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Unparticles from hidden conformal sectors provide qualitatively new possibilities for physics beyond
the standard model. In the theoretical framework of minimal models, we clarify the relation between
energy scales entering various phenomenological analyses. We show that these relations always counter-
act the effective field theory intuition that higher dimension operators are more highly suppressed, and that
the requirement of a significant conformal window places strong constraints on possible unparticle
signals. With these considerations in mind, we examine some of the most robust and sensitive probes and
explore novel effects of unparticles on gauge coupling evolution and fermion production at high energy
colliders. These constraints are presented both as bounds on four-fermion interaction scales and as
constraints on the fundamental parameter space of minimal models.

DOI: 10.1103/PhysRevD.76.115002 PACS numbers: 12.60.�i, 11.25.Hf, 13.66.Jn, 14.80.�j

I. INTRODUCTION

Among the many candidates for new physics are hidden
sectors coupled to the standard model through nonrenor-
malizable interactions

 

OUVOSM

Mm�n�4
; (1)

where OUV and OSM are hidden sector and standard model
operators with mass dimensionsm and n, respectively.M is
the energy scale characterizing the new physics, which
may range from the weak scale to the Planck scale.
Hidden sectors that become either weakly coupled or
strongly coupled at low energies have several interesting
motivations and have been well studied from various
viewpoints.

Recently a novel possibility was introduced in
Refs. [1,2], which suggested that the hidden sector could
be conformal at an energy scale �U. Conformal hidden
sectors have bizarre implications, including, for example,
kinematic distributions in the production and decay of
standard model particles that have no conventional particle
interpretation. This possibility is therefore qualitatively
different from other candidates for new physics, and ‘‘un-
particles,’’ the degrees of freedom of the conformal sector,
have recently been the subject of several phenomenologi-
cal studies [3–23].

Depending on the properties of the unparticle operators,
the general interactions of Eq. (1) may generate many
specific nonrenormalizable interactions when OUV flows
at low energies to an operatorOwith mass dimension d. As
argued in [1,2], these interactions, such as

 

OH2

�d�2
;

O� �f��f

�d�1
;

OH �ff

�d ;
OF��F��

�d ; (2)

have implications for a plethora of experiments, and lower
bounds on the scales � have already been derived by
considering a wide range of topics, from anomalous mag-

netic moments to CP violation to production rates at high
energy colliders.

In this paper, we begin by investigating the theoretical
framework of unparticles from a general point of view. We
note that the scales � appearing in Eq. (2) are not identical
or even generically comparable. In fact, when expressed in
terms of the fundamental energy scales M and �U, the
scales � of Eq. (2) are typically hierarchically separated,
and this hierarchy always counteracts the standard intuition
from effective field theory that operators suppressed by
more powers of � are less important. Following the work
of Refs. [1,2], we explore minimal unparticle models to
provide simple frameworks for phenomenological studies.
This approach clarifies certain issues. For example, some
phenomenological observables become sensitive to arbi-
trarily high scales �; we show that this sensitivity is
artificial, and there is no singularity when bounds are ex-
pressed in terms of the fundamental parametersM and �U.

Another essential point is that the conformal symmetry
does not generically hold to arbitrarily low energies [13].
In fact, the first operator of Eq. (2) breaks conformal
invariance at a scale � 6U [13]. Experimental probes of
the conformal hidden sector must probe energies in the
conformal window � 6U <E<�U. As we will see, this
criterion is very restrictive. In natural models, which we
define more precisely below, it implies that only experi-
ments at energies near the weak scale v ’ 246 GeV are
viable probes of conformal hidden sectors. Furthermore,
requiring a reasonably wide conformal window sets
�U � M, which implies that all the couplings of the
unparticle sector to the standard model are extremely sup-
pressed and there are no accessible experimental signa-
tures. Experimental signatures in a significant conformal
window are possible only if the first coupling of Eq. (2) is
absent, for reasons we discuss, or is fine-tuned to unnatu-
rally small values.

Last, we examine in detail several leading constraints on
unparticle physics, considering both scalar unparticles and
vector unparticles in turn. Given the considerations noted
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above, we focus on high energy probes, which are most
likely to be in the conformal window. In particular, we
consider bounds from e�e� colliders in the energy range
30 to 200 GeV, and derive bounds on the scales � in Eq. (1)
and also their implications for the fundamental parameters
M and �U. We also find a novel signature of scalar
unparticles. These operators lead to a coupling between
the Higgs field and gauge bosons, which in turn leads to a
modification of the gauge couplings that currently provides
a severe constraint and is in the future potentially
observable.

