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A previous work establishing a connection between a quark model, with relativistic kinematics and a
Y-confinement plus one gluon exchange, and the 1=Nc expansion mass formula is extended to strange
baryons. Both methods predict values for the SU(3)-breaking mass terms which are in good agreement
with each other. Strange and nonstrange baryons are shown to exhibit Regge trajectories with an equal
slope, but with an intercept depending on the strangeness. Both approaches agree on the value of the slope
and of the intercept, and on the existence of a single good quantum number labeling the baryons within a
given Regge trajectory.
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I. INTRODUCTION

In Ref. [1] we have made a first attempt to establish a
connection between quark model results for baryon masses
and the 1=Nc expansion mass formula. So far we have
considered nonstrange baryons only. The purpose of the
present study is to extend the previous work to strange
baryons.

The standard approach to baryon spectroscopy is the
constituent quark model where the results are model-
dependent. The states are classified according to SU(6)
symmetry. The phenomenological analysis suggested that
the baryons can be grouped into excitation bands N �
0; 1; 2; . . . each band containing at least one SU(6) multi-
plet. The hyperfine interaction breaks the SU(6) symmetry.
The introduction of N as a good quantum number for a
Hamiltonian with a linear Y-junction confinement is quite
natural for nonstrange baryons [1]. We shall show that,
even for strange baryons,N is a good classification number
within the same quark model. The problem has already
been discussed qualitatively in a nonrelativistic model with
a quadratic two-body confinement [2]. Here we provide a
quantitative proof of the role of the strange quark mass
ms � mu;d within a semirelativistic model with a realistic
confinement.

The 1=Nc expansion method [3,4] offers an alternative,
model-independent way, to study baryon spectroscopy in a
systematic way. The method stems from the discovery that
in the limit Nc ! 1, where Nc is the number of colors,
QCD possesses an exact contracted SU�2Nf� symmetry
[5,6] where Nf is the number of flavors. This symmetry
is only approximate for finiteNc so that corrections have to
be added in powers of 1=Nc. Here we discuss the case
Nf � 3. Thus, SU(6) is a common symmetry for both
approaches. The 1=Nc expansion method has extensively

and successfully been applied to ground state baryons
(N � 0) [7–10]. Its applicability to excited states is a
subject of current investigations. The most studied bands
so far are N � 1 and 2.

It is important to compare the two methods. This could
bring support to quark model assumptions on one hand and
it could help to gain more physical insight into the dynami-
cal coefficients of the 1=Nc expansion mass formula on the
other hand. The key aspect in this comparison is that one
can analyze both the 1=Nc expansion and quark model
results in terms of N. The paper is organized as follows.
The mass formula used in the 1=Nc expansion for strange
baryons is introduced in the next section. Section III gives a
corresponding mass formula obtained from a Hamiltonian
quark model of spinless Salpeter type, where the confine-
ment is a Y-junction flux tubes and where the Coulomb-
type one gluon exchange and the quark-self-energy con-
tributions are added perturbatively. There, we analytically
prove that the classification of light baryons, containing u,
d, s quarks, is still possible in terms of a quantum number
N, representing units of excitation, like in a harmonic
oscillator picture. Section IV is devoted to the comparison
of the results derived from the 1=Nc expansion on one hand
and from the quark model on the other hand. A discussion
on Regge trajectories emerging from the quark model mass
formula is also given. Conclusions are finally drawn in
Sec. V.

II. STRANGE BARYONS IN LARGE Nc QCD

A. Mass formula

For strange baryons the mass operator in the 1=Nc
expansion has the general form

 M �
X
i�1

ciOi �
X
i�1

diBi; (1)

where the operators Oi are invariants under SU(6) trans-
formations and the operators Bi explicitly break SU(3)-
flavor symmetry. The coefficients ci and di are fitted from
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the experimental data and encode the quark dynamics. In
the case of nonstrange baryons, only the operators Oi
contribute while Bi are defined such as their expectation
values are zero. Thus in Ref. [1], devoted to nonstrange
baryons, only the first term of Eq. (1) entered the discus-
sion. Presently we focus on the second term. The mass ms
of the strange quark breaks SU(3)-flavor explicitly. The
operators Bi and coefficients di are used to construct a
mass shift �Ms introduced below.

