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We describe a formalism to calculate form factor and charge density distribution of the pion in the
chiral limit using the holographic dual model of QCD with hard-wall cutoff. We introduce two conjugate
pion wave functions and present analytic expressions for these functions and for the pion form factor.
They allow us to relate such observables as the pion decay constant and the pion charge electric radius to
the values of chiral condensate and hard-wall cutoff scale. The evolution of the pion form factor to large
values of the momentum transfer is discussed, and results are compared to existing experimental data.
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I. INTRODUCTION

During the last few years applications of gauge/gravity
duality [1] to hadronic physics attracted a lot of attention,
and various holographic dual models of QCD were pro-
posed in the literature (see, e.g., [2–21]). These models
were able to incorporate such essential properties of QCD
as confinement and chiral symmetry breaking, and also to
reproduce many of the static hadronic observables (decay
constants, masses), with values rather close to the experi-
mental ones. Amongst the dual models, a special class is
the so-called ‘‘bottom-up’’ approaches (see, e.g., [6–9]),
the goal of which is to reproduce known properties of QCD
by choosing an appropriate theory in the 5-dimensional
(5D) AdS bulk. Within the framework of the AdS/QCD
models, by modifying the theory in the bulk one may try to
explain/fit experimental results in different sectors of
QCD.

In the present paper, we will be interested in the hard-
wall AdS/QCD model [6–8], where the confinement is
modeled by sharp cutting off the AdS space along the extra
fifth dimension at a wall located at some finite distance z �
z0. In the framework of this hard-wall model, it is possible
to find form factors and wave functions of vector mesons
(see, e.g., [22]). To reproduce the general features of the
spectrum for the higher states (‘‘linear confinement’’), a
soft-wall model was proposed in [9]. The �-meson form
factors for this model were calculated in Ref. [23].

In general, the vector sector is less sensitive to the
infrared (IR) effects, since this symmetry is not broken in
QCD. However, the axial-vector sector appears to be very
sensitive to the particular way the chiral symmetry is
broken or, in other words, to the bulk content and the shape
of the IR wall [9].

In this respect, one of the interesting objects to study in
the holographic dual models of QCD is the pion. The
properties of the pion were studied in various holographic
approaches, (see e.g. Refs. [5,6,8,12–16,19,21,24]). In
particular, the approach of Ref. [6] (see also recent papers

[16,19,21]) managed to reproduce the (Gell-Mann—
Oakes—Renner) relation m2

� �mq between the quark
mass mq and mass of the pion m� and also the g���
coupling (the coupling between � meson and two pions).
In Ref. [8], the solution of the pion wave-function equation
was explicitly written for the mq � 0 limit.

In this paper, working in the framework of the model
proposed in [6] (hard-wall model), we describe a formal-
ism to calculate the form factor and wave functions (and
also the density function) of the pion. Since the fits of
Ref. [6] give a very small mq � 2 MeV value for the
explicit chiral symmetry breaking parameter mq, we con-
sider only the chiral limit mq � 0 of the hard-wall holo-
graphic dual model of two-flavor QCD. Resorting to the
chiral limit allows us to utilize one of the main advantages
of AdS/QCD—the possibility to work with explicit ana-
lytic solutions of the basic equations of motion. Expressing
the pion form factor in terms of these solutions, we are
able, in particular, to extract and analyze the behavior of
the pion electric radius in various regions of the holo-
graphic parameters space. On the numerical side, we
come to the conclusion that the radius of the pion is smaller
than what is known from experiment. However, we suggest
that, as in case of the radius of the � meson, smoothing the
IR wall may increase the pion radius.

In our analysis, we introduce and systematically use two
types of holographic wave functions ��z� and ��z�, which
are conjugate to each other and basically similar to the
analogous objects introduced in our papers [22,23], where
we studied vector mesons.

The paper is organized in the following way. We start
with recalling, in Sec. II, the basics of the hard-wall model
and some results obtained in Ref. [6], in particular, the
form of the relevant action, the eigenvalue equations for
bound states and their solutions. In Sec. III, we describe a
formalism for calculating the pion form factor and express
it in terms of the two wave functions mentioned above. In
Sec. IV, we discuss the relation of our AdS/QCD results to
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experimental data. We express the values of the pion decay
constant and the pion charge radius in terms of the funda-
mental parameters of the theory and study their behavior in
different regions of the parametric space. At the end, we
study the behavior of the pion form factor at large momen-
tum transfer. Finally, we summarize the paper.

II. PRELIMINARIES

In the holographic model of hadrons, QCD resonances
correspond to Kaluza-Klein (KK) excitations in the sliced
AdS5 background. In particular, vector mesons correspond
to the KK modes of transverse vector gauge field in this
background. Since the gauge symmetry in the vector sector
of the hard-wall model is not broken, the longitudinal
component of the vector gauge field is unphysical, and
only transverse components correspond to physical me-
sons. Similarly, the axial-vector mesons are the modes of
the transverse part of the axial-vector gauge field.
However, because the axial-vector gauge symmetry is
broken in the 5D background, the longitudinal components
have physical meaning and are related to the pion field.
This should be taken into account if we want to treat the
pion in a consistent way.

A. Action and equations of motion

The standard prescription of the holographic model is
that there is a correspondence between the 4D vector and
axial-vector currents and the corresponding 5D gauge
fields:

 JaV��x� � �q�x���t
aq�x� ! Va��x; z�

JaA��x� � �q�x����5t
aq�x� ! Aa��x; z�;

(1)

where ta � �a=2, (a � 1, 2, 3 and �a are usual Pauli
matrices).

