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Recently, muon production in electron-proton scattering has been suggested as a possible candidate
reaction for the identification of lepton-flavor violation due to physics beyond the standard model. Here
we point out that the standard-model processes e�p! ��p ����e and e�p! e�n���� can cloud
potential beyond-the-standard-model signals in ep collisions. We find that standard-model ep! �X
cross sections exceed those from lepton-flavor-violating operators by several orders of magnitude. We also
discuss the possibility of using a nuclear target to enhance the ep! �X signal.
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I. INTRODUCTION

A number of experiments over the past decade provide
compelling evidence that the neutrino mass matrix is non-
diagonal in the basis of weak eigenstates j��i; � � e, �,
and � (see [1] for a recent review). This knowledge has led
to renewed interest in lepton-flavor violation (LFV), which
can be probed by searches for rare decays such as�! e�.
Such LFV decays are possible when the standard model is
extended to include neutrino mass and neutrino mixing, but
the resulting cross section is exceedingly small (branching
ratio, BR� 10�60) as the process scales with the fourth
power of the ratio of the neutrino mass to the W-boson
mass [2]. However, a significantly larger branching ratio,
BR� 10�12, results from the minimal supersymmetric
extension of the standard model (MSSM) [3]. The MEG
(mu! e gamma) experiment at the Paul Scherrer Institute
(PSI) [4] is capable of detecting branching ratios as small
as 10�13 at a 90% confidence level, and will search for the
LFV decay �! e�. Such searches for lepton-flavor vio-
lation potentially offer an intriguing window on beyond-
the-standard-model (BSM) physics.

Recently, the possibility of observing lepton-flavor vio-
lation in fixed-target electron scattering has been raised as
an alternative [2] to experiments searching for the rare
�! e� decay. Facilities with electron beams of high
intensity and significant duty factor, such as Jefferson
Lab, seem to be natural places to perform experiments to
search for ep! �p. Hereafter, we will refer to this
electron-to-muon conversion process as EMU. However,
the conclusion of Ref. [2] is that, even under the most
favorable dynamical scenario [a heavy right-handed
Majorana neutrino withm� �O�mW�], the standard model
supplemented by dynamics that results in neutrino oscil-
lations yields a cross section � � 10�27 femtobarns (fb)
for EMU—so low as to be inaccessible to current
experiments.

In this paper, we discuss two standard-model processes
that can cloud an EMU signal in e�p scattering by gen-
erating final states ��X other than the desired final state
��p. In standard-model mechanisms, the additional par-

ticles X must have baryon number 1, muon lepton number
�1, and electron lepton number �1. Two such reactions
are (i) e�p! �� ����ep and (ii) e�p! e�n����. From
now on, we refer to these reactions as ‘‘muon-production
processes’’ in order to distinguish them from EMU.

The first reaction involves only electroweak interactions,
and takes place as the electron goes off shell in the scat-
tering event by an amount corresponding to the momentum
of the virtual photon exchanged with the target. The elec-
tron then decays via the weak interaction to a muon,
accompanied by the emission of �e and ���. We note that
this process can also take place off a neutron, although in
practice this implies a nuclear target. In fact, for the
nuclear-target case coherent electron interactions with the
total nuclear charge can enhance the signal.

The second muon-production process involves the
strong interaction. Even when the electron energy is below
the pion-production threshold, the exchanged virtual pho-
ton can interact with the ‘‘cloud’’ of virtual pions that
surrounds the nucleon. This can generate an off-shell ��,
which decays to a �� and ��. (In electron-nucleus scat-
tering, the presence of neutrons allows e�n! e�p�� ���
to occur through virtual ��’s.) As the energy of the inci-
dent electron approaches the pion threshold, the time for
which the virtual pion lives (and hence the distance it
travels before decaying) increases. Consequently, these
muon-production reactions switch over to pion electropro-
duction at electron energies of about 140 MeV, swamping
any possible EMU signals.