We close with a summary of our main results and outline
directions for further work.

II. THEORETICAL FRAMEWORK

A. Scales

Following Refs. [1,2], we assume that in the ultraviolet
theory, a hidden sector operator OUV with dimension dUV

couples to standard model operators Oi
n with dimension n

through the coupling

 cin
OUVOi

n

MdUV�n�4
: (3)

The hidden sector becomes conformal at energy �U, and
the operator OUV flows to an operator O with dimension d.
At low energies, then, the couplings of Eq. (3) flow to

 cin
OOi

n�dUV�d
U

MdUV�n�4
� cin

OOi
n

�d�n�4
n

: (4)

The scales �n determine the strengths of the couplings
between the unparticle operator and standard model opera-
tors of dimension n.

We emphasize that operators of different dimensions
couple with different strengths. For example, standard
model fermions couple to vector unparticles through inter-
actions

 c
fifj
3

O� �fi��fj
�d�1

3

(5)

suppressed by �3. (Note that these operators become al-
most renormalizable for d near 1.) On the other hand,
standard model gauge bosons couple to scalar unparticles
through interactions

 cF
i

4

OFi��F
i��

�d
4

(6)

suppressed by �4, where i labels the gauge group. Standard
model fermions may also couple to scalar unparticles
through an interaction derived from a 4-point coupling
when the Higgs boson gets a vacuum expectation value
(VEV) hHi � v ’ 246 GeV after electroweak symmetry
breaking:

 c
fifj
4

OH �fifj
�d

4

! c
fifj
4

Ov �fifj
�d

4

� c
fifj
4

O �fifj
�0d�1

3

; (7)

where the last form defines another scale �03, which is
sometimes constrained in phenomenological studies.
Finally, the Higgs couples through the operator

 c2�2�d
2 OH2: (8)

This coupling is special in many contexts, as it is the
unique super-renormalizable coupling to gauge singlet
new physics [24,25]. In the present context, it also plays
an essential role, because once the Higgs develops a VEV,
this operator breaks conformal symmetry in the hidden
sector [13]. This breaking occurs at the scale

 � 6U � �c2�2�d
2 v2�1=�4�d�: (9)

B. Minimal models

To unify the many scales and couplings discussed above,
we may assume a single unparticle operator OUV coupling
to the standard model. This assumption of a single unpar-
ticle operator defines minimal unparticle models, which
are fully specified by the fundamental parameters

 fS;M;�U; dUV; d; c2�; c
i
n	3
g; (10)

where S is the spin of the hidden sector operator O, and all
other parameters are defined in Sec. II A. The many pa-
rameters cin	3 enter into interaction terms. However, as we
will see below, very few enter any given process, and for
the purposes of setting bounds consistent with conventions
in the literature [26,27], we may simply set jcin	3j ��������

2�
p

=e.
Neglecting the cin	3, the minimal model is defined by the

discrete parameter S, two fundamental scales M and �U,
and three continuous parameters, dUV, d, and c2. These
fundamental parameters completely determine the cou-
plings of unparticles to the standard model, and provide a
complete, yet simple, framework for studying the phe-
nomenology and cosmology of unparticles and hidden
conformal sectors.

It is convenient to define dimensionless ratios

 r �
�U

M
� 1 s �

�U

v
: (11)

All remaining mass scales of the minimal model are, then,
related to the mass scale �U through

 �2 � r�dUV�2�=�2�d��U (12)

 �3 �

�
1

r

�
�dUV�1�=�d�1�

�U (13)

 �4 �

�
1

r

�
dUV=d

�U (14)
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 �03 �
�
1

r

�
dUV=�d�1�

s1=�d�1��U (15)

 � 6U �

�
c2r

dUV�2

s2

�
1=�4�d�

�U; (16)

where we have written all expressions with positive ex-
ponents, assuming 1< d< 2< dUV.

From these expressions, we see that �2 <M<�4 <
�3. This hierarchy (partially) offsets the standard intuition
of effective field theories that operators suppressed by
more powers of the characteristic energy scale are less
promising to probe. For example, �4 <�3 implies that
gauge couplings probed by, for example, gluon-gluon col-
lisions at hadron colliders, may yield more promising
signals than couplings to fermions.