In general, one can write A � A? � Ak, where A? and
Ak are transverse and longitudinal components of the axial-
vector field. The spontaneous symmetry breaking causes
Ak to be physical and associated with the Goldstone boson,
pion in this case. The longitudinal component may be
written in the form: AaMk�x; z� � @M a�x; z�. Then
 a�x; z� corresponds to the pion field. Physics of the
axial-vector and pseudoscalar sectors is described by the
action

 SAAdS � Tr
Z
d4xdz

�
1

z3 �D
MX�y�DMX� �

3

z5
XyX�

1

4g2
5z
AMNAMN

�
; (2)

where DX � @X � iALX� iXAR, (AL�R� � V � A) and X�x; z� � v�z�U�x; z�=2 is taken as a product of the chiral field
U�x; z� � exp�2ita�a�x; z�� and the function v�z� � mqz� �z3 containing the chiral symmetry breaking parameters mq
and �, with mq playing the role of the quark mass and � that of the quark condensate. Expanding U�x; z� in powers of �a

gives the relevant piece of the action
 

SA�2�AdS � Tr
Z
d4xdz

�
�

1

4g2
5z
AMNAMN �

v2�z�

2z3 �A
a
M � @M�

a�2
�
: (3)

This Higgs-like mechanism breaks the axial-vector gauge
symmetry by bringing a z-dependent mass term in the
A-part of the Lagrangian. Varying the action with respect
to the transverse part of the axial-vector gauge field
Aa?��x; z� and representing the Fourier image of
Aa?��x; z� as ~Aa?��p; z� we will get the following equation
of motion

 

�
z3@z

�
1

z
@z ~Aa�

�
� p2z2 ~Aa� � g2

5v
2 ~Aa�

�
?
� 0; (4)

that determines physics of the axial-vector mesons, like A1.
The axial-vector bulk-to-boundary propagator A�p; z� is
introduced by the relation ~Aa?��p; z� �A�p; z�Aa��p�. It
satisfies Eq. (4) with boundary conditions (b.c.) A�p; 0� �
1 and A0�p; z0� � 0. Similarly, variation with respect to
the longitudinal component @� a gives

 z3@z

�
1

z
@z a

�
� g2

5v
2� a � �a� � 0: (5)

Finally, varying with respect to Az produces

 p2z2@z a � g2
5v

2@z�a � 0: (6)

The pion wave function is determined from Eqs. (5) and (6)
with b.c. @z �z0� � 0,  ��� � 0 and ���� � 0.

Within the framework of the model of Ref. [6], it is
possible to derive the Gell-Mann—Oakes—Renner rela-
tion m2

� �mq producing massless pion in the mq � 0
limit. Taking p2 � m2

� in Eq. (6) gives

 @z� �
m2
�z

2

g2
5v

2 @z : (7)

A perturbative solution in the form of m2
� expansion was

proposed in Ref. [6], with  �z� �A�0; z� � 1 in the low-
est order. Then it was shown that, in themq ! 0 limit, ��z�
tends to ���z� z0� or, roughly speaking, � � �1 in this
limit. Since our goal is to calculate the pion form factor in
the chiral limit, this approximation will be sufficient for us.
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B. Two-point function

The spectrum in the axial-current channel consists of the
pseudoscalar pion h0jJ�A j��p�i � if�p

� and axial-vector
mesons h0jJ�A jAn�p; s�i � FA;n��n �p; s�, where FA;n corre-
sponds to the nth axial-vector meson decay constant (and
we ignored the flavor indexes). Thus, the two-point func-
tion for the axial-vector currents has the form:

 hJ�A �p�J
	
A ��p�i � p�p	

f2
�

p2 �
X
n

��	
n �p�

F2
A;n

p2 �M2
A;n

:

(8)

where the meson polarization tensor is given by

 ��	
n �p� �

X
s

��n �p; s��
	
n �p; s� � �
�	 �

p�p	

M2
A;n

: (9)

The representation for the two-point function can be also
written as
 

hJ�A �p�J
	
A ��p�i � p�p	

f2
�

p2 �

�
�
�	 �

p�p	

p2

�

�
X
n

F2
A;n

p2 �M2
A;n

� �nonpole terms�;

(10)

in which the second term on the rhs is explicitly transverse
to p.

As noted in Ref. [6], using holographic correspondence
one can relate the two-point function to 	@zA�p; z�=z
z�0

and derive that

 f2
� � �

1

g2
5

�
1

z
@zA�0; z�

�
z��!0

: (11)

For large spacelike p2, Eq. (4) gives the same solution as in
case of vector mesons, and the same asymptotic logarith-
mic behavior, just as expected from QCD.

C. Pion wave functions

The longitudinal component of the axial-vector gauge
field was defined as Ak � @ . In the chiral limit, when
p2 � m2

� � 0, we have @z� � 0, and the basic equation
for  , Eq. (5) can be rewritten as the equation

 z3@z

�
1

z
@z�

�
� g2

5v
2� � 0 (12)

for the function � �  � �. In the chiral limit, when
��z� ! �1, the value of ���� tends to 1 as �! 0. This
value and the b.c. �0�z0� � 0 are the same as those for
A�p; z� and, furthermore, Eq. (12) coincides with the
p2 � 0 version of Eq. (4) for A�p; z�. Hence, the solution
for ��z� coincides with A�0; z�:

 ��z� �A�0; z�; (13)

and we may write

 f2
� � �

1

g2
5

�
1

z
@z��z�

�
z��!0

: (14)

In our analysis of �-meson wave functions in Refs. [22,23],
we emphasized that it makes sense to consider also the
conjugate functions ��z� ��0�z�=z of the corresponding
Sturm-Liouville equation. As we observed, they are closer
in their structure to the usual quantum mechanical bound
state wave functions than the solutions of the original
equation. In the pion case, it is convenient to define the
� function as

 ��z� � �
1

g2
5f

2
�

�
1

z
@z��z�

�
: (15)

