
Recoil velocities from equal-mass binary black-hole mergers: A systematic investigation of
spin-orbit aligned configurations

Denis Pollney,1 Christian Reisswig,1 Luciano Rezzolla,1,2 Béla Szilágyi,1 Marcus Ansorg,1 Barrett Deris,3,4
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Binary black-hole systems with spins aligned with the orbital angular momentum are of special interest,
as studies indicate that this configuration is preferred in nature due to non-vacuum environmental
interactions, as well as post-Newtonian (PN) spin-orbit couplings. If the spins of the two bodies differ,
there can be a prominent beaming of the gravitational radiation during the late plunge, causing a recoil of
the final merged black hole. In this paper we perform an accurate and systematic study of recoil velocities
from a sequence of equal-mass black holes whose spins are aligned with the orbital angular momentum,
and whose individual spins range from a � �0:584 to �0:584. In this way we extend and refine the
results of a previous study which concentrated on the antialigned portion of this sequence, to arrive at a
consistent maximum recoil of 448� 5 km=s for antialigned models as well as to a phenomenological
expression for the recoil velocity as a function of spin ratio. Quite surprisingly, this relation highlights a
nonlinear behavior, not predicted by the PN estimates, and can be readily employed in astrophysical
studies on the evolution of binary black holes in massive galaxies. An essential result of our analysis,
without which no systematic behavior can be found, is the identification of different stages in the
waveform, including a transient due to lack of an initial linear momentum in the initial data. Furthermore,
by decomposing the recoil computation into coupled modes, we are able to identify a pair of terms which
are largely responsible for the kick, indicating that an accurate computation can be obtained from modes
up to ‘ � 3. Finally, we provide accurate measures of the radiated energy and angular momentum, finding
these to increase linearly with the spin ratio, and derive simple expressions for the final spin and the
radiated angular momentum which can be easily implemented in N-body simulations of compact stellar
systems. Our code is calibrated with strict convergence tests and we verify the correctness of our
measurements by using multiple independent methods whenever possible.
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I. INTRODUCTION

Recent developments in numerical relativity have solved
the problem of stably evolving black hole initial data for
useful timescales, and opened the door to studies of physi-
cal phenomena resulting from strong-field gravitational
interactions. A result of particular interest to astrophysics
is an accurate calculation of the recoil velocity which is
generated during an asymmetric collision of a black-hole
binary. It is well known that a binary with unequal masses
or spins of the individual bodies will radiate gravitational
energy asymmetrically. This results in an uneven flux,
which gives a net linear momentum to the final black
hole, often called a ‘‘kick’’ [1,2]. While estimations of
kick velocities have been available for some time [3–5],
the largest part of the system’s acceleration is generated in
the final orbits of the binary system, and as such requires
fully relativistic calculations to be determined accurately.

Over the past year, a number of numerical relativity
simulations have been carried out to determine recoil
velocities in various sections of the parameter space of
binary black-hole systems. The first systems to be studied

were unequal mass systems with moderate mass ratios,
where the first calculations were performed by the Penn
State [6] and Goddard [7] groups, with simulations at mass
ratios near the estimated peak of the Fitchett formula [4]. A
more extensive study, exploring a large number of models
between mass ratios 0.25 to 1.0, was carried out by the Jena
group [8], providing for the first time a mapping of the
unequal mass parameter space with fully relativistic simu-
lations. The recoils from systems in which the bodies had
spin were first considered by a number of studies in the first
half of this year. The Penn State group examined a se-
quence of equal mass binaries with spins equal and anti-
aligned, determining that the largest recoil possible from
such an evolution is of the order of 475 km=s [9]. At the
same time, in Ref. [10] we studied a sequence of models in
which the spins are antialigned, but of different magnitude,
and arrived at a similar estimate of 450 km=s. The Jena and
Brownsville (now Rochester) groups showed that ex-
tremely large kicks are possible from particular configura-
tions of misaligned spins, measuring recoils as high as
2500 km=s [11], and extrapolating to 4000 km=s for the
maximally spinning case [12,13]. Such spin configurations
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have recently been studied in more detail in [14]. Velocities
of this magnitude have a number of astrophysical implica-
tions for models of galaxy mergers.

In this paper, we expand on the work performed in [10],
extending it in a number of different ways. First, we
consider a larger sequence of aligned but unequal spins
with spin-ratios ranging from �1 to �1, where the spins
are aligned (or antialigned) with the orbital angular mo-
mentum. Our interest in this set of models is motivated by
the fact that there are strong indications that binary black-
hole systems having spins aligned with the orbital angular
momentum are preferred in nature. Post-Newtonian (PN)
studies in vacuum have in fact shown that in vacuum the
gravitational spin-orbit coupling has a tendency to bring
about such an alignment from generic initial conditions
[15]. Furthermore, in astrophysical situations where there
is likely to be at least some component of interstellar
matter inducing a dissipative dynamics, there is also a
tendency to align [16].

We describe the influence of the initial dynamics on the
radiated waveforms and the importance of suitable vector
integration constants to remove these effects when deter-
mining the final recoil velocity. These vectors, in fact,
capture the information about the net linear momentum
that the spacetime has built-up during its past evolution and
prior to the actual numerical evolution and can result into a
significant correction. We discuss how to use the results
obtained to derive a phenomenological expression for the
recoil velocity as a function of the spin ratio. Finally, we
also compute how the angular momentum of the system is
redistributed between radiation and the spin of the final
black hole, providing useful expressions as functions of the
spin ratio.

The paper is organized as follows: Sec. II describes the
code, as well as the initial data construction, and calibra-
tion tests. In Sec. III we discuss the calculation of the recoil
velocity from gravitational-wave data on a large sphere.
We introduce and compare two methods, one based on the
Newman-Penrose �4 scalar which is the usual method that
has been adopted in recent numerical studies, and another
which is based on perturbations of Schwarzschild black
holes modeled by a gauge-invariant formalism. Though the
two methods are based on quite different underlying as-
sumptions, they agree very well in their estimation of
physical quantities, and, in particular, the recoil velocity.
Section IV describes evolutions of the aligned-spin se-
quence and the dependence of the recoil velocity on the
spin-ratio. We find that the data show an almost linear
behavior at large negative spin-ratios, as predicted by PN
calculations. However taking into account also results from
positive spin-ratios, the data suggest a nonlinear (qua-
dratic) dependence and we give a phenomenological ex-
pression for the recoil velocity as a function of the spin
ratio. Extrapolating our results to the case of maximally
rotating black holes, we find that the maximum recoil

velocity attainable by spin-orbit aligned configurations is
448� 5 km=s. Finally, we discuss the radiation of mass
and angular momentum for these evolutions, determining
the parameters of the isolated final black holes and show
the excellent conservation of mass and angular momentum
recorded in our simulations. Again we provide phenome-
nological expressions for the relative amount of radiated
mass and spin as functions of the initial spin ratio.

In the following equations we use Greek indices (run-
ning from 0 to 3) to denote components of four-
dimensional objects and Latin indices (running from 1 to
3) for three-dimensional ones that are defined on spacelike
foliations of the spacetime.

II. MATHEMATICAL AND NUMERICAL SETUP

The data presented in this paper were produced using the
CCATIE code, a three-dimensional finite differencing code
based on the Cactus Computational Toolkit [17,18]. The
current code is an evolution of previous versions which
implemented an excision method and corotating coordi-
nates [19–21]. The main features of the code, in particular,
the evolution equations, remain the same. However, some
modifications have been introduced in the gauge evolution
to accommodate ‘‘moving punctures’’ which has proven to
be an effective way to evolve black hole spacetimes
[22,23]. This method simply removes any restrictions on
movement of the punctures from their initial locations,
allowing them to be advected on the grid.

A. Evolution system

We evolve a conformal-traceless ‘‘3� 1’’ formulation
of the Einstein equations [19,24–26], in which the space-
time is decomposed into three-dimensional spacelike sli-
ces, described by a metric �ij, its embedding in the full
spacetime, specified by the extrinsic curvature Kij, and the
gauge functions � (lapse) and �i (shift) that specify a
coordinate frame (see Sec. II B for details on how we treat
gauges and [27] for a general description of the 3� 1
split). The particular system which we evolve transforms
the standard ADM variables as follows. The 3-metric �ij is
conformally transformed via

 � � 1
12 ln det�ij; ~�ij � e�4��ij; (1)

and the conformal factor � evolved as an independent
variable, whereas ~�ij is subject to the constraint det~�ij �
1. The extrinsic curvature is subjected to the same confor-
mal transformation, and its trace trKij evolved as an inde-
pendent variable. That is, in place of Kij we evolve:

 K � trKij � gijKij; ~Aij � e�4��Kij �
1
3�ijK�; (2)

with tr ~Aij � 0. Finally, new evolution variables

 

~� i � ~�jk~�ijk (3)
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are introduced, defined in terms of the Christoffel symbols
of the conformal 3-metric.

The Einstein equations specify a well known set of
evolution equations for the listed variables and are given by

 �@t �L��~�ij � �2� ~Aij; (4)

 �@t �L��� � �
1
6�K; (5)

 

�@t �L�� ~Aij � e�4���DiDj�� �Rij	
TF

� ��K ~Aij � 2 ~Aik ~Akj�; (6)

 �@t �L��K � �D
iDi�� �� ~Aij ~Aij � 1

3K
2�; (7)

 

@t~�
i � ~�jk@j@k�i �

1
3 ~�ij@j@k�k � �j@j~�

i

� �j@j�i �
2
3
~�i@j�j � 2 ~Aij@j�

� 2��~�ijk ~Ajk � 6 ~Aij@j��
2
3 ~�ij@jK�; (8)

where Rij is the three-dimensional Ricci tensor, Di the
covariant derivative associated with the three metric �ij
and ‘‘TF’’ indicates the trace-free part of tensor objects.
The Einstein equations also lead to a set of physical con-
straint equations that are satisfied within each spacelike
slice,

 H � R�3� � K2 � KijK
ij � 0; (9)

 M i � Dj�K
ij � �ijK� � 0; (10)

which are usually referred to as Hamiltonian and momen-
tum constraints. Here R�3� � Rij�ij is the Ricci scalar on a
three-dimensional time slice. Our specific choice of evo-
lution variables introduces five additional constraints,

 det~�ij � 1; (11)

 tr ~Aij � 0; (12)

 

~� i � ~�jk~�ijk: (13)

Our code actively enforces the algebraic constraints (11)
and (12). The remaining constraints, H , Mi, and (13), are
not actively enforced, and can be used as monitors of the
accuracy of our numerical solution. See [20] for a more
comprehensive discussion of the these points.

B. Gauges

We specify the gauge in terms of the standard ADM
lapse function, �, and shift vector, �a [28]. We evolve the
lapse according to the ‘‘1� log’’ slicing condition:

 @t�� �i@i� � �2��K � K0�; (14)

where K0 is the initial value of the trace of the extrinsic
curvature, and equals zero for the maximally sliced initial

data we consider here. The shift is evolved using the
hyperbolic ~�-driver condition [20],

 @t�i � �j@j�i �
3
4�B

i; (15)

 @tBi � �j@jBi � @t~�
i � �j@j~�

i � �Bi; (16)

where � is a parameter which acts as a damping coeffi-
cient. The advection terms on the right-hand-sides of these
equations were not present in the original definitions of
[20], where comoving coordinates were used, but have
been added following the experience of [29,30], and are
required for correct advection of the puncture in ‘‘moving-
puncture’’ evolutions.