Note that we have assumed r � 1, that is, that the theory
enters the conformal regime below the scale where it is
coupled to the standard model. This is required for theo-
retical consistency. If �U >M, then the theory is already
conformal at the scaleM, and so the effective couplings �n
should be replaced simply by M. This is equivalent to
taking �U � M in all the formulas, and so we may take
�U � M without loss of generality.

C. Naturalness

As argued in Ref. [13], the breaking of conformal in-
variance at energy scale � 6U means that unparticle physics
is relevant only for experiments that probe energies � 6U <
E<�U. From Eq. (16), we see that creating a conformal
window spanning, say, 1 order of magnitude requires

 

c2r
dUV�2

s2
<
�

1

10

�
4�d

: (17)

This is a significant constraint, given 1< d< 2.
One way to satisfy Eq. (17) is to take large s, that is,

�U � v. This raises the energy scale of all unparticle
interactions and rapidly decouples unparticles from acces-
sible experiments. For unparticles to be accessible through
weak-scale experiments, one must take �U 
 v. (Note
that precision experiments, for example, those probing
flavor, CP, and baryon number violation, probe scales far
above the weak scale; however, these are typically con-
ducted at very low energies outside the conformal
window.)

A second option is small r, that is,M� �U. As evident
from Eqs. (13)–(15), this raises �3, �4, and �03 rapidly,
again making unparticle physics inaccessible. This is illus-
trated in Fig. 1, where we have plotted all relevant energy
scales as functions of d for �U � v, dUV � 3, and M �
10�U. Even for this relatively small hierarchy between M
and �U, which creates only a slight conformal window, we
find �4, �3, �03 * 10 TeV, which is likely beyond the
reach of foreseeable experiments.

The third and final logical possibility is c2 � 1.
Naturalness suggests c2 
 1. Furthermore, similar to qua-
dratic divergences in the Higgs boson mass, quantum
corrections to c2 have a power law divergence, which
scales as �2�d

U . Thus even if one sets c2 � 0 at tree level,
it becomes of order �tct=�16�2� 
 0:01 at loop level. Of
course, if there are no scalar unparticle operators O with
dimension d < 2, then c2 � 0. Consideration of scalar
operators with d > 2 requires extending the standard range
1< d< 2 through the singularities at d � 2. Alternatively,
one may simply consider vector unparticles without scalar

FIG. 1 (color online). Energy scales in the minimal unparticle
model as functions of d, assuming �U � v ’ 246 GeV, M �
10v, and dUV � 3. The two lines for � 6U are for c2 � 1 (upper)
and c2 � 0:01 (lower).

FIG. 2 (color online). Energy scales in the minimal unparticle
model as functions of d, assuming �U � v ’ 246 GeV, M �
2v, and dUV � 3. The two lines for � 6U are for c2 � 1 (upper)
and c2 � 0:01 (lower).
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unparticles. These cases provide natural mechanisms to
suppress c2, and would imply that the conformal window
extends down to very low energies.

For whatever reason, either assuming fine-tuning or one
of the more natural possibilities noted above, one may
consider c2 � 1. We can then take �U 
M, implying
�4 
�3 
�03 
�U. This possibility is illustrated in
Fig. 2, where we have taken M � 2�U � 2v. For c2 

0:01, the conformal window may extend down to

10 GeV. (See also Fig. 1.) At the same time, �4, �3,
�03 
 TeV, a scale at which colliders and other high energy
experiments can potentially probe fermion and gauge bo-
son couplings to unparticles.

III. SCALAR UNPARTICLES

In this section, we assume that the conformal hidden
sector couples through a single scalar operator (S � 0). We
consider r
 1 (and therefore also �2 
�3 
�4 
�U),
and explore two classes of signatures in the conformal
window at energies near the weak scale v. We show that
scalar unparticles can modify gauge couplings, possibly
leading to an exotic signal. Scalar unparticles can also be
seen in modifications to cross sections at high energy
colliders.

