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Optical precision experiments are a powerful tool to explore hidden sectors of a variety of standard-
model extensions with potentially tiny couplings to photons. An important example is given by extensions
involving an extra light U(1) gauge degree of freedom, so-called paraphotons, with gauge-kinetic mixing
with the normal photon. These models naturally give rise to minicharged particles which can be searched
for with optical experiments. In this paper, we study the effects of paraphotons in such experiments. We
describe in detail the role of a magnetic field for photon-paraphoton oscillations in models with low-mass
minicharged particles. In particular, we find that the upcoming light-shining-through-walls experiments
are sensitive to paraphotons and can distinguish them from axionlike particles.
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I. INTRODUCTION

Extensions beyond the current standard model of parti-
cle physics often involve a hidden sector, i.e., an experi-
mentally so far unobserved set of degrees of freedom very
weakly coupled to standard-model particles. Whereas
present and future accelerator experiments are generally
devoted to the search for new heavy particles, the potential
discovery of a new weakly coupled light particle requires
high-precision experiments for which nonaccelerator set-
ups often appear most promising.

Optical experiments can provide for such a powerful
laboratory tool, since optical photons can be manipulated
and detected with a great precision. If a hypothetical
hidden sector couples effectively to photons, optical ex-
periments can have a significant discovery potential or,
alternatively, can put stringent laboratory bounds on
standard-model extensions, since both photon sources
and detectors can be under full experimental control.

An example of such experiments are laser polarization
experiments, such as BFRT [1], PVLAS [2], and Q&A [3],
where linearly polarized laser light is sent through a trans-
verse magnetic field, and changes in the polarization state
are searched for. The real and virtual production of axion-
like [4,5] (ALP) or minicharged [6] (MCP) particles would
lead to observable signals such as an apparent rotation and
an ellipticity of the outgoing laser beam. Similar planned
experiments in this direction are based also on high-
intensity lasers [7].

Another powerful tool are so-called light-shining-
through-walls (LSW) experiments, such as BFRT [1,8].
Here, laser light is shone onto a wall, and one searches
for photons that appear behind the wall. Vacuum oscilla-
tions of photons into paraphotons with sub-eV masses
would lead to a nonvanishing rate of photons behind the
wall [9]. In the presence of a magnetic field, photons can

oscillate into axionlike particles, which can then be recon-
verted into photons behind the wall by another magnetic
field [10–13].1

Presently, there are several second-generation LSW ex-
periments worldwide, such as ALPS [17], BMV [18],
GammeV [19], LIPSS [20], OSQAR [21], and PVLAS
[22], under construction or serious consideration (for a
review, see Refs. [23,24]). These efforts are partially mo-
tivated by the report from the PVLAS Collaboration in
2006 of evidence for a nonzero apparent rotation of the
polarization plane of a laser beam after passage through a
magnetic field [2]. While the size of these first results
greatly exceeded the expectations from quantum electro-
dynamics [25–28], it could have been compatible with a
photon-ALP oscillation hypothesis or with the production
of light minicharged particles [29]. Although the couplings
and masses required for such an explanation seem to be in
serious conflict with bounds coming from astrophysical
considerations [30,31], there are various ways to evade
them [32–41] (see, however, Ref. [42]).

More recently, the PVLAS Collaboration has published
new results of their optical measurements with an upgraded
apparatus to check against instrumental artifacts [43].
Whereas the new observations do not indicate a rotation
of the laser polarization anymore, an ellipticity signal for a
magnetic field strength B of 5.5 T is still visible. It is argued
by PVLAS that this remaining signal should also be spu-
rious, assuming a B2 dependence of the signal as it is the
case for the standard ALP scenario. However, this argu-
ment is model-dependent and does not necessarily exclude

1Also, astrophysical observations of light rays from binary
pulsar systems [14], dimming features in the spectra of TeV
gamma sources [15], or regenerated photons from cosmic ALPs
originating from the Crab pulsar [16] could be a useful optical
probe.
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the contribution of chameleon-type ALPs [44] or para-
photons (as will be apparent from this paper). This makes
it extremely important to check these interpretations in
further experiments.

LSW experiments seem well suited to distinguish be-
tween ALPs and minicharged particles. Only in the former
case, we expect a sizeable rate of regenerated photons.
However, natural models with minicharged particles also
contain at least one paraphoton [45]. In this paper, we
include the effects of paraphotons and discuss in detail
how this can lead to a nonvanishing signal in LSW experi-
ments that is nevertheless distinguishable from the one
expected in the ALP case. Moreover, we show that the
presence of the paraphoton significantly alters the signals
in polarization experiments.

The paper is organized as follows. In Sec. II, we briefly
review how minicharges arise in models with paraphotons.
In Secs. III and IV, we show how paraphotons can lead to a
signal in LSW experiments. In Sec. V, we discuss how the
predictions for rotation and ellipticity measurements
change in models with paraphotons. In realistic experi-
ments, the magnetic field region has a finite spatial size.
For small, but nonvanishing, paraphoton mass this can
have significant effects, as we explain in Sec. VI. In
Sec. VII, we give explicit examples in which signals of a
paraphoton model are compared to those of a pure mini-
charged particle model without paraphoton. Furthermore,
we use data from the BFRT experiment to illustrate the
sensitivity of such optical setups. Finally, we summarize
and conclude in Sec. VIII.

II. PARAPHOTONS AND MINICHARGED
PARTICLES

Minicharged particles arise very naturally in models
with extra U(1) gauge degrees of freedom [9,45]. In this
section, we briefly review how kinetic mixing leads to
minicharged particles and provide some details on models
that have been proposed to explain the PVLAS result.

Let us begin with the simplest model with two U(1)
gauge groups, one being our electromagnetic U�1�QED, the
other a hidden-sector U�1�h under which all standard-
model particles have zero charge. The most general
Lagrangian allowed by the symmetries is

 L � �
1

4
F��F�� �

1

4
B��B�� �

1

2
�F��B��; (2.1)

where F�� is the field strength tensor for the ordinary
electromagnetic U�1�QED gauge field A�, and B�� is the
field strength for the hidden-sector U�1�h field B�, i.e., the
paraphoton. The first two terms are the standard kinetic
terms for the photon and paraphoton fields, respectively.
Because the field strength itself is gauge invariant for U(1)
gauge fields, the third term is also allowed by gauge and
Lorentz symmetry. This term corresponds to a nondiagonal
kinetic term, a so-called kinetic mixing.

From the viewpoint of a low-energy effective
Lagrangian, � is a completely arbitrary parameter.
Embedding this into a more fundamental theory, it is
plausible that � � 0 holds at a high-energy scale related
to the fundamental theory. However, integrating out the
quantum fluctuations below this scale generally tends to
generate nonvanishing � [45]. In a similar manner, kinetic
mixing arises in many string theory models [35,46–51].

The kinetic term can be diagonalized by a shift

 B� ! ~B� � �A�: (2.2)

Apart from a multiplicative renormalization of the gauge
coupling, e2 ! e2=�1� �2�, the visible-sector fields re-
main unaffected by this shift.