In Eq. (1) the sum over i is finite and in practice it
includes the most dominant operators. The building blocks
of Oi and Bi are the SU(6) generators: Si (i � 1, 2, 3)
acting on spin and forming an su(2) subalgebra, Ta (a �
1; . . . ; 8) acting on flavor and forming an su(3) subalgebra,
and Gia acting both on spin and flavor subspaces. For
orbitally excited states, also the components ‘i of the
angular momentum, as generators of SO(3), and the tensor
operator ‘ij (see e.g. Ref. [11]) are necessary to build Oi
and Bi. Examples of Oi and Bi can be found in Refs. [11–
14]. Each operator Oi or Bi carries an explicit factor of
1=Nn�1

c resulting from the power counting rules [4], where
n� 1 represents the minimum of gluon exchanges neces-
sary to generate the operator. In the matrix elements there
are also compensating factors of Nc when one sums coher-
ently over Nc quark lines. In practice it is customary to
drop higher order corrections of order 1=N2

c .
We assume that each strange quark brings the same

contribution �Ms to the SU(3)-breaking terms in the
mass formula. To make a comparison between the 1=Nc
expansion and the quark model results we define �Ms to
satisfy the relation

 ns�Ms �
X
i�1

diBi (2)

where ns is the number of strange quarks in a baryon.
Previous studies have indicated that, to a very good

approximation, one can apply the 1=Nc expansion mass
formula to a specific band and neglect interband mixing
(see e.g. Refs. [11–14]), so that we can make a comparison
of the results of both approaches, band by band.

For N � 0, 1, and 3, we adopt the values of �Ms
provided by Ref. [15] and exhibited below in Table III.
Actually, for N � 3, the only available values are from this
reference, where they have been calculated in an approxi-
mate way. The large error bars suggest that this band must
be more precisely reanalyzed in the largeNc approach. The
fit has been made on the �70; 3�� multiplet, which is the
lowest among the eight multiplets contained in this band
[16].

For N � 4, Table I of Ref. [14] straightforwardly gives
�MsjN�4 � b1 � 110� 67 MeV. Because of the scarcity
of data, there the analysis was restricted to �56; 4��, also
the lowest SU(6) multiplet, out of 17 theoretically found
multiplets, in this band [17].

For N � 2 the data are richer. In the next subsection we
show how to estimate the mass shift �Ms for N � 2, by

using values of di determined in previous 1=Nc expansion
studies of several SU(6) multiplets.

B. The SU(3)-breaking in the N � 2 band

Here we discuss details of the SU(3)-breaking for orbi-
tally excited baryons belonging to the �56; 2��, �70; 0��, or
�70; 2�� multiplets of the N � 2 band. The �20; 1�� mul-
tiplet of the N � 2 band is not physically relevant. We
combine the large Nc results obtained for �56; 2�� in
Ref. [13] and for �70; ‘�� (‘ � 0, 2) in Ref. [11]. For the
�56; 2�� multiplet the situation is simple. There are 18
strange resonances in this sector. The analysis of
Ref. [13] gives �Msj�56;2�� � 206� 18 MeV.

For �70; ‘�� the situation is more complicated. The
SU(3)-breaking can be measured by means of Eq. (2)
where in the right-hand side we replace Bi by their expec-
tation values. In this case there are two dominant operators,
B1 and B2, and we have d1 � 365� 169 MeV and d2 �
�293� 54 MeV from Ref. [11]. Then for a given baryon i
we have

 �Ms�i� �
d1B1 � d2B2

ns
: (3)

The �70; ‘�� strange resonances of given isospin I and
strangeness S � �ns are shown in Table I together with
the expectation values of B1 and B2 (multiplied by

���
3
p

), the
values of �Ms�i� obtained from Eq. (3), and the multi-
plicity ��i� of each baryon. The multiplicity represents the
total number of states of distinct total angular momentum,
obtained from ‘ � 0, 2, but having the same values for I,
S, B1, B2, and �Ms�i�.

We calculate an average over all strange resonances
belonging to �56; 2�� or �70; ‘�� defined as

TABLE I. The strange baryons belonging to the �70; ‘�� mul-
tiplet with their isospin I and strangeness S. Columns 4 and 5
indicate the expectation values of the operators B1

���
3
p

and B2

���
3
p

,
respectively, obtained from Tables I, II, and V of Ref. [11].
Column 6 gives �Ms�i� obtained from Eq. (3). Column 7 gives
the multiplicity of the states exhibited in Column 1 (see text).