C. Numerical methods

Spatial differentiation of the evolution variables is per-
formed via straightforward finite-differencing using
fourth-order accurate centered stencils for all but the ad-
vection terms for each variable, which are upwinded in the
direction of the shift. Vertex-centered adaptive mesh-
refinement (AMR) is employed using nested grids
[31,32] with a 2:1 refinement for successive grid levels,
and the highest resolution concentrated in the neighbor-
hood of the individual horizons. Individual apparent hori-
zons are located every few time steps during the evolution
[33,34].

The time steps on each grid are set by the Courant
condition and thus the spatial grid resolution for that level,
with the time evolution being carried out using fourth-
order accurate Runge-Kutta integration steps. Boundary
data for finer grids are calculated with spatial prolongation
operators employing 5th-order polynomials, and prolonga-
tion in time employing 2nd-order polynomials. The latter
allows a significant memory saving, requiring only three
time levels to be stored, with little loss of accuracy due to
the long dynamical time scale relative to the typical grid
time step.

In the results presented below we have used 8 levels of
mesh refinement with finest grid resolutions of h=M �
0:030, 0.024, and 0.018; we will refer to these resolutions
as ‘‘low’’, ‘‘medium’’ and ‘‘high’’, respectively. We find
that the medium (i.e., h � 0:024M) fine-grid resolution is
typically good enough to accurately represent the dynam-
ics which we are studying here and will be used hereafter
as our fiducial resolution. In this case, the wave-zone grid
has a resolution of h � 1:536M. In addition, when mea-
suring the convergence order (see discussion in Sect. II E),
we have also used a ‘‘very-high’’ resolution of h=M �
0:012 which therefore gives a factor of 2 refinement with
respect to the medium resolution; this should be contrasted
with similar convergence tests recently discussed in the
literature and in which the refinement factor is much
smaller.

The finest grids are centered on each black hole, with a
radius about 50% larger than the apparent horizon. A single
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grid resolution covers the region between r � 20M and
r � 80M, in which our wave extraction is carried out. The
outer (coarsest) grid extends to a spatial position which is
large compared with the evolution time of the system. In
particular, it ranges from 256M in each coordinate direc-
tion for the binaries which merge rapidly, up to 768M for
the binaries which inspiral more slowly because of the
spin-orbit interaction. In all cases, artificial wavelike
boundary conditions are used, and although these are not
explicitly constraint-preserving, they do not introduce ma-
jor violations of the constraints as long as they are placed
sufficiently far away from the central black holes (i.e., with
a light-crossing time which is large as compared to the time
for the merger). Furthermore, for the models considered
here, in which all spins are directed along the z-axis of our
Cartesian grids, it is possible to use a reflection symmetry
condition across the z � 0 plane. Tests against the runs on
a full grid show that this symmetry is preserved to a high
degree in our simulations (i.e., with differences below
10�14) so that this symmetry boundary has no influence
on the dynamics.

D. Initial data

The initial data are constructed applying the ‘‘puncture’’
method [35], which uses Bowen-York extrinsic curvature
and solves the Hamiltonian constraint equation numeri-
cally as in [36].

We have considered a sequence of binaries for which the
initial spin of one of the black holes is held fixed at
S2=M2 � 0:146ez, and the spin of the other black hole is
S1=M2 � �a1=a2�S2=M2, where the spin ratio a1=a2 takes
the values �1;�3=4; . . . ; 3=4; 1, and M is the sum of the
black hole masses, M � M1 �M2. Thus the black hole
spins are antialigned when a1=a2 is negative and aligned
when it is positive. In all cases the initial data parameters
are chosen such that the black hole masses are

 Mi �

���������������������������
Ai

16�
�

4�S2
i

Ai

s
�

1

2
; (17)

[37,38] where Ai is the area of the i-th apparent horizon.
For the orbital initial data parameters we use the effec-

tive potential method introduced in [39] and extended to
spinning configurations in [40]. The effective potential
method is a way of choosing the initial data parameters
such that the required physical parameters (e.g. masses and
spins) are obtained to describe a binary black-hole system
on a quasicircular orbit.

The free parameters to be chosen for the puncture initial
data are: the puncture coordinate locations Ci, the puncture
mass parameters mi, the linear momenta pi, and the indi-
vidual spins Si. Since we are interested in quasicircular
orbits we work in the zero momentum frame and choose
p1 � �p2 to be orthogonal to C2 � C1. The physical
parameters we want to control are: the black hole mass
ratio M1=M2, the orbital angular momentum L � C1 


p1 � C2 
 p2 (see for example [39–41]) and the dimen-
sionless spin parameters ai � Si=M2

i . In order to choose
the input parameters that correspond to the desired physi-
cal parameters we have to use a nonlinear root finding
procedure, since the physical parameters depend nonli-
nearly on the input parameters and it is not possible to
invert the problem analytically.

As detailed in [40], when the black-hole spins are taken
as parameters, it is possible to reduce the number of
independent input variables, so that at a given separation
�C � jC2 � C1j=m1, the independent input parameters are:
�q � m1=m2 and the dimensionless magnitude of the linear
momentum p=m1. Using a Newton-Raphson method, we
solve for �q and p=m1 so that M1=M2 � 1 and the system
has a given dimensionless orbital angular momentum,
L=��M� where � � m1m2=M

2 is the reduced mass. For
such a configuration the initial data solver [36] returns a
very accurate value for MADM, which together with the
accurate irreducible mass calculated by the apparent hori-
zon finder [33,42] makes it possible to calculate an accu-
rate value of the dimensionless binding energy

 Eb=� � �MADM �M1 �M2�=�: (18)

The quasicircular initial data parameters are then obtained
by finding the minimum in Eb=� for varying values of �C
while keeping the required orbital angular momentum
L=��M� constant.

We chose a fixed orbital angular momentum L=��M� �
3:3 for our quasicircular orbit initial data parameters. This
value was chosen to ensure that model r0 would have
enough evolution time for an accurate kick measurement,
while at the same time model r8 would not require too
much evolution time. In order to check the influence of the
evolution time before plunge on the kick measurements of
the r0 model, we also calculated initial data for a r0
configuration at larger initial separation r0l and at smaller
initial separation r0s. The parameters for all the initial data
sets are shown in Table I.

Note that the physical mass Mi of a single puncture
black hole increases when the spin parameter is increased
if the mass parameter mi is kept constant. For that reason
obtaining M1 � M2 in general requires that m1 � m2.
Even in the case where the spins have the same magnitude
but different directions, the two black holes will have
different spin-orbit interactions leading to slightly different
physical masses if m1 � m2. For this reason, the initial
data for r0 in Table I has slightly different puncture mass
parameters m1 � m2. In contrast, in model r8 the black
holes have identical spin parameters and thus also the same
spin-orbit interaction, resulting in identical mass parame-
ters m1 � m2.

E. Convergence tests

As described in Sec. II C, the finite difference error of
the derivative stencils used in the numerical algorithm is
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O�h4�, while the error in the time-interpolation stencils
used for mesh refinement boundary points is O��t3�.
Thus the expected theoretical convergence rate is three.
However, it is only time-related operations which are at
third order, and since the time step which we use is smaller
than the grid spacing and much smaller than the dynamical
timescales, we can expect that the error coefficient of the
leading order term is quite small. Third order convergence
is expected during time-periods when the system goes
through rapid dynamical changes, such as the plunge or
merger.

The proper convergence of the code was established
using the binary system r0, for which we have carried
out evolutions using 8 levels of mesh refinement with
fine grid-spacings of h=M � 0:024, 0.018, and 0.012
(i.e., resolutions medium, high, and ‘‘very-high,’’ respec-
tively, where low refers to h � 0:030 which was deemed to
be of insufficient accuracy for the results of this paper).
Other refinement levels have resolutions that are half of the
next finest grid. The refinement levels on the initial slice
are set up to be identical for the three resolutions and their
locations and sizes evolve according to the same algorithm
in each case.

We focus on the convergence of a number of different
aspects of the code. The first of these is the degree of
satisfaction of the Einstein equations, which can be par-
tially determined by examining the Hamiltonian and mo-
mentum constraints (9) and (10). A more stringent
requirement is to evaluate how well the Einstein tensor
satisfies the vacuum condition, G�� � 0. For this we de-
fine the positive definite quantity

 

G�

8<:
������������������������������������������������
G2

00�G
2
01� � � � �G

2
33

q
outside appar: horizons

0 inside appar: horizons:

(19)

In computing norms over the entire grid, we find it useful to

mask out the interiors of the horizons, where the error at
the puncture locations—which is not expected to con-
verge—can dominate over more relevant errors in the
physically observable domain. In order to compute G��

we compute the 4-derivatives of the ADM metric, lapse
and shift, then construct the 4-derivatives of the 4-metric
from which we can compute the Riemann tensor and then
finally obtain G��. Time-derivatives are taken using three
time-levels, centered around the past time-level. Spatial
derivatives are taken using fourth-order accurate centered
stencils. Thus the finite-difference error in computing G��

is O��t2� in time and O�h4� in the space dimensions.
Effectively we see a minimum of third order accuracy for
this quantity, indicating that the coefficient of the O��t2�
error term is small compared to the higher-order terms.

Since the metric gradients and hence the truncation
errors are the largest near the black-holes, through the
L1 norm of (19) we effectively monitor that the Einstein
tensor converges near the horizons for the duration of the
evolution. We regard this as a rather stringent test in
comparison with the common use of the L2 norm, as the
latter tends to dilute errors in small regions or 2D surfaces
such as grid boundaries, as they are normalized over the
entire grid volume. By contrast, the L1 norm measures the
worst error on the grid, which by propagation of error will
also suffer if there are any nonconvergent regions on the
grid.

This convergence of G is summarized in Fig. 1, which
reports the time evolution of the L1 norm of (19) at the
medium and very-high resolutions. Also indicated with
dashed and dotted lines are the expression for the L1
norm of (19) at the very-high resolution when rescaled
for third (dotted line) and fourth-order convergence
(dashed line).

There is a period at the beginning of the evolutions
where the initial data construction prevents fourth-order
convergence. This is due to the fact that the initial data is
computed by an interpolation of the results of a spectral

TABLE I. The puncture initial data parameters defining the binaries: location �x=M, linear momenta �p=M, mass parameters
mi=M, spins Si=M2, dimensionless spins ai, ADM mass MADM measured at infinity, and ADM angular momentum JADM computed
from Eq. (47). Note that we set M1 � M2 � 1=2 [cf., Eq. (17)].