Let us now assume that we have a hidden-sector fer-
mion2 h that has charge one under B�. Applying the shift
(2.2) to the coupling term, we find:

 eh �hB6 h! eh �h ~6Bh� �eh �hA6 h; (2.3)

where eh is the hidden-sector gauge coupling. We can read
off that the hidden-sector particle now has a charge

 �e � ��eh (2.4)

under the visible electromagnetic gauge field A� which has
gauge coupling e. Since � is an arbitrary number, the
fractional electric charge � of the hidden-sector fermion
h is not necessarily integer.

For small �� 1, we observe that

 j�j � 1; (2.5)

and h becomes a minicharged particle. From now on we
will concentrate on this case.3

So far we have considered the case of an unbroken U�1�h
symmetry for the paraphoton. Let us now see what happens
if we add a mass term,4

 L � �
1

2
�2B�B�: (2.6)

Applying the shift (2.2) results in a term,

 L � �
1

2
�2� ~B� ~B� � 2� ~B�A� � �2A�A��; (2.7)

that mixes photons with paraphotons.

2Here and in the following, we will specialize to the case
where the hidden-sector particle is a fermion. A generalization to
scalars is straightforward and does not change the results
qualitatively.

3Very small values of � can be obtained in supersymmetric or
string theories [46]. On the other hand, light particles with
charge � � O�1� are excluded by several kinds of experiments
[31,52] and very massive particles give negligible contributions
in experiments such as BFRT, PVLAS, Q&A or the upcoming
optical experiments that will test the PVLAS particle
interpretation.

4Adding a mass term is equivalent to breaking the paraphoton
U�1�h via a Higgs mechanism and choosing unitary gauge.
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To see how this affects the coupling of the hidden-sector
fermion, let us write down the inverse propagator in our
�A�; ~B�� basis,

 P�1 �
q2 � �2�2 ���2

���2 q2 ��2

� �
: (2.8)

The effective charge of the hidden-sector fermion h is now
obtained (to lowest order in �) from

 Qhe � lim
q2!0

q2P1jCj � ��e� �eh � 0; (2.9)

where

 C � ��e; eh� (2.10)

is the charge vector of h in the �A�; ~B�� basis. In this limit,
the photon is put onto the mass shell, and the factor q2 is
included to cancel the trivial 1=q2 dependence of the
Coulomb potential. The two contributions correspond to
the two diagrams in Fig. 1. On shell, the minicharge is
‘‘undone’’ by the mass term. However, off shell or for
massive photons (as, for instance, in a plasma), this is not
the case.

Let us now move on to the slightly more involved case of
the model presented in Ref. [34] (‘‘MR model’’). This
model involves two paraphotons B�1 and B�2 . For clarity,
we will in the following suppress Lorentz indices and use a
matrix notation �A;B1; B2�, and similarly for the ~B. The
Lagrangian for the gauge fields reads:

 L � �
1

4
FTKF�

1

2
ATMA; (2.11)

with the kinetic mixing and mass matrix

 K �

1 � �
� 1 0
� 0 1

0@ 1A; M �

0 0 0
0 �2 0
0 0 0

0@ 1A: (2.12)

Again, we can diagonalize the kinetic term by shifting the
fields,

 B1 ! ~B1 � �A; B2 ! ~B2 � �A: (2.13)

This leaves the ordinary electromagnetic gauge field un-
affected (again up to a small renormalization).

The model of Ref. [34] has a hidden-sector fermion that
lives in the bifundamental representation of the two para-
photons with charges �0; 1;�1�. Moreover, the two hidden
gauge couplings are assumed to be equal eh;1 � eh;2 � eh.
Applying (2.13), we find
 

eh �h�B�1 �B
�
2 	��h! eh �h�� ~B�1 ��A

���� ~B�2 ��A
��	��h

� eh �h� ~B�1 � ~B�2 	��h: (2.14)

For the moment, it seems as if the hidden-sector fermion
has no interaction with the photon. However, we should not
forget that one of the paraphotons is massive. In the new
basis, the mass matrix reads:

 

~M �
�2�2 ���2 0
���2 �2 0

0 0 0

0B@
1CA: (2.15)

As in the case of only one paraphoton, the mass term
undoes the effects on the minicharges induced by the
massive paraphoton (cf. Eq. (2.9)). Since the second para-
photon is massless, its contribution to the minicharge
(cf. middle part of Eq. (2.14)) remains unaffected and the
particle has an effective charge,

 QMR
h e � ��eh: (2.16)

Finally, let us comment on situations where the virtuality
of a process is high compared with the paraphoton mass
scale, as, for instance, in the center of the sun. In this case,
we cannot take the limit q2!0 in Eq. (2.9). Instead, we
have to insert the virtuality of the process, implying that the
minicharge is not undone by the mass term. At high
virtuality, the small mass has basically no effect and the
(first) paraphoton behaves more or less as if it were mass-
less. For our case with two paraphotons, this means that the
first paraphoton now contributes a charge �eh� to the
effective electromagnetic coupling of h resulting in a total
of

 QMR
h 
 0; for q2 � �2: (2.17)

In other words, the mass matrix (2.15) can be neglected,
and we effectively have the case of two massless para-
photons and an interaction as in Eq. (2.14).

III. LIGHT SHINING THROUGH WALLS I: B � 0

In the previous section, we have seen how a nondiagonal
mass matrix contributes to the effective charge of the
hidden-sector fermion via a diagram that changes the
photon into a paraphoton (the second diagram of Fig. 1).
This nontrivial propagation of the photon can have inter-
esting effects in itself. Since the paraphotons ~B do not
interact with ordinary matter they can easily pass through

FIG. 1. Two diagrams contributing to the coupling of the
photon to the hidden-sector fermion h in a situation where the
paraphoton is massive. The first is the direct contribution via the
charge �e that arises from the shift (2.2) of the paraphoton field.
The second is due to the nondiagonal mass term (2.7) and
cancels the first diagram if the external photon is on shell and
massless (q2 � 0). Note that the second diagram is only present
if the paraphoton has nonvanishing mass �2 � 0.
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a wall [9], giving rise to a process sketched in Fig. 2. There,
we see how a photon is converted into a paraphoton by the
nondiagonal mass term. Subsequently, the paraphoton
passes through the wall and is then reconverted into an
ordinary photon that can be detected.

The photon conversion into (massive) paraphotons and
back into photons very much resembles neutrino oscilla-
tions. Similarly to neutrinos, the interaction eigenstates are
not equal to the propagation eigenstates.

In order to calculate the probability for an initial photon
interaction eigenstate to propagate through a wall via this
process, we start with the equations of motion in our tilde
basis,
 

�!21� @2
z1� ~M	

A
~B

 !
�

�
�!2 � @2

z�
1 0

0 1

 !