It vanishes at the IR boundary z � z0 and, according to
Eq. (11), is normalized as

 ��0� � 1 (16)

at the origin. Note also that using Eq. (12) we can express
� as derivative of �:

 ��z� � �
f2
�z3

v2 @z��z�: (17)

III. EXTRACTING PION ELECTROMAGNETIC
FORM FACTOR

A. Three-point function

To obtain the pion form factor, we need to consider
three-point correlation functions. The correlator should
include the external EM current Jel� �0� and currents having
nonzero projection onto the pion states, e.g. the axial
currents Ja5��x1�, J

ay
5	�x2�

 

T ��	�p1; p2� �
Z
d4x1

Z
d4x2e

ip1x1�ip2x2

� h0jT Jy5	�x2�Jel
��0�J5��x1�j0i; (18)

where p1, p2 are the corresponding momenta, with the
momentum transfer carried by the EM source being q �
p2 � p1 (as usual, we denote q2 � �Q2, Q2 > 0). The
spectral representation for the three-point function is a
two-dimensional generalization of Eq. (8)

 T ��	�p1; p2� � p�1p
	
2 �p1 � p2�

� f
2
�F��Q2�

p2
1p

2
2

�
X
n;m

�transverse terms�

� �nonpole terms�; (19)

where the first term, longitudinal both with respect to p�1
and p	2 contains the pion electromagnetic form factor
F��Q

2�

 h��p1�jJel� �0�j��p2�i � F��q2��p1 � p2��; (20)
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(normalized by F��0� � 1), while other pole terms contain
the contributions involving axial-vector mesons and are
transverse either with respect to p�1 or p	2 , or both.
Hence, the pion form factor can be extracted from the
three-point function using

 p1�p2	T
��	�p1; p2�jp2

1�0;p2
2�0 � �p1 � p2�

�f2
�F��Q

2�:

(21)

B. Trilinear terms in F2 part of action

To obtain form factor from the holographic model, we
need the action of the third order in the fields. There are
two types of terms contributing to the pion electromagnetic
form factor: jDXj2 term and F2 terms. Let us consider first
the contribution from F2 terms. They contain VVV, VAA,
and AVA interactions and may be written as

 

SF
2

AdSj3 �
i

g2
5

Tr
Z
d4xdz

1

z
�VMN	V

M; VN
 � VMN	A
M; AN
 � AMN	V

M; AN
�; (22)

where VMN � @MVN � @NVM and AMN � @MAN �
@NAM. Taking Vz � Az � 0 gauge, we pick out the part
of the action which is contributing to the 3-point function
hJ5�J�J5	i:

 W3 �
i

g2
5

Tr
Z
d4xdz

1

z
�V��	A

�; A�
 � A��	V
�; A�
�:

(23)

Introducing Fourier transforms of fields, we define, as
usual, V��q; z� � ~V��q�V �q; z� for the vector field, where
~V��q� is the Fourier transform of the 4-dimensional field
V��x� and V �q; z� is the bulk-to-boundary propagator
satisfying the equation

 z@z

�
1

z
@zV �q; z�

�
� q2V �q; z� � 0 (24)

with b.c. V �q; 0� � 1 and @zV �q; z0� � 0. It can be writ-
ten as the sum

 V �q; z� � g5

X1
m�1

fm Vm�z�

�q2 �M2
m

(25)

involving all the bound states in the q-channel, with Mm
being the mass of the mth bound state and  Vm�z� its wave
function given by a solution of the basic equation of motion
in the vector sector.

The projection (21) picks out only the longitudinal part
Ak��p; z� of the axial-vector field. Taking into account that
Aa
k��x; z� � @� �x; z�, we may write

 Aa
k��p; z� � ip� a�p; z�; (26)

where Aa
k��p; z� and  a�p; z� are the Fourier transforms of

Aa
k��x; z� and  �x; z�, respectively. Furthermore, there is

only one particle in the expansion over bound state in this
case, namely, the massless pion. Thus, we have
Aa
k��p; z� �

~Aak��p� �z� and, therefore,

  a�p; z� � �
ip�

p2
~Aak��p� �z�: (27)

This allows us to rewrite Aa
k��p; z� in the form

 Aa
k��p; z� �

p�p�
p2

~Aak��p� �z� (28)

involving the longitudinal projector p�p�=p2 and the pion
wave function  �z�, which is the solution of the basic
equation (5). Using this representation and making
Fourier transform of W3 gives
 

W3 � �
1

2g2
5

�abc
Z d4ud4vd4w

�2��12 i�2��4��4��u� v� w�

�
u�v�u�v	

u2v2
~Abk��u�

~Ack	�v�	w� ~Va��w� � w� ~Va��w�


�
Z z0

�
dz

1

z
V �w; z� 2�z� (29)

[notice that the second term in Eq. (23) vanishes for
longitudinal axial-vector fields]. Varying this functional
with respect to sources produces the following 3-point
function:
 

hJ�V;a�q�J
�
kA;b�p1�J

	
kA;c��p2�i

� �i�2��4��4��q� p1 � p2��abc
p�1p

	
2

p2
1p

2
2

�p1 � p2�
�

�
1

2g2
5

q2
Z z0

�
dz

1

z
V �q; z� 2�z�; (30)

where, anticipating the limit p2
1 ! 0, p2

2 ! 0, we took
�p1q� � ��p2q� � �q

2=2 in the numerator factors.
Now, representing hJ�V;a�q�J

�
kA;b�p1�J

	
kA;c��p2�i �

i�2��4��4��q� p1 � p2��abcT
��	�p1; p2� and applying

the projection suggested by Eq. (21), we will have

 lim
p2

1!0
lim
p2

2!0
p1�p2	T

��	�p1; p2�

�
1

2g2
5

�p1 � p2�
�Q2J�Q�; (31)

where J�Q� is the dynamic factor given by the convolution

 J�Q� �
Z z0

�

dz
z
J �Q; z� 2�z�: (32)
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C. Dynamic factor and wave functions