A. Contributions to gauge coupling evolution

Consider an unparticle operator O that couples both to
Higgs bosons (as in [13]) and to gauge fields

 c2�2�d
2 OH2 � cF4

OF2

�d
4

: (18)

Below the scale of electroweak symmetry breaking, the
first of these interactions turns into a tadpole for O, which
leads to the breaking of the conformal invariance at the
scale � 6U [13]. Generically, O obtains a VEV of the same
order of magnitude, modifying the gauge kinetic term to

 

�
1

4
�O�1�

�
� 6U

�4

�
d
�
F2; (19)

where we have assumed that cF4 
 1 and � 6U depend on c2.
Alternatively, one could obtain the same result by integrat-
ing outO at the threshold� � � 6U. This can be interpreted
as a threshold correction to the gauge coupling

 ����1�j
�1
�2 
 4��1

�
� 6U

�4

�
d
; �1 <� 6U <�2: (20)

Thus it is possible to probe scales of the unparticle physics
by comparing values of the gauge coupling above and
below � 6U.

From the phenomenological perspective, one is most
interested in the case where the conformal invariance of
the unparticle sector is only broken below the electroweak
scale, � 6U <MZ. Existing measurements of the fine struc-
ture constant at zero energy and at the Z pole are consistent

with the standard model renormalization group evolution
within experimental and theoretical uncertainties. In this
comparison, the largest uncertainty arises from the value of
the coupling at the Z pole [27]

 ��1�MZ� � 127:918� 0:018: (21)

Comparing Eqs. (20) and (21) we find that the scales of
unparticle physics must be quite large. For example, taking
d � 1:5 we find

 

�
� 6U

�4

�
& 10�3: (22)

Written in this form, constraints on the fundamental
scales of the unparticle sector implicitly depend on several
parameters: c2, r, s and dUV. Thus, it is useful to rephrase
this result in terms of the required fine-tuning of c2.
Choosing values of the remaining parameters as in Fig. 1
allows for c2 of the order of a one-loop contribution, but as
a result, �03 >�3 >�4 
 25 TeV. If we choose the same
parameters as in Fig. 2, we find c2 < 7� 10�7, which is
significantly smaller that its natural one-loop value. As a
final example, consider the situation where all scales in the
unparticle sector are comparable. In this case, c2 < 1:3�
10�5��U=5 TeV�2 is required, again a significant fine-
tuning.

B. Enhancements of collider cross sections

Scalar unparticles may also be probed more directly by
looking at their effects on high energy processes. To
analyze these effects, we conservatively consider only
gauge-invariant operators that are also B, L, and
flavor conserving. In general, one could also consider
operators that violate one or more of these global symme-
tries—these will be much more stringently constrained.

For scalar unparticles, at leading order in � there are two
types of interactions with standard model fermions:

 

ecf4
�d

4

OHfLfR;
ec0fL;R4

�d
4

@�OfL;R��fL;R; (23)

where we have inserted the electromagnetic coupling e for
future convenience. When electroweak symmetry is bro-
ken, the first term generates OfLfR couplings proportional
to v. For the second term, integrating by parts, the vector
contribution vanishes and the axial vector contribution is
proportional to mf. Since mf � v ’ 246 GeV for all but
the top quark, we expect the first class of operators to
dominate and focus on those operators here.

The scalar unparticle Feynman rules are

 O �fLfR vertex: ie
cf4v

�d
4

PR; (24)

 O propagator:
i

�q2�2�d
Bd; (25)
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where [2,3]

 Bd � Ad
�e�i��d�2

2 sind�
; Ad �

16�5=2��d� 1
2�

�2��2d��d� 1���2d�
:

(26)

TheO interactions contribute to fermion pair production
at colliders through f1

�f1 ! O! f2
�f2. In contrast to the

case of vector unparticles discussed below, scalar unpar-
ticles do not interfere with standard model � and Z dia-
grams. Specializing to the case of massless initial state
fermions, we find

 

d�O

dx

��������CM
� N

��2s
2

vf
1� v2

f

2

jBdc1
4c

2
4j

2v4

s4�2d�4d
4

; (27)

where N is the numerical spin/color factor from averaging

over initial states and summing over final states,
���
s
p

is
the (parton-level) center-of-mass energy, vf �

�1� 4m2
f2
=s�1=2 is the final state particles’ velocity in the

center-of-mass frame, and x � cos�, where � is the angle
between the incoming f1 and outgoing f2. Scalar O un-
particles simply produce an isotropic increase in the cross
section.