��2
�2 ��

�� 1

 !� A
~B

 !
� 0:

(3.1)

Here, we have suppressed the Lorentz structure. Both
transverse polarization directions have to fulfill the same
equation. In the second part, we have specialized to the
case of only one massive paraphoton. Note that this case is
completely equivalent to the case with two paraphotons in
the model of Ref. [34], because the mass matrix (2.15) is
nonvanishing only in the first two components and there-
fore the second paraphoton does not mix with the photon
(we will see in next section that this situation changes when
photons propagate in an external magnetic field).

From Eq. (3.1), we find two propagating eigenstates,
 

V1�z; t� �
1

�

 !
exp��i�!t� k1z��;

with k2
1 � !2;

V2�z; t� �
��

1

 !
exp��i�!t� k2z��;

with k2
2 � !2 ��2 �O��2�:

(3.2)

Let us now start with an initial state at z � 0 that is purely
photonic,5

 A�0; 0� � A0
1
0

� �

� A0
1

1� �2 V1�0; 0� �
�

1� �2 V2�0; 0�

 !
: (3.3)

The survival probability for an initial photon is
 

P�!��z��
jA1�z;t�j

2

jA0j
2 �1�4�2sin2 �kz

2

� �
�O��4�; (3.4)

where

 �k � k1 � k2 

�2

2!
; for �� !: (3.5)

The conversion probability into paraphotons is then ob-
tained as [9]

 P�!�0 �z� �
jA2�z; t�j

2

jA0j
2 � 1�

jA1�z; t�j
2

jA0j
2

� 4�2sin2

�
�2

4!
z
�
: (3.6)

In a light-shining-through-walls experiment as depicted in
Fig. 2, with lengths ‘1 and ‘2 before and after the wall, the
photon probability for a transit ‘‘through the wall’’ is then
simply given by

FIG. 2. Schematic picture of a ‘‘light-shining-through-walls’’
experiment in absence of a magnetic field. The crosses denote
the nondiagonal mass terms that convert photons into parapho-
tons. The photon � oscillates into the paraphoton �0 and, after
the wall, back into the photon � which can then be detected.

FIG. 3 (color online). Projected sensitivity (one expected event
per indicated time; no background; � � 1) of future LSW
experiments to photon-paraphoton oscillations in the absence
of a magnetic field. The shaded region shows the 95% exclusion
region of BFRT.

5In Appendix B, we argue that this is a reasonable choice for
the initial state.
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 Ptrans � P�!�0 �‘1�P�0!��‘2�

� 16�4

�
sin
�
‘1�2

4!

�
sin
�
‘2�2

4!

��
2
: (3.7)

Typically, the conversion probability P�!�0 �‘1� is en-
hanced by using a pair of facing mirrors before the wall.
If the photon beam is reflected Npass times, it will make
�Npass � 1�=2 ‘‘attempts’’ to cross the wall, enhancing the
transmission probability by this same factor. The expected
rate of observed photons in addition involves the total
initial photon rate N0 and the detection efficiency �< 1,

 N � �N0

�Npass � 1

2

�
Ptrans: (3.8)

Figure 3 shows the limit from the BFRT experiment [1] and
the projected sensitivity of the ongoing experiments listed
in Table I, corresponding to one regenerated photon after
1 d of observation. For � * 10�4 eV, this limit on the
mixing parameter is better than the one from Cavendish-
type laboratory searches for a fifth force [53–55].

IV. LIGHT SHINING THROUGH WALLS II: B � 0

In a classic light-shining-through-walls experiment [11–
13], the light is shone through a transverse magnetic field.
This is because these experiments typically look for axions
[56,57], whose production by virtue of their coupling to
two photons requires a transverse magnetic field [10].
Therefore, let us study what happens in our photon-
paraphoton system with a minicharged particle if we
switch on such a magnetic field.

In a pure minicharged particle model without parapho-
tons, the conversion of photons into minicharged particles
in a magnetic field does not produce a photon signal in the
detector behind the wall. The particle-antiparticle pairs that
are created from the photons [6] move away from each
other under the influence of the magnetic field because they

have opposite charges. Moreover, they typically have op-
posite momenta along the direction of the magnetic field
lines separating them even further. In general, the particles
will not annihilate again behind the wall and cannot be
reconverted into photons.6

What is different if we include paraphotons? The big
difference is that now photons can convert into parapho-
tons which then will pass through the wall. In the presence
of a magnetic field, this coherent conversion is possible
even for massless paraphotons. The relevant diagram for
this transition is depicted in Fig. 4(b).

For a quantitative analysis, we again start from the
equations of motion. We begin with the simple case of
only one massless paraphoton. Without paraphotons,
Fig. 4(a) would induce a nonvanishing refractive index.
The photon would then satisfy the following equation of
motion,

 ��1� 2�2e2�Ni�!
2 � k2	Ai � 0

�without paraphotons�:
(4.1)

The index i represents the two polarizations k and ? with
respect to the magnetic field, and �2e2�Ni � ni � 1 is the
contribution to the refractive index of the photon caused by
the diagram 4(a). The explicit expression for
�Ni��eB; mf� for a particle h with mass m� is given in
Appendix A. Various representations of �Ni and plots of

TABLE I. The benchmark values of LSW experiments (for some of these experiments, the
setup is still preliminary).

Experiment Laser Cavity Magnets

ALPS 532 nm; 200 Watt 
 
 
 B1 � B2 � 5 T
‘1 � ‘2 � 4:21 m

BFRT �500 nm; 3 Watt Npass � 200 B1 � B2 � 3:7 T
‘1 � ‘2 � 4:4 m

BMV 8� 1021� per pulse 
 
 
 B1 � B2 � 11 T
‘1 � ‘2 � 0:25 m

GammeV 532 nm; 3.2 Watt 
 
 
 B1 � B2 � 5 T
‘1 � ‘2 � 3 m

LIPSS 900 nm; 3000 Watt 
 
 
 B1 � B2 � 1:7 T
‘1 � ‘2 � 1 m

OSQAR 1064 nm; 1000 Watt Npass � 10000 B1 � B2 � 9:5 T
‘1 � ‘2 � 7 m

PVLAS 1064 nm; 0.02 Watt Npass � 44000 B1 � 5 T, ‘1 � 1 m
B2 � 2:2 T, ‘2 � 0:5 m

6In the present work, we assume that the wall thickness is
bigger than the Compton wavelength of the minicharged parti-
cles. In this limit, we expect that the potential process of a
photon propagating through the wall as a virtual minicharged
particle pair is exponentially suppressed. The opposite limit
requires a careful field-theoretical study of the photon polariza-
tion tensor near the wall, which is beyond the scope of the
present work.
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the parameter dependencies can, for instance, be found in
[58–60].