The vector bulk-to-boundary propagator J �Q; z� �
V �iQ; z� for spacelike momenta, entering into the dy-
namic factor J�Q�, satisfies the equation

 z@z

�
1

z
@zJ �Q; z�

�
� Q2J �Q; z� (33)

with b.c. J �Q; 0� � 1 and @zJ �Q; z0� � 0. Its explicit
form is given by

 J �Q; z� � Qz
�
K1�Qz� � I1�Qz�

K0�Qz0�

I0�Qz0�

�
: (34)

One can easily see that J �0; z� � 1. Combining all the
factors, we get

 f2
�F
�F2�
� �Q2� �

1

2g2
5

Q2
Z z0

0

dz
z
J �Q; z� 2�z�: (35)

Integrating by parts and using equations of motion both for
J and  gives
 

F�F
2�

� �Q2� �
1

g2
5f

2
�

Z z0

0
dzzJ �Q; z�

�

��
@z 
z

�
2
�
g2

5v
2

z4  � � ��
�
: (36)

We need also to add the V�� contribution from the jDXj2

term of the AdS action (2). It is generated by

 SjDXj
2

AdS jV�� � �abc
Z
d4xdz

�
v2�z�

z3 �A
a
M � @M�

a��bVcM
�
;

(37)

and its inclusion changes  � � �� into � � ��2 in
Eq. (36). The total result (see also Ref. [6]) may be now
conveniently expressed in terms of the � �  � � wave
function

 F��Q2� �
1

g2
5f

2
�

Z z0

0
dzzJ �Q; z�

��
@z�
z

�
2
�
g2

5v
2

z4 �2�z�
�
:

(38)

Using equation of motion for ��z�, one can see that the
expression in square brackets coincides with

 

1

z
@z

�
��z�

1

z
@z��z�

�
� �g2

5f
2
�

1

z
@z���z���z��;

and write the form factor as

 F��Q
2� � �

Z z0

0
dzJ �Q; z�@z���z���z��: (39)

This representation allows one to easily check the normal-
ization

 F��0� � �
Z z0

0
dz@z���z���z�� � ��0���0� � 1; (40)

where we took into account that J �0; z� � 1 and ��z0� �
0. We can also represent our result for the pion form factor
as

 

F��Q
2� �

Z z0

0
dzzJ �Q; z�

�
g2

5f
2
��2�z� �

�2

f2
�
z2�2�z�

�

�
Z z0

0
dzzJ �Q; z���z�; (41)

and interpret the function ��z� as the radial distribution
density, as it was done in Refs. [22,23]. Note that keeping
only the first term in square brackets gives an expression
similar to our result [22] for the �-meson form factor

 F 11�Q
2� �

Z z0

0
dzzJ �Q; z�j1�z�j

2 (42)

in terms of the function 1 conjugate to the solution of the
basic equation of motion. The value of1�z� at the origin is
proportional to the �-meson decay constant f�=m� � g�
(experimentally, gexp

� � 207 MeV [25]), namely, 1�0� �
g5g�. Thus, the pion wave function g5f���z� � ��z� is a
direct analog of the �-meson wave function 1�z�. The
main difference is that, in the pion case, there is also the
second term in the form factor expression. The latter, in
fact, is necessary to secure correct normalization of the
form factor at Q2 � 0. In Eq. (38), this term is written in
terms of the ��z�wave function, but using Eq. (17) we can
rewrite it also in terms of ��z� or ��z�:

 ��z� � 2
��z� �

1

g2
5�

2

�
1

z2 @z��z�
�

2
: (43)

IV. WAVE FUNCTIONS AND FORM FACTOR

A. Structure of pion wave functions

Explicit form of the � wave function follows from the
solution of Eq. (12):

 ��z� � z�	2=3

�
�
2

�
1=3
�
I�1=3��z3� � I1=3��z3�

I2=3��z
3
0�

I�2=3��z
3
0�

�
; (44)

where � � g5�=3 � 1:481� (recall that g5 �
���
2
p
�, see e.g. Ref. [23]). As a result, ��z� is given by
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��z� � �
1

g2
5f

2
�

�
1

z
@z��z�

�
�

3z2

g2
5f

2
�

�	2=3

�
�4

2

�
1=3
�
�I2=3��z3� � I�2=3��z3�

I2=3��z
3
0�

I�2=3��z
3
0�

�
: (45)

This formula, combined with Eq. (16), establishes the
relation

 f2
� � 3  21=3 �	2=3


�	1=3


I2=3��z
3
0�

I�2=3��z
3
0�

�2=3

g2
5

(46)

for f� in terms of the condensate parameter � and the
confinement radius z0. Since � appears in the solutions
only through �, we will use � in what follows. Note also
that �1=3 � 1:14�1=3.

