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Enrique Álvarez and Antón F. Faedo
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We point out a generic inconsistency of the coupling of ordinary gravity as described by general
relativity with matter invariant only under unimodular diffeomorphisms, and some previously studied
exceptions are pointed out. The most general Lagrangian invariant under unimodular diffeomorphism up
to dimension-five operators is determined, and consistency with existing observations is studied in some
cases.
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I. INTRODUCTION

There is a well known way of obtaining the general
relativity Lagrangian which is associated with the name
of Feynman [1], although many other scientists have con-
tributed to it, starting with Kraichnan [2].1 The idea is the
following: if one starts from the Fierz-Pauli Lagrangian
(which describes free spin-2 particles in Minkowski
space),

 LFP �
1
4@�h

��@�h�� �
1
2@�h

��@�h
�
� �

1
2@
�h@�h��

� 1
4@�h@

�h; (1)

where all indices are raised and lowered with the flat
Minkowski metric; in particular,

 h�� � ������h�� h � ���h��: (2)

It so happens that the equations of motionDFP
�� �

1
2
�SFP
�h�� are

transverse, i.e.,

 @�DFP
�� � 0: (3)

In order to couple the graviton field h�� to a scalar field �,
say, it is natural to try the coupling to the conserved energy-
momentum tensor (suitably symmetrized if needed, for
example, using the Belinfante technique), that is,

 LI � h��T��: (4)

But when this term is added to the matter Lagrangian in a
freely falling inertial frame,

 L0
m �

1

2
���@��@��� V���; (5)

the former energy-momentum tensor is no longer con-
served, and the gravitational equation of motion is incon-
sistent. This leads to a series of modifications that
eventually end up in the Hilbert Lagrangian. The quickest
path to it is probably Deser’s, [5] using a first-order formal-
ism. The aim of the present paper is to explore what room

is left in this argument for less symmetric nonlinear com-
pletions, notably the ones we dubbed unimodular diffeo-
morphism (TDiff), which are invariant under coordinate
transformations whose Jacobian enjoys unit determinant.
These have been explored in [6], where further references
can be found.

II. THE LINEAR APPROXIMATION

It is nevertheless clear that given a consistent theory
(such as general relativity itself ) its linear part in any
analytic expansion should be consistent as well (up to
linear order). The object of our concern in the present
paper will be the linear deviations from flat Minkowski
space, i.e.,

 g�� � ��� � 	h��; (6)

where ��� is the Minkowski metric, and 	2 � 8
G. This
equation is taken to be an exact one; it can be looked at as
the definition of h��.

Now, it is a fact of life that lP � 	
����
@

c3

q
has got dimen-

sions of length, and that MP �
����
@c
p

	 enjoys dimensions of
mass. The value of Newton’s constant indicates that at the
scale of terrestrial experiments, MP � 1019 GeV. This
means that the field h�� enjoys the proper canonical di-
mension (one) of a four-dimensional gauge field.

The inverse metric is defined as a formal power series:

 g�� � ��� � 	h�� � 	2h��h�� � 	3h��h��h
��

� o�	4�: (7)

Diffeomorphisms with infinitesimal parameter �� act on
the full metric as

 �g�� � L���g��; (8)

whereas in terms of the fluctuations

 �h�� � ��@�h�� �
1

	
�@��� � @���� � h��@���

� h��@��
�: (9)

1Some further references can be found in the review article [3]
or in the book by Ortin [4]
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This is, again, an exact formula, in the sense that there are
no 	 corrections to it.

The symmetry as above, without any restrictions, is the
one corresponding to general relativity, and in the present
paper will be referred to simply as Diff. When the vector
�� is restricted to

 @��� � 0; (10)

the symmetry is broken to what we call T(ransverse)Diff
[7].