It is now straightforward to derive the contribution from
Fig. 4(b) to our photon-paraphoton system. The full equa-
tion of motion becomes

 ��1� 2�2e2�Ni�!2 � k2	Ai � 2��e�eh�Ni!2 ~Bi � 0:

(4.2)

Equation (4.2) is not a closed equation for the photon,
because it contains the paraphoton field. The equation of
motion for the paraphoton can be obtained in complete
analogy. We simply have to replace the two external pho-
ton legs in Fig. 4(a) with paraphotons and exchange the
photon and the paraphoton field in Fig. 4(b),

 ��1� 2e2
h�Ni�!

2 � k2	 ~Bi � 2��e�eh�Ni!
2Ai � 0:

(4.3)

Using (2.4) to eliminate �, we can write the complete set of
equations as

 

�
�!2� @2

z�
1 0
0 1

� �
� 2!2e2

h�Ni
��2 ��
�� �1

� ��
Ai
~Bi

� �
� 0;

(4.4)

for one massless paraphoton.
This equation is completely equivalent to (3.1) if we

replace

 �2 ! �2!2e2
h�Ni: (4.5)

The propagation eigenstates are already given in Eq. (3.2).
There is only one slight complication that has to be dealt
with when calculating the transition probability: �Ni is
generally complex,

 �Ni � �ni �
1

2!
i�i: (4.6)

Up to coupling factors corresponding to the external (para-
)photon lines, �ni is the deviation of the real refractive
index from 1, and �i denotes the absorption coefficient.
Accounting for this, the transition probability is
 

P�!�0 �z� � �2�1� exp��e2
h�iz�

� 2 exp��e2
h�iz=2� cos�e2

h�ni!z�	: (4.7)

The total probability for a light-shining-through-walls ex-
periment then is

 Ptrans �

�Npass � 1

2

�
�4�1� exp��e2

h�iz�

� 2 exp��e2
h�iz=2� cos�e2

h�ni!z�	2: (4.8)

Note the following features:
(i) The size of the photon-paraphoton mixing is con-

trolled by �2, but
(ii) the typical oscillation length for the photon-

paraphoton system is given by 1=�!e2
h�n�. The

latter is by a factor �2 shorter than the typical length
which might naively be expected from Fig. 4(a)

(iii) The oscillations die out for nonvanishing �i and we
get a nonoscillatory signal for experiments with a
sufficiently long conversion region. This is rather
useful, because the oscillations typically lead to
‘‘holes’’ in the sensitivity of the experiment for a
given fixed experimental signal.

(iv) The �Ni are nonvanishing for both polarization di-
rections k and ? , and we expect a signal for both
polarizations. This might resemble a case in which
light-shining-through-walls proceeds through an
ALP with mixed parity interactions to photons,7 as
considered in Ref. [61]. However, for the most-likely
scenarios where the ALP has a definite parity, either
pseudoscalar or scalar, a signal would be expected
only for the k or ? mode.

(v) For practical purposes, it is useful that the oscillation
length of the photon-paraphoton system is control-
lable by the external magnetic field (�n and � de-
pend on B). Varying the magnetic field, one can try to
maximize the term in square brackets in Eqs. (4.7) or
(4.8). For instance, the transition probability (4.7)
asymptotically approaches �2; but for a suitable set
of parameters such that �iz! 0 and �ni!z! �,
the transition probability can increase up to 16�2.
This is in contrast to the case of an ALP, where the
oscillation length is completely determined by the
mass of the ALP, which cannot be changed, and the

FIG. 4. The contribution of minicharged particles to the polar-
ization tensor (a). The real part leads to birefringence, whereas
the imaginary part reflects the absorption of photons caused by
the production of particle-antiparticle pairs. The analogous dia-
gram (b) shows how minicharged particles mediate transitions
between photons and paraphotons. Note that the latter diagram is
enhanced with respect to the first one by a factor �eh=��e� �
1=�. The double line represents the complete propagator of the
minicharged particle in an external magnetic field B as displayed
in (c) [72].

7Even in this case it can be easy to distinguish between a
general ALP and paraphoton scenarios. In the second case, the
ratio of the regeneration rates of the two polarization modes does
depend on the photon energy and on the strength of the magnetic
field, whereas this ratio is a constant for the former case.
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frequency of the laser, which is at least more difficult
to change.

At first glance, the insertion of a mass term seems
straightforward on the basis of the equations of motion.
However, as discussed in Sec. II, we have to take into
account that the effective h-photon coupling receives an
additional contribution from the nondiagonal propagator,
such that Qh � 0. Therefore, �Ni vanishes in this case,
and we get the same result as for B � 0. Note that this
simple argument implicitly assumes that the magnetic field
is homogeneous and thus has infinite spatial extent, also
transversally to the photon beam direction. The effects of a
magnetic field with finite size will be discussed in Sec. VI.

Finally, let us turn to the full model [34] with two para-
photons, one massless and one massive. As discussed in
Sec. II, the effective coupling of the particle hwith charges
�0; 1;�1� to photons is Qhe � �eh, cf. Eq. (2.16). This
determines �N as given in Sec. VI and Appendix A.
Taking the negative charge of h with respect to the second
paraphoton into account, the equation of motion reads:
 2664�!2 � @2

z�

1 0 0

0 1 0

0 0 1

0BB@
1CCA��2

�2 �� 0

�� 1 0

0 0 0

0BB@
1CCA

� 2!2e2
h�Ni

0 0 0

0 1 �1

0 �1 1

0
BB@

1
CCA
3
775

Ai
~B1;i

~B2;i

0
BB@

1
CCA � 0: (4.9)

The explicit regeneration probabilities are given in
Appendix C. A quantitative discussion follows below in
Sec. VII.

V. DICHROISM AND BIREFRINGENCE IN
MODELS WITH PARAPHOTONS

In the preceding sections, we have concentrated on light-
shining-through-walls experiments. But imprints of para-
photons can also be found in experiments that measure the
change in the optical properties after propagation through
the apparatus, as is, for instance, done in the BFRT,
PVLAS and Q&A experiments.

Both rotation and ellipticity can be inferred from the
photon-photon amplitude,

 Ai�!� �
Ai1�z; t�

A0 exp�i�kz�!t��
; (5.1)

for different polarization directions i.
As we have already seen in Sec. III, Eq. (3.4),

 Pi�!� � jA
i
�!�j

2 (5.2)

is the survival probability for an incoming photon. In other
words, 1� jAi�!�j is the decrease in amplitude for the
different polarization directions. From this, we can easily
find the rotation of an initially linear polarized beam enter-
ing at an angle 	,

 �	 �
1

2
�jA?�!�j � jA

k
�!�j� sin�2	�



1

2
Re�A?�!� � A

k
�!�� sin�2	�; (5.3)

where the approximation is valid for amplitudes that are
close to 1.

Phase shifts compared to an unmodified photon beam
appear as the argument of the amplitude, arg�A?;k�!��. One
finds for the ellipticity,

  �
1

2
�arg�Ak�!�� � arg�A?�!��	 sin�2	�



1

2
Im�Ak�!� � A?�!�� sin�2	�: (5.4)

As expected, neither rotation nor ellipticity appear in the
absence of a magnetic field, because the amplitudes Ak;?�!�
are equal. This is, of course, due to the fact that a simple
Lorentz invariant mass term distinguishes no preferred
direction.