Realizing that the equations of motion for the vector
sector in this holographic model are not affected by the
chiral symmetry-breaking effects expressed through the
function v�z�, it is natural to set the value of z0 from the
vector sector spectrum, i.e., by the �-meson mass. The
numerical value of z0 (call it z�0 ) is then z�0 � 1=323 MeV.
As given by Eq. (46), f� looks like a rather complicated
function of two scales, z0 and �. Note, however, that the
ratio I2=3�a�=I�2=3�a� is very close to 1 for a * 2 and
practically indistinguishable from 1 for a * 3. Hence, for
sufficiently large values of the confinement radius, z0 *

1=�1=3, the value of f� is determined by the value of �
alone. This limiting value of f� is given by

 

f�jz0!1
� 21=6 �

1=3

g5

�����������������
3�	2=3


�	1=3


s
�

31=2

21=3�

���������������
�	2=3


�	1=3


s
�1=3

�
�1=3

3:21
: (47)

Requiring that f�jz0!1
coincides with the experimental

value, f� � 131 MeV, one should take �1=3 � 420 MeV.
For such �, the value of 1=�1=3 is close to z�0 , i.e., we are in
the region �z3

0 � 1 and we may expect that, even if we use
exact formula (46) with z0 � z�0 , the value of f� would not
change much. Indeed, to get f� � 131 MeV from Eq. (46)
for 1=z0 � 323 MeV, we should take �1=3 � 424 MeV �

�1=3
0 . Thus, in this range of parameters, the value of f� is

practically in one-to-one correspondence with the value of
�. It is convenient to introduce a dimensionless variable

 a � �z3
0 �

1
3g5�z

3
0: (48)

Then the values �1=3
0 � 424 MeV and 1=z�0 � 323 MeV

correspond to a � 2:26 � a0. As one can see from Fig. 1,
the dependence of f� on a is practically flat for a * 2.

The confinement radius z0 presents a natural scale to
measure length, so it makes sense to rewrite the form factor
formula (38) as an integral over the dimensionless variable
� � z=z0:

 F��Q2� � 3
Z 1

0
d��J �Q; �; z0�

�
n�a�’2��; a� �

a2�2

n�a�
 2��; a�

�
�
Z 1

0
d��J �Q; �; z0����; a�; (49)

where the mass scale � is reflected by the dimensionless
parameter a. The factor n�a� takes care of the correct
normalization of the form factor. It is given by

 n�a� � 21=3a2=3 �	2=3


�	1=3


I2=3�a�

I�2=3�a�
: (50)

For small a, it may be approximated by 3
4a

2. For large a,
using the fact that I2=3�a�=I�2=3�a� is very close to 1 for
a * 2, we may approximate n�a� � 0:637a2=3 in this re-
gion. In terms of n�a�, the pion decay constant can be

written as

 f� �
1

�a1=3

�������������
3

2
n�a�

s
�1=3: (51)

For large a, this gives

 f�ja*2 � 0:311�1=3: (52)

For small a, we have
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n a

FIG. 1. Left: Pion decay constant f� as a function of a for
fixed �1=3 � 424 MeV. Right: Function n�a�
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FIG. 2. Functions ’��; a� (left) and  ��; a� (right) for several
values of a: a � 0 (uppermost lines), a � 1, a � 2:26, a � 5,
a � 10 (lowermost lines).
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 f�ja&1 �
3a2=3

2
���
2
p
�
�1=3 � . . . � 0:338�z2

0 � 0:338
a
z0
:

(53)

The functions’��; a�,  ��; a� are just the � and � wave
functions written in � and a variables. For a � 0, the
limiting forms are ’��; 0� � 1� �4 and  ��; 0� � 1. As
a increases, both functions become more and more narrow
(see Fig. 2).

For density, we have ���; a � 0� � 4�2 in the a! 0
limit, a function that vanishes at the origin (see Fig. 3). For
nonzero a, the value of ��� � 0; a� monotonically in-
creases with a, and the function itself narrows.

The increase of ��� � 0; a� with a is generated by the
monotonically increasing function n�a�. It is interesting to
compare the pion density ���; 2:26� (taken at the ‘‘experi-
mental’’ value a � 2:26) with the �-meson density �����

of Ref. [22]. These densities are rather close for � > 0:5,
but strongly differ for small � . In particular, the �-meson
density is more than 2 times larger for � � 0, which
corresponds to the hard-wall model result that g� is essen-
tially larger than f�.

B. Pion charge radius

It is interesting to investigate how well these values z0 �
1=323 MeV and� � �424 MeV�3 describe another impor-
tant low-energy characteristics of the pion—its charge
radius. Using the Q2-expansion of the vector source [22]

 J �Q; �; z0� � 1�
Q2

4
z2

0�
2	1� 2 ln�
 � . . . (54)

and explicit form of the density

 

���; a� �
3

2
��1=3���2=3�a2�4

��
��a�I�2=3�a�3� �

I2=3�a�3�

��a�

�
2
�

�I�1=3�a�3�

��a�
� ��a�I1=3�a�3�

�
2
�
; (55)

where ��a� �
���������������������������������
I2=3�a�=I�2=3�a�

q
, we obtain for the pion

charge radius:

 hr2
�i �

3

2
z2

0

Z 1

0
d��3	1� 2 ln�
���; a�

�
4

3
z2

0

�
1�

a2

4
�O�a4�

�
: (56)

Hence, for fixed z0 and small a, when �� 1=z3
0, the

pion radius is basically determined by the confinement
scale z0. In particular, hr2

�i �
4
3 z

2
0 for � � 0.

Numerically, taking z0 � z�0 � 1=323 MeV � 0:619 fm,
we obtain hr2

�i � 0:51 fm2. This result is very close to
the value hr2

�iC � 0:53 fm2 that we obtained in the hard-
wall model for the �-meson electric radius determined in
[22] from the slope of the GC�Q2� form factor. However,
since GC�Q2� involves kinematic-type terms Q2=m2

�, it
seems more appropriate to compare F��Q

2� with the
F 11�Q

2� form factor (42) given directly by a wave function
overlap integral. The slope of F 11�Q2� is smaller than that
of GC�Q2�, and the corresponding radius is also smaller:
hr2
�iF � 0:27 fm2. Thus, for � � 0, the pion r.m.s. radius

is about 1.4 times larger than the �-meson size determined
by hr2

�i
1=2
F .