Model �x=M �p=M m1=M m2=M S1=M
2 S2=M

2 a1 a2 MADM=M JADM=M
2

r0 3.0205 0.1366 0.4011 0.4009 �0:1460 0.1460 �0:5840 0.5840 0.9856 0.8252
r1 3.1264 0.1319 0.4380 0.4016 �0:1095 0.1460 �0:4380 0.5840 0.9855 0.8612
r2 3.2198 0.1281 0.4615 0.4022 �0:0730 0.1460 �0:2920 0.5840 0.9856 0.8979
r3 3.3190 0.1243 0.4749 0.4028 �0:0365 0.1460 �0:1460 0.5840 0.9857 0.9346
r4 3.4100 0.1210 0.4796 0.4034 0.0000 0.1460 0.0000 0.5840 0.9859 0.9712
r5 3.5063 0.1176 0.4761 0.4040 0.0365 0.1460 0.1460 0.5840 0.9862 1.007
r6 3.5988 0.1146 0.4638 0.4044 0.0730 0.1460 0.2920 0.5840 0.9864 1.044
r7 3.6841 0.1120 0.4412 0.4048 0.1095 0.1460 0.4380 0.5840 0.9867 1.081
r8 3.7705 0.1094 0.4052 0.4052 0.1460 0.1460 0.5840 0.5840 0.9872 1.117

r0l 4.1924 0.1073 0.4066 0.4065 �0:1460 0.1460 �0:5840 0.5840 0.9889 0.8997
r0s 2.8186 0.1441 0.3997 0.3994 �0:1460 0.1460 �0:5840 0.5840 0.9849 0.8123
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solver onto the finite difference grid which is used for
evolution. An error is introduced because we keep fixed
the number of spectral coefficients and because the
Cartesian grid points do not coincide with the spectral
collocation points of the Chebyshev polynomials, resulting
in a certain amount of high-frequency noise that spoils the
convergence for some time at the beginning of the simu-
lation. Numerical dissipation and the constraint damping
built into the evolution system implies that the evolution
quickly adjusts itself to actually solving the Einstein equa-
tions to a good accuracy. The effects of these initial tran-
sient modes can last for different amounts of time for the
different resolutions, e.g., �10M for the medium resolu-
tion and �30M for the very-high resolution.

Soon after this transient has disappeared, the code shows
the expected fourth-order convergence, with the largest
values of the violation found in the vicinity of the apparent
horizons, where the gradients in the metric are the steepest.
The violations grow rapidly with time as the binary inspi-
rals and the largest values of the violation of the Einstein
tensor are seen at the time of the merger, t 
 109M, with
values as large as O�300�. Such violations are essentially
confined to a single grid point on the trailing edge of the
apparent horizon and are produced by the very steep gra-
dients in the shift. Clearly, violations of this magnitude

would not be revealed when looking at the L2 norms and
are a source of concern. However, as we will show later,
such violations do not propagate away from the horizon to
affect the fourth-order convergence of the waveforms.

At the time of the merger the excision of a common
apparent horizon from the calculation of the L1 norm is
responsible for the decrease by about four orders of the
violation. After this, the L1 do not grow further in time for
the very-high resolution simulation, while a modest in-
crease is seen in the simulation run at medium resolution.
During this time the code shows a convergence which is
between third-order (right after the merger) and fourth-
order (during the ringdown).

In addition to convergence in the Einstein tensor, we also
validate the correctness of the physically relevant informa-
tion contained in the waveforms. We do this by computing
convergence rate of the waveformsQ�22,Q�33, andQ
21 using
the ratio of the integrated differences between the medium
and high resolutions, and the high and very-high resolu-
tions

 ��Q� �

�������������������������������������������������R
u2
u1
jQ0:024 �Q0:018j

2du
q
�������������������������������������������������R
u2
u1
jQ0:018 �Q0:012j

2du
q ; (20)

where u � t� rE is the retarded time at a given detector,Q
stands for either Q�22, Q�33 or Q
21 and refers to either its
amplitude or the phase. As indicated in Eq. (20), the
integrals are evaluated over the retarded interval �u1; u2	
which does not include the initial spurious burst of radia-
tion (which we do not expect to converge) but contains
otherwise the complete waveform including the ringdown.

Assuming a truncation error O�hp� and that the coeffi-
cient of this error does not depend on resolution, the
function � becomes to leading order

 � �
�h0:024�

p � �h0:018�
p

�h0:018�
p � �h0:012�

p ; (21)

where h0:024 � 0:024M and we we underline the impor-
tance of having used a full doubling of the resolution
between the smallest and largest resolution to improve
the accuracy of this estimate over more narrowly spaced
resolution steps. In practice, we measure � and then solve
for the ‘‘effective’’ convergence order p using Eq. (21). A
discussion of the details in this procedure are presented in
Appendix A alongside with the computed convergence
rates for the amplitudes and phases of Q which are found
to between two (‘ � 3) and four (‘ � 2) (cf., Table V).

It should be noted that the above definition of conver-
gence rate naturally results in noninteger values for the
exponent �, even though our methods are explicitly poly-
nomial. This is because the derivation of (21) assumes a
coefficient of one in the leading order error term that
extrapolates between the resolutions. If the coefficient is
in practice different for a given set of resolutions, then a
noninteger value results which is larger if the coefficient is

FIG. 1 (color online). The L1 norm of the Einstein tensor
Eq. (19) as a function of time. During the periods of strong
dynamics (i.e., when the time derivatives of the evolution
variables are large) the convergence order is dominated by the
accuracy of the time-interpolation algorithm used at mesh refine-
ment boundaries, thus yielding third-order accuracy. At the times
when these time-derivatives are small, the fourth-order finite-
differencing algorithm becomes the dominant source of the error.
Note that the very large violations (of O�300� at the medium
resolution) are confined to a single grid point on the trailing edge
of the apparent horizon and are produced by the very steep
gradients in the shift. As discussed later, this does not affect the
fourth-order convergence of the waveforms. At the time of the
merger a common apparent horizon forms and its excision from
the calculation of the L1 norm is responsible for the drop in the
violation.
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smaller. As such, values obtained in this way should not be
considered literal polynomial extrapolation orders. By
‘‘convergence order 3.8’’ we rather mean that our results
are consistent with third-order finite differencing where the
leading third-order error coefficient is quite small so that at
the given resolutions the convergence appears to be closer
to a fourth-order approximation. Very high convergence
exponents are a likely indication that the lowest resolution
is not in the convergent regime for the measured quantity.
Noninteger convergence orders obtained in this way are
resolution dependent, and should themselves converge to
the lowest order finite difference approximation used in the
code in the limit of infinite resolution.

An important property of the waveforms which has
emerged when performing these convergence tests is that
the dominant source of error is a dephasing which causes
the lower resolution evolutions to ‘‘lag’’ behind the higher
resolution. This delay is usually rather small and between
0:1M and 0:5M, but it is clearly visible when comparing
the total amplitude of Q as a function of time. The most
important consequence of this error is that it can spoil the
convergence tests if not properly taken into account: the
residuals errors seem, in fact, to indicate over-convergence.
This is shown in the upper panel of Fig. 2, which reports
the differences between Q�22 when computed at different
resolutions scaled for fourth-order convergence. Clearly
the overlap is rather poor and even indicating that the
truncation error is smaller than expected. This is obviously
an artifact of the near cancellation of the lowest-order

terms in the truncation error and induced by the small
time-differences at different resolutions.

We remove this effect by shifting the time coordinate of
the medium and high resolution runs by the time interval
needed to produce an alignment of the maxima of the
emitted radiation. Details on how to do this are discussed
in Appendix A, and we report in the lower panel of Fig. 2
the same data shown in the upper panel, but after the time-
shifting. Clearly, the overlap is now extremely good sug-
gesting that the time-shifting is essential for obtaining the
expected fourth-order convergence in the waveforms. In
accord with the convergence in the waveforms we also see
fourth-order convergence in the final kick value.

As a final note we remark that besides validating a
proper convergence of the code, it is also important to
assess the accuracy of any measurable quantity at the
relevant resolutions considered here. As a representative
and physically meaningful quantity we have considered the
accuracy of the fiducial waveform Q�22 for the binary
system r0. This is shown in Fig. 3, where in the upper
graph we report the waveforms at the three different reso-
lutions: very-high (continuous line), high (dashed line) and
medium (dotted line). Already with the lowest of these
resolutions the accuracy is sufficiently high so that the
curves are essentially indistinguishable from each other
by eye. The lower panels show magnifications of the
relevant portions of the waveform, with the lower-left
panel concentrating on the initial transient radiation pro-
duced by the truncation error. The latter clearly is rather

FIG. 2 (color online). Convergence of the fiducial waveform
Q�22 for the binary system r0 before and after the time-shift
defined in Eqs. (A1)–(A3). In the upper graph we show the
difference between Q�22 when computed at different resolutions,
scaled for fourth-order convergence and using raw data (i.e.,
without time-shifting). The overlap between the curves is rather
poor indicating an over-convergence (i.e., the truncation error
appears to be smaller than expected). In the lower panel we show
the same data but after time-shifting. The very good overlap of
the scaled curves on the indicates that the time-shifting is
essential for obtaining properly scaling differences between
runs of various resolutions.

FIG. 3 (color online). Accuracy of the fiducial waveform Q�22
for the binary system r0. In the upper graph we show the
waveforms at the three different resolutions: very-high (continu-
ous line), high (dashed line), medium (dotted line). The accuracy
is very good already with the lowest resolution and the curves
cannot be distinguished. The lower panels show magnifications
of some relevant portions of the waveform, with the lower-left
panel concentrating on the initial transient radiation produced by
the truncation error. The lower-right panel, on the other hand,
refers to the quasinormal ringing and shows that it is well-
captured at all resolutions.
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large at the medium resolution, but it nicely converges
away when the grid spacing is decreased. The lower-right
panel, on the other hand, refers to the quasinormal ringing
and shows that it is well-captured at all resolutions.

III. LINEAR MOMENTUM OF BLACK HOLE
SPACETIMES

In radiating spacetimes where the radiation is emitted
asymmetrically, there will be a net linear momentum im-
parted to the system. In particular, in the case of a binary
black hole merger, the final black hole receives a kick
which causes it to move off at a given velocity. This
velocity can be determined by an analysis of the emitted
radiation. In ADM-type numerical simulations, this is
typically done by evaluating some scalar quantity which
can be associated with the wave energy at some large
radius within the computational domain. The chosen radius
needs to be large enough that it is in the ‘‘wave zone,’’
where nonlinear self-interaction of the gravitational field is
negligible and the waves can be picked out as perturbations
of a background.

Two methods have become commonplace to determine
the emitted wave energy. The first uses the Newman-
Penrose curvature scalar �4, which can be identified
with the gravitational radiation if a suitable frame is chosen
at the extraction radius. An alternative method measures
the metric of the numerically generated spacetime against a
fixed background at the extraction radius, and determines
the Zerilli-Moncrief perturbation modes. Both methods
yield data for the gravitational wave energy which can be
integrated to determine a net linear momentum, as de-
scribed in more detail in the following sections.