In the presence of a magnetic field, however, the ampli-
tudes differ, because the oscillation and absorption lengths
are different for photons parallel k and perpendicular ? to
the magnetic field.

Using the propagation eigenstates derived in Secs. III
and IV, namely, Eqs. (3.2), (3.5), and (4.5), we find the
amplitude

 Ak;?�!�� 1��2�1� exp��i�kk;?z�Kk;?z��; for �� 1;

(5.5)

where

 �kk;? � �!e2
h�nk;?; Kk;? �

1

2
e2
h�
k;?: (5.6)

Inserting this into Eq. (5.3), we find:

 

�	 �
1

2
�2�cos��k?z� exp��K?z�

� cos��kkz� exp��Kkz�	 sin�2	�




�
1

4
�2e2��k � �?�z�

1

4
�2!2��e2

h�nk�2

� �e2
h�n?�2	z2

�
sin�2	�; for �kz;Kz� 1: (5.7)

The first term in the last line is the standard result for the
rotation in a model without paraphotons (cf., e.g.,
Ref. [29]). However, note that with paraphotons where
�2e2 � �2e2

h this result holds only if the length z is much
smaller than the oscillation length 1=�!e2

h�n�; the latter is
by a factor �2 smaller than the naive expectation from the
case without paraphotons 1=�!�2e2�n�.
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Similarly the ellipticity can be inferred from Eq. (5.4),
 

 � �
1

2
�2�sin��kkz� exp��Kkz�

� sin��k?z� exp��K?z�	 sin�2	�



1

2
!�2

he
2��nk ��n?�z sin�2	�; for �kz;Kz� 1:

(5.8)

Equations (5.3) and (5.4) are valid also for models with
two paraphotons. The determination of the rotation and
ellipticity boils down to solving the equation of motion
(4.9) and inserting into (5.1), (5.3), and (5.4). (The neces-
sary expressions for the amplitudes can be found in
Appendix C.) A quantitative discussion follows in
Sec. VII.

VI. EFFECTS OF A MAGNETIC FIELD WITH
FINITE EXTENT TRANSVERSE TO THE PHOTON

BEAM

In Sec. II, we have seen that, for massive paraphotons,
the � electric charge resulting from the shift in the para-
photon field is effectively canceled by the mass term as
depicted in Fig. 1. However, this is true only if the photon
coupling to the hidden-sector particle has q2 � 0, i.e., if it
is on shell.

In realistic situations, the magnetic background field has
a finite extent and the photons which build it up have a
nonvanishing virtuality. In order to take this into account,
we have to resum the diagrams in Fig. 1 also at nonvanish-
ing virtuality. Resumming tree-level diagrams is equivalent
to solving the equations of motion (this automatically
includes also the higher-order diagrams with multiple
mass insertions that were neglected in Fig. 1). Therefore,
we have to solve the combined equations of motion for
photon and paraphoton—including the mass term—not
only for the photons of the laser but also for the back-
ground magnetic field. To lowest order, we can neglect the
index of refraction �N and we have (Lorentz structure
suppressed)
 

�r21� ~M	
A
~B

 !

�

"
r2

1 0

0 1

 !
��2

�2 ��

�� 1

 !#
A
~B

 !
� 0 (6.1)

for a static background field.
To get an impression of the general behavior, we can

solve (6.1) for a spherically symmetric situation with a
point source. Similar to the two eigenmodes in Sec. III, we

find two solutions corresponding to a pure massless
Coulomb-type potential and a massive Yukawa-type po-
tential,8

 
1�r� �
1
�

� �
1

r
; 
2�r� �

��
1

� �
exp���r�

r
: (6.2)

For a source made up of ordinary matter, the potentials
have to behave like��1; 0�T1=r for r! 0 and the potential
for matter fields takes the form

 
matter �
1

1� �2

1

r
1� �2 exp���r�
��1� exp���r��

� �
: (6.3)

A hidden-sector particle with charge vector ��e; eh�T there-
fore sees an effective potential,
 

��e; eh�
matter �
1

r
��e� �eh�1� exp���r��	 �O��2�

�
1

r
�e exp���r�; (6.4)

where we have used Eq. (2.4), �e � �eh�, for the last
equality. Note that this can be written as

 ��e; eh�
matter � ��e; eh�
matterj��0 exp���r�; (6.5)

and, therefore, these effects can be accounted for by using
an effective magnetic field Beff�r� in the calculation of �N,
given by

 B eff�r� � B�1��r� exp���r� (6.6)

where B is the standard magnetic field, calculated as if
there were no paraphotons.

If the source is not pointlike we therefore expect a
behavior,

 B eff�r� �
�
B exp���r� for �r� 1
B for �r� 1 ; (6.7)

where r is now a typical distance from the source.
For large distances, r� 1=�, we recover the result that

the effective charge vanishes. But for smaller distances,
residual effects of the epsilon charge remain. In typical
experiments, the transverse size9 of the magnetic field is of
the order of 10 cm. Remembering that 1 cm 

1=�2� 10�5 eV� this can indeed become an important
effect for paraphoton masses of the order of �eV.

A similar calculation can be done for the case of
two paraphotons. In this case, the hidden-sector field is
not directly coupled to the electromagnetic field
(cf. Eq. (2.14)). The effective epsilon charge arises, be-
cause one paraphoton is massive and the other is massless,
and the cancellation analogous to Fig. 1 is not complete.
Therefore, we are not too surprised by the result,

 BMR
eff �r� � B�1� �1��r� exp���r��: (6.8)

8In our simplified notation without any Lorentz structure, the
potentials can be either the electric potential or the vector
potential leading to magnetic fields, depending on whether the
source is a charge or a current.

9The important length scale is the distance from the sources,
i.e., the currents.
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For extended sources, we then expect

 BMR
eff �r� �

�
B for �r� 1
B�0�O��r�� for �r� 1

; (6.9)

where r is again a typical distance from the source.
At large r� 1=�, this indeed looks like a particle with

an effective charge �e. At small distances the charge is
reduced. This effect is exactly the same as the one that is
used to ‘‘switch off’’ the electric charge of the hidden-
sector particle in astrophysical plasmas in order to avoid
the astrophysical bounds on minicharged particles [34].

VII. QUANTITATIVE ANALYSIS

The contribution of minicharged particles to the rotation
and ellipticity in a pure MCP model has been studied in
Refs. [6,29]. If the minicharge originates from kinetic
mixing, the presence of the paraphoton may lead to sig-
nificant changes to these signals and will also contribute to
LSW experiments. In this section, we give some explicit
examples for the influence of the paraphoton.