This paper is organized as follows. Section II presents a
pedagogical calculation of electron-proton scattering as a
probe of BSM physics using generic low-energy effective
couplings that can cause EMU. The diagram involving
photon exchange plays a dominant role, but is severely
constrained by the experimental bound on the coupling
obtained from the �! e� process. (For a specific realiza-
tion in the MSSM see Ref. [3].) In Sec. III, we derive the
matrix element for the process e�p! �� ����ep from
electroweak theory, compute the size of the cross section,
and provide a simple explanation for the order of magni-
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tude of our result. In Sec. IV, the virtual-pion production
and decay contributions to the matrix element for ep!
en����, and the resulting differential cross section are
presented. Due to differences in the interaction couplings
and phase-space factors, the cross section for e�p!
e�n���� turns out to be several orders of magnitude
larger than that for e�p! �� ����ep. Therefore any
EMU experiment seeking BSM (or even electroweak)
physics would either have to veto processes in which a
scattered electron is detected in coincidence with the pro-
duced muon, or, more feasibly, detect the charge of any
muons produced in the electron-proton collision. In Sec. V,
we describe muon production in electron-nucleus scatter-
ing, including the relative importance of collective nuclear
excitations. We present our summary and conclusions in
Sec. VI. Details of phase-space integrations and numerics
are provided in the appendixes.

II. ELECTRON-MUON CONVERSION VIA
PHYSICS BEYOND THE STANDARD MODEL

In this section, we consider the differential cross section
for the reaction ep! �p induced by operators which
change lepton flavor, and hence are low-energy manifes-
tations of physics BSM. All such operators are, by defini-
tion, dimension five or above, and so they produce cross
sections suppressed by (at least) one power of m�=�,
where � is the scale of the physics that results in lepton-
flavor violation. We will show that there is a dimension-
five operator that could, in principle, produce a sizable
ep! �p cross section. However, in practice, bounds
from the nonobservation of the process �! e� preclude
any observable muon production via this dimension-five
BSM operator.

The BSM operator associated with the decay �! e�
can be written as

 L I � �
ev

�2 �
� e���F�� � � H:c:�; (1)

where  l is the lepton field of family l (e or �), and F�� is
the electromagnetic field-strength tensor. The object v is
the Higgs vacuum expectation value, and � is the scale of
the BSM physics that induces this operator. The Higgs
vacuum expectation value appears because, while the op-
erator is of dimension five, it is suppressed by an additional
power of v=� because it changes lepton chirality.
Dimension-six BSM structures which have the low-energy
form

 L contact
I �

e

�2
� eO � �NON; (2)

where N denotes the nucleon field and the O’s are opera-
tors (potentially with Lorentz indices that are contracted
with one another), can also appear in LI. However, their
effects are suppressed relative to the operator in Eq. (1).

The Feynman diagram for ep! �p for the coupling in
Eq. (1) is shown in Fig. 1. The general form of the nucleon
current (given parity invariance, time-reversal invariance,
and gauge invariance) can be parametrized using two
functions F1 and F2:

 hj�i � e �uN�p0�
�
F1�Q2��� � 	F2�Q2�

i
2M

���q�

�
uN�p�;

(3)

where F1�Q
2� and F2�Q

2� are the Dirac and Pauli nucleon
form factors, respectively, 	 is the proton’s anomalous
magnetic moment, M is the proton mass, and q � p0 �
p, with Q2 � �q2 > 0. Employing this to evaluate the
matrix element associated with the diagram in Fig. 1, we
find
 

M �
e2v

�2

1

�q2
�u��p02����; q6 	ue�p2� �uN�p0�

�
F1�Q

2���

� 	
F2�Q2�

4M
���; q6 	

�
uN�p�; (4)

where now q � p02 � p2 � p� p0 is the four-momentum
of the virtual photon that is exchanged.