With the increase of �, the pion becomes smaller (see
Fig. 4). The experimental value of 0:45 fm2 [25] is reached
for a� 0:9. However, the corresponding value f� �
80 MeV is too small. If we take a � a0 � 2:26, then
hr2
�i � 0:34 fm2. Thus, if we insist on using z0 � z�0 dic-

tated by the hard-wall model calculation of the �-meson
mass, and the value of � producing the experimental f�
(note that then ��2=3 � 0:222 fm2), the pion radius is
smaller than the experimental value. In linear units, the
difference, in fact, does not look very drastic: just 0.58 fm
instead of 0.66 fm. Given that the hard-wall model for
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a

0.25
0.3
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0.4
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0.5

<r π
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FIG. 4. hr2
�i in fm2 for z0 � z�0 as a function of a.
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FIG. 3. Left: Function ���; a� for a � 0, a � 1, a � 2:26, a � 5, a � 10. Middle: Densities ���; 2:26� for pion and ����� for
�-meson in the hard-wall model. Right: Same for densities multiplied by � .
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confinement is rather crude, the agreement may be consid-
ered as encouraging. Furthermore, one may expect that, in
a more realistic softer model of confinement, the size of the
pion will be larger. Such an expectation is supported by our
soft-wall model calculation of the �-meson electric radius,
for which we obtained hr2

�iC � 0:66 fm2 (0:40 fm2 for
hr2
�iF ), i.e., the result by 0:13 fm2 larger than in the

hard-wall model. If hr2
�i would increase by a similar

amount, the result will be very close to the quoted experi-
mental value.

To find hr2
�i for large a (i.e., when � * z�3

0 for fixed z0,
or when z0 * ��1=3 for fixed �), we use first the observa-
tion that, in the region a * 2, we may approximate ��a� �
1. Then the factor in square brackets in Eq. (55) becomes a
function of the combination a�3 � � [call it R���], and
we can write

 

hr2
�ija*2 �

3

4
��1=3���2=3�

�
1

�

�
2=3 Z a

0
d��5=3R���

�
1�

2

3
ln
�
a

�
: (57)

For a * 2, the upper limit of integration in this expression
may be safely substituted by infinity producing

 Z 1
0
d��5=3R��� �

22=3

3�2�2=3�
� G;

Z 1
0
d��5=3R��� ln� � G ln0:566;

(58)

which gives

 hr2
�ija*2 �

��1=3�

24=3��2=3�

�
1

�

�
2=3
�

1�
2

3
ln
�

a
0:566

��
: (59)

Using Eq. (47), we can express the coefficient in front of
the square bracket in terms of f�:

 hr2
�ija*2 �

3

4�2f2
�
�

1

2�2f2
�

ln
�
�z3

0

0:566

�
: (60)

Thus, hr2
�i in the a * 2 region consists of two components:

a fixed term 3=4�2f2
� and a term logarithmically increas-

ing with z0. As z0 ! 1, the pion charge radius becomes
infinite, reflecting the fact that the pion in this model is
massless. A similar structure in the expression for the pion
charge radius was obtained [26] in the Nambu-Jona-
Lasinio (NJL) model

 hr2
�iNJL �

3

2�2f2
�
�

1

8�2f2
�

ln
�
m2
�

m2
�

�
: (61)

It also has the logarithmic term lnm2
� [27,28] resulting in

the infinite radius for massless pion and the infrared-finite
piece 3=2�2f2

� [29,30]. The latter, however, is twice larger
than that in our result (60) and contributes 0:34 fm2 to hr2

�i,
with the chiral logarithm term producing the extra
0:11 fm2 required for agreement with experiment. In our
case, the logarithmic term taken for a � a0 is approxi-
mately equal to 3=4�2f2

�, thus almost doubling the out-
come value for hr2

�i. More precisely, we can write

 hr2
�ija*2 �

3

2�2f2
�

�
1�

1

3
ln
�
a

2:54

��
: (62)

For a � 2:26, the modified logarithmic term gives a very
small contribution, and our net result is very close to the
value given by the NJL fixed term. Numerically, though,
this prediction of the hard-wall AdS/QCD model, as we
have seen, is essentially smaller than the experimental
value.

C. Form factor at large Q2

In the large-Q2 limit, the source J �Q; z� is given by its
free-field version zQK1�Qz� that behaves asymptotically
like e�Qz. As a result, only small values z� 1=Q are
important in the form factor integral, and the large-Q2

asymptotic behavior of the form factor is determined by
the value of ��z� at the origin [2,4,23], namely,

 F��Q2� !
2��0�

Q2 �
22

��0�

Q2 �
4�2f2

�

Q2 �
s0

Q2 : (63)

Note that the combination 4�2f2
� � s0 � 0:68 GeV2 fre-

quently appears in the pion studies. In particular, it is the
basic scale of the pion wave function in the local quark-
hadron duality model [31,32], where it corresponds to the
‘‘pion duality interval.’’
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FIG. 5. Left: Contributions to pion form factor F��Q2� from
�2-term (lower curve), from �2-term (middle curve) and total
contribution (upper curve). Right: Same for Q2F��Q

2�.
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The leading contribution comes entirely from the �2

term of the form factor integral (41) while the �2 term
contribution behaves asymptotically like 1=Q4 since it is
accompanied by extra z2 factor. Note, however, that it is
quite visible in the experimentally interesting region Q2 &

10 GeV2 (see Fig. 5): it is responsible for more than 20%
of the form factor value in this region (moreover, at
Q2 � 0, the �2 term contributes about 40% into the nor-
malization of the form factor).