Qualitatively, the most obvious difference is the possi-
bility to have a nonvanishing LSW signal, which is hardly
possible without paraphotons, since the MCPs are unlikely
to recombine behind the wall and produce a photon. The
upper panels of Fig. 5 show the transition probability of
photons in an LSW experiment as a function of the experi-
mental parameters B and ‘, the strength and length of the
magnetic field, respectively. Note, that we have nonvanish-
ing transition probabilities for photons polarized parallelly
and perpendicularly to the magnetic field. This is in con-
trast to models with a single ALP, where the amplitude for
the parallel (perpendicular) polarization vanishes for a
pseudoscalar (scalar) ALP.

The gray shaded band in the plots indicates a parameter
region for the experimental setup where the signals have an
oscillatory behavior, corresponding to jKk;?j< ‘�1 and
j�kk;?j> ‘�1 defined in Eq. (5.6). For jKk;?j � ‘�1, the
signal becomes constant with Ptrans � �4, whereas it can
increase by up to a factor of 16 in the oscillatory region,
cf. Eq. (4.7).

The solid lines in the center and lower panels of Fig. 5
show the rotation and ellipticity of the laser polarization,
respectively, in comparison with a pure MCP model (red
dashed lines). In general, the presence of the paraphoton
alters the signals significantly compared to a pure MCP
model. In particular, the seemingly favorable experimental
parameters, long and strong magnetic fields, lead to a small
signal. Only inside the oscillatory region the signals may
become comparable to or even larger than the pure MCP
signal, as can be seen from the rotation plots.

Note that these qualitative features are generic to the
paraphoton model, whereas the specific position of the
signal peaks depends on the particular benchmark point
that is used in the plots. This becomes apparent in Figs. 6
and 7, where now the model parameters are varied while

keeping the experimental ones fixed. Again, one finds a
similar behavior of the signals on the kinetic mixing pa-
rameter �, the relative para-coupling eh=e, the mass of the
minicharged particle m� and the mass of the paraphoton�.
For masses of the order of a few� 10 �eV, the most
important effect is the reduction of the effective magnetic
field as discussed in Sec. VI, since masses in the�eV range
are not big enough to lead to a sizeable transition proba-
bility from oscillations due to the mass alone. For bigger

FIG. 5 (color online). Dependence of the regeneration proba-
bility Ptrans (upper panels), rotation �	 (center panels) and
ellipticity  (lower panels) on the magnetic filed B (left panels)
and the length ‘ of the magnetic region inside the cavity (right
panels). As a benchmark point we assume one massless para-
photon with kinetic mixing parameter � � 2� 10�6 and para-
coupling eh � e with a hidden Dirac spinor with mass m� �
0:1 eV. The remaining experimental parameters are kept at B �
5 T, ! � 1 eV, Npass � 1 and ‘ � 5 m in each plot. The photon
regeneration probability is shown for the case of parallel 	 � 0
(solid line) and orthogonal 	 � �=2 (dot-dashed line) laser
polarization. The dotted line indicates the asymptotic behavior
Ptrans � �4. The rotation and ellipticity signals assume a polar-
ization of 	 � �=4. For comparison, the dashed line shows the
result for rotation and ellipticity without massless paraphotons
(see Refs. [6,29]). The gray shaded band in each plot indicates
the oscillation regime, corresponding to jKk;?j< ‘�1 and
j�kk;?j> ‘�1 (compare Eqs. (5.6), (5.7), and (5.8)).
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masses * meV, the photon-paraphoton oscillations are
driven by the mass term. In this region, the signal does
not change if the magnetic field is switched off.

The reason for the fact that ellipticity and rotation
become insensitive to the model parameters for large mag-
netic field length or strength can easily be understood
heuristically: owing to the nonzero depletion coefficient
� for the photon interaction state, the combined photon-
paraphoton state evolves nonunitarily over long distances
into that mixed state which does not interact with the
hidden fermions h. For this state, the effective refractive
index and depletion coefficient approach the trivial vac-
uum values; consequently, any further ellipticity or rotation
effects are absent in this regime.

It is interesting to observe that the ellipticities in the
paraphoton model deviate from the pure MCP model to-
wards smaller values in the oscillatory region, whereas the
rotations also exhibit peaks that exceed the pure MCP
value, see, e.g., Figs. 5 and 6. The reason for these pro-
nounced rotation peaks in the paraphoton model lies in a

nontrivial interplay between the paraphoton and the mini-
charged fluctuations, as is visible from the second term in
Eq. (5.7). In pure MCP models, rotation is induced by
photon loss due to MCP production (first term in
Eq. (5.7)) for which mass-threshold and phase-space con-
ditions have to be satisfied. With a light paraphoton, these
conditions are much more relaxed; for instance, a photon-
paraphoton transition via a virtual intermediate MCP state
can be possible even if the photon energy is too small to
excite a real MCP pair. This rotation-inducing effect is a
genuine feature of models with both MCPs and parapho-
tons. The model-parameter range where these rotation
peaks appear is also a promising candidate for parametriz-
ing the anomalous PVLAS rotation signal [2]; a precise fit
to the corresponding allowed parameter range, however, is
beyond the scope of the present work.

The BFRT Collaboration [1,8] performed a pioneering
experiment searching for the rotation, ellipticity and pho-
ton regeneration signals. From the nonobservation of a

FIG. 7 (color online). Dependence of the regeneration proba-
bility Ptrans (upper panels), rotation �	 (center panels) and
ellipticity  (lower panels) on the mass of the minicharged
particle m� (left panel) and the mass of the paraphoton � (right
panels). We use the same benchmark values and notation as in
Fig. 5. In order to calculate the � dependence, we have assumed
a typical distance of the laser beam from the source of the
magnetic field of r � 4 cm.

FIG. 6 (color online). Dependence of the regeneration proba-
bility Ptrans (upper panels), rotation �	 (center panels) and
ellipticity  (lower panels) on the kinetic mixing parameter �
(left panels) and the relative para-coupling eh=e (right panels).
We use the same benchmark values and notation as in Fig. 5.
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FIG. 9 (color online). The limit from BFRT measurements on the kinetic mixing parameter for various values of the para-coupling
eh. The 2� (5�) exclusion limits are plotted as dark (light) contours.

FIG. 8 (color online). Exclusion limits from the BFRT experiment. The dark (light) contours show the 2� (5�) exclusion limits of
charge � and mass m� of a Dirac spinor corresponding to the measurements of the BFRT Collaboration. (For simplicity, we assume a
constant magnetic field amplitude of B � 2 T for the calculation of the rotation and ellipticity signal.) The left panel shows the
excluded region in the pure MCP model. The right panel shows the results including a massless paraphoton with para-coupling eh � e.
The loss of sensitivity for small masses is partially compensated by the results of the photon regeneration experiment.

FIG. 10 (color online). The limit from BFRT measurements on the kinetic mixing parameter in the two-paraphoton model presented
in Ref. [34] (eh � e). The 2� (5�) exclusion limits are plotted as dark (light) contours. (The chosen values ��meV are small enough
to avoid the astrophysical constraints and big enough such that effects of the finite size of the magnetic field play no role.)
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signal one can infer exclusion regions for the MCP sce-
nario as well as extensions with paraphotons. The left plot
of Fig. 8 shows the excluded region of massm� and charge
� in the pure MCP model. In this case, the model is not
constrained by the regeneration measurement.