The spin-summed-and-averaged squared matrix element
can be written as

 jMj2 �
e4v2

�4 L��H��
1

�q2�2
; (5)

where the lepton and hadron tensors are both transverse
with respect to the photon four-vector q, that is,

 q�H�� � q�H�� � q�L�� � q�L�� � 0: (6)

The lepton tensor can thus be replaced by

 

~L�� � Tr�p6 02��q6 p6 2q6 ���; (7)

where terms proportional to the electron mass have been
neglected, as they are suppressed by me=m�.

e− (p2) µ− (p2 + q)

p(p) p(p )

FIG. 1. Beyond-the-standard-model contribution to muon pro-
duction (‘‘electron-muon conversion’’). The hatched vertex rep-
resents the dimension-five coupling of Eq. (1). The solid lines
denote leptons, while the double line is the proton. The particle
momenta are indicated in parentheses.
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Straightforward evaluation then yields
 

~L�� � �4q2�p02�p2� � p2�p02� � p
0
2 
 p2g���

� 8p02 
 qp2 
 qg��: (8)

The evaluation of jMj2 reveals that effects due to the Pauli
form factor F2 are suppressed by Q2=4M2. Below pion-
production threshold this parameter is at most 0.02, and so
in what follows we neglect the contribution to H�� from
the nucleon Lorentz structure i���q�. For the proton, we
can neglect finite-size effects, since

 F1�Q
2� � 1� 1

6hr
2
piQ

2 �O�Q4�; (9)

with hr2
pi

1=2 � 0:895�18� fm [5], and so F1�Q2� � 1 up to
a few percent correction at the kinematics of interest here.
Under these approximations, we obtain

 H�� � Tr��p6 0 �M����p6 �M���� (10)

 � 4�p0�p� � p0�p� � �M2 � p0 
 p�g���: (11)

Contraction of the tensors H and L then yields
 

jMj2 �
16e4v2

�4

1

�Q2�2
fQ2�2�p02 
 p

0��p2 
 p�

� 2�p02 
 p��p
0 
 p2� � 2M2�p02 
 p2�	

� 4�p02 
 q��p2 
 q��p
0 
 p� � 8M2�p02 
 q��p2 
 q�

� 8�p0 
 p��p2 
 q��p
0
2 
 q�g: (12)

Dropping terms which are suppressed by at least one power
ofQ2=M2 relative to the dominant contribution, we are left
with
 

jMj2 �
16e4v2

�4

1

�Q2�2
��Q2��s�M2 �m2

� �Q
2�

� �s�M2� �M2�m2
� �Q

2�m2
� �O�Q

6�	; (13)

where s � �p� p2�
2.

Working now in the lab frame, and neglecting nucleon
recoil, we have

 E� � Ee; (14)

 q2 � �Q2 � m2
� � 2E2

e � 2Ee
�������������������
E2
e �m2

�

q
cos
�; (15)

where 
� is the angle between the outgoing muon and the
incoming electron beam. The differential cross section is
then

 

d�
d��

�
4�2v2

�4

�����������������
�Ee2 � 1

q
f� �Ee; cos
��; (16)

with �Ee � Ee=m� and

 

f� �Ee; cos
��

�
8 �Ee4 � 6 �Ee2 � 2 �Ee

�����������������
�Ee2 � 1

p
�1� 4 �Ee2� cos
�

�2 �Ee
2 � 2

�����������������
�Ee

2 � 1
p

�Ee cos
� � 1�2
:

(17)

Integrating this over the muon solid angle ��, we obtain
 

� �
16��2v2

�4

�����������������
�Ee2 � 1

q

�

�
2

�����������������
�Ee

2 � 1
p

�Ee
ln
� �Ee �

�����������������
�Ee

2 � 1
p

�Ee �
�����������������
�Ee2 � 1

p
�
� 1

�
: (18)

For Ee just below pion threshold, the kinematic factor in
the square brackets is about 2. Taking v � 200 GeV and
� � 1 TeV results in a predicted cross section on the order
of 100 fb, which would definitely be observable. Including
the nucleon-recoil terms neglected in the derivation of
Eq. (18) would result in corrections of order Ee

M , which
are potentially as large as 20% or so, but do not change the
order of magnitude of �.