From a phenomenological point of view, different AdS/
QCD-like models for the pion form factor differ in the
shape of the density ���� that they produce. If we require
that the density ��z� equals 2�2f2

� at the origin, the
asymptotic behavior is F��Q2� ! s0=Q2 in any such
model. For Q2 � 0, the form factor is normalized to one,
so basically the models would differ in how they interpo-
late between these two limits. In particular, the simplest
interpolation is provided by the monopole formula

 Fmono
� �Q2� �

1

1�Q2=s0

; (64)

while our hard-wall calculation gives a curve that goes
above Fmono

� �Q2�: the ratio F��Q2�=Fmono
� �Q2� is larger

than 1 for all Q2 > 0, slowly approaching unity as Q2 !
1 (see Fig. 6).

In fact, a purely monopole form factor was obtained in
our paper [23], where we studied the �-meson form factors
in the soft-wall holographic model, in which confinement
is generated by�z2 oscillator-type potential. It was shown
in [23] that the form factor integral

 F �Q2; �� �
Z 1

0
dzzJ O�Q; z�j��z; ��j2; (65)

in which ��z; �� �
���
2
p
�e�z

2�2=2 is the lowest bound state
wave function, and

 J O�Q; z� � z2�2
Z 1

0

dx

�1� x�2
xQ

2=4�2
exp

�
�

x
1� x

z2�2

�
(66)

is the bulk-to-boundary propagator of this oscillator-type
model, is exactly equal to 1=�1�Q2=�4�2��. The magni-
tude of the oscillator scale � was fixed in our paper [23]
by the value of the �-meson mass: � � �� � m�=2. As a
result, the form factor F �Q2; � � m�=2� had the
�-dominance behavior 1=�1�Q2=m2

��.
If we take � � �� � �f� � 410 MeV both for ��z; ��

and J O�Q; z�, the integral (65) gives 1=�1�Q2=s0�. The
relevant wave function ��z; ��� has the expected correct
normalization ��0; ��� �

���
2
p
�f�, however, the slope

1=s0 of 1=�1�Q2=s0� at Q2 � 0 (corresponding to
0:35 fm2 for the radius squared) is smaller than that of
the experimental pion form factor. Furthermore,
Q2Fmono

� �Q2� tends to s0 � 0:68 GeV2 for large Q2,
achieving values about 0:5 GeV2 for Q2 � 2 GeV2, and
thus exceeding by more than 25% the experimental JLab
values [33] measured for Q2 � 1:6 and 2:45 GeV2. The
authors of Ref. [34] proposed to use Eqs. (65) and (66) as
an AdS/QCD model for the pion form factor, with � �
375 MeV chosen so as to fit these high-Q2 data. However,
such a choice underestimates the value of f2

� by almost
30%. Our opinion is that the AdS/QCD models should
describe first the low-energy properties of hadrons, and
the basic low-energy characteristics, such as m� and f�,
should be used to fix the model parameters. On the other
hand, if the form factor calculations based on these pa-
rameters disagree with the large-Q2 data, it is quite pos-
sible that this is just an indication that one is using the
model beyond its applicability limits. Furthermore, as we
have seen in the hard-wall model, to correctly describe the
pion one needs to include the chiral symmetry breaking
effects absent in the vector channel. As a result, equations
for pion wave functions are rather different from those in
the �-meson case. Similarly, there are no reasons to expect
that, in a soft-wall model, the pion density should have the
same shape as the �-meson one. Unfortunately, the proce-
dure of bringing in the chiral symmetry breaking effects
that was used in the hard-wall model of Ref. [6] faces
serious difficulties when applied to the AdS/QCD model
[9] with the z2 soft wall. As discussed in Ref. [9], the
solution of the equation for the X field in this model
requires that chiral condensate � and the mass parameter
mq are proportional to each other, so that � cannot be
varied independently of mq. Moreover, if one takes the
chiral limit mq � 0, the chiral condensate should also
vanish. This difficulty may be avoided by switching to
more sophisticated recent models (cf. [16–18]) in which
the chiral condensate is generated dynamically. However,
such a consideration goes well beyond the scope of the
present paper. Thus, we just resort to an idea that whatever
the mechanism is involved, the net practical outcome is a
particular shape of the density ��z� that eventually deter-
mines the pion form factor and other pion characteristics.
Below, we give an example of a density �mod�z� that is
normalized at the origin by the experimental value of f�,
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FIG. 6. Left: Pion form factor F��Q2� from the holographic
model (upper curve) in comparison with the monopole interpo-
lation Fmono

� �Q2� (lower curve). Right: Ratio F��Q2�=Fmono
� �Q2�.
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i.e., �mod�0� � 2�2
�, but which is also capable to reproduce

the experimental value of the pion charge radius.
Evidently, to increase the radius, we should take a

density which is larger for large z than �2�z; � � �f��.
Since the overall integral normalization of the density is
kept fixed, this can be achieved only by decreasing the
density for small z values.

Consider a simple ansatz (see Fig. 7)

 �mod�z� � 2�2
�e
�z2�2

�	1� Az2�2
� � Bz

4�4
�
; (67)

with A � 1� �2
�=�2

� � 2B. It has both the desired value
for z � 0 and satisfies the normalization condition

 

Z 1
0
dzz�mod�z� � 1: (68)

Integrating it with J O�Q; z� taken at � � �� produces the
model form factor given by the following sum of contri-
butions of the three lowest vector states:
 

Fmod
� �Q2� �

2� �1� 2B�s0=m2
�

1�Q2=m2
�

�
1� �1� 4B�s0=m2

�

1�Q2=2m2
�

�
2Bs0=m

2
�

1�Q2=3m2
�
: (69)

The slope of Fmod
� �Q2� at Q2 � 0 is given by

 

dFmod
� �Q2�

dQ2
� �

1

m2
�

�
3

2
�

�
1

2
�

2

3
B
�
s0

m2
�

�
: (70)

Taking B � 1=4, one obtains the experimental value
0:45 fm2 for hr2

�i. It is interesting to note that the model
density providing this value, has an enhancement for larger
values of z (see Fig. 7), just like the pion densities in the
hard-wall model (see Fig. 3). Because of a larger slope,
Fmod
� �Q2� decreases faster than the simple monopole inter-

polation Fmono
� �Q2� and, as a result, is in better agreement

with the data. In fact, it goes very close to Q2 & 1 GeV2

data, but exceeds the values of the JLab Q2 � 1:6 and
2:45 GeV2 points by roughly 10% and 20%, respectively.