This is different for paraphoton models, as can be seen in
the right plot of the same figure. For small masses, rotation
and ellipticity do not represent sensitive probes of the
model-parameter space. However, the regeneration limit
puts a constant upper bound on the charge � at small
masses m� and not too small eh, corresponding to the
asymptotic behavior of the transition probability Ptrans !
�4. This partially compensates for the loss of sensitivity of
the optical measurements. This demonstrates that LSW
experiments are complementary to polarization measure-
ments.

Of course, the results are also somewhat dependent on
the gauge coupling of the paraphoton, eh. But, as can be
seen from Fig. 9, even a variation of the gauge coupling by
1 order of magnitude around the natural value e leads to
relatively small changes in the limit on � obtainable from
the BFRT regeneration data. This is a significant advantage
of LSW experiments.

The qualitative dependence of the limits from LSW
measurements on the remaining model parameter, the para-
photon mass �, can already be inferred from the right
uppermost panel in Fig. 7. If we assume a typical distance
of the laser beam from the source of the magnetic field of
the order of 5 cm, photon regeneration is sensitive in the
range � & 10 �eV to oscillations induced by the mag-
netic field. For bigger masses, this effect is extremely
suppressed because the magnetic field is effectively zero,
as can be seen from Eq. (6.7). The signal is then driven by
oscillations via the mass term, and the BFRT bounds are as
in Fig. 3.

Finally, let us comment on the two-paraphoton model of
Ref. [34]. In this model, regeneration again leads to the
best bounds, as can be seen from Fig. 10.

VIII. CONCLUSIONS

Constraining the multitudinous possibilities to extend
the standard model of particle physics requires powerful
laboratory tools that do not only search for new particles at
higher and higher masses, but also for weakly coupled
hidden sectors with potentially light particles. In this
work, we have shown that LSW experiments represent
one of these desired tools to specifically look for a hidden
sector with additional U(1) paraphoton gauge groups—in
addition to their discovery potential of ALPs, as conven-
tionally discussed in the literature. This becomes evident
from Figs. 3, 8, and 10, in which we present limits obtained
from the BFRT LSW experiment.

Owing to their specific dependence on both model as
well as experimental parameters (see Figs. 5–7), LSW
experiments are also ideally suited to distinguish between

different models such as those involving ALPs or para-
photons. One important example of a feature that allows to
distinguish between ALPs and paraphotons is the depen-
dence on the polarization of the laser beam. For ALPs, we
expect a signal only for one polarization, parallel or per-
pendicular to the magnetic field. In paraphoton models, we
expect an LSW signal for both polarizations. Also, the
dependence of the regeneration rates on experimental pa-
rameters such as the laser frequency and the magnetic field
are different for the different models and thus provide for
further decisive distinguishing criteria.

Polarization experiments provide complementary infor-
mation (cf. Fig. 8). They are especially sensitive to pure
minicharged particle models for which no signal is ex-
pected in LSW experiments. However, in paraphoton mod-
els, their sensitivity is limited.

In conclusion, regenerating (para-)light from the hidden
sector allows to test a large class of natural extensions of
the standard model.

The discovery potential of optical experiments for fea-
tures of the hidden sector is certainly not exhausted by our
present study. For instance, the use of the rapidly evolving
pulsed high-intensity laser systems for this type of funda-
mental physics challenges needs to be explored much
further, see, e.g., [7,62]. Also, nonlinear collective effects
in photon-plasma interactions [63] may serve as an ampli-
fier of signatures of the hidden sector. Finally, experiments
with large electric fields, where light minicharged particles
could be produced by the Schwinger mechanism, can
provide additional insights [64].
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APPENDIX A: REFRACTIVE INDEX FOR
PHOTONS IN A MAGNETIC FIELD

The loop diagram depicted in Fig. 4(a) gives the con-
tribution of hidden-sector particles to the complex refrac-
tive index for photons. The value of this diagram is well
known [65]. Let us define

 �2e2�N � �2e2

�
�n�

1

2!
i�
�
� n� 1: (A1)

The contribution from intermediate Dirac spinors (‘‘Dsp’’)
and scalars (‘‘sc’’) with an effective coupling �e to photons
is given as

 �nDsp=sc
k;? ��eB; m�� � �

1

16�2

�
�eB
m2
�

�
2
IDsp=sc
k;? ���; (A2)
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with
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Here, the dimensionless parameter � is defined as
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The symbol ~e0 denotes the generalized Airy function,
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and ~e00�t� � d~e0�t�=dt.
Similarly,
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Tk;?��� has the form of a parametric integral [66],
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These expressions have been derived to leading order in
an expansion for high frequency [58,59,67–70],
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and for a high number of allowed Landau levels of the
minicharged particles [71],
 

�Np �
�NLandau

2
�

1

12

�
!2

�eB

�
2
�
�!
!
�

�B
2B

�
� 1

, �� 4:9� 10�3

�
!
eV

�
2
�

T

B

��
�!
!
�

�B
2B

�
1=2
: (A11)

In realistic experiments, the variation �!=! is typically
small compared to �B=B * 10�4.

APPENDIX B: PREPARATION OF THE INITIAL
STATE AND CAVITY EFFECTS

Let us devote a few thoughts to the preparation of the
initial state. In Secs. III and IV, we always started with a
pure photon interaction state, �A;B� � �1; 0� or
�A;B1; B2� � �1; 0; 0�. Is this the correct state for a realistic
experiment? Naively, the answer is yes, because the light is
produced by ordinary matter which interacts only with the
photon interaction eigenstate. Still, one might wonder
whether the laser apparatus might be so precise that it

L
as

er

Oscillation region

FIG. 11 (color online). Sketch of the initial-state preparation in
a photon-paraphoton oscillation experiment. The laser (including
its optical elements) produces some unknown mixture of photon
and paraphoton (vertical solid line). Now, this beam is redirected
via a mirror (solid diagonal) into the oscillation region. However,
the mirror interacts only with the interaction eigenstate of the
photon (horizontal dashed). The paraphoton interaction state
simply passes through the mirror (vertical dashed). Therefore,
we have a pure photon interaction state at the beginning of the
oscillation region. If the photon interaction state does not coin-
cide with the propagation eigenstates, i.e., if we have mixing, we
have a mixed interaction state (horizontal solid) at the end of the
oscillation region.

LIGHT FROM THE HIDDEN SECTOR: EXPERIMENTAL . . . PHYSICAL REVIEW D 76, 115005 (2007)

115005-13



can prepare eigenstates of the energy and the momentum
simultaneously.

Figure 11 shows why this is not really relevant for the
case of a typical setup where the laser beam is coupled into
the oscillation region via a mirror (we believe that in most
experiments such a redirection of the beam is employed at
some stage of the experiment; in BFRT as well as PVLAS
this is indeed the case). It is simply the mirror that again
selects the interaction state and directs only the photon
interaction state into the right direction towards the oscil-
lation region. The paraphoton interaction state simply
passes through the mirror and is lost.