On the other hand, dimension-six BSM operators of the
type in Eq. (2) do not induce effects mediated by low-
momentum photons. If such operators do not contain addi-
tional derivatives they cannot produce powers of the nu-
cleon mass in the numerator, and so the largest cross
section they can yield is

 ��
�2m2

�

�4 ; (19)

which is suppressed by �m�

v �
2 & 10�6 compared to the

long-range mechanism depicted in Fig. 1. Operators O
that contain additional derivatives will be suppressed
even further by at least one factor of the small parameter M� .

The result (18) suggests that electron scattering from a
proton target could provide access to BSM physics over a
sizable range of �. However, this prediction does not take
into account the constraint on the �! e� coupling from
the nonobservance of this muon decay branch. As we shall
see, this places stringent limits on the size of the cross
section for the process in Fig. 1.

The operator in Eq. (1) produces an amplitude for the
rare decay �! e� that, in the muon rest frame, takes the
form

 M �!e� � �
iev

�2 �ue��q����; q6 	u��0�"�; (20)

where " is the photon polarization vector, and q is the
photon four-momentum. From this, we obtain

 jM�!e�j
2 �

2e2v2m3
�

�4 : (21)

Converting this to a decay rate, and integrating over final
electron states, we find
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 ��!e� �
�v2m3

�

2�4 : (22)

If we now use the result for the predominant muon decay
mode [6],

 ��!e�� ��e �
G2
Fm

5
�

192�3 (23)

(here GF �
e2

25=2M2
Wsin2
W

is the Fermi coupling constant,

with MW � 80:41 GeV the W-boson mass and 
W the
Weinberg angle), we find that the branching ratio for �!
e� is

 BR ��! e�� � 96�3�
v2

�4

1

m2
�G2

F

: (24)

But the factor v2

�4 which appears here is the same as that in
the prefactor in Eq. (18). Consequently, we can eliminate
this factor between Eqs. (18) and (24) to obtain

 � �
�

3�2 �m
2
�GF�

2 1

m2
�

BR��! e��: (25)

Using BR��! e��< 4:9� 10�11 [7], we see that

 �< 7:0� 10�15 fb: (26)

This is a model-independent constraint on the contribution
to the cross section for ep! �p from photon exchange.
Interpreted as a bound on �, we find �  1:5� 104 TeV.
A similar bound on � was derived within the context of a
MSSM calculation of the electron-nucleus to muon-
nucleus cross section and BR��! e�� in Ref. [3].
However, that number was 7 orders of magnitude larger
than the result of Eq. (26). Part of the difference arises from
Ref. [3]’s consideration of a target with Z � 70.

One might ask why the apparent scale � in Eq. (1) is so
large—or, equivalently, why the coupling is ‘‘unnaturally’’
small. One possible explanation arises in the scenario
known as ‘‘minimal-flavor violation’’ [8]. There, the phys-
ics beyond the standard model breaks the lepton-number
symmetry of the standard model in the same fashion in
which it is broken by neutrino mixing. This scenario can
account for the small branching ratio for �! e� in a
natural way as long as the product of the relevant neutrino
mass and the scale of lepton-flavor violation � is smaller
than v2.

Regardless of what physics determines BR��! e��,
our calculations show that the bound on this quantity is
sufficiently stringent to preclude the observation of any
ep! �p cross section from the diagram of Fig. 1. Indeed,
the contribution of the operator in Eq. (1) is constrained so

strongly by the nonobservation of this muon decay branch
that effects from diagrams with short-range operators of
the form (2) are worth considering. In particular, if such
EMU’s involved a different scale ~�, with ~�� � of
Eq. (1), they may produce a larger effect than (26).
However, the estimates provided above indicate that, for
~� � 1 TeV, contributions from these dimension-six op-
erators to the ep! �p cross section would be at most
�10�4 fb. The conclusion therefore is that beyond-the-
standard-model physics is unlikely to result in any mea-
surable production of muons when an electron beam im-
pinges on a proton target.