The enhancements of Eq. (27) are constrained by many
experiments and many observables, including total cross
sections and forward-backward asymmetries. For simplic-
ity, we focus here on total cross sections. Experiments set
upper bounds ��exp on new physics contributions to
f1

�f1 ! f2
�f2 at center-of-mass energy

���
s
p

exp. This implies
the bound

 �4 >
���
s
p

exp

�
�
16
vf

1� v2
f

2
jBdj

2 v4���
s
p 6

exp��exp

�
1=4d

; (28)

where we have assumed the minimal set of nonzero cou-
plings to see an effect and taken e2jc1

4c
2
4j � 2� for con-

sistency with the compositeness literature, which we
discuss in Sec. IV B. Lower bounds from a variety of
processes and experiments are shown in Fig. 3 and
Table I. Note that, since we are considering small enhance-
ments to standard model cross sections, constraints from
the Z pole are not significant. The most stringent bounds
are from e�, and these vary from �4 > 2:1 TeV at d � 1:1
to �4 > 460 GeV at d � 1:9. Of course, for a given model,
the cross section is enhanced at all energies; these bounds
could be improved by combining cross section and AFB

data from many different center-of-mass energies and
experiments.

The bounds we have derived may also be recast in terms
of bounds on the fundamental parameter space of the
minimal models discussed in Sec. II B. In Fig. 4 we con-
sider minimal models with S � 0, dUV � 3, and c2 &

0:01, and show constraints from e�e� ! ���� in the
��U;M� plane for d � 1:1, 1.5, 1.9. We see that the con-
straints have a significant d dependence. For d � 1:9, the

TABLE I. Lower bounds on �4 from scalar O interactions, for 4 pairs of fermion species f1f2

and 3 representative values of dimension d. These are derived from ��exp, the upper bound on
new physics contributions to f1

�f1 ! f2
�f2 at center-of-mass energy

���
s
p

exp at the experiments
named.

f1f2 Experiment
���
s
p

exp [GeV] ��exp [fb] Lower bound on �4 [GeV]
d � 1:1 d � 1:5 d � 1:9

e� LEP/SLC [28] 189 76 2100 670 460
JADE [29] 34.6 1600 1900 400 220

e	 LEP/SLC [28] 189 100 1900 640 440
JADE [29] 34.6 2400 1700 380 200

eq LEP/SLC [28] 189 240 1600 560 400
TOPAZ [30] 57.8 4700 1200 340 210

eb LEP/SLC [28] 189 140 1800 610 430
VENUS [31] 58.0 3100 1400 360 220

FIG. 3. Lower bounds from LEP/SLC [28] (solid) and JADE
[29] (dashed) on the scalar O interaction scale �4 from processes
e�e� ! ���� as a function of the dimension d of the O
operator.
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constraints primarily exclude parameter space that is al-
ready excluded by the requirement M>�U. However, for
d � 1:1, the disfavored region is extended and excludes
M � �U up to 2 TeV.

IV. VECTOR UNPARTICLES

A. Differential cross sections

For vector unparticles, the leading coupling to fermions
is through the interactions

 

ecfL;R3

�d�1
3

O� �fL;R��fL;R: (29)

These affect standard model fermion production through
virtual O� effects, and also through real O� production.
The new Feynman rules involving O� particles are

 O� �fifi vertex: ie
cfi3

�d�1
3

Pi��; (30)

 O� propagator:
i

�q2�2�d
Bd

�
�g�� �

q�q�
q2

�
; (31)

where Bd is as defined in Eq. (26), and we have assumed
@�O� � 0.

We focus here on new contributions to fi �f1 ! f2
�f2 with

O� unparticles in the s channel, which interfere with the
corresponding photon and Z diagrams. Again assuming
massless initial state fermions, the resulting total differen-
tial cross section is

 

d�
dx

��������CM
� N

��2s
2

X
i;j��;Z;O

�i�
�
j �X

ij
1 X

ij
2 �1� v

2
fx

2�

� Yij1 Y
ij
2 2vfx� X

ij
1 Z

ij
2 �1� v

2
f�
; (32)

where

 Xijk � Qi
kL
Qj�
kL
�Qi

kR
Qj�
kR

(33)

 Yijk � Qi
kL
Qj�
kL
�Qi

kR
Qj�
kR

(34)

 Zijk � Qi
kR
Qj�
kL
�Qi

kL
Qj�
kR
: (35)

The vertex factors are

 QZ
fi
�
Ifi �Q

�
fi

sin2�W
sin�W cos�W

QO
fi
�

cfi3

�d�1
3

; (36)

where Q�
fi

and Ifi are the electric charge and isospin of fi.
The propagator factors are

 �� �
1

q2 �Z �
1

q2 �m2
Z � imZ�Z

�O �
Bd
�q2�2�d

:

(37)

The remaining quantities are as defined below Eq. (27).