Baryon I S B1

���
3
p

B2

���
3
p

�Ms�i� ��i�

2��70; ‘�� 0 �1 �1=2 �1 64� 58 3
2��70; ‘�� 1 �1 �1=2 �1 64� 58 3
2��70; ‘�� 1/2 �2 �1 �2 64� 58 3
4��70; ‘�� 0 �1 0 �3=2 254� 47 5
4��70; ‘�� 1 �1 �1 �1=2 �126� 99 5
4��70; ‘�� 1/2 �2 �1=2 �5=2 159� 46 5
2�0�70; ‘�� 1 �1 �1=2 �1 64� 58 3
2�0�70; ‘�� 1/2 �2 �1 �2 64� 58 3
2��70; ‘�� 0 �3 �3=2 �3 64� 58 3
2�0�70; ‘�� 0 �1 �1=2 �1 64� 58 3

CLAUDE SEMAY, FABIEN BUISSERET, AND FLORICA STANCU PHYSICAL REVIEW D 76, 116005 (2007)

116005-2



 �Ms �

P
i
��i��Ms�i�P

i
��i�

: (4)

If the average is restricted to members of the �70; ‘��
multiplet, by using Table I we get

 �Msj�70;‘�� � 77� 61 MeV: (5)

The total average including �56; 2��with �Ms�i� � 206�
18 MeV, ��i� � 18 and �70; ‘�� with �Ms�i� �
77� 61 MeV, ��i� � 36 is

 �MsjN�2 � 120� 47 MeV: (6)

The error bars on �Ms�i� and on �Ms result from error
bars on di’s. The error bars on �Ms�i� were defined as the
quadrature of two uncorrelated errors.

III. QUARK MODEL FOR STRANGE BARYONS

A. The Hamiltonian

The potential model used to describe strange baryons is
nearly identical to the one which was proposed in Ref. [1].
We refer the reader to this reference for a detailed discus-
sion of the Hamiltonian, but we nevertheless recall its main
physical content in order to be self-contained.

A baryon, viewed as a bound state of three quarks, can
be described in a first approximation by the following
spinless Salpeter Hamiltonian

 H �
X3

i�1

������������������
~p2
i �m

2
i

q
�VY; (7)

wheremi is the current mass of the quark i, and where VY is
the confining interaction potential. Studies based on both
the flux tube model [18] and lattice QCD [19] suggest that
the Y-junction is the correct configuration for the flux tubes
in baryons: A flux tube, with energy density (or string
tension) a, starts from each quark and the three tubes
meet at the Toricelli point of the triangle formed by the
three quarks. This last point, denoted by ~xT , minimizes the
sum of the flux tube lengths. As ~xT is a complicated
function of the quark positions, it is useful for our purpose
to approximate the genuine confining potential by the more
easily computable expression

 VY � a
X3

i�1

j ~xi � ~Rj; (8)

where ~xi is the position of the quark i and where ~R is the
position of the center of mass. The replacement of the
Toricelli point by the center of mass leads to a simplified
confining potential which actually overestimates the po-
tential energy of the genuine Y-junction by about 5% in
most cases [20]. The accuracy of the formula (8) is thus
rather satisfactory and can be improved by a simple rescal-
ing of a [20]. In Sec. IVA, we shall show how to rescale it
correctly. Let us note that, in Ref. [1], we used a more
complex and accurate approximate form for VY [see
Eq. (10) of this reference]. But, as we shall see later on,
the inclusion of strange quarks significantly increases the
difficulty of the analytic work, so that we have to restrict
ourselves to the more tractable potential (8) in order to
obtain closed formulas.

To consider only the confining energy is sufficient to
understand the Regge trajectories of light baryons, but not
to reproduce the absolute value of their masses. Other
contributions are actually needed to lower the mass spec-
trum; we shall include them perturbatively. The most
widely used correction to the Hamiltonian (7) is a
Coulomb-like interaction of the form

 �Hoge � �
2

3
�S
X
i<j

1

j ~xi � ~xjj
; (9)

arising from one gluon exchange processes, where �S is
the strong coupling constant, usually assumed to be around
0.4 for light hadrons [21,22].

The other interesting contribution to the mass, which can
be added perturbatively as well, is the quark-self-energy.
Recently, it was shown that the quark-self-energy, which is
created by the color magnetic moment of a quark prop-
agating through the vacuum background field, adds a nega-
tive contribution to the hadron masses [23]. The quark-self-
energy contribution for a baryon is given by [23]

 �Hqse � �
fa
2�

X
i

��mi=��
�i

: (10)

The factors f and � have been computed in lattice QCD
studies. First quenched calculations gave f � 4 [24]. A
more recent unquenched study gives f � 3 [25]. Since its
value is still a matter of research, it can presently be
assumed that f 2 �3; 4�. Moreover, the value of the gluonic
correlation length, denoted as �, is located in the interval
[1.0, 1.3] GeV [24,25]. The function ���� is analytically
known and reads [23]