III. MUON PRODUCTION VIA STANDARD-
MODEL ELECTROWEAK PROCESSES

In this section, we evaluate the scattering cross section
for the process e�p! �� ����ep. The dominant contri-
bution to the scattering amplitude comes from single-
photon exchange given by the Feynman diagram in
Fig. 2. Applying the usual QED and Fermi-theory
Feynman rules to the upper vertices in the diagram of
Fig. 2, and using the single-nucleon current of Eq. (3) for
the virtual-photon-nucleon vertex, we get
 

iM �

�
�ie �uN�p0�

�
��F1�Q2� � 	F2�Q2�

�
i

2M
���q�

�
uN�p�

��
�ig��
q2

�
GF���

2
p � �u��l�

� ���1� �5�v ����l1�	

�
�ue�p02 � l�

� ���1� �5�i
p6 02�me

p022 �m
2
e
��ie���ue�p2�

�
: (27)

For unpolarized electrons, the spin-summed-and-averaged
squared matrix element can be expressed as

FIG. 2. Leading-order Feynman diagram for the process
e�p! �� ����ep. Solid lines represent leptons, the double
line is a proton, and the dashed line is a W� boson. The four-
momentum carried by each external-state particle is indicated in
parentheses.
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jMj2 �
c2

EW�Q
2�

2�p022 �m
2
e�

2 H
��L��W����;

H�� � Tr
�
�p6 0 �M�

�
��F1 �

	
2M

i���q�F2

�
�p6 �M�

�
��F1 �

	
2M

i��
q
F2

��
;

L�� � Tr�l6 2���1� �5�l6 1���1� �5�	;

W���� � Tr��p6 02 � l����1� �5��p6 02 �me����p6 2 �me����p6 02 �me����1� �5�	

(28)

with l � l1 � l2 and

 c2
EW�Q

2� �
8�2�2G2

F

Q4 : (29)

The computation of the traces in W���� is facilitated by the Chisholm identity

 ������ � g���� � g���� � g���� � i������5: (30)

Performing the contractions, we obtain
 

jMj2 �
c2

EW

p042
27��p02 � l� 
 l1	

�
4F2

1�A1� �

�
	

2M

�
2
F2

2�A2� � 2	F1F2�A12�

�
;

�A1� � 2�p02 
 l2���p 
 p2��p0 
 p02� � �p
0 
 p2��p 
 p02� �M

2�p2 
 p02�	 � p
02
2 ��p 
 p2��p0 
 l2� � �p0 
 p2��p 
 l2�

�M2�p2 
 l2�	;

�A2� � 2�p02 
 l2��2�P 
 p2��P 
 p02�q
2 � 8M2�q 
 p2��q 
 p02� � �p2 
 p02�q

4	 � p022 �2�P 
 p2��P 
 l2�q2

� 8M2�q 
 p2��q 
 l2� � �p2 
 l2�q
4	;

�A12� � 2�p02 
 l2��2�q 
 p2��q 
 p
0
2� � q

2�p2 
 p
0
2�	 � p

02
2 �2�q 
 p2��q 
 l2� � q

2�p2 
 l2�	;

(31)

where P � �p� p0� and terms of O�m2
e� have been dropped as p022 � m2

e. To eliminate the interference terms involving
F1F2, we reexpress F1 and F2 through the Sachs form factors [9]

 GE � F1 �
	q2

4M2 F2 and GM � F1 � 	F2 (32)

to get
 

jMj2 �
27c2

EW��p
0
2 � l� 
 l1	

p022

�
T 1 � 2

p022
p02 
 l2

T 2

�
;