The total action is then defined by

 S � 1
2Sh � Sm: (11)

Here Sh represents the purely gravitational sector, which is
the most general Lorentz invariant dimension-four opera-
tor that can be written with the field h�� and its derivatives.
It can be parametrized by a string of constants, namely, the
ones associated with the kinetic energy, ci, i � 1; . . . ; 3 and
the ones associated to the potential energy for the fluctua-
tions, which is the most general quartic potential in the
fluctuations h��, namely, i, i � 1; . . . ; 11. The overall
scale of the potential energy is related to the cosmological
constant, � � M4

D. Cosmological observations seem to
favor the tiny value MD � 10�3 eV.

 

Sh �
Z
d4x
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4
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�� � 1211�h��h
���2�

��
: (12)

Let us remark, first of all, that the structure of the symmetry
transformations of both Diff and TDiff is such that terms in
the Lagrangian of O�M�nP � are related to terms of both
O�M�nP � as well as, because of the Abelian part, terms of
O�M�n�1

P �. This means that in the variations of the kinetic
energy part we can keep only the piece in MP, since the
other part (O�M0

P�) of the variation should cancel with the
MP contribution to the kinetic operators of order O� 1

MP
�,

which we have not considered. The only piece we can
consistently consider there is then the Fierz-Pauli
Abelian part given by

 �h�� � Mp�@��� � @����: (13)

The situation is different, however, in the potential energy
piece. In order to cancel the Fierz-Pauli variation of the
O�M�2

P � term, it is necessary to consider the O�M0
P� varia-

tion of the O� 1
MP
� term. This means that the full action is

invariant under the full variation (9) up to dimension-five
operators (which means O� 1

MP
� in the kinetic energy part,

and O� 1
M�5
P
� in the potential energy piece).

Under those provisos, TDiff needs that

 1 � 3 � 5 � 10 2 � 6 � 9 � 11

4 � 8:
(14)

The most general TDiff invariant potential depends on four
arbitrary parameters. In some studies it is frequent to
restrict the gravitational equations of motion to the linear
approximation; this means quadratic terms in the gravita-
tional Lagrangian. From a field theoretical viewpoint there
is no reason to leave away any relevant (in the renormal-
ization group sense) operators.

(i) Let us first consider the case i � 0 8i. This corre-

sponds to a vanishing cosmological constant in gen-
eral relativity. First of all, TDiff enforces c1 � 1.
Besides, there are two exceptional values, namely
ci � 1,8i, when TDiff is enhanced to full Diff. This
is the only combination for which the wave operator
is transverse.
 

1

2

�Sh
�h��

� Dh
��

� �
1

4
�h�� �

c1

4
�@�@�h

�
� � @�@�h

�
��

�
c2

4
����@�@�h�� � @�@�h�

�
c3

4
�h���: (15)

Indeed,
 

@�Dh
�� �

c1 � 1

4
�@�h�� �

c1 � c2

4
@�@�@�h��

�
c3 � c2

4
�@�h: (16)

By the way, it is worth noticing that the metric
condition,

 r�g�� � 0; (17)

is identically satisfied to o�	� and poses no restric-
tion on h��.

(ii) The other remarkable value is c1 � 1, c2 �
1
2 , c3 �

3
8 , where the symmetry is enhanced with a Weyl
invariance, denoted by WTDiff, and the wave op-
erator is traceless in the absence of a cosmological
constant. To be specific,
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���Dh
�� �

�
c3 �

c2 � 1

4

�
�h

�

�
c2 �

c1

2

�
@�@�h��: (18)

The analysis in [6] shows that these two are the only
instances where only spin 2 is present, with no
scalar contamination.

(iii) Let us now consider the effect of i � 0. First of
all, Diff invariance is recovered when i � 1, 8i.
Curiously enough, as such, and in the quadratic
approximation, the term

 m2
1 �

M4
D

M2
p
3; (19)

as well as

 m2
2 �

M4
D

2M2
p
2; (20)

do have the interpretation of masses.
Only when the background around which we per-
turb is not flat, but a constant curvature space, with
metric �g��, do these parameters recover the mean-
ing of a cosmological constant. In that case it is
mandatory to substitute all derivatives by back-
ground covariant derivatives, i.e.,

 @�h�� ! �r�h��; (21)

and to raise and lower indices using the correspond-
ing background metric:

 h�� � �g�� �g��h��: (22)