A. Kick measurements via �4

The Newman-Penrose formalism provides a convenient
representation for a number of radiation related quantities
as spin-weighted scalars. In particular, the curvature com-
ponent

 �4 � �C���	n
� �m�n� �m	; (22)

is defined as a particular component of the Weyl curvature,
C���	, projected onto a given null frame, fl;n;m; �mg. In
practice, we define an orthonormal basis in the three space
�r̂; �̂; �̂�, centered on the Cartesian grid center and oriented
with poles along ẑ. The normal to the slice defines a
timelike vector t̂, from which we construct the null frame

 l �
1���
2
p �t̂� r̂�; n �

1���
2
p �t̂� r̂�;

m �
1���
2
p ��̂ � i�̂�:

(23)

We then calculate �4 via a reformulation of (22) in terms
of ADM variables on the slice [43],

 �4 � Cij �mi �mj; (24)

where

 Cij � Rij � KKij � Ki
kKkj � i
i

klrlKjk: (25)

The identification of the Newman-Penrose �4 with the
gravitational radiation content of the spacetime is a result
of the peeling theorem, which states that in an appropriate
frame the �4 component of the curvature has the slowest
falloff with radius, O�1=r�. The conditions of this theorem
are not satisfied exactly at a small radius and in the chosen
frame. While there are proposals for how this situation can
be improved [44], we find that beyond rE � 30M in fact
our measure of �4 scales extremely well with the different
extraction radii rE, suggesting that the peeling property is
satisfied to a reasonable approximation (see Fig. 4).

The gravitational wave polarization amplitudes h� and
h
 are related to �4 by [45]

 

�h� � i �h
 � �4; (26)

where the double over-dot stands for second-order time
derivative. The flux of linear momentum emitted in gravi-
tational waves in the i-direction can be computed from the
Isaacson’s energy-momentum tensor and can be written in
terms of the two polarization amplitudes as [5]

 F i � _Pi �
r2

16�

Z
d�ni� _h2

� � _h2

�; (27)

where ni � xi=r is the unit radial vector that points from
the source to the observer and d� � sin�d�d� is the line
element of our extraction 2-sphere S2. Using Eq. (26), this
leads to an expression for the momentum flux in terms of
�4 as it is commonly used in recent numerical relativity

FIG. 4 (color online). Amplitude of rE;schj�4j for extraction
spheres at rE � 30M, 40M, 50M, and 60M, demonstrating that
�4 does indeed fall off as required by the peeling property.
There is a slight decrease in amplitude with larger radius,
suggesting that dissipative effects may become important at
larger radii. Results in this paper use waveforms from the rE �
50M extraction sphere, unless indicated otherwise.
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calculations [9,11,13,46–49]:

 F i � lim
rsch!1

�
r2

sch

16�

Z
d�ni

��������Z t

�1
dt�4

��������2
�
: (28)

The Schwarzschild radius, rsch, is derived from the coor-
dinate (isotropic) radius via the standard formula

 rsch � riso

�
1�

M
2riso

�
2
: (29)

assuming a constant ADM mass M � MADM throughout
the simulation. With this choice of radial coordinate, ex-
pression (28) has been shown to provide recoil velocities
which are in better agreement with those obtained through
gauge-invariant perturbations than with the alternative co-
ordinate radius, (cf. Sec. III B) and reported in the literature
(Additional details on the numerical measurement of �4

are presented in Appendix B.)

B. Kick measurements via gauge-invariant
perturbations

An independent method to compute the linear momen-
tum carried away by gravitational radiation is based on the
measurements of the nonspherical gauge-invariant pertur-
bations of a Schwarzschild black hole (see Refs. [50–52]
for applications to Cartesian coordinates grids). In practice,
a set of ‘‘observers’’ is placed on 2-spheres of fixed coor-
dinate radius rE, where they extract the gauge-invariant,
odd-parity (or axial) current multipoles Q
‘m and even-
parity (or polar) mass multipoles Q�‘m of the metric per-
turbation [53]. The numerical implementations of the
gauge-invariant variables is done by following the multi-
polar analysis outlined by Abrahams and Price [54]. The
Q�‘m and Q
‘m variables are related to h� and h
 as [55]

 h� � ih
 �
1���
2
p
r

X1
‘�2

X‘
m��‘

�
Q�‘m

� i
Z t

�1
Q
‘m�t

0�dt0
�
�2
Y‘m: (30)

Here �2Y‘m are the s � �2 spin-weighted spherical har-
monics and �‘;m� are the indices of the angular decom-
position. Validations of this approach in 3D vacuum
spacetimes can be found in Refs. [52,56,57], while its
use with matter sources has first been reported in [58].

We note that the notation introduced in Eq. (30) could be
misleading as it seems to suggest that h
 is always of odd-
parity and h� is always of even-parity. Indeed this is not
true in general and in the absence of axisymmetry, i.e.,
when m � 0, both h
 and h� are a superposition of odd
and even parity modes. It is only for axisymmetric systems,
for which onlym � 0 modes are present, thatQ
‘m andQ�‘m
are real numbers, that h� is only even-parity and h
 is only
odd-parity. Despite this possible confusion, we here prefer
to maintain the notation of Eq. (30) which is the most
common in the literature [55].

The flux of linear momentum emitted in gravitational
waves in terms of Q�‘m and Q
‘m can be computed by
inserting Eq. (30) in Eq. (27), then decomposing ni in
spherical harmonics and performing the angular integral.
This procedure goes along the lines discussed by Thorne in
Ref. [59], where all the relevant formulas are essentially
available (cf. Eq. (4.20) there. See also Ref. [60]), so that
we only need to adapt them to our notation. In Ref. [59] the
even-parity (or electric) multipoles are indicated with I‘m
and the odd-parity (or magnetic) ones with S‘m. They are
related to our notation by

 

�‘�I‘m � Q�‘m; (31)

 

�‘�1�S‘m � Q
‘m; (32)

where �‘�f‘m � d‘f‘m=dt
‘. From the well-known property

�Q�;
‘m �
� � ��1�mQ�;
‘�m, where the asterisk indicates com-

plex conjugation, one can rewrite Eq. (4.20) of Ref. [59] in
a more compact form. Following Ref. [61] where the low-
est multipolar contribution was explicitly computed in this
way, it is convenient to combine the components of the
linear momentum flux in the equatorial plane in a complex
number as F x � iF y. The multipolar expansion of the flux
vector can be written as

 F x � iF y �
X1
‘�2

X‘
m�0

	m�F ‘m
x � iF ‘m

y �; (33)

 F z �
X1
‘�2

X‘
m�0

	mF ‘m
z ; (34)

where 	m � 1 if m � 0 and 	m � 1=2 if m � 0. Each
multipole reads
 

F ‘m
x � iF ‘m

y �
��1�m

16�‘�‘� 1�

�
�2i�a�‘m _Q�‘�mQ



‘m�1

� a�‘m _Q�‘mQ


‘��m�1�	 �

�����������������������������������
‘2�‘� 1��‘� 3�

�2‘� 1��2‘� 3�

s


 �b�‘m� _Q�‘�m _Q�‘�1m�1 �Q


‘�m

_Q
‘�1m�1�

� b�‘m� _Q�‘m _Q�‘�1��m�1�

�Q
‘m _Q
‘�1��m�1��	

�
; (35)

 F ‘m
z �

��1�m

8�‘�‘� 1�

�
2m Im� _Q�‘�mQ



‘m	

� c‘m

�����������������������������������
‘2�‘� 1��‘� 3�

�2‘� 1��2‘� 3�

s
Re� _Q�‘�mQ

�
‘�1m

�Q
‘�m _Q
‘�1m	

�
; (36)

and
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 a�‘m �
������������������������������������������
�‘�m��‘�m� 1�

p
; (37)

 b�‘m �
���������������������������������������������������
�‘�m� 1��‘�m� 2�

p
; (38)

 c‘m �
���������������������������������������������������
�‘�m� 1��‘�m� 1�

p
: (39)

Note that here both F ‘m
x and F ‘m

y are real numbers and are
obtained as the real and imaginary part of the right-hand-
side of Eq. (35). For a general system without symmetries
one is expecting F ‘m

z to be nonzero. However, our initial
data setup, an inspiraling binary with spins antialigned and
parallel to the orbital angular momentum, implies that the
linear momentum flux vector is completely contained in
the equatorial plane of the system and so that F ‘m

z � 0 by
construction. Since we are imposing equatorial symmetry
(i.e., invariance for �! �� �) we have that multipoles
with ‘�m � even are purely even-parity (i.e., Q�‘m � 0
andQ
‘m � 0) and those with ‘�m � odd are purely odd-
parity (i.e., Q�‘m � 0 and Q
‘m � 0). As a final remark, we
note that for ‘ � m � 2, our Eq. (35) reduces to Eq. (9) of
Ref. [61].

IV. RESULTS

This section collects the results of our analysis of the
recoil velocity of spin-aligned binaries and discusses the
different aspects of the study which combined provide a
consistent and accurate picture of this process. We will first
concentrate on the systematic error introduced by the use
of initial data with zero linear momentum and on the
techniques we have developed to remove it. We will then
discuss the actual computation of the recoil velocities and
their dependence on the spin ratio, highlighting the modes
of the radiation which are largely responsible for the
asymmetric emission. Finally, we will discuss the accuracy
of our measurements and our ability to preserve mass and
angular momentum to below 1%.

A. Initial transients in the waveforms

Both Eqs. (28) and (35) provide an expression of the
recoil velocity in terms of the radiated (linear) momentum
per (infinitesimal) time interval. A time-integration of
those equations is needed in order to compute the recoil
and this obviously opens the question of determining an
integration constant which is in practice a vector.
Fortunately, this integration constant has here a clear
physical meaning and it is therefore easy to compute. In
essence it reflects the fact that at the time the simulation is
started, the binary system has already accumulated a non-
vanishing net momentum as a result of the slow inspiral
from an infinite separation.

Since the initial data is constructed so as to have a
vanishing linear momentum, there will be a inconsistency
between this assumption and the actual evolution of the
initial data. Stated differently, the numerical evolution of

the Einstein equations will soon tend to a spacetime which
is different from the initial one and indeed corresponding
to one with a net linear momentum. This momentum is the
one that the binary has gained when inspiralling from t �
�1 till t � 0. Calculating the integration constant
amounts therefore to computing the vector accounting for
this mismatch and is essential for a correct measurement of
the recoil velocity. The error made when neglecting this
constant, as routinely done in numerical-relativity calcu-
lations, inevitably produces a systematic deviation from
the correct answer and, as we will show in the next section,
it can altogether prevent from having even the qualitative
behavior right.