T 1 � G��P
2�p2 
 l2� � 2�P 
 p2��P 
 l2�	 �G

2
M�2�q 
 p2��q 
 l2� � �p2 
 l2�q

2	;

T 2 � G��P2�p2 
 p02� � 2�P 
 p2��P 
 p02�	 �G
2
M�2�q 
 p2��q 
 p02� � �p2 
 p02�q

2	;

(33)

where G� � �G
2
E � �G

2
M�=�1� �� with � � Q2=4M2.

In the laboratory frame, the differential cross section is
given by
 

d��
1

4MEe

Z d3l1
�2��32E��

d3l2
�2��32E��

d3p0

�2��32Ep0

d3l�e
�2��32E�e

�jMj2�2��4
Z
d4p02

�4��p2�p�p02�p
0�

�
Z
d4l�4��l� l1� l2�

�4��p02� l� l�e�; (34)

where Ee is the energy of the incoming electron in the
laboratory frame, l�e is the electron-neutrino’s four-
momentum, and the last two delta functions and integrals
have been inserted as unity to simplify calculations. The

steps given in Appendix A then allow us to obtain from
Eq. (34) an expression for the differential cross section per
unit solid angle subtended by the detected muon at fixed
beam energy:
 

d�
d��

�
�2G2

F

32�5M3Ee

Z Ee

m�

dE�
�������������������
E��m

2
�

q Z qu0

ql0

dq0

q2
0

�
�����������������������
q2

0�2Mq0

q Z cos
uq

cos
lq
d�cos
q�

�
Z �u

q

�l
q

d�q�p2�q� l2�
2

�

�
p02:l2
p042

T 2�
1

2p022
T 1

�
�p02��p2�q�;q2��2Mq0�

: (35)
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The limits on the q0 integral are determined by the
electron beam energy. The lower limit of the integral arises
because energy transfer to the proton without any momen-
tum transfer is not possible in elastic scattering: the target
recoils. In the limit that the muon is produced at rest (l2 �
0), an analytic expression for both the upper and lower
limits of the q0 integration can be obtained. This can guide
intuition on the importance of collective excitations when
the target is replaced by a heavy nucleus (see Sec. V). We
find
 

q�0 � �
B�

���������������������
B2 � 4AC
p

2A
;

A � 4�Ee �M�m��
2 � 4E2

e;

C � m2
��2Ee �m��

2;

B � 2�2�Ee �M�m��m��2Ee �m�� � 4E2
eM	:

(36)

Furthermore,

 q�0 �
m2
�

2�M�m��
� Ee � E�; (37)

so that the minimum electron beam energy Emin
e for muon

production is then determined by requiring q�0 � Emin
e �

m�, which yields

 Emin
e �

m��2M�m��

2�M�m��
� 111:6 MeV: (38)

The quantity q�0 is thus at least 6 MeV, whereas

 q�0 �
�2Ee �m��

2

2�2Ee �m� �M�
(39)

which is always less than Ee �m�. The corresponding Q2

ranges from 0:01 GeV2 to a maximum of 2Mq�0 . The angle
between the electron and muon neutrinos (whose masses
are neglected) is constrained to 0 � ��‘�e; ‘1� � �=2 by
the step function ��Q2�. The maximum energy in neutri-
nos is Emax

� � Ee � q
�
0 �m� � Ee � E

min
e .

It is noteworthy that the differential cross section is
independent of the azimuthal angle ��. Dependence on
�� appears explicitly in the matrix element through the dot
products �P 
 l2� and �q 
 l2� as well as implicitly in the step
function ���k� q� l2�2�, but this dependence drops out
once the d�q integration is performed. Only differences of
azimuthal angles (�q ���) appear in the d�q integrand
as well as in the limits on this integral, so the integral
remains invariant. Therefore experiments to measure this
process are characterized by 
� alone, and the � indepen-
dence can be used to increase the total number of counts
(thereby decreasing the statistical error) by positioning
several detectors in an annulus at the same 
�.