 ���� �

8>>>><
>>>>:

�
�3�2

�1� �2�5=2
ln
�
1�

��������������
1� �2
p

�

�
�

1� 2�2

�1� �2�2

�
�� < 1��

�3�2

��2 � 1�5=2
arctan�

��������������
�2 � 1
p

� �
1� 2�2

�1� �2�2

�
�� > 1�:

(11)
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By definition ��0� � 1, and then quickly decreases for
higher values of �, i.e. for heavy quarks. It can be checked
that, as long as � & 0:3, ���� is approximated with a
reasonable accuracy by

 �̂��� � 1� ��2 (12)

with � 	 2:85. Moreover, this approximation is especially
good for values of � � m=� corresponding to the strange
quark mass scale. Consequently, the replacement of� by �̂
is justified and it is sufficient for our purpose. Finally,�i is
the dynamical mass of the quark i, defined as the expecta-
tion value [23]

 �i � h
������������������
~p2
i �m

2
i

q
i: (13)

Thus �i is state-dependent, since it is computed by aver-
aging the kinetic energy of quark i with the wave function
of the unperturbed spinless Salpeter Hamiltonian (7).

B. General formulas

In this work, we are mainly interested in analytical
results, needed in a straightforward comparison with the
large Nc mass formula. To this aim, let us now introduce
auxiliary fields [23], in order to get rid of the square roots
appearing in the Hamiltonian (7). We obtain
 

H��i; �j� �
X3

j�1

� ~p2
j �m

2
j

2�j
�
�j

2

�

�
X3

j�1

�a2� ~xj � ~R�2

2�j
�
�j
2

�
: (14)

The auxiliary fields, denoted by �i and �j, are, strictly
speaking, operators. Although being formally simpler,
H��i; �j� is equivalent to H up to the elimination of the
auxiliary fields thanks to the constraints
 

��i
H��i; �j� � 0) �̂i �

������������������
~p2
i �m

2
i

q
; (15a)

��jH��i; �j� � 0) �̂i � aj ~xi � ~Rj: (15b)

It is worth mentioning that h�̂ii is nothing else than the
dynamical quark mass introduced in Eq. (13), and that h�̂ii
is the energy of the flux tube linking the quark i to the
center of mass. Although the auxiliary fields are operators,
the calculations are considerably simplified if one consid-
ers them as real numbers. They are finally fixed in order to
minimize the baryon mass [26], and the extremal values of
�i and �j, denoted by �i;0 and �j;0, are logically close to
h�̂ii and h�̂ji, respectively.

In Ref. [27], it was shown that the eigenvalues of a
Hamiltonian of the form (14) can be analytically found
by making an appropriate change of variables, the quark
coordinates ~xi � f ~x1; ~x2; ~x3g being replaced by new coor-
dinates ~x0k � f ~R; ~	; ~�g. The center of mass is defined as

 

~R �
�1 ~x1 ��2 ~x2 ��3 ~x3

�t
; (16)

with�t � �1 ��2 ��3 and f ~	; ~�g being the two relative
coordinates. As we consider only light baryons, composed
of n quarks (n denoting both u or d quarks) and s quarks,
the general formulas obtained in Ref. [27] can be simpli-
fied in the case where two quarks are of the same mass. Let
us set m1 � m2 � m. By symmetry, we have then �1 �
�2 � � and �1 � �2 � �. The mass spectrum of the
Hamiltonian (14) is given in this case by [27]
 

M��;�3; �; �3� � !	�N	 � 3=2� �!��N� � 3=2� ��

� ��
�3 � �3

2
�
m2

�
�
m2

3

2�3
; (17)

where

 !	 �
a�������
��
p ; !� �

a�������������������
2���3

p

����������������������������
�3

��
� 2

�
�3�3

s
:

(18)

The integers N	=� are given by 2n	=� � ‘	=�, where n	=�
and ‘	=� are the radial and orbital quantum numbers

relative to the variable ~	 or ~�, respectively. One can also
easily check that

 h ~	2
i �

N	 � 3=2


!	
; h ~�2i �

N� � 3=2


!�
; (19)

with

 
 �

�������������������
�2�3

2���3

s
: (20)

These last identities provide relevant information about the
structure of the baryons, since

 h ~X2i � h� ~x1 � ~x2�
2i �

�������������������
4�3

2���3

s
h ~	2
i; (21)

 h ~Y2i �

��
~x1 � ~x2

2
� ~x3

�
2
�
�

�������������������
2���3

4�3

s
h ~�2i: (22)

Moreover, by symmetry, we can assume the following
equality

 h� ~x1 � ~x3�
2i � h� ~x2 � ~x3�

2i 	
h ~X2i

4
� h ~Y2i; (23)

which will be useful in the computation of the one gluon
exchange contribution.