The relevance of this integration constant depends on the
initial separation and it is more important for binaries that
start their evolution already quite close. This is rather
obvious: the tighter the binary is, the larger the emitted
momentum per unit time and the more important is to
evaluate the initial mismatch. Figure 5 helps to illustrate
this point and can be discussed before entering into the
details of how we actually compute the integration con-
stant. The figure shows the time evolution of the recoil

velocity jvjkick �
�����������������
v2
x � v

2
y

q
for the same binary system

having spin ratio a1=a2 � �1 but with increasing initial
separation. More precisely, we consider systems r0l, r0
and r0s which differ only in the initial separation, which is
about 8.4, 6.0, and 5:6M, respectively. The data Fig. 5 is
properly shifted in time so as to have the curves overlap
and shows that only when the integration constant is prop-
erly taken into account, do the three simulations yield the
same recoil velocity (cf., solid, dashed, and dotted lines).
On the other hand, when the integration constant is not
included in the calculation, different evolutions will yield
different estimates, with a systematic error that can be as

FIG. 5 (color online). The recoil velocity of the binary r0 is
compared to those of the same system but with either a larger or
a smaller initial separation (i.e., r0l and r0s, respectively). Note
the same recoil velocity is obtained when the integration con-
stant is properly taken into account, while an error as large as
�13% is made otherwise.
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large as 13% (cf., long-dashed and dot-dashed lines) and is
clearly unacceptable given that the overall precision of the
simulations is below 1% (cf., Figs. 11 and 12 and the
discussion in Sec. IV D).

Besides providing the right answer, the calculation of the
integration constant also results in a considerable saving in
computational costs. The complete dynamics of the binary
r0l including the merger and ringdown, in fact, requires
simulations for about 600M; the same answer in terms of
recoil velocity can be obtained with the system r0s, whose
dynamics is fully accounted for with a simulation lasting
only for 340M.

Having stressed the importance of including the integra-
tion constant in the measurement of the recoil velocity, we
next illustrate how to actually compute it. In essence, it is
sufficient to look carefully at the evolution in the velocity-
space of the two components vx and vy of the recoil
velocity (because of the symmetry the z-component is
zero but the method described here can be easily extended
to the case in which vz � 0). This is shown in the left panel
of Fig. 6, which reports the track of the ‘‘center of mass’’
for system r0 in such a space. Different types of line refer
to different intervals in time during the evolution and, for
an observer at rE � 50M, the dotted one refers to t & 50M,
the dashed one to 50M & t & 75M, the continuous one to
75M & t & 183M, and finally the long-dashed one to t *

183M.
Clearly, for t & 50M the system undergoes very little

evolution in velocity-space (cf., dotted line in the inset
within the inset of the left panel) but a rapid change, lasting
for about 25M, takes place as the radiation reaches the

observer. The radiation received has information about the
‘‘correct’’ linear momentum of the spacetime which is
solution of the Einstein equations for system r0 as if it
had inspiraled from infinity, and thus rapidly moves the
center of mass to a net nonzero recoil velocity (cf., almost-
straight dashed line in the inset in the left panel). Once the
system has adjusted for the proper linear momentum, the
evolution proceeds as expected, with the recoil velocity
vector slowly tracking a spiral in velocity space. This is an
important point which we prefer to underline: the rate of
change of linear momentum is very large only initially and
this is because as the binary migrates from the initial
nonradiating state (the data is conformally flat) to the
consistent radiating state, it will emit the amount of linear
momentum it would have emitted when inspiralling from
infinite separation. After this burst of linear momentum,
the evolution of the recoil velocity is minute, essentially
until it grows very rapidly during the last orbit.

Computing the integration constant consists then in
calculating the position of the center of the spiral and
this can be done either by a simple inspection of a graph
in the velocity-space, from which compute the center of the
spiral or, equivalently, by searching for the initial vector
that would lead to an essentially monotonic in time growth
of the recoil velocity [62]. The latter procedure does not
require a human judgment but we have found it to yield the
same answer (to less than 1 km=s) as the one guessed by
looking at the velocity space.

The right panel of Fig. 6 shows the same evolution as the
left one, but through different quantities. The upper panel,
in particular, shows the time evolution of the recoil velocity

FIG. 6 (color online). Left panel: Evolution in velocity space of the recoil-velocity vector. Very little variation is recorded before the
radiation reaches the observer at rE � 50M (dotted lines in the two insets). The absence of the proper linear momentum in the initial
data triggers a rapid and an almost straight-line motion (dashed line) of the center of the spiral away from the origin of coordinates
during the initial stages of the evolution. After this transient motion, the evolution is slower, with the spiral progressively opening up
(solid line). The vector to the center of the spiral corresponds to the initial linear momentum of the spacetime and is used as integration
constant for Eqs. (28) and (35). The final part of the evolution is characterized by a change in the spiral pattern (long-dashed line) as a
result of the interaction of different modes in the ringdown of the final black hole. Note that the figure has been rotated clockwise of
about 30� to allow for the two insets. Right panel: Initial behavior of the recoil velocity (upper graph) and of the waveform (Q�22) for
model r0 (lower graph). This figure should be compared with the initial vector evolution of the recoil velocity shown in the left panel
where the same types of lines have been used for the different stages of the evolution.
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and the rapid changes it undergoes initially when the
radiation first invests the observer. The lower panel, on
the other hand, shows the Q�22 amplitude and highlights
that, while the initial burst of radiation stops after t� 50M
(cf., dotted line), the waveform is still not fully consistent
until t� 75M (cf., dashed line).

The procedure discussed so far for the calculation of the
integration constant relative to the binary system r0 applies
qualitatively to all the other members of the sequence, with
differences that are due essentially to the times at which the
various stages take place.

It is worth remarking that the evolution of the recoil
vector in the velocity-space has another interesting feature
during the final stages of the evolution and when the final
black hole is ringing down. This is marked as a long-
dashed line in the left panel of Fig. 6 and shows a break
in the building of the spiral and the appearance of a new
spiral with a different aperture (we refer to this feature as
‘‘the hook’’). This is more evident in the left panel of
Fig. 7, which shows the evolution of the recoil vector for
the binary system r7 and offers a magnification of the hook
in the inset. A more detailed description of this feature is
beyond the scope of this paper and will be presented in a
future work, but we can here point out that the hook
accounts for a rapid change in the recoil velocity and it is
due to the interplay of different modes during the ring-
down. This is clearly illustrated in the right panel of Fig. 7
which similarly reports the time evolution of the recoil
velocity and the final stages of the Q�22 waveform.

B. Recoil velocities

The recoil- velocity has been calculated for the sequence
of models listed in Table I. As mentioned in Sec. II D, this
sequence corresponds to equal-mass black holes, whose

initial spins are unequal, though always aligned with the
z-axis. The r0 model has equal but opposite spins, while
the r8 model has equal and aligned spins on the black
holes, with other models corresponding to intermediate
values, as outlined in Sec. II D. Since the total initial orbital
angular momentum L of the system is chosen to be con-
stant over the sequence, the initial separations of the black
holes increases in the sequence, as well as the time to
merger due to spin-spin effects which contribute to an
orbital ‘‘hang-up’’ in the aligned case.

We extract gravitational waves by both the gauge-
invariant and the �4 methods described in the previous
section and by interpolating the radiation-related quantities
onto 2-spheres at coordinate radii rE � 30M, 40M, 50M,
and 60M. The use of multiple extraction radii is made to
check the consistency of the measurement and the precise
value of the extraction radius has little influence on the
actual kick calculation. In the case of the binary system r0
we have verified that the recoil velocity yields the same
value with differences that are smaller than 2 km=s for
extraction 2-spheres at distances larger than 30M. As a
result, we have used rE � 50M as the fiducial distance for
an observer in the wave-zone and all of the results pre-
sented hereafter will be made at this extraction 2-sphere. A
validation that the gauge-invariant quantities have the
proper scaling with radius is presented in Appendix C.

The evolution of the recoil velocity for the entire se-
quence listed in Table I is displayed in the left panel of
Fig. 8. It is apparent that the suitable choice of the inte-
gration constant discussed in the previous section yields
early evolutions that are always monotonic in time and
that, as expected, the largest recoil velocity is generated for
the case in which the asymmetry is the largest, namely, for
the binary r0. The left panel Fig. 8 also shows that the

FIG. 7 (color online). Left panel: The same as in the left panel of Fig. 6 but for system r7. Shown in the inset is the sudden
reorientation of the recoil velocity vector during ringdown and corresponding to a new spiral with different aperture (long-dashed line).
Although more pronounced in r7, the appearance of this hook at ringdown is seen all the members of the sequence. Right panel: The
same as in the left panel of Fig. 6 but for system r7. The upper graph concentrates on the final stages of the evolution in of the recoil
velocity and on the appearance of a second peak during ringdown (long-dashed curve). The lower graph shows the same but in terms of
the Q�22 waveform. A discussion of these final stages of the evolution is made in Sec. IV C.
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profile for each case is rather similar, with the largest
contribution to the kick velocity being generated in a
period of about 80M, corresponding roughly to the time-
scale of the last orbit and merger. Furthermore, it is notable
that 95% of the acceleration occurs �30M after the ap-
pearance of the first common apparent horizon, indicating
that the kick is generated not only by the final stages of the
inspiral (i.e., by the ‘‘plunge’’) but also and more signifi-
cantly by the ringdown of the final black hole. This fact
helps to explain why accurate recoil velocities can be
obtained by evolutions involving very few cycles only,
provided the integration constant is properly taken into
account.

It is worth noting that during the final stages of the
evolution, the recoil velocity is not monotonic but shows
at least two peaks, whose relative amplitude depends on the
spin ratio. For spin ratios �� 1 the first peak is hardly
visible, while the second one is the most pronounced one.
As the spin ratio increases, however, the first peak becomes
more prominent and for spin ratios �1 it becomes compa-
rable with the second one or even larger for binaries r6 and
r7. As mentioned in the previous section and further dis-
cussed in the following one, the appearance of these peaks
is related to the interplay of different mode-contributions
during the ringdown. The second peak, in particular, can be
associated to a rapid change in the recoil-velocity vector
and is behind the characteristic ‘‘hook’’ discussed in the
left panels of Figs. 6 and 7. While additional work is
needed, especially in thorough perturbative investigations,
to fully account for the rich, post-merger properties of the
recoil velocities, we believe the double-peak evolution to
be physically genuine since it is seen in all binaries and is
supported by the highly accurate and convergent simula-
tions. As a representative measure of the accuracy in
determining these recoil velocities, we mention that we
have carried out simulations also for the binary system r8,

in which the black holes have identical spin and thus from
which no kick should result. The computed recoil velocity
has been found to be 10�9 km=s, clearly indicating that our
evolutions do an excellent job in preserving the orbital
symmetry of these binaries.

We have found that the evolution of the recoil velocity
generated by spin asymmetries appears to be rather differ-
ent from the one generated by mass asymmetries [8,10,47]
and which shows much larger variations between the
maximum attained value and the final one. Once again,
this different behavior is related to the different interplay of
the ringdown modes in the case of mass asymmetries and
will be presented in a separate work.

The recoil velocities attained by the final black holes and
shown for in the left panel of Fig. 8 can be studied in terms
of their dependence on the spin ratio a1=a2, which can also
be regarded as the ‘‘asymmetry’’ parameter of the system,
being the largest for a1=a2 � �1 and zero for a1=a2 � 1.
These velocities are collected in Table II and are shown as a
function of a1=a2 in the right panel of Fig. 8, where we
have indicated with open circles the values obtained using
�4 and with stars those obtained using the gauge-invariant
perturbations.