(iv) Let us study now consistency of the coupling,
which was the main motivation of this work. The
matter Lagrangian has been denoted by Sm. Up to
dimension-five operators for a scalar field, which in
a free falling locally inertial reference system has
Lagrangian

 L0
m �

1

2
���@��@��� V���; (23)

assuming a Z2 symmetry,

 �! ��; (24)

the allowed matter operators when a gravitational
field is present can be parametrized by three con-
stants, �1; . . . ; �3:

 

Lm �
1

2
���@��@��� V���

�
1

MP

�
�
�1

2
h��@��@��

��2
1

4
h���@��@����3

h
2
V���

�
: (25)

Remember that the variation of a scalar field is

 �� � ��@��: (26)

In order to enjoy TDiff invariance, it is necessary
that �1 � 1. Diff invariance needs in addition that
�2 � �3 � 1. The matter equations of motion are
 

�Sm
��
� ���� V0��� �

1

Mp

�
�1@��h��@���

�
�2

2
@��h@

��� ��3
h
2
V 0���

�
; (27)

and the gravitational equations

 

��Sh2 � Sm�

�h��
� Dh

�� �
1

Mp

�
1

2
�1@��@���

1

2

�

�
�3V��� �

�2

2
�@���

2

�
���

�
:

(28)

There is generically no problem of consistency,
except in the two exceptional cases.
First of all, when Sh has extended Diff symmetry,
and consequently a transverse wave operator, this
forces Sm to have the same Diff symmetry through
the linear expansion of the

������
jgj

p
term; otherwise

consistency of the coupling enforces extra condi-
tions on the matter, a very weird situation indeed
(i.e., Bianchi identities are still valid on the gravi-
tational side, so that by consistency the same iden-
tities must hold true on the matter side as well).
Nevertheless, it is not fully devoid of interest to
study the situations in which there are exceptions to
this rule, which we did in a previous work [8].

(v) When there is WTDiff symmetry, it is clear that the
matter Lagrangian should also be scale invariant in
order for the corresponding energy-momentum to be
traceless. In our example, this corresponds to �1 �
2�2 and �3 � 0.

(vi) There are models in which Diff invariance in the
matter sector is reached using in the volume ele-
ment some other scalar density, such as the square
root of the determinant of a matrix built out of fields
and their derivatives (as in the very interesting ones
proposed in [9]) instead of the

������
jgj

p
term implicit in

the metric volume element. The tensor that appears
as the source of gravity in Einstein’s equations is
covariantly conserved thanks to the equations of
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motion of the fields in the scalar density.2 Of course
that tensor is not the usual energy-momentum ten-
sor of general relativity, which now is not con-
served. The reason is that in order for the
Rosenfeld energy-momentum tensor to be equiva-
lent to the canonical Belinfante one what is needed
is not only Diff invariance, but also the standard
metric volume element [10]. This topic seems wor-
thy of some further investigation.

III. OBSERVATIONAL CONSTRAINTS

In this section we will outline the way in which one can
constrain the space of parameters of the linearized theory
(i.e., ci, �i, and i) using experimental results on devia-
tions from Newton’s inverse square law. For simplicity we
will illustrate with a very particular example so no definite
conclusions can be drawn concerning the viability of this
kind of model.

Detailed computations of the propagators can be found
in [6], where the authors considered a gravitational

Lagrangian (12) with all i � 0 except m2
2 �

M4
D

2M2
p
2,

which has the interpretation of a mass for the scalar part
of the graviton, present generically in this kind of model
with TDiff invariance. It turns out that for a conserved
energy-momentum tensor coupled to gravity in the form

 LI �
1
2h���	1T

�� � 	2�
��T�; (29)

then in momentum space the interaction is

 

LI � 	2
1

�
T	��T

�� �
1

2
jTj2

�
1

k2

�

�
	2 �

1� c2

2
	1

�
2 jTj2

�ck2 �m2
2

; (30)

where we have defined

 �c � c3 �
1
2� c2 �

3
2c

2
2; (31)

with the constraint �c < 0 because of unitarity [6]. The
first term corresponds to the usual spin-2 exchange while
the second one is an additional massive scalar interaction.
Let us turn our attention to a particular example, namely,
the matter Lagrangian (25). Unfortunately the correspond-
ing energy-momentum tensor is not conserved. However, a
conserved tensor can be defined as

