the right black hole is
exactly the same as the linear momentum of the spacetime.

At the end of this subsection we rewrite the ADM mass
(25) and the electric charge (27) by using boost velocities
�1 and �2. The ADM mass is

 

MADM

��
�
��� �1��

2

�
1�

1� �
2��� �1�

�
�
�1� �2��

4

� m
�
1�

�1�2

2�1��1�2�

�
�m0

�
1�

�������
�1

�2

s �
;

(53)

where m � ����1��
2 and m0 �

�
2 . The electric charge is

 Q4 � �� � m
�1

1��1�2
: (54)

D. Static case

In this subsection, we consider the static case, which can
be obtained by the choice of the parameter � � 1. Then,
from Eq. (14) we see that � vanishes. Let us define the
parameters ~a, ~b, and ~c as

 ~a �
2�� 1� �2

2
�; ~b �

�1� �2

2
�;

~c �
�1� �2 � 2�1

2
�:

(55)

It should be noted that � � 1 is equal to the condition � �
�~a� ~b�=2. Furthermore, let us shift an origin of the
z-coordinate such that z! ~z :� z� ��2 � ���=2. Then,
we obtain the metric
 

ds2 � �
�R~b � �~z� ~b���R�~c � �~z� ~c��

�R~a � �~z� ~a���R�~b � �~z� ~b��
dt2

� �R~a � �~z� ~a���R�~c � �~z� ~c��d 2

�
R�~b � �~z� ~b�

R~b � �~z� ~b�
d�2 �

Y~a;�~cY~b;�~b

4R~aR~bR�~bR�~c

	

����������������������
Y~a;~bY�~b;�~c

Y~a;�~bY~b;�~c

s
R~a � �~z� ~a�
R�~c � �~z� ~c�

�d�2 � d~z2�; (56)

where the coordinate z in the definition of Rd is replaced
with ~z. This coincides with the solution obtained by Elvang
and Horowitz [8], which describes static black holes on the
Kaluza-Klein bubble.

E. Small black holes

In this subsection we consider the small black holes limit
of the solution. The small limit of the left black hole is
achieved by �1 � �2 � 
, where 0< 

 1. Introducing
the new coordinate 
 through z � �2�� 
�sin2
, the
horizon geometry of the left black hole becomes

 ds2
bh1 � 4
��� �2��2�d
2 � sin2
d ��2 � cos2
d 2�;

(57)

where we rescale the � coordinate as

 

�
��
� 2�

�2 � 1

�2 � 1

�������������������������������������������������������
��� �1���� �2���1 � 1�

�1 � 1

s
: (58)

This shows that the left small black hole is a round three
sphere as similar as the static case. To make the right black
hole small, we take � � �1� 
. Because the �2 is a
decreasing function of �, it is expected that the effect of
the linear momentum is the most significant. By defining
z � ��� 
�sin2
, the horizon geometry of the right
black hole becomes

 ds2
bh2 �

8�1� �1���1� �2�
2�2

�1� �2�
2

�
cos2
d
2

�
sin2


cos2

d ��2

�
� 4
��1� �1��2cos2
d 2:

(59)

This is similar to the horizon geometry of the extremal
Myers-Perry black hole with single rotation.
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2 4

8 6 4 2 0 2
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1

1.5

2
2 6

ρ ρ ρ

FIG. 3. Ergo regions for the cases of �2 � �2, �4, �6 with
� � 0, �1 � �2 � 1, and � � 1. In the shaded region the values
of gtt are positive.
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The fact that the black holes have a different limit also
argues that the left black hole is rotating indirectly as a
result of the rotation of right black hole.

F. Big black holes

Next we consider the big black holes limit. At first we
show the impossibility of merging two black holes, keep-
ing the radius of KK circle at the infinity. To let the black
holes come close to each other, we take the limit �2 ! �1.
In this limit the ratio of the separation between the two
black holes to the size of the circle at the infinity becomes

 

s
��

�
1

4

�������������
2

1� �

s
: (60)

Now we examine the two big black holes limit and show
that the geometries of the horizons and the bubble become
similar forms of the static solution. The bubble metric
including the time direction becomes
 

ds2
bubble � 4��1� �1��1� ���2d 2

�

2�1� �1���� �1��

2

2��1� �1�

	

�
d�2 �

sin2�

4�1� �1���� �1��2 dt
2

�
; (61)

where z � ��� 
�
2 �1� cos�� with 0<�<	. The ge-

ometry of the bubble is a flat cylinder with large radius and
small height the same as the static case. By defining z �
���1

2 �� ���1

2 � cos
, the horizon metric becomes

 ds2
bh1;2 �

1� �1

�� �1
d�2 � ��� �1�

2�2�d
2 � sin2
d 2�;

(62)

where �1�< z
 �2� for the left black hole and ��

z < � for the right. This is a product of a circle and round
two sphere similar to the static solution. Both horizons
have the same velocity parameters,

 �1 � �2 �

���������������
1� �
1� �1

s
; (63)

in this limit. Starting from a boosted black sting we can
configure the two large S3 black hole with rotation sepa-
rated by the KK bubble by the similar way of deformation
of Elvang and Horowitz [5]. In the next subsection we
compare the entropy of the boosted black string to the
entropy of the boosted black holes on the KK bubble.