The data in the right panel of Fig. 8 is shown together
with its error-bars, which include errors from the determi-
nation of the integration constants, from the truncation
error and from the amount of ellipticity contained in the
initial data. We have estimated these errors to be of 5 km=s
for binaries r0–r5 and of 8 km=s for binaries r6 and r7.
Shown also in the inset is the recoil data obtained when
ignoring the integration constant. It is remarkable that
when the proper evaluation of the initial transient is not
made, the data does not show the remarkable correlation
with the spin ratio which is instead shown by the corrected
data. Quite surprisingly, however, the correlation found the
one predicted by PN studies. We recall, in fact, that using

FIG. 8 (color online). Left panel: Recoil velocity as a function of the spin asymmetry parameter a1=a2 for the models listed in
Table I. Indicated with a continuous lines are the results obtained via �4, while a dashed line is used for the gauge-invariant quantities
Q�;
‘m . Right panel: Final recoil velocity calculated with both the use �4 (empty circles) and the gauge-invariant quantities (stars).
Shown in the inset is the incorrect scaling obtained when the correction for the integration constant is not made.
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PN theory at the 2.5 order, Kidder [63] has concluded that
in the case of a circular, nonprecessing orbit, the total kick
for a binary system of arbitrary mass and spin ratio can be
expressed as [5]

 jvjkick � c1
q2�1� q�

�1� q�5
� c2

a2q
2�1� qa1=a2�

�1� q�5

� ~c2a2

�
1�

a1

a2

�
; (40)

where q � M1=M2 is the mass ratio and is equal to one for
the binaries considered here, thus leading to the second
form of Eq. (40). The coefficients c1 and ~c2 � c2=32
depend on the total mass of the system and on the orbital
separation at which the system stops radiating, which is
intrinsically difficult to determine with precision since it
lies in a region where the PN approximation is not very
accurate. Indeed, we find that the coefficient c2 is not really
a constant in the case of equal-mass binaries but, rather, it
can be seen to depend at least linearly on the spin ratio.

This is shown in Fig. 9, whose upper panel offers a
comparison among the computed data for the recoil veloc-
ity (open circles) with the least-squares fits using either a
linear (dotted line) or a quadratic dependence (dashed
line). It is quite apparent that a linear dependence on
a1=a2, such as the one expected in Eq. (40) for c2 �
const does not reproduce well the numerical data and
yields pointwise residuals of the order of 20 km=s. These
are shown with a dotted line in the lower panel of Fig. 9. A
quadratic dependence on a1=a2, on the other hand, repro-
duces the numerical data very nicely, with residuals that
are of the order of 5 km=s, as shown with a dashed line in
the lower panel of the same figure, and thus compatible
with the reported error-bars.

We can reexpress Eq. (40) in the more generic form

 jvjkick

�
a2;

a1

a2

�
� ja2jf

�
a1

a2

�
(41)

where a2 plays here the role of a ‘‘scale-factor’’. The
function f�a1=a2� with a1=a2 2 ��1; 1	 and maximum at
a1=a2 � �1 can then be seen as to be determined from
numerical-relativity calculations (or higher-order PN ap-
proximations) and our least-squares fit suggests the ex-
pression

 fquad � 109:3� 132:5
�
a1

a2

�
� 23:1

�
a1

a2

�
2

km=s: (42)

The maximum kick velocity for a given a2 is then readily
calculated even without a detailed knowledge of the func-
tion f�a1=a2� as

 �jvjkick�
max�a2� � ja2jf��1�: (43)

Using the data reported in Table II for a2 � �0:584 we
obtain for ja2j � 1 that the maximum recoil velocity at-
tainable from a binary system of equal-mass black holes
with spins aligned to the orbital angular momentum is
448� 5 km=s. This is in very good agreement with our
previous estimate made in Ref. [10] with a smaller se-
quence and in equally good agreement with the results
reported in Ref. [9].

C. Mode contributions to the recoil velocity

For the models studied in the previous section we have
evaluated Eq. (35) including modes up to ‘ � 7. In prac-
tice, however, we find that the recoil is strongly determined
by the lower-mode contributions. In particular, the two
terms

FIG. 9 (color online). Upper panel: Comparison of the com-
puted data for the recoil velocity (open circles) with the least-
squares fits using either a linear (dotted line) or a quadratic
dependence (dashed line). Lower panel: Point-wise residuals
computed with the linear (dotted line) or a quadratic fit (dashed
line).

TABLE II. Final kick velocities in units of km/s for the models
listed in Table I. Columns two and three show the values
obtained using the gauge-invariant quantities Q
;�‘m and �4

respectively and taking into account the integration constant.
Columns four and five, on the other hand, show the results
obtained when ignoring the integration constant. The same
data are shown in the right panel of Fig. 8.

Model Q
;�‘m �4 Q
;�‘m , no ic �4, no

r0 263.2 261.8 288.9 288.4
r1 222.4 221.4 211.9 210.6
r2 187.1 186.2 174.8 173.3
r3 143.3 144.0 155.9 157.3
r4 104.8 106.1 100.0 101.3
r5 81.4 81.5 76.9 77.0
r6 45.6 45.9 55.4 56.2
r7 19.4 20.6 13.8 14.8
r8 0.0 0.0 0.0 0.0
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2 1 (45)

are the dominant ones. This can be seen in Fig. 10, where
the time evolutions of the terms q1 and q2 are plotted
(dotted and dashed lines, respectively) together with the
total kick calculated via Eq. (35) (solid line), and with the
contributions from all other terms up to ‘ � 7 excluding q1

and q2 (long-dashed line). A rapid inspection of the figure
reveals that the kick is dominated, in particular, by the q2

term, whereas the q1 term has a magnitude of the order of
all the other modes combined. A similar result holds for
each member of the sequence, so that the two contributions
determine the final kick to more that 95%. It should be
noted that the mode contributions are vector quantities, just
as the kick velocity itself, and are not always aligned or
even maintain the same angle to each other during the
duration of the recoil.

This coupling also goes some way to explain some
features of the recoil velocity profiles displayed in Fig. 8.
As mentioned in the previous section, in fact, the binaries
r4 to r8 show a clear double peak in the evolution of the
kick velocity before it settles down to the final value. The
same feature can also be seen in the more asymmetric r0 to
r3 binaries, where it appears as a flattening of the slope
near the maximum. Since the two peaks are shown both by
the gauge-invariant and by the �4-based techniques
(which are rather different in both the assumptions they
rely on and in the practical implementation) we do not
believe them to be a simple numerical artifact. Overall, the
properties of the recoil velocity near its maximum, and
before it settles to the final value, are determined by the
relative phases of the two contributions identified above.

An analysis of the terms q1 and q2 in vector-space, and
which will be presented in a subsequent work, reveals that
when they are relatively aligned at the peak of the accel-
eration, there is a clear single peak in the evolution. For the
more symmetric models, on the other hand, the two con-
tributions are more antialigned and a double peak results.

These considerations in the vector evolution of the two
contributions q1 and q2 need also to be linked with the
evolution in vector space of the recoil velocity. As stressed
in Sec. IVA, in fact, there is a distinct kink in the evolution
of the velocity vector towards the final stages of the merger
(this feature is indicated with a long-dashed line in the vx
vs vy plots of Figs. 6 and 7). The presence of the kink
corresponds to a local decrease of the recoil velocity and
hence to the minimum between the two peaks. Because this
decrease is more pronounced for the lower-kick binaries r4
to r8, the first peak becomes more evident there.

D. Angular momentum and mass conservation

In this section we discuss the radiated angular momen-
tum and energy during the evolution of the different initial-
data sets. We compute the radiated angular momentum and
mass by calculating their difference between the initial
data and that of the final black hole, and then compare
these quantities with the corresponding ones measured in
terms of the emitted gravitational radiation. The differ-
ences in the two independent estimates serve therefore as
stringent indicators of the conservative properties of our
code.

The radiated angular momentum can be simply written
as the difference between the initial and final values

 J rad � J fin� Jini; (46)

where, as a result of the conformal flatness of the initial-
data slice, Jini is given by the simple expression (see for

FIG. 10 (color online). The total kick calculated via Eq. (35) up to ‘ � 7 is compared to the contributions of individual terms q1 and
q2, as well as the sum of term excluding these. In the case of the r0 system (left panel) the spins are antialigned and the q2 term is
dominant and the q1 term does not provide a significant contribution. In the case of the r7 system (right panel), on the other hand, the
spins are essentially aligned and the while the q2 term is still dominant, the q1 term also makes a significant contribution.
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example [39–41] and discussion in Sec. II)

 J ini � JADM � C1 
 p1 � C2 
 p2 � S1 � S2: (47)

Here Ci, pi and Si are the position, the linear momentum
and the spin of the ith black hole. The final angular
momentum Jfin, on the other hand, is set to be equal to
the spin of the final black hole after all the radiation has left
the computational domain. Two different methods are used
to obtain this measure, both of which are based on prop-
erties of the apparent horizon of the final hole.

The first method employs the isolated/dynamical hori-
zon formalism and searches for a rotational Killing vector
�a on the final apparent horizon so as to measure the spin
of the final black hole as [64–66]

 J � �
1

8�

I
S
Kab�ar̂bd2V: (48)

We note that this expression (48) is valid on any sphere
where a Killing vector �a can be found, and is therefore a
quasilocal measure of the angular momentum. In particu-
lar, at large distances where the spacetime is close to
axisymmetric, there is a good approximation to an angular
Killing vector, and we can apply this expression to deter-
mine the angular momentum of the spacetime. Note also
that Eq. (48) is identical to the ADM angular momentum
when evaluated at spacelike infinity. (Refs. [65,66] also
give a quasilocal formula for the angular momentum flux
due to gravitational radiation.)

The second method instead, assumes that the final black
hole has settled to a Kerr one and uses the rotational-
induced distortion of the apparent horizon of the final black
hole to estimate its spin. Defining Cp and Ce to be, re-
spectively, the apparent horizon’s polar and equatorial
proper circumferences, their ratio Cr � Cp=Ce will
undergo damped oscillations as the perturbed black hole
settles to a Kerr state through the quasinormal ringing. The
final value of Cr can be expressed as a nonlinear function
of the dimensionless spin parameter a � J=M2 as [21,67–
69]

 Cr�a� �
1�

��������������
1� a2
p

�
E
�
�

a2

�1�
��������������
1� a2
p

�2

�
; (49)

where E�k� is the complete elliptic integral of the second
kind

 E�k� �
Z �=2

0

�����������������������
1� ksin2�

p
d�: (50)

By inverting numerically Eq. (49) we obtain a from the late
time Cr that is measured from the apparent horizon shape.
Note that for computing J we need to multiply a by the
square of the final mass, which we take to be MADM �
Mrad. An alternative choice involving the total mass equa-
tion (17) as measured from the apparent horizon would
lead to essentially the same results.

As mentioned at the beginning of this section, the deter-
mination of the radiated angular momentum can also be
done using directly the asymptotic waveform amplitudes
h� and h
 as [55,70,71]

 

d2J
dtd�

� �
r2

16�
�@th�@�h�� � @th
@�h

�

�; (51)

where the amplitude h� and h
 themselves can be ex-
pressed either in terms of the Zerilli-Moncrief gauge-
invariant variables Q�‘m, Q
‘m or, alternatively, in terms of
the Newman-Penrose scalar �4. A comparison between
the two approaches is presented in Appendix C, where it is
shown that the differences are minute. Because of this,
hereafter we will refer to asymptotic amplitudes measured
in terms of the gauge-invariant variables only. Additional
details on the resolution of the extraction 2-sphere are also
presented in Appendix B.