B. Bounds from effective contact interactions

As can be seen from the discussion above, for fixed
���
s
p

,
the effects of vectorlike O� particles are identical to (pos-
sibly complex) shifts in �, Z couplings. Bounds on, say, Z
couplings from interactions f1

�f1 ! f2
�f2, are therefore

bounds on the scale � of O� interactions.
A less precise, but more convenient, correspondence is

between O� interactions and contact interactions. For data
collected at a fixed center-of-mass energy

���
s
p

exp, O� ver-
tices induce an effective four-fermion contact interaction

 

e2c1
3c

2
3Bd

�2d�2
3 s2�d

exp

�f1��f1
�f2��f2: (38)

This can be compared to the operator

 


g2

2�2
c

�f1��f1
�f2��f2; (39)

which has been studied extensively in the context of quark
and lepton compositeness. We may therefore derive
bounds on O� interactions from bounds on the operators
of Eq. (39).

The propagator factor Bd is complex. If the cfi3 coeffi-
cients are assumed real, the phase in Bd has interesting
consequences. For example, for d � 1:5, Bd is imaginary,
and so at the Z pole, the O� diagram interferes fully with
the Z diagram, but not with the � diagram. This and other

FIG. 4 (color online). Bounds from e�e� ! ���� on the
fundamental parameter space ��U;M� for a scalar unparticle
operator with dUV � 3, and d � 1:1 (solid), 1.5 (dashed), and
1.9 (dotted). The regions below the contours are excluded. The
shaded region is excluded by the requirement M>�U.
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interesting consequences of the propagator phase have
been discussed previously in Ref. [2].

The coefficients cfi3 may be complex, however, and so
the operators of Eq. (38) have an unknown phase. This
ambiguity is not unique to unparticles—the operators of
Eq. (39) also have, in principle, complex coefficients. In
the compositeness literature, this uncertainty is partially
accounted for by deriving bounds for 
 � �1, thereby
allowing either constructive or destructive interference.
In our case, we will derive bounds assuming c1

3c
2
3Bd is

real and positive. Bounds for other phases, or incorporating
the variation in phase with d, will differ slightly, just as
bounds on Eq. (39) depend on the sign of 
.

The resulting bound on the scale of O� interactions is

 �3 > jBdj
1=�2d�2��exp

�
�exp���
s
p

exp

�
�2�d�=�d�1�

; (40)

where �exp is the bound on the compositeness scale �c in
Eq. (39) resulting from data taken at center-of-mass energy���
s
p

exp, and we have followed the conventions of the fer-
mion compositeness literature [26,27] in assuming the
minimal set of nonzero couplings to see an effect and
setting e2jc1

3c
2
3j � g2=2 ( � 2�).

Equation (40) has several interesting features. First,
given �exp >

���
s
p

exp, the bound becomes increasingly strin-
gent as d! 1. This is as it should be—in this limit, the
operator of Eq. (29) becomes almost renormalizable, and
so less sensitive to �3. Second, for equivalent �exp, the
bound is more stringent for lower

���
s
p

exp. As a result,
constraints from experiments now far from the energy
frontier, but still above � 6U, the scale of conformal sym-
metry breaking, are in some cases the leading constraints.

We present bounds on �3 in Fig. 5 and Table II. In every
case, we conservatively choose

���
s
p

exp to be the maximum
center-of-mass energy at which the relevant data were
taken. This is a conservative assumption, but the bounds
are not very sensitive to it, especially for d near 2, where
the constraints on �3 are least stringent. For example, at
d � 1:9, taking

���
s
p

exp � 136 GeV instead of 189 GeV for
LEP2 bounds strengthens the bound on �3 by only 4%.