The auxiliary fields appearing in the mass formula (17)
have to be eliminated by imposing the constraints
@�i

M��;�3; �; �3� � 0 and @�iM��;�3; �; �3� � 0. This
cannot be done exactly in an analytical way, but, as we
shall show in the following, solutions can be found by
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working at the lowest order in m2
i . The case ns � 0 has

been completely treated in Ref. [1]. As in this last work, we
shall assume here that mn � 0.

C. The case ns � 3

Let us begin by the most symmetric case, that is the case
of a baryon formed of three strange quarks (the � family).
Then, we have m � m3 � ms, and thus� � �3 � �s and
� � �3 � �s by symmetry. Equation (17) becomes

 M��s; �s� �
a�����������
�s�s
p �N � 3� �

3

2

�
�s � �s �

m2
s

�s

�
; (24)

where N � N	 � N�. Because of the symmetry of an sss
baryon, its mass depends on a single quantum number N
only, as for an nnn baryon. This number N is the total
number of excitation quanta associated to the Hamiltonian
(14). It gives the excitation band of the corresponding
eigenstate.

The elimination of �s requires that

 @�sM��s; �s� � 0) �s;0 �
�
a2�N � 3�2

9�s

�
1=3
; (25)

and then

 M��s� � M��s; �s;0�

�
1

2

�
34a2�N � 3�2

�s

�
1=3
�

3

2

�
�s �

m2
s

�s

�
: (26)

The constraint @�s
M��s� � 0 does not lead to a trac-

table expression for �s, unless an expansion in powers of
m2
s is performed. One readily finds that

 �s;0 � �0 �
3

4

m2
s

�0
; (27)

with

 �0 �

�������������������
a�N � 3�

3

s
; (28)

satisfies the relation @�s
M��s�j�s��s;0

� 0 at the order m2
s .

Thanks to the relation (27), the mass formula (26) becomes

 M � 6�0 �
3

2

m2
s

�0
: (29)

The contributions of the one gluon exchange and of the
quark-self-energy can also be calculated analytically. First,
the one gluon exchange mass term is given by

 �Moge � �
2

3
�s
X
i<j

�
1

j ~xi � ~xjj

�
	 �

2�s�������������������������
h� ~x1 � ~x2�

2i
p ; (30)

where an obvious symmetry argument has been applied to
obtain this last approximate expression. Equation (21) then
leads to

 �Moge � �
2a�s���

3
p
�0

�
1�

m2
s

4�2
0

�
: (31)

The self-energy term (10), together with the approximation
(12), is now given by

 �Mqse � �
3fa
2�

�̂�ms=��
�s;0

� �
3fa

2��0

�
1�

3m2
s

4�2
0

�
�m2

s

�2

�
:

(32)

The total mass for a triply-strange baryon is finally given
by the sum M��Moge � �Mqse.

It is worth mentioning that in the limit ms ! 0, we
recover the results of Ref. [1], but the parameter Q of
this last reference has to be set equal to 1—instead of the
optimal and very close value of 0.93—in order to take into
account our present assumption that the Toricelli point is
located at the center of mass. When ms � 0, one can
wonder about the validity of the Taylor expansion in m2

s
that we made. The dominant term of Eq. (29) is 6�0, while
the ‘‘presumably small’’ term is 3m2

s=2�0. In the worst
case, that is for N � 0, one has

 

3m2
s=2�0

6�0

��������N�0
�
m2
s

4a
: (33)

For typical values ms � 0:2 GeV and a � 0:2 GeV2, this
ratio is around 0.05. This justifies a posteriori the relevance
of such an expansion.

D. The case ns � 1

We turn now to the nns baryons. In this case, we can set
m � 0 in the formula (17), and replace the index 3 by s, to
make clearly the appearance of symbols related to the s
quark. The mass formula (17) becomes
 

M��;�s; �; �s� �
!	 �!�

2
�N � 3� ��� ��

�s � �s
2

�
m2
s

2�s
; (34)

with

 !	 �
a�������
��
p ; !� �

a�������������������
2���s
p

���������������������������
�s

��
� 2

�
�s�s

s
:

(35)

An important simplification has been made in Eq. (34):
The term proportional to !	 �!�, present only at N > 0
and vanishing for nnn and sss baryons, was neglected.
This corresponds to the assumption that the integer N is
still a good quantum number to classify the asymmetric
nns configurations. A numerical resolution of the general
formula (17) actually supports this assumption, which is
also made in large Nc QCD. This point will be further
investigated in Sec. IV B.