 

��� � T�� �
1

2
���

�
1��2

2
�@���2 � ��3 � 1�V���

�

�O
�

1

Mp

�

�
1

2
@��@���

1

2
���

�
1

2
�@���2 � V���

�

�O
�

1

Mp

�
: (32)

In the particular case that �3 � 2�2 � 1 (which includes
the Diff invariant Lagrangian) our energy-momentum ten-
sor can be written in terms of the new one and its trace in
such a way that the coupling M�1

p h��T
�� is of the form

(29) with

 	1 �
2

Mp
	2 �

�2 � 1

Mp
: (33)

Now we can apply directly the preceding results and study
experimental constraints to this model. The exchange of
additional massive scalar degrees of freedom produces a
Yukawa-like potential which is usually parametrized as
[11]

 V�r� �
1

r
�1� �e��r=��: (34)

The parameter � is then the ratio between the spin 2 and
the scalar couplings, in our particular case

 � � �
�	2 �

1�c2

2 	1�
2

�c	2
1

� �
��2 � c2�

2

4�c
: (35)

While  gives the range of the interaction, or equivalently
the mass of the scalar exchanged

 2 �
�c

m2
2

: (36)

Notice that one has to imposem2
2 < 0 since as we have said

absence of ghosts requires �c < 0.
There are important constraints on the strength of hypo-

thetical Yukawa interactions for a wide range of .
Through (35) and (36) it is then possible to constrain the
space of parameters of the linearized theory. We will use
figures 4, 5 and 9 of Ref. [11], which show regions allowed
and excluded for � corresponding to  in the ranges
10�9 m–10�6 m, 10�6 m–10�2 m, and 10�2 m–1014 m,
respectively. Since we are just interested in general behav-
iors and not in accurate results we will approximate the
experimental curves by straight lines. The original plots are
in logarithmic scale so we have experimentally allowed
regions of the form

 j�j< ka: (37)

We just have to substitute this expression into (35) to get
bounds for our parameters. There are however four pa-

2Although its flat limit seems to be different from the canoni-
cal energy-momentum tensor.
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rameters to play with (�2, m2
2, c2, and c3). First, it is

interesting to see the order of magnitude for the mass
once we fix the values of c2 and c3. The result is plotted
in Fig. 1. It can be seen that greater values for the mass are
favored, being the lower bound around jm2

2j � 5�
1011 m�2 � 0:02 eV2, and that the allowed region rapidly
decreases with j�cj.

Another possibility is to fix jm2
2j and �2 and see, in the

plane (c2, c3), how far from Diff invariance (which corre-
sponds to c2 � c3 � 1) we can move away. Remember
that we also have to take into account the restriction �c <
0. For the first range,  2 10�9 m–10�6 m, there is no

hope of seeing an experimental curve that appreciably
deviates from the parabola �c � 0 because of (36) and
the tiny values of . Increasing jm2

2j does increase the
allowed region, which is between both curves, but does
not produce a plot in which the curves are visibly separate.
It can be understood if we realize that increasing the mass
also increases c3 on the parabola through c2 and (35) and
(36). An approximate definition of the separation could be

 Sep �
�c3�par � �c3�cur

�c3�par
�

2jm2
2j

1
2� c2�;m2� �

3
2 c2�;m2�

2
;

(38)

where �c3�par and �c3�cur mean the value of c3 on the
parabola and the experimental curve, respectively. For
the first experimental range one has Sep
 1 indepen-
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FIG. 1. The shadowed region shows experimentally allowed
values for jm2

2j (in m�2) and �2 for given values of c2 and c3,
expressed in terms of �c, and in the range  2 10�9 m–10�6 m.
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FIG. 3. Experimentally allowed region in the plane (c2, c3),
for a couple of values of the mass, in the range  2
10�2 m–1014 m. We only show the positive c2 branch. The
parabola is indistinguishable from the c2 axis.
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FIG. 2. Experimentally allowed region in the plane (c2, c3), for
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curve appreciably deviates from the parabola �c � 0.
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figure. We only show the zone closest to the c3 axis.
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dently of the mass and in the whole interval. The other two
cases do not have that property, which is of course related
also with the particular values of k and a in (37). Examples
of resulting plots are Figs. 2–4.