The left panel of Fig. 11 summarizes this comparison by
showing, as functions of the spin ratio a1=a2, MJfin from
Eq. (48), Jrad from Eq. (51) both adding nicely to yield Jini.
Note that Jini is growing linearly as it is obvious from
Eq. (47), but also that that a similar behavior is shown by
the radiated angular momentum (and hence by the final
spin of the black hole). Using a linear fitting we can derive
phenomenological expressions for the relative losses of
angular momentum

 

Jrad

Jini
� �Jrad

�
a1

a2

�
� 
Jrad; (52)

and the relative spin-up of the final black hole

 

Jfin

Jini
� �Jfin

�
a1

a2

�
� 
Jfin: (53)

The fitted values for �Jrad;fin and 
Jrad;fin are presented in
Table III and readily indicate that the system loses 24% of
its initial orbital angular momentum in the case of anti-
aligned spins and up to 34% for aligned spins.

To the best of our knowledge expressions (52) and (53)
do not have a PN counterpart and yet, since they depend
only on the spin-ratio, they represent simple and powerful
ways of estimating both the efficiency in the extraction of
angular momentum and the spin of the final black in a
binary merger when the spins are orthogonal to the orbital
plane. This information could be easily injected in those
N-body simulations in which the interaction of binary
black holes is taken into account [72] and thus yield
accurate estimates on final distribution of black-hole spins.

Since we have two independent and different ways of
computing Jrad [i.e., either from Eq. (51) or from Eq. (46)]
we can quantify our ability to conserve angular momentum
by measuring the normalized residual

 

�J
Jini
�
Jfin � Jrad � Jini

Jini
: (54)

This is shown in the right panel of Fig. 11 and the two
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different lines refer to the two measures of the final spin of
the black hole, i.e., either via the isolated-horizon formal-
ism (triangles) or via the distortion of the apparent horizon
(squares). In both cases the error is extremely small, rang-
ing between 1.1% and 0.2% for simulations at the medium
resolution, and thus providing convincing evidence of our
accuracy in the preservation of angular momentum. It
should be noted that while there seems to be a small
advantage in using the isolated horizon measure, the dif-
ferences are too small to be significant. Indeed, a small
change in the procedure, such as the use of the mass
measured via the apparent horizon via Eq. (49) in place
ofMini �Mfin (as we are doing in this figure), would revert
the advantage.

We proceed next to a similar analysis for the conserva-
tion of the mass-energy of the system by considering the
difference between the initial mass and final plus the
radiated masses. As for the initial mass we obviously
consider the ADM mass of the system MADM, while the
radiated energy Mrad is computed through the gravitational
waveforms [55,73,74]

 

d2E
dtd�

�
r2

16�
�j _h�j2 � j _h
j2�: (55)

As for the angular momenta, we have chosen to express the
right-hand side of Eq. (55) in terms of the Zerilli-Moncrief
functions and to use as final mass of the black holeMfin, the
one given by Eq. (17) and measured via the apparent
horizon.

The left panel of Fig. 12 shows MADM, Mfin and Mrad,
with the latter rescaled the radiated by a factor of 10 to
make it more visible. Also in this case there is a clear linear
behavior of both the radiated energy and of the final mass
of the black hole in terms of the spin ratio. As a result,
phenomenological expressions of the type (52) and (53) are
possible also for Mfin and Mrad. The corresponding values
of the coefficients �Mrad;fin and 
Mrad;fin are also presented in
Table III.

Finally, to check the precision at which the energy is
conserved, and in analogy to Eq. (54), we have computed
the relative error

 

�M
MADM

�
Mfin �Mrad �MADM

MADM
; (56)

and plotted this as a function of the spin ratio in the right
panel of Fig. 12. Clearly, also the energy losses are ex-
tremely small and for all the binaries in the sequence, the
error in the energy balance is below 0.52% at the medium
resolution. Table IV summarizes the numerical results for
the radiated energy and angular momentum for the mem-
bers of the sequence.

TABLE III. Coefficients for the phenomenological expressions
(52) and (53) (and the corresponding coefficients for
�Mrad;fin=M) by means of which it is possible to compute the
relative losses of energy and angular momentum, as well as the
final mass and spin of the black hole in binary mergers in which
the spins are orthogonal to the orbital plane.

�Jrad 0.0513 �Mrad 0.0118


Jrad 0.2967 
Mrad 0.0437

�Jfin �0:0513 �Mfin �0:0118


Jfin 0.7033 
Mfin 0.9563

FIG. 11 (color online). Left panel: Dependence on the spin ratio of the initial total angular momentum Jini [as computed from
Eq. (47)], of the radiated angular momentum Jrad [as computed through the gauge-invariant waveforms], and of the final spin of the
black hole Jfin. All quantities show a linear behavior, whose coefficient are collected in Table III. Right panel: Relative error �J=Jini in
the conservation of the angular momentum [cf., Eq. (54)]. Different curves refer to whether the final spin of the black hole is computed
using the isolated/dynamical horizon formalism (triangles) or the distortion of the apparent horizon (squares). In both cases the error is
of about 1% at most for simulations at the medium resolution.
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V. CONCLUSIONS

We have performed a highly-accurate study of recoil
velocities in binary black hole mergers from a sequence of
equal-mass black holes with varying spin configurations.
In this sequence, the spins are aligned with the orbital
angular momentum since there are strong indications that
such alignment is preferred in astrophysical situations.
This makes our choice of initial data especially realistic
and our results particularly relevant also within an astro-
physical context.

In practice, the initial configurations are built so that the
spin of one of the black holes is kept at a constant dimen-
sionless value a2 � 0:584 while the other varies from a1 �
�a2 to a1 � �a2, thus spanning a range between �1 and
1 in spin ratio. We have followed our black hole evolutions
for about two to four orbits and then throughout the plunge,
merger, and ringdown phases. This work thus extends and
refines recent results obtained from a reduced but similar
initial-data sequence [10].

The main aspects of this work, which revolve around the
methods used, the tests performed and the results obtained,
can be summarized as follows.

Methods. To increase the significance of our results and
our confidence in their accuracy, we have implemented two
independent methods for the calculation of the linear mo-
mentum from the emitted gravitational radiation. These are
based on either the measure the Newman-Penrose scalar
�4 or on the calculation of the gauge-invariant perturba-
tions of a Schwarzschild black hole Q
;�‘m . Overall, we find
that both methods of calculating the linear momentum loss
agree excellently and we are thus able to obtain accurate
recoil measurements with error bars of 5 km=s for the
antialigned spin binaries and of 8 km=s in the aligned
cases.

Such a good agreement, however, is attainable only if the
initial transient in the waveform is properly taken into
account. The transient is produced by the use of initial
data not containing the net linear momentum the system
has accumulated since inspiralling from infinite separation.
We discuss the importance of choosing the correct vector
integration constant when calculating the radiated linear
momentum and describe an unambiguous method for
doing so.

We remark that a proper choice of this constant is
essential not only because it influences the final recoil
velocity with differences of 10% and more, but also be-
cause it allows for a systematic interpretation of the results.
Without it, in fact, the correct functional dependence of the
final recoil velocity on the spin ratio is irremediably lost
and a comparison with the PN prediction impossible. Last
but not least, a proper integration constant can result in a
significant saving of computational time, allowing simula-
tions to start at much smaller initial separations without
sacrificing accuracy.

Tests. In order to show the accuracy of our results, we
demonstrate that both the Zerilli-Moncrief gauge invariant

FIG. 12 (color online). Left panel: Dependence on the spin ratio of the ADM mass MADM, of the scaled radiated energy Mrad [as
computed through the gauge-invariant waveforms and scaled by a factor of 10 to make it visible], and of the final mass of the black
hole Mfin. All quantities show linear behaviors, whose coefficients are collected in Table III. Right panel: Relative error �M=Mini in
the conservation of the energy [cf., Eq. (56)]. Note that the error is of about 0.5% at most for simulations at the medium resolution.

TABLE IV. Final and radiated angular momenta and masses,
computed from the gauge-invariant waveforms. Shown is also
the radiated spin and mass relative to their initial values, which
are listed in Table I.

a1=a2 Jfin Jrad Jrad=JADM Mfin Mrad Mrad=MADM

r0 �1:00 0.6244 0.2008 0.2434 0.9536 0.0320 0.0325
r1 �0:75 0.6391 0.2222 0.2580 0.9507 0.0348 0.0353
r2 �0:50 0.6530 0.2449 0.2727 0.9482 0.0374 0.0380
r3 �0:25 0.6676 0.2670 0.2857 0.9461 0.0396 0.0402
r4 0.00 0.6827 0.2886 0.2971 0.9439 0.0420 0.0426
r5 0.25 0.6966 0.3106 0.3084 0.9412 0.0450 0.0456
r6 0.50 0.7075 0.3363 0.3222 0.9376 0.0488 0.0495
r7 0.75 0.7181 0.3626 0.3355 0.9344 0.0523 0.0530
r8 1.00 0.7292 0.3878 0.3471 0.9315 0.0557 0.0564
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waveforms and the Einstein tensor converge with an order
between three and four, which is the expected convergence
behavior of our numerical methods.

Furthermore, because the Newman-Penrose scalar �4

serves as a measure for the radiation content of the space-
time in appropriately chosen frames and at sufficiently
large distances from the source, we show that the peeling
property is indeed well satisfied in our numerical simula-
tions. In particular, we demonstrate that both the gravita-
tional wave information �4 and the gauge-wave
information �3 satisfy the expected scaling with radius.
Similarly, we also show that, as expected, the gauge in-
variant quantity Q�22 does not vary with radius.

Finally, we investigate those systematic effects that may
influence our gravitational-wave measurements. In particu-
lar, we study the effects that the choice of the extraction
radius has on the final kick velocity and find little influence
for rE � 30M. Based on this, we choose rE � 50M as the
fiducial extraction radius in this paper. Furthermore, to
exclude that the effects of the eccentricity in our initial
data are significant for this paper, we artificially increase or
reduce the eccentricity of the initial data by comparatively
large amounts. Also in this case we find that the differences
in the recoil velocities are below the estimated error-bars.
Altogether, the set of tests carried out gives us confidence
that our waveforms and recoil velocities are both correct
and accurate.

Results. Using the mathematical and numerical setup as
described and tested above, we have investigate the depen-
dence of the recoil velocity on the initial data parameters
and most notably on the spin ratio a1=a2. As expected, a
larger asymmetry in the initial conditions causes a larger
recoil, with a velocity of about 262 km=s for a binary of
equal and antialigned spins, and a numerically computed
recoil of 10�9 km=s for a binary of equal and aligned spins.