To achieve the single boosted black string solution start-
ing from the boosted black holes, we have to redefine the
size of the KK circle �� in addition to taking the limit
�2 ! �1. This solution corresponds to the electric
charged black hole in the effective four-dimensional theory
[25–27]. It can be easily confirmed that the ADM mass
(53) and the electric charge (54) become well-known forms

because �1 � �2 when �2 � �1. The 3	 3 metric func-
tions become the following form:

 gtt � �
R�� � R�1� � �2� �� �1��

R�� � R�1� � ��� �1��
; (64)

 gt� � �
2
����������������������������������
�1� ���1� �1�

p
�

R�� � R�1� � ��� �1��
; (65)

 g�� �
R�� � R�1� � �2� �� �1��

R�� � R�1� � ��� �1��
; (66)

 g  � �2
R�� � R�1� � ��� �1��

R�� � R�1� � ��� �1��
: (67)

Introducing the Schwarzschild radial coordinate as

 rs �
R�� � R�1�

2
�m; (68)

we can derive a familiar expression of the boosted black
string from the solitonic solution.

G. Entropy

It is known that the boosted black strings have an
unstable mode [29]. In this subsection we compare the
areas of the boosted black holes on the KK bubble and
the boosted black string in the context of the final state of
the instability of black string.

At first we write the area of the boosted black string in its
mass and charge. This can be done by calculating the area
of the horizon directly from the boosted black string metric
or by taking the limit �2 ! �1 for the areas of horizons
normalized by ��. The result is

 

ABS

��
� 4	�2V1=2W3=2; (69)

where
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FIG. 4 (color online). Plot of A2BH=ABS for �2 � �2. This
ratio is less than unity.
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 V �
MADM

���
�

������������������������������������
MADM

���

�
2
�

2Q2
4

�2

s
;

W � 3
MADM

���
�

������������������������������������
MADM

���

�
2
�

2Q2
4

�2

s
:

(70)

In Fig. 4 we plot the ratio of A2BH � A1 � A2 to ABS for
the case of �2 � �2. We find that the ratio is less than
unity entirely and vanishes for the small black holes limit
�1 � �2 and � � �1. This result does not depend on the
value of �2. Therefore we cannot expect the boosted black
string to spontaneously transform into the boosted black
holes on the KK bubble.

Next we compare the ratio A2BH=ABS with the static
case. We fix the ratios of the length of finite rods. Here
we consider the case of equal length timelike rods ~a � x~b
and ~c � x~b. In this case the parameter �2 is written by x
and � as

 �2 �
x2 � 4�2 � 3� 4

����������������������������������
x2 � �2�1� x2�

p
1� x2 � 4�2 : (71)

The other parameters �1 and � are obtained from

 �1 �
1
2��1� �2 � x��1� �2�� (72)

and

 � � 1
2��1� �2 � x��1� �2��: (73)

In Fig. 5, we plot the ratio A2BH=ABS for the several values
of �. The static case corresponds to � � 0. It can be seen
that the ratio becomes a slightly larger value by the effect
of the linear momentum.

IV. SUMMARY AND DISCUSSION

Using the solitonic solution-generating methods, we
generated a new exact solution which describes a pair of
boosted black holes in the compact direction on a Kaluza-
Klein bubble as a vacuum solution in the five-dimensional
Kaluza-Klein theory. This solution cannot be obtained by
the simple boost transformation of the static black holes on
the Kaluza-Klein bubble. We also investigated the proper-

ties of this solution, particularly, its asymptotic structure,
the geometry of the black-hole horizons and the Kaluza-
Klein bubble, and several limits of the solution. The
asymptotic structure is the S1 bundle over the four-
dimensional Minkowski spacetime. Two black holes have
the topological structure of S3 and the bubble is topologi-
cally S1 	 R. The solution describes the physical situation
such that two black holes have the boost velocity of the
same direction and the bubble plays a role in holding two
black holes. The ADM mass and the linear momentum of
the solution can be written by the two boosted velocity
parameters. For the local observer near the horizon, the
black holes are considered as the rotating S3 black holes.
One of the two black holes has intrinsic rotation. The other
rotates by the effect of the gravitational frame dragging. In
the static case, it coincides with the solution found by
Elvang and Horowitz. In the small black holes limit, one
black hole approaches an extremal black hole and the other
approaches the round S3 sphere. No matter how large the
size of the horizons increase, the black holes cannot merge
each other if the size of the KK circle is fixed. To construct
the single boosted black string from the solution, we have
to redefine the size of the KK circle after the limit of �2 !
�1. It cannot be expected that the boosted black hole
spontaneously breaks down to the boosted black holes on
KK bubble from the comparison of areas between the black
holes on KK bubble and the black string for the same
asymptotic charges.