Once again the experiment prefers greater values for the
mass. All the plots have�2 � 0; other values just move the
experimental curve along the parabola, but the qualitative
result remains unchanged.

IV. CONCLUSIONS

In this paper we have studied at the linearized level the
viability of gravity models with a restricted symmetry, both
from the theoretical and observational points of view.
While the existing observational constraints on additional
Yukawa-like gravitatory interactions do not seem to be a
major obstacle, a consistency problem has been identified.
At the nonlinear level it appeared as an integrability con-
dition on Einstein’s equations [8]. Here we turned our
attention to the linear level in order to see if the problem
could be avoided, and if so in what type of more clever
nonlinear completions. The main conclusion is that it is not
generically possible to couple matter (i.e., with an arbitrary
equation of state) to gravitation in such a way that this
coupling has a restricted symmetry only (what has been
called TDiff), whereas the purely gravitational sector en-
joys a higher symmetry, namely, the standard Diff invari-
ance, or an additional Weyl symmetry (WTDiff). That this
is possible in some restricted cases has been already found
in a previous paper [8].

The condition for arbitrary TDiff matter to be able to
couple to Diff gravity without restrictions can be stated
somewhat more formally by saying that the Rosenfeld
(metric) energy-momentum tensor has got to be equivalent
to the Belinfante canonical form.

On the other hand, there is a widespread urban legend
asserting that unimodular theories are equivalent to general
relativity with a cosmological constant. Specific calcula-
tions both here and in our previous paper [8] have proven it
to be groundless. It is a fact that in some TDiff models
there is no exponential expansion at all which is well
known to be the benchmark of a (positive) cosmological
constant in general relativity. Therefore, those models
provide a counterexample to the statement above.

Nevertheless, as with all legends, there is some partial
truth in it. The equations of motion of the example in [8]
correspond to c1 � c2 � c3 � �1 � 1 and �2 � �3 �
i � 0, that is,

 DFP
�� �

1

MP
@��@��: (39)

Whereas the linear equations of general relativity with a
cosmological constant read:

 

DFP
�� �

M3
P

4
��� �

1

MP

�
@��@��

�
1

2

�
V��� �

1

2
�@���2

�
���

�
: (40)

Now, Eq. (39) is inconsistent as such, in the sense that only
a subsector of the theory, namely, the one that obeys

 V � 1
2�@���

2 � C; (41)

can be coupled to gravitation. There are many sectors of
matter in a freely falling inertial system that do not obey
this restriction.3 Actually, together with energy conserva-
tion, the aforementioned equation implies that both the
kinetic and potential energy ought to be constant:

 2V��� � E� C�@���
2 � E� C: (42)

It is clear that for a scalar field in flat space most initial
conditions lead to configurations that violate those equa-
tions. This would mean that an inconsistency would show
up once a gravitational field is turned on, however weak.
More formally, something very strange should happen
when changing the reference frame from an inertial (freely
falling one) to another in which a gravitational field is
present.

Those are the reasons that we say that the coupling is
generically inconsistent. Let us accept nevertheless, for the
sake of the argument, that physics is so restricted. Then a
glance at the Eqs. (40) of general relativity shows that they
are indeed equivalent to (39) provided we identify

  �
2C

M4
P

: (43)

But this is only due to our choice of the arbitrary constants,
and under the assumption that the coupled sector is only
the one that obeys (41), a deeply mysterious condition from
a general relativistic perspective. In the general TDiff case
the analogous condition to (41) is

 �
�2 � 1

2
�@���2 � ��3 � 1�V��� � C; (44)

and the system is not equivalent to general relativity with a
cosmological constant.
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