Using such accurate measurements, we have then
studied the functional dependence of the recoil velocity
on the spin ratio finding that a quadratic behavior repro-
duces very well the numerical results and corrects the post-
Newtonian prediction of a linear dependence. We summa-
rize this behavior in a phenomenological expression that
can be readily employed in astrophysical studies on the
evolution of binary black holes in massive galaxies.

With a straightforward extrapolation of the quadratic
dependence to the maximal spinning case a1 � �a2 � 1
we obtain 448� 5 km=s as the maximal possible recoil
velocity attainable from a binary system of equal-mass
black holes with spins aligned to the orbital angular mo-
mentum. This recoil velocity is in very good agreement
with our previous estimate made in Ref. [10] with a smaller
sequence and in equally good agreement with the results
reported in Ref. [9].

As mentioned above, the inclusion of the integration
constant has been essential to obtain physically consistent
results. At the same time, its investigation has allowed to

highlight some important features of the evolution of the
recoil velocity in vector space. Most importantly, it has
shown that even when all nonspherical modes up to ‘ � 7
are taken into account, the recoil is dominated by lower
mode contributions, especially ‘ � 2, m � �2, 1, 2 and
‘ � 3, m � �3. The interplay of these contributions in
vector space and during ringdown is what is responsible for
the rich features observed in the final evolution of the recoil
velocity.

Finally, we provide accurate measurements of the radi-
ated energy and angular momentum. These measurements
reveal a clear linear dependence on the spin ratio a2=a1,
and we derive phenomenological expressions for the rela-
tive losses of angular momentum and the relative spin-up
of the final black hole. These relations can be easily used in
N-body simulations if the interaction of binary black holes
is to be taken into account, and when an accurate estimate
on the final distribution of black hole spins is important.
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APPENDIX A: ON THE CONVERGENCE TESTS

The effects of the initial transient modes can last for
different amounts of time for the different resolutions. A
comparison of the Q�22 waveforms between the three reso-
lutions confirms this shift in time—the waveform maxima
are seen at slightly different times for the different reso-
lutions. We attempt to undo this effect by manually shifting
the time-coordinate of the medium and high resolution
runs

 t! t� 	t: (A1)

The value of 	t is set for the medium and high resolution
runs independently, using the minimization condition

 

@
@�	t�

Z 170

150
jQ�t! t� 	t� �Qvhighj

2dt � 0: (A2)

This effectively means aligning in time the peak amplitude
of the three runs, at t 
 160M. Solving Eq. (A2) numeri-
cally for the Q�22 waveforms gives

 	t0:024 � 0:4756 and 	t0:018 � 0:1078: (A3)

Applying the time-shifting condition Eq. (A1) to the
coarse and medium resolution data, and inserting the result
into Eqs. (20) and (21) gives convergence rates that are
consistent with the theoretical expectations.
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In Table V we report the convergence rates as calculated
from Eq. (20) for the time interval 0 � u � 190 (u is the
retarded time as defined in Sec. II E) which excludes the
initial burst but contains the rest of the waveform. We see
close to fourth-order convergence for the ‘ � 2 modesQ�22
and Q
21. The ‘ � m � 3 mode Q�33, on the other hand,
shows second order convergence in phase, which is most
likely related to the fact that the magnitude of this mode is
the same size as the finite difference error in Q�22 and is a
factor of 40 smaller than the magnitude of Q�22 itself.

The final kick-velocity magnitude in units of km/s is

 jvjkick � 263:49; 259:75; and 261:00 (A4)

for the medium, high and very-high resolutions. This gives
��jvjkick� � 2:98 which can be inserted into Eq. (21) to
obtain a calculated convergence rate of 4.32.

APPENDIX B: DETAILS ON THE EXTRACTION
OF �4

The numerical solution of Eqs. (28) involves first an
interpolation of �4 as calculated according to Eqs. (24)
from its values on the Cartesian grid to those onto the
extraction sphere by using fourth-order Lagrange interpo-
lants. Because of the symmetry across the z � 0 plane the
interpolation is effectively done on the upper hemisphere
only, thus using a spherical coordinate system with �,� 2
�0; �=2	 
 �0; 2�	 and applying cell-centered discretiza-
tion along the �-direction to avoid the coordinate singular-
ities at the poles on the sphere.

The angular resolution is chosen so that the spacings ��
and �� are equal and of the same order as the correspond-
ing Cartesian spacings of the refinement level in which the
largest extraction 2-sphere is located. As an example, for
the fiducial finest resolution of h � 0:024M, the largest
extraction radius is at rE � 60M and in a region covered by
the second refinement level with spacing �0:024

rl�2 � 1:536M.
To obtain an equivalent spacing on the 2-sphere, we solve
for �� and �� such that

 rE�� � rE�� 
 �0:024
rl�2 � 1:536M: (B1)

The resulting number of grid points is N� � 56 along the
�-direction and N� � 224 along the �-direction.

After interpolation onto the extraction sphere, we first
calculate the time integral of �4jS2 and afterwards, the
surface integral of the absolute square of the former ac-
cording to Eqs. (28). These integrals are both computed
using fourth-order schemes. In particular, for the surface
integral, we use Simpson’s rule in the form
 Z xN

x0

dxf�x� 
 �x
�

17

48
f0 �

59

48
f1 �

43

48
f2 �

49

48
f3

� hfki �
49

48
fN�3 �

43

48
fN�2 �

59

48
fN�1

�
17

48
fN

�
; (B2)

where hfki is the sum over all fk with 3< k< N � 3. The
integral over d�d� is obtained by computing the tensor
product of the RHS of Eqs. (B2), i.e.,

 

Z �N

�0

d�
Z �N

�0

d�f��;�� 
 ����
XN�
i�0

XN�
j�0

cicjfij; (B3)

where the ci, cj are the coefficients in the RHS of
Eqs. (B2).

The time integral of Eqs. (28) is generically calculated
by using the fourth-order Simpson’s rule in such a way that
the integral for the time step k uses only past time steps i
with 0 � i � k. Care is required for the very first time
steps, for which we have less than 7 evaluations of the
integrand. In this case, we use the 2nd-order accurate
trapezoid rule if N � 1, 3, or 5

 

Z xN

x0

dxf�x� 
 �x
�

1

2
f0 � hfki �

1

2
fN

�
; (B4)

or the fourth-order accurate Simpson’s rule
 Z xN

x0

dxf�x� 
 �x
�

1

3
f0 �

4

3
f1 �

	
2

3
f2k �

4

3
f2k�1




�
1

3
fN

�
; (B5)

if N � 2, 4 or 6. For N � 7 we simply use Simpson’s rule
in the form (B2). It should be noted that the use of a higher-
order time integration scheme improves the overall accu-
racy in the calculation of the final recoil velocity by more
than a factor of 10.

APPENDIX C: A COMPARISON OF WAVE-
EXTRACTION METHODS

In Fig. 4, we have shown that �4 as extracted at different
radii correctly scales with the 1=r falloff as predicted by
the peeling theorem. Here, we also check if all other
components of the Weyl tensor exhibit the correct
r5�n�n � const scaling.

TABLE V. Integrated convergence rates of the Zerilli-
Moncrief gauge-invariant variables providing the dominant con-
tribution in the kick-velocity measurements. As the numbers
indicate, we achieve at least third order convergence both in
amplitude and phase. A time-shift as given by Eqs. (A1)–(A3)
was made on the raw data to remove the near cancellation of the
lowest-order error terms.

Q Q
21 Q�22 Q�33

rE=M amp phase amp phase amp phase

30 4.51 3.95 4.65 4.31 4.32 2.13
40 4.08 3.70 4.61 4.34 4.26 2.62
50 3.83 4.44 4.35 4.76 4.02 2.39
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The left panel of Fig. 13 indeed shows that the scaling
property of all �n behave as expected. In the course of the
same analysis, it is also worth looking at the waveforms as
calculated by using the gauge-invariant formalism. In par-
ticular, we focus on the real part of the ‘ � 2, m � 2 even
parity wave mode Q�22 and check for the correct scaling for
the different extraction radii. The right panel of Fig. 13
shows that Q�22 is constant for all extraction radii as
expected.

As a final remark, we will also compare the h� and h
 as
calculated by using the odd and even master functions in
the gauge-invariant formalism according to Eq. (30) and
the spin-weighted spherical harmonic amplitudes of the
Weyl component �‘m

4 decomposed on the extraction
spheres. Using these amplitudes, the metric perturbations
h�, h
 recovered by a double time integral of Eq. (26)

 h� � ih
 � lim
r!1

X
‘;m

Z t

0
dt0

Z t0

0
dt00�‘m

4 �2Y‘m: (C1)

The numerical integration of Eq. (C1) requires knowledge
of an integration constant for the calculation of the second
integral to eliminate the linear offset. This constant is
determined by searching for minima in the �‘m

4 mode
and averaging over them. The resulting value is used as
the integration constant. In both cases, we only consider
the dominant contribution from mode ‘ � 2, m � 2. In
Figure 14, we show a comparison between waves extracted
via �lm

4 and the gauge invariant Q�lm.

APPENDIX D: ON THE INFLUENCE OF ORBITAL
ECCENTRICITY

Another source of potential error in calculating a
‘‘physical’’ kick comes from the choice of initial data
parameters. Our evolutions begin from fairly close separa-
tions, comprising at most the last 2–3 orbits. As such,
parameters for quasicircular orbits determined by the ef-
fective potential method, give only approximations to the
true orbital parameters for black holes that have spiraled in
from infinity, and it is known that the method produces a
nontrivial residual eccentricity for initial data at close
separation. This eccentricity can have significant effects
on the orbital trajectories before merger, and a potential
influence on the calculated recoil. To test this we have
evolved two modified r0 models, one in which the initial
linear momenta of the black holes is 3% larger than that
specified in Table I, and another in which the linear mo-
menta are 3% smaller. The modified momenta have the
effect of changing the orbital energy of the bodies from the
minima determined by the effective potential method, in-
troducing an additional eccentricity to the evolution. The

FIG. 14 (color online). Comparison of the two polarization
amplitudes h� (upper graph) and h
 (lower graph) as computed
with �4 (continuous black line) or with the gauge-invariant
quantities Q�‘m (dashed red line). Note the two polarizations
are computed using the lowest (and dominant) multipole ‘ �
2, m � 2 and are extracted at rE � 50M.

FIG. 13 (color online). Left panel: Evidence that the condi-
tions for the Peeling theorem are met also for �3, which scales
as r�2 when extracted at isotropic radii rE � 30M, 40M, 50M,
and 60M. This figure should be compared to the corresponding
Fig. 4. Right panel: The same as the left panel but for the gauge-
invariant quantity Q�22, which is shown to be constant when
extracted at isotropic radii rE � 30M, 40M, 50M, and 60M.
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resulting black hole trajectories and kick determinations
are shown, respectively, in Fig. 15. We see that although the
level of applied eccentricity is large, and in fact much
larger than the expected eccentricity due to the intrinsic
inaccuracy of the effective potential method, it modifies

the recoil by only about 10 km=s, that is, 4%. Further, in
both the high and low energy cases, the recoil is increased
over the fiducial r0 case, suggesting that increased eccen-
tricity generically leads to a slightly larger recoil.
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