The bottom line is that the last mirror that couples the
beam into the oscillation region selects a pure photon
interaction state, and this determines the initial condition.

Next, we address the question as to whether some optical
elements as, e.g., a Fabry-Perot cavity with a high finesse
could again select a momentum eigenstate. If so, such a
state would have a well-defined wavelength and would
therefore correspond to a propagation eigenstate—de-
stroying possible oscillations.

In ordinary optics, the transmission coefficient for a
Fabry-Perot cavity is

 TFP �
T2

1� R2 � 2R cos�
�
; (B1)

with

 
 � 2k‘ cos�	�: (B2)

Here, R and T are the transmission and reflection coeffi-
cients of the mirrors. We assume no absorption, i.e., T �
1� R. The transmission is strongly peaked around 
 � 0
and effectively filters out a very narrow wavelength inter-
val of width

 


�
�
�

�
2F ‘ cos�	�

; (B3)

where ‘ is the length of the cavity, and

 F �
�

2 arcsin�1�R
2
���
R
p �



2�
1� R

(B4)

denotes its finesse; the approximation in the last step holds
for 1� R� 1. 	 is the angle of the incident light
(cf. Fig. 12) which we will take to be 	 � 0 for simplicity.

We can now study what happens in a model with a
paraphoton. We start with a pure photon interaction state
�A;B� � �1; 0� at the entrance to the cavity. Using the
propagation eigenstates found in Sec. III, we find the
amplitude after the first pass through the cavity,

 T1 �
A1

B1

� �
� T exp�ik‘�

1��2 exp���k‘�
1��2

��1�exp���k‘��
1��2

0
@

1
A: (B5)

Taking into account that only the photons and not the
paraphotons are reflected by the mirrors, we can easily
find also the amplitude for the second transmitted beam,

 T2 �
A2

B2

� �

� T exp�3ik‘�R
�

1� �2 exp���k‘�

1� �2

�
2

�

1��2 exp���k‘�
1��2

��1�exp���k‘��
1��2

0@ 1A: (B6)

Resumming Atrans � A1 � A2 � . . . , we find the total
transition coefficient for the Fabry-Perot cavity,

 T̂ FP � jAtransj
2 �

jTMj2

1� jM2Rj2 � 2jM2Rj cos�
� ��
;

(B7)

where

 M �
1� �2 exp���k‘�

1� �2 �: jMj exp�i�� (B8)

is the photon-to-photon amplitude for one pass through the
cavity. For small �, we find

 jMj � 1� 4�2sin2

�
�k‘

2

�
; � � 2�2 sin��k‘�: (B9)

If �2 � 1=F , i.e., if more photons escape from the cavity
via transmission than via conversion into paraphotons, �
and jMj � 1 provide only small corrections to the result
without paraphotons (B1), and the cavity selects essentially
the same wavelengths around 
 
 2�n as without para-
photons. For example, in the PVLAS experiment with F �
105 this condition is easily fulfilled for � & 10�5.

Let us now turn to the paraphotons exiting the cavity.
The transmission coefficient for paraphotons, or, in other
words, the photon-paraphoton conversion probability, is
(for small �)FIG. 12. Light path inside a Fabry-Perot cavity.

AHLERS, GIES, JAECKEL, REDONDO, AND RINGWALD PHYSICAL REVIEW D 76, 115005 (2007)

115005-14



 Tpara � jBtransj
2

� 4jTj�2sin2

�
�k‘

2

�

�
1

1� jM2Rj2 � 2jM2Rj cos�
� ��



2F

�
�2sin2

�
�k‘

2

�


Npass � 1

2
�2sin2

�
�k‘

2

�
:

(B10)

The last two lines hold for �2 � 1=F and 
 
 2�n, i.e.,
for incident photons in resonance with the cavity.

To summarize, as long as paraphotons are a ‘‘small’’
effect we rediscover the naively expected result.

APPENDIX C: REGENERATION PROBABILITY
FOR THE TWO-PARAPHOTON MODEL

In this appendix, we give the explicit formulas for the
regeneration probability, rotation and ellipticity in the
model of Ref. [34] with two paraphotons.

With the abbreviation
�����������������������������������������������
�e2
h�N�2 � ��2=4!2�2

q
� ��

i� and �N � �n� i�=2!, we define the inverse oscilla-
tion and absorption lengths �� and ��, respectively, as

 �� � !e2
h�n�

�2

4!
�!;� �� � e2

h�� 2!�:

The transition probability (‘1 � ‘2 � ‘ and Npass � 1) is
given by the squared sum of the amplitudes for the tran-
sition of the wall through the two different paraphotons

 Ptrans � jA�!�01!�
�A�!�02!�

j2; (C1)

that can be expressed as

 

Ptrans �
�4

X2
0 � Y

2
0

�
�2X0 � X�C� � X�C� � Y�S�

� Y�S��
2 �

Xi ! Yi
Yi ! �Xi

 !�
: (C2)

Here, the index i denotes i � ��;�; 0�, and we have used
the functions

 S��‘� � exp����‘� sin�2��‘� � 2 exp����‘=2�

� sin���‘�;

C��‘� � exp����‘� cos�2��‘� � 2 exp����‘=2�

� cos���‘�;

with coefficients

 X� � 16
�
2e2

h�n
e2
h�

2!
� �e2

h�n� �
e2
h�

2!

�
; Y� �

�4

!4 � 16e2
h�n�e2

h�n� �� � 16
e2
h�

2!

�
e2
h�

2!
� �

�
;

X0 � 32e2
h�n

e2
h�

2!
; Y0 �

�4

!4 � 16
�
�e2
h�n�2 �

�
e2
h�

2!

�
2
�
:

(C3)

The case B � 0 corresponds to �n � � � 0, giving � �
�2

4!2 and � � 0, as well as �� � �� � 0 and �� � �
�2

2! .
It is straightforward to check that in this case Eq. (C2)
reduces to our previous result Eq. (3.7) with Npass � 1 and
‘1 � ‘2.

For the photon-to-photon amplitude we find
 

Re�A�!�� � 1� 2�2 �
�2

�2 � �2 � �Z� cos���‘�

� exp����‘=2� � �� ! ��

� Z0 sin���‘� exp����‘=2� � �� ! ��	

(C4)

and

 

Im�A�!�� �
�2

�2 � �2 � �Z� sin���‘� exp����‘=2�

� �� ! �� � Z0 cos���‘� exp����‘=2�

� �� ! ��	; (C5)

where

 Z� � ���� e2
h�n� � �

�
��

e2
h�

2!

�
;

Z0 � �e2
h�n� �

e2
h�

2!
:

(C6)

It is now straightforward to insert this into Eqs. (5.3) and
(5.4) to obtain the rotation and ellipticity, respectively.
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