MASS FORMULA FOR STRANGE BARYONS IN LARGE . . . PHYSICAL REVIEW D 76, 116005 (2007)

116005-5



The four auxiliary fields appearing in the mass formula
(34) can be eliminated by solving simultaneously the four
constraints

 @�M��;�s; �; �s� � 0; @�s
M��;�s; �; �s� � 0;

@�M��;�s; �; �s� � 0; @�sM��;�s; �; �s� � 0:

(36)

After some algebra, a solution can be found by working at
the order m2

s , as we did in the previous section for the case
ns � 3 (and as we shall do in the rest of this paper). In the
following, to simplify the notations, we will write � (�s)
for the optimal value of the dynamical mass of the n (s)
quark. We find

 � � �0 �
11

156

m2
s

�0
; � � �0 �

7

156

m2
s

�0
;

�s � �0 �
95

156

m2
s

�0
; �s � �0 �

53

156

m2
s

�0
;

(37)

where �0 is still defined by Eq. (28). The mass formula
(34), in which the auxiliary fields are replaced by the
expressions (37), reads

 M � 6�0 �
1

2

m2
s

�0
: (38)

The contribution of the one gluon exchange term is a
little more involved than in the case ns � 3. With the help
of relations (21) and (22), it reads

 �Moge 	 �
2

3
�s

�
1���������
h ~X2i

q �
2�����������������������������

h ~X2i=4� h ~Y2i
q �

� �
2a�s���

3
p
�0

�
1�

m2
s

12�2
0

�
: (39)

Relations (37) defining � and �s allow one to write down
the contribution of quark-self-energy (10). Using again the
approximation (12), we obtain

 �Mqse � �
3fa

2��0

�
1�

m2
s

4�2
0

�
�m2

s

3�2

�
: (40)

E. Results for arbitrary ns
The case ns � 2 is very similar to the case ns � 1. That

is why we will not treat it explicitly in this paper. Rather,
we give here a summary of the results which are obtained
for arbitrary ns. Let us recall that, when one deals with a
baryon made of three massless quarks (ns � 0), we recover
the results of Ref. [1] with Q � 1, namely,

 �0 �

�������������������
a�N � 3�

3

s
; (41)

and a total baryon mass, including one gluon exchange and
quark-self-energy, given by

 M0 � 6�0 �
2a�s���

3
p
�0

�
3fa

2��0
: (42)

By looking at the results of Secs. III C and III D, one can
deduce that the auxiliary fields � and �s have the follow-
ing general form:

 � � �0 �
11ns
156

m2
s

�0
; ns � 0; 1; 2; (43)

 �s � �0 �
84� 11ns

156

m2
s

�0
; ns � 1; 2; 3: (44)

Moreover, the total baryon mass is given by

 M � M0 � ns�Ms; ns � 0; 1; 2; 3; (45)

where the contribution of the s quarks is

 �Ms �

�
1

2
�

�sa

6
���
3
p
�2

0

�
fa
2�

�
3

4�2
0

�
�

�2

��
m2
s

�0
: (46)

These formulas are only valid at the order m2
s . We checked

that they agree with the explicit calculation in the case
ns � 2. So each s quark brings the same contribution to the
baryon mass and this contribution depends on ms.

The eigenvalues of the spinless Salpeter Hamiltonian
with the potential (8) have been numerically calculated
in order to check the accuracy of the mass formula (45)
with �s � f � 0 (one gluon exchange and self-energy are
treated as perturbations). For the relevant values of m=

���
a
p

and N, the relative error is found around 10%.

IV. COMPARISON OF THE TWO APPROACHES

A. SU(3)-breaking mass term

In both the 1=Nc expansion and the quark model the
baryon mass is affected by an explicit SU(3)-breaking due
to the mass difference between nonstrange u, d and strange
s quarks. The effect of SU(3)-breaking in the 1=Nc expan-
sion mass formula has been estimated in Sec. II through
terms including the operators Bi. Obviously, a nonvanish-
ing value of the strange quark mass also requires the quark
model mass formula to be modified as in Eq. (45). Then,
the corresponding SU(3)-breaking mass terms (46) can be
compared to those resulting from Eq. (2). To do this, we
have to determine the values of the parameters in the quark
model, since the coefficients of the large Nc formula have
already been fitted on the experimental data.