The results given in Fig. 5 and Table II illustrate the
features noted above. For low d, the bounds on � rise
quickly, and are in some cases above the Planck scale for
d � 1:1. At the same time, even for d near 2, the lower
bound on �3 is at least 2 TeV in all channels considered.
We also see that many of the leading bounds for low d arise
from data at

���
s
p

exp 
 50 GeV, far from LEP2 energies.
As in Sec. III, we also present the bounds of Table II as

constraints in the fundamental parameter space of minimal
models in Fig. 6. Bounds in the ��U;M� plane are not
singular as d! 1. The singularity in �3 is artificial—the
physically relevant quantity is �d�1

3 not �3 —and this is
removed by considering the fundamental parameters. In
contrast to the scalar case, we find that the bounds are far
stronger than the consistency requirement M>�U.

FIG. 5. Lower bounds from L3 [32] (solid) and JADE [29]
(dashed) on the vector O� interaction scale �3 from processes
e�e� ! ���� as a function of the dimension d of the O�

operator.

TABLE II. Lower bounds on �3, the scale of vector O� interactions, for 4 pairs of fermion
species f1f2 and 3 representative values of dimension d. These are derived from �exp, the lower
bound on the scale of four-fermion contact interactions derived from data with maximum center-
of-mass energy

���
s
p

exp at the experiments named.

f1f2 Experiment
���
s
p

exp [GeV] �exp [TeV] Lower bound on �3 [TeV]
d � 1:1 d � 1:5 d � 1:9

eL�L
L3 [32] 189 8.5 9:1� 1014 61 3.7

JADE [29] 46.8 4.4 3:6� 1017 66 2.1

eL	L
L3 [32] 189 5.4 9:7� 1012 25 2.2

JADE [29] 46.8 2.2 3:5� 1014 16 1.0

eLqL
OPAL [33] 207 8.2 2:8� 1014 52 3.5

TOPAZ [34] 57.9 1.2 1:2� 1011 4.0 0.48

eLbL
ALEPH [35] 183 5.6 1:9� 1013 27 2.3
CELLO [36] 43.0 1.1 7:3� 1011 4.5 0.45
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Vector unparticle effects are enhanced by interference with
the standard model, in contrast to the scalar unparticle
case.

We have given only a sampling of possible bounds,
corresponding to compositeness bounds with 
 � 1 with
LL couplings only. Bounds for 
 � �1 and different
chiralities are simple to derive. These results may also be
extended to other f1f2 pairs, although the definition of���
s
p

exp is less well-defined for bounds from hadron-hadron
or lepton-hadron interactions and also for eL;ReL;R, where
t-channel effects are present.

V. CONCLUSIONS

Unparticles from conformal hidden sectors provide
qualitatively new signals for new physics. We have con-
sidered the theoretical framework of minimal models, both
to include the constraint of low conformal symmetry
breaking and to clarify the relationship of the various
scales that enter phenomenological analyses.

We considered couplings of scalar unparticles to stan-
dard model operators of dimensions 2 and 4 and vector
unparticles to dimension 3 operators. The mass scales �n
of these couplings are related to the onset of scale invari-
ance �U by specific powers of a common factor r � 1.
Results are presented for two values r � 0:5 and r � 0:1.
We find that the requirement of a significant conformal
window places strong constraints on models.

These considerations suggest that the most robust probes
of unparticle effects must come from high energies. With
this in mind, we then considered some of the most prom-
ising probes of unparticle effects. We derived bounds on
the scales for both scalar and vector unparticles from
precision e�e� data at center-of-mass energies

���
s
p
� 30

to 200 GeV. These bounds were determined for a number
of representative channels and presented both in terms of
the phenomenological parameters �n and in terms of con-
straints on the fundamental mass parameters M and �U.

The analysis of Sec. II A implies that �4 <�3, that is,
that the characteristic mass scale for unparticle couplings
to standard model gauge bosons is lower than for unpar-
ticle couplings to standard model fermions. This suggests
that stronger bounds than the ones found here may be
derived from gluon-gluon processes at hadron colliders
such as the Tevatron and LHC, or possibly from enhance-
ments to ultrahigh energy cosmic ray and cosmic neutrino
cross sections. These analyses are left to future work.

We likewise noted an exotic effect of scalar unparticles
on gauge coupling evolution. Application to the running of
the fine structure constant to MZ resulted in an unnaturally
small value of the coefficient of the coupling of dimension
2 operators, H2, to scalar unparticles. This disfavors scalar
unparticles and suggests that only vector ones couple to the
standard model.
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