The integrals in Eq. (35) were evaluated numerically,
details of which are presented in Appendix B. The result
for the differential cross section d�=d�� as a function of

electron beam energy at a fixed value of 
� � �=3 will be
presented in Sec. IV. The corresponding total muon-
production cross section rises from 3� 10�16 fb at Ee �
120 MeV to 4� 10�13 fb at Ee � 140 MeV.

The cross section for the reaction e�p! ��p�e ��� is
thus much smaller than the low-energy approximation to
the Rosenbluth cross section for ep elastic scattering [10]:

 

d�
d�
�
�2F2

1

2E2
e

�
1

sin2
tan2

�O

�
E2
e

M2

��
: (40)

At Ee � 140 MeV this is �107 fb for all but forward
angles where the Coulomb singularity occurs. Thus,
muon production via standard-model electroweak pro-
cesses is down by 20 orders of magnitude as compared to
elastic electron-proton scattering. Much of this suppression
comes from the extra factor G2

Fl
2
�e�l� 
 l��� (with lx the

four-momentum of lepton x). Numerically, G2
F �

10�10 GeV�4, l�e � 0:01 GeV, l� � 0:1 GeV, and l�� �
0:01 GeV, and so this factor already implies a suppression
of 17 orders of magnitude.

Further suppression occurs due to the lower bound on
the virtuality of the exchanged photon, which was ex-
plained above, and persists even if the muon is detected
at 
� � 0. The Coulomb divergence that is manifest in
Eq. (40) as 
! 0 and is associated with Q2 ! 0 does not
appear in e�p! ��p�e ���. The suppression relative to
the Rosenbluth cross section is therefore even more severe
than is implied by the dimensional analysis in the previous
paragraph. The lack of enhancement from the exchanged
photon going soft is an important feature of muon
production.

The cross section predicted for standard-model electro-
weak �� production at the largest energy considered here,
Ee � m�, is thus 2 orders of magnitude larger than the
largest BSM cross section predicted by Eq. (26). We limit
the incident electron energy to Ee < m� as for incident
energies larger than the pion mass, strong-interaction pro-
cesses involving the production of an on-shell pion which
then decays to a muon will swamp the purely electroweak
diagram of Fig. 2. In the following section, we show that a
subthreshold version of the pion-production process yields
muon-production cross sections that are significantly larger
than those obtained through the mechanism discussed in
this section.

IV. MUON PRODUCTION VIA SUBTHRESHOLD
PION PRODUCTION

In electron-proton collisions, muons can also be gener-
ated through processes in which a virtual photon couples to
a pion which then decays into a muon and a neutrino
(Fig. 3). This is a manifestation of the ‘‘pion cloud’’ of
the nucleon, and the processes depicted in Fig. 3 are
possible even when the pion in the intermediate state is
virtual, i.e. Ee is significantly below the pion mass.
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Whereas only negatively charged muons can be produced
in the processes considered thus far, this strong-interaction
process yields positively charged muons, together with a
neutron in the final state. In this section, we evaluate the
differential cross section d�

d��
for the reaction: ep!

en����.
Our calculations are performed using chiral perturbation

theory (�PT), the low-energy effective field theory of
QCD. �PT incorporates QCD’s (broken) SU�2�L �
SU�2�R symmetry as well as the pattern of chiral-
symmetry breaking in QCD (for a recent review see
Ref. [11]). Reactions involving pions, nucleons, and pho-
tons (either real or virtual) can be straightforwardly and
systematically evaluated using �PT, as long as the energies
involved are well below the excitation energy of the
��1232�. Here, we perform a tree-level calculation of the
process of interest using the leading-order �PT
Lagrangian. For diagrams (1) to (3) in Fig. 3 our calcu-
lation is equivalent to evaluating the amplitude for
charged-pion electroproduction at leading order O�e�.
Such a leading-order calculation is known to give a rea-
sonable description of the available data for charged-pion
photoproduction near threshold [12].