The solution obtained here is constructed by only one
solitonic transformation from the seed which has one static
black hole. It seems that this is the reason why the two
black holes have different features, e.g., different small
black-hole limits. It is expected that more general solutions
which include one static black hole or counterrotating
black holes are generated from two solitonic transforma-
tions for the seed without the static black hole.

In this article, we concentrated on the black-hole solu-
tion with a linear momentum component. The solution
with an angular momentum component has been derived
in the previous paper [9]. The investigation on the solution
with these two components is enormously challenging. In
general, the inverse scattering method can generate a so-
lution with two momentum components. We will give such
a solution in our future article.
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APPENDIX A: SOLUTIONS GENERATED BY ISM

Following the techniques in Refs. [17,20,23], we con-
struct a new Kaluza-Klein black-hole solution. We con-
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FIG. 5. Plots of A2BH=ABS for the cases of same rod lengths
and different velocity parameters. The upper, middle, lower lines
correspond to �2 � 0:9, 0.3, 0, respectively.
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sider the five-dimensional stationary and axisymmetric
vacuum spacetimes which admit three commuting
Killing vectors @=@t, @=@�, and @=@ , where @=@t is a
Killing vector field associated with time translation, @=@�
and @=@ denote spacelike Killing vector fields with
closed orbits. In such a spacetime, the metric can be written
in the canonical form as

 ds2 � gijdxidxj � f�d�2 � dz2�; (A1)

where the metric components gij and the metric coefficient
f are functions which depend on � and z only. The metric
gij satisfies the supplementary condition detgij � ��

2.
We begin with the following seed:
 

ds2 � �
R�2� � z� �2�

R�1� � z� �1�
dt2 �

R�� � z� ��
R�2� � z� �2�

d�2

�
R�1� � z� �1�

R�� � z� ��
�2d 2 � f�d�2 � dz2�; (A2)

where Rd is defined as Rd :�
�����������������������������
�2 � �z� d�2

p
. The pa-

rameters �1; �2 and � satisfy the inequality �1 <�2 <
�< 1 and �> 0. Instead of solving the L-A pair for the
seed metric (A2), it is sufficient to consider the following
metric form:

 ds2 � �dt2 � g2d�
2 � g3d 

2 � f�d�2 � dz2�; (A3)

where g2 and g3 are given by

 g2 �
�R�1� � z� �1���R�� � z� ���

�R�2� � z� �2��
2 ;

g3 �
�R�2

� z� �2��2�2

�R�1� � z� �1���R�� � z� ���
:

(A4)

Let us consider the conformal transformation of the two-
dimensional metric gAB�A;B � t; �� and the rescaling of
the   -component in which the determinant detg is in-
variant,

 g0 � diag��1; g2; g3� ! g00 � diag���;�g2;�
�2g3�;

(A5)

where � is the tt-component of the seed (A2), i.e.

 � �
R�2� � z� �2�

R�1� � z� �1�
: (A6)

Then, under this transformation, the three-dimensional
metric coincides with the metric (A2). On the other hand,
as discussed in [23], under this transformation the physical
metric of two-solitonic solution is transformed as

 g �
gAB 0

0 g3

� �
! g0 �

�gAB 0
0 ��2g3

� �
: (A7)

This is why we may perform the transformation (A5) for
the two-solitonic solution generated from the seed (A3) in
order to obtain the two-solitonic solution from the seed

(A2). The generating matrix  0 for this seed metric (A3) is
computed as follows:

  0� ��� � diag��1;  2� ���;  3� ����

with

  2� ��� �
�R�1� � z� �1�� ����R�� � z� ��� ���

�R�2� � z� �2�� ���2
;

 3� ��� �
�R�2� � z� �2�� ���2��2 � 2z ��� ��2�

�R�1� � z� �1�� ����R�� � z� ��� ���
:

Then, the two-solitonic solution is obtained as

 g�phys�
tt � �

�Gtt

�1�2�
;

g�phys�
t� � �g2

���2 ��1�2�Gt�

�1�2�
;

g�phys�
�� � �g2

�G��

�1�2�
;

g�phys�
  � ��2g3;

g�phys�
� � g�phys�

t � 0;

where the functions Gtt, Gt�, G��, and � are given by
 

Gtt � �m
�1�2
01 m

�2�2
01  2��1�

2 2��2�
2��1 ��2�

2�4

�m�1�201 m
�2�2
02 g2�

2
2��

2 ��1�2�
2 2��1�

2

�m�2�201 m
�1�2
02 g2�2

1��
2 ��1�2�

2 2��2�
2

�m�1�202 m
�2�2
02 g

2
2�

2
1�

2
2��1 ��2�

2

� 2m�1�01m
�2�
01m

�1�
02m

�2�
02 g2 2��1� 2��2�

	 ��2 ��2
1���

2 ��2
2��1�2; (A8)

 

G�� � m�1�201 m
�2�2
01 �

2
1�

2
2��1 ��2�

2 2��1�
2 2��2�

2

�m�1�202 m
�2�2
02 g

2
2��1 ��2�

2�4

�m�1�201 m
�2�2
02 g2�2

1 2��1�
2��2 ��1�2�

2

�m�2�201 m
�1�2
02 g2�

2
2 2��2�

2��2 ��1�2�
2

� 2m�1�01m
�2�
01m

�1�
02m

�2�
02g2�1�2 2��2� 2��1�

	 ��2 ��2
1���

2 ��2
2�; (A9)

 

Gt� � m�1�01m
�2�2
01 m

�1�
02�2��1 ��2� 2��2�

2 2��1�

	 ��2 ��2
1� �m

�1�
01m

�1�
02m

�2�2
02 g2�2��2 ��1�

	  2��1���2 ��2
1� �m

�1�2
01 m

�2�
01m

�2�
02�1��2 ��1�

	  2��1�
2 2��2���2 ��2

2�

�m�2�01m
�1�2
02 m

�2�
02�1g2 2��2���

2 ��2
2���1 ��2�;

(A10)
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� � m�1�201 m
�2�2
01  2��1�

2 2��2�
2��1 ��2�

2�2

�m�1�202 m
�2�2
02 g

2
2��1 ��2�

2�2

�m�1�201 m
�2�2
02 g2 2��1�

2��2 ��1�2�
2

�m�1�202 m
�2�2
01 g2 2��2�

2��2 ��1�2�
2

� 2m�1�01m
�2�
01m

�1�
02m

�2�
02g2 2��1� 2��2�

	 ��2 ��2
1���

2 ��2
2�: (A11)

Here, �1 and �2 are given by

 �1��; z� �
������������������������������
�2 � �z� ��2

q
� �z� ��;

�2��; z� �
������������������������������
�2 � �z� ��2

q
� �z� ��:

(A12)

We should note that this three-dimensional metric g�phys�
ij

satisfies the supplementary condition detgij � ��2. Next,
let us consider the coordinate transformation of the physi-
cal metric such that

 t! t0 � t� C1�; �! �0 � �; (A13)

where C1 is a constant. Under this transformation, the
physical metric becomes

 g�phys�
tt ! gtt � g�phys�

tt ;

g�phys�
t� ! gt� � g�phys�

t� � C1g
�phys�
tt ;

g�phys�
�� ! g�� � g�phys�

�� � 2C1g
�phys�
t� � C2

1g
�phys�
tt :

(A14)

Here, we should note that the transformed metric also
satisfies the supplementary condition detg � ��2.
Though the metric seems to contain the four new parame-
ters m�1�01 , m�2�01 , m�1�02 , and m�2�02 , it can be written only in term
of the ratios

 � :�
m�2�02

m�2�01

; � :� �
m�1�01

m�1�02

: (A15)

Using the parameters � and �, we can write all compo-
nents of the metric. The metric function f��; z� takes the
following form:
 

f�
C2Y�;��Y��;�2�

16�2Y�;�2�

	

������������������������������������������������������������������������������������������������������
Y�;�1�Y�;��Y�1�;�2�Y��;�1�Y��;�2�

Y��;��Y�1�;�1�Y�2�;�2�Y��;��Y��;�1�Y��;��Y�;�

s

	
�Y

��2��1�2�
4�3

1�2 2��2�
2 ; (A16)

where C2 is an arbitrary constant, Yc;d is defined as Yc;d :�
RcRd � �z� c��z� d� � �

2 and the function Y is given by
 

Y � �2�16��2�2
1�

2
2 2��1� 2��2� � �g2��1 ��2�

2

	 ��2 ��1�2�
2�2 � 16�2g2�2

1�
2
2��

2 ��1�2�
4

	 � 2��2� � �� 2��1��
2:
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