First, we recall that the auxiliary field method yields
upper bounds of the mass spectrum, as is shown in
Ref. [28]. This artifact can be cured by making a rescaling
of the string tension a, so that the Regge slope of nnn
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baryons is equal to the Regge slope of n �n mesons [1].
Obtained within the flux tube model, this slope is 2��, �
being the physical string tension. By looking at the formula
(42), we see that a correct rescaling is made by taking a �
��=6. In Ref. [1], we have shown that a remarkable
compatibility between large Nc QCD and quark model
results exists for the nonstrange baryon masses, provided
we take � � 0:163 GeV2, �s � 0:4, and f � 3:5. These
are also the values considered in this work, despite the fact
that these parameters were obtained with a value Q � 0:93
instead of Q � 1 assumed here (see Sec. III C). However,
two extra parameters are present when strange quarks are
taken into account. These are ms and �. The value � �
1:0 GeV has already been used in potential models for
mesons, in good agreement with the experimental data
[23,29]. We shall thus use it here too. Finally,ms was fitted
to get an optimal agreement between the quark model and
the large Nc QCD mass shift at N � 0. We actually found
ms � 0:243 GeV, which is larger than the PDG value of
95� 25 MeV [30]. However, a strange quark mass in the
range 0.2–0.3 GeV is quite usual in potential models [31]
and is in good agreement with a recent work on meson
decay constant [32]. All parameters are gathered in
Table II.

Following the error analysis of Ref. [1], we get � �
0:163� 0:004 GeV2, �s � 0:4� 0:05, and f �
3:5� 0:12. We know that � 2 �1:0; 1:3� GeV. If we allow
a variation of 10% for the parameter �, we find an error on
ms around 12 MeV.

A comparison between the mass shift �Ms, obtained
with the quark model and its large Nc counterpart, is given
in Table III for N � 0, 1, 2, 3, 4. One can see that the quark
model predictions are always located within the error bars
of the largeNc results. Except forN � 3, the central values
of �Ms in the large Nc approach are close to the quark

model results. Ignoring the large Nc value at N � 3, which
would require further investigations, as we argued in
Sec. II A, one can see that �Ms decreases slowly and
monotonously with increasing N, in both methods. This
suggests that the central value of �Ms obtained in Ref. [15]
in the 1=Nc approach is probably far too small for N � 3.

The results of Table III are plotted in Fig. 1 to see more
clearly the evolution of the mass shifts with N. Thus, in
both approaches, one predicts a mass shift correction term
due to SU(3)-breaking which decreases with the excitation
energy (or N).

B. The dependence on N

When ns � 0 or 3, the symmetry of the problem leads to
a mass formula which depends on N � N	 � N� only,
with N	 and N� introduced in Sec. III B. When ns � 1 or
2 however, this is not the case. In order to perform explicit
calculations, we have assumed that N is still a good quan-
tum number to classify baryon states with one or two
strange quarks. This assumption also ensures that the total
parity remains ��1�N in a given band.

To quantitatively support the above considerations, we
can now build a quantity to estimate the validity of this
approximation for ns � 1 or 2. In this case, the general
mass formula (17) must be used. It depends on the auxil-
iary fields, that we commonly denote here as ’i, but also
on N	 and N�. The value of M�N	;N�; ’i�, thus given by
Eq. (17), can be computed once � and ms are fixed. We
choose � � 0:163 GeV2 and ms � 0:243 GeV as in the
previous section. First, instead ofN	 andN�, we work with
the quantum numbers N and N0 � N	, that is to say with
the mass formula M�N0; N � N0; ’i� where N0 � 0; . . . ;
N. Once N and N0 are fixed, standard numerical routines

TABLE II. Parameters of the model.

a � ��=6 � � 1:0 GeV
� � 0:163 GeV2 � � 2:85
�s � 0:4 mn � 0
f � 3:5 ms � 0:243 GeV

FIG. 1. Plot of the results presented in Table III. The quark
model predictions for the mass shift �Ms (empty circles) are
compared to the large Nc data (full circles). A dotted line links
the quark model points to guide the eye.

TABLE III. Mass shifts �Ms (MeV) given by Eq. (46) with the
parameters of Table II for the quark model, compared to large Nc
mass shifts for various values of N: N � 0, 1, 3 from Ref. [15],
N � 4 from Ref. [14]; the N � 2 case is studied in detail in
Sec. II B.