This discrepancy has a general reason. The asymptotic
AdS/QCD prediction is Q2F��Q

2�jQ2!1 ! 4�2f2
�

which is � 0:68 GeV2 for experimental value of f�. On

the other hand, JLab experimental points correspond to
Q2Fexp

� �Q2� � 0:4 GeV2, which is much smaller than the
theoretical value quoted above. The preasymptotic effects,
as we have seen, reduce the discrepancy, but there still
remains a sizable gap. As we already stated, such a dis-
agreement may be just a signal that we are reaching a
region where AdS/QCD models should not be expected
to work. In particular, AdS/QCD models of Refs. [2,4,6,8]
describe the pion in terms of an effective field or current,
without specifying whether the current is built from
spin-1=2 fields, or from scalar fields, etc. For Q2 above
1 GeV2, the quark substructure of the pion may be resolved
by the electromagnetic probe (which is a widespread be-
lief ), and the description of the pion ‘‘as a whole’’ may be
insufficient.

V. SUMMARY

In this paper, we studied the pion in the chiral limit of
two-flavor QCD. To this end, we described a formalism
that allows to extract pion form factor within the frame-
work of the holographic dual model of QCD with hard-
wall cutoff. Following Ref. [6], we identified the pion with
the longitudinal component of the axial-vector gauge field.
We defined two (Sturm-Liouville) conjugate wave func-
tions ��z� and ��z� that describe the structure of the pion
along the 5th dimension coordinate z. These wave func-
tions provide a very convenient framework to study the
holographic physics of the pion. We demonstrated that, just
like in the �-meson case [22], the pion form factor is given
by an integral involving the function ��z� that has the
meaning of the charge density inside the pion. However,
in distinction to the �-case, when the density was simply
given by j��z�j2, the pion density has an additional term
proportional to j��z�j2 and entering with the z-dependent
coefficient reflecting the mechanism of the spontaneous
symmetry breaking. Both terms are required for normal-
ization of the form factor at Q2 � 0.

We found an analytic expression for the pion decay
constant in terms of two parameters of the model: � and
z0, similar to those used in Ref. [8]. Analyzing the results,
we found it convenient to work with two combinations
� � g5�=3 and a � �z3

0 of the basic parameters. In par-
ticular, we found a � a0 � 2:26 for the value of a corre-
sponding to the experimental �-meson mass m� and pion
decay constant f�. The importance of the parameter a is
that its magnitude determines the regions, where the pion
properties are either governed by the confinement effects
or by the effects from the spontaneous chiral symmetry
breaking. For example, in the practically important domain
a > 2, the pion decay constant is determined primarily by
�, with negligibly tiny corrections due to z0 value.
However, when a < 1 the pion decay constant is propor-
tional to the ratio a=z0. Besides, for small a� 1, the
radius of the pion is given by hr2

�i �
4
3 z

2
0, i.e., as one

may expect, the pion size is completely determined by
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FIG. 7. Left: Model density z�mod�z� (measured in fm�1) is
larger than the density zj��z; ���j2 for large z (displayed in fm).
Right: Ratio Fmod

� �Q2�=Fmono
� �Q2� for B � 1=4.
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the confinement radius. On the other hand, for a > 2 the
radius is basically determined by 1=�1=3, slowly increasing
with z0 due to the lna=a0 correction.

We also found that the pion rms charge radius hr2
�i

1=2 �
0:58 fm in the hard-wall model is smaller than that mea-
sured experimentally. In a sense, the hard wall at the
distance z0 � 0:62 fm (fixed from the �-meson mass),
‘‘does not allow’’ the pion to get larger. So, we argued that
if the IR wall is ‘‘softened,’’ the size of the pion may be
increased by an amount sufficient to accommodate the
data. A straightforward idea is to use the soft-wall model
of Ref. [9] and treat the pion in a way similar to what was
done in [23] for the �-meson case. Unfortunately, there are
prohibiting complications with directly introducing the
chiral symmetry effects within the AdS/QCD model with
the z2 soft wall. As explained in Ref. [9], the chiral con-
densate � in such a model is proportional to the mass
parameter mq, so that in the chiral limit the condensate
vanishes together with the quark mass.

To illustrate a possible change in the form factor pre-
dictions due to the softening of the IR wall, we proposed an
ansatz for the pion density function and used the vector
current source from the soft-wall model considered in
Ref. [23]. We demonstrated that this ansatz is capable to
fit the experimental value of the pion charge radius. It also
closely follows the data in the Q2 < 1 GeV2 region, while

still overshoots available data in the Q2 � 2 GeV2 region.
The basic source of this discrepancy is very general: the
asymptotic AdS/QCD prediction for the pion form factor is
Q2F��Q2� ! 4�2f2

�, and if one takes the experimental
value for f�, one obtains Q2F��Q

2� ! 0:68 GeV2, which
is much larger than the 0:4 GeV2 value given by Q2 �
2 GeV2 JLab data. For this reason, we argued that the
disagreement mentioned above may be a signal that the
region Q2 * 2 GeV2 is beyond the applicability region of
AdS/QCD models.

Finishing the write-up of this paper, we have learned that
the paper [35] addressing the same problem was posted
into the arxive. We did not observe, however, essential
overlaps with our ideas and results.
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