N Quark model Large Nc

0 205 208� 3
1 161 148� 13
2 135 120� 47
3 118 30� 159
4 106 110� 67
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allow one to minimize the mass with respect to the auxiliary fields. This leads to the optimal values ’i;0 and finally to
M�N0; N � N0; ’i;0�. Then, we define

 �M�N� �
maxfM�N0; N � N0; ’i;0�g �minfM�N0; N � N0; ’i;0�g

�
PN
N0�0 M�N

0; N � N0; ’i;0��=�N � 1�
; (47)

where the maximal and minimal masses are chosen within
the set of allowed N0 for a given N. �M, which depends
only on ms=

����
�
p

, is a measure of the quality of N as a good
quantum number: The more �M is small, the less the value
of the mass at a given N depends on the other quantum
number N0.

A plot of �M versus N is presented in Fig. 2 for the nns
and nss baryons. By definition, �M�0� � 0 since the only
possibility is N0 � 0 in this case. Then, it appears that �M
increases linearly for N 
 1. Moreover, the values vary
very slowly with ms=

����
�
p

. The key point to observe in this
graph is that �M�N � 6� & 3%. As no experimental state
such as N > 6 has so far been observed, we can conclude
that the mass formula obtained from the spinless Salpeter
Hamiltonian (7) mainly depends on N: A change of N0 at a
given N only causes a change of the mass which is lower
than 3% in all the cases that are relevant with regard to
current experimental data.

Let us note that the previous result is only strictly valid
for the mass formula obtained from the Hamiltonian (14).
When the eigenstates of the Hamiltonian (7) are computed
in harmonic oscillator bases, it can be seen that these
eigenstates contain components from different N bands;
thus N is only an approximate good quantum number.
Nevertheless, the band mixing is usually small and changes
the mass of a state with a dominant component in a given
band N by less than 10%.

C. Regge trajectories

Since N appears to be a relevant quantum number to
classify light baryons with a good accuracy, it is of interest
to study the predictions of large Nc QCD and quark model
regarding the Regge trajectories of nonstrange as well as of
strange baryons. At the leading order in N, we actually
expect that M2 / N. Indeed, formula (45) tells us that, at
large N,

 

M2 	 M2
0 � 2M0ns�Ms

� 2���N � 3� �
4���
3
p ���s � 3f�

�

�
6�

f��

�2

�
nsm2

s : (48)

Our particular quark model thus states that baryons should
follow Regge trajectories with a common slope, irrespec-
tive of the strangeness of the baryons. This feature has also
been pointed out in other approaches based on the diquark-
quark picture [33,34]. In Ref. [1] we have already shown
that, for nonstrange baryons, M2

0 was actually equal to
�Ncc1�

2, this last quantity being the dominant term in the
large Nc mass formula. Moreover, following Ref. [15], the
fitted values of c1 does not change whether or not strange
quarks are taken into account. Therefore, the Regge slope
of strange and nonstrange baryons is also predicted to be
independent of the strangeness in the 1=Nc expansion
method.

However, the intercept depends on the number of strange
quarks. Following the explicit formula (48), it logically
increases for larger values of ns and ms. Formally, the
contribution of strange quarks to the intercept is given in
the quark model by 2M0�MsjN�0, and in the large 1=Nc
expansion by 2Ncc1�MsjN�0. Taking the values ofM0 and
c1 from Ref. [1], and the values of �Ms found in this paper,
both large Nc QCD and quark model agree on the value of
the intercept. The first method leads to 0:361�
0:005 GeV2, while the second one gives 0:355 GeV2.

The light baryon Regge trajectories are thus predicted to
share a common slope, but we expect that they should be
separated into parallel straight lines with an intercept
depending on the strangeness. Unfortunately, too few ex-
perimental data are currently known at large excitation
energies (large N) to check this picture. But, it could be
used as an interesting tool to identify strange and non-
strange excited baryons in future experiments.

FIG. 2. Plot of �M (%) versus N for nns baryons (full tri-
angles) and for nss baryons (empty triangles), with the parame-
ters of Table II. Linear fits for the N > 0 points are plotted with a
dotted line.
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V. CONCLUSION

The previous work establishing a connection between
the quark model and the 1=Nc expansion method has been
successfully extended to include strange baryons with non-
zero mass ms. A comparison between the SU(3)-breaking
terms in the mass formula of the two approaches has been
made and we found a good quantitative agreement. The
comparison was possible through the introduction of a
band quantum number N, customarily used in the baryon
classification. While for nonstrange baryons N appears

straightforwardly, the inclusion of strange quarks with
nonzero mass turned out to be more elaborate. However,
we have numerically proved that N can be considered as a
good quantum number in a realistic quark model with a
Y-junction confinement by keeping terms up to orderm2

s in
the Taylor expansion.
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