The leading-order �PT Lagrangian describing the inter-
actions between pions, photons, and nucleons is given by
[13]

 L �PT � L�1�N� �L�2���: (41)

Here L�2��� denotes the leading-order Goldstone-boson
Lagrangian

 L �� �
f2
�

4
Tr�D�U�D

�U�y	 �
f2
�

4
Tr��Uy �U�y�;

(42)

where to leading order in quark masses the matrix � is m2
�

times the identity matrix, and L�1�N� denotes the lowest-
order Lagrangian involving baryons:

 L �1�
�N �

��
�
i 6D�M

�

�
g
�
A

2
���5u�

�
�: (43)

In the above equations, the pion fields are collected in the
matrix U � exp�i� 
 �=f��, whereas the fields u �
exp�i� 
 �=�2f��� and u� � i�uy@�u� u@�u

y�. The

quantities g
�
A and M

�

denote the axial coupling constant
and the nucleon mass, respectively, in the chiral limit. The
covariant derivative acting on the pion matrix is defined as

 D�U � @�U� ir�U � iUl�; (44)

where r� and l� denote the appropriate external fields and
external electromagnetic fields A� are coupled to the pion
field by setting r� � l� �A�. The [chiral and U�1�em]
covariant derivative acting on the nucleon field is then

 D�� � �@� �
1
2�u
y�@� � ir��u� u�@� � il��uy�

� i�r� � l����: (45)

As our leading-order computation involves only tree-level
diagrams, we can employ the relativistic Lagrangian for
nucleon and pion fields without concern about contribu-
tions from loop graphs that might violate power counting
[14]. We will therefore use relativistic Feynman rules in
what follows. The amplitude corresponding to each of the
diagrams contributing to �� production at leading order
(see Fig. 3) is then

FIG. 3. Leading-order �PT contributions to �� production in electron-proton scattering. The double line denotes the nucleon, the
thin solid lines denote leptons, and the dashed lines denote pions. Particle momenta are indicated in parentheses. The numbers in
parentheses correspond to the individual amplitudes computed below.
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M1 � �i
���
2
p
VudGFf�g�NNe2 1

�k� q�2 �m2
�

1

k2 �m2
�

�
1

q2
�u��k� q� p3��k6 � q6 ��1� �5�v��p3�

� �ue�p2 � q��2k6 � q6 �ue�p2� �uN�p� k��5uN�p�;

(46)

 

M2 � �i
���
2
p
VudGFf�g�NNe

2 1

�k� q�2 �m2
�

�
1

�p� q�2 �M2

1

q2 �u��k� q� p3��k6 � q6 �

� �1� �5�v��p3� �ue�p2 � q���ue�p2�

� �uN�p� k��5�p6 � q6 �M���uN�p�; (47)

 

M3 � �i
���
2
p
VudGFf�g�NNe

2 1

2M
1

�k� q�2 �m2
�

�
1

q2
�u��k� q� p3��k6 � q6 ��1� �5�v��p3�

� �ue�p2 � q���ue�p2�

� �uN�p� k��5��uN�p�; (48)

 

M4 � �i
���
2
p
VudGFf�g�NNe2 1

�p3 � q�
2 �m2

�

1

k2 �m2
�

�
1

q2
�u��k� q� p3��k6 � q6 ��1� �5�

� �p6 3 � q6 �m����v��p3� �ue�p2 � q���ue�p2�

� �uN�p� k��5uN�p�; (49)

where g�NN �
MgA
f�

at this order, and we adopt gA � 1:26,
f� � 92 MeV, M � 939 MeV. Note that the crossed
counterpart of diagram (2) is zero if only leading-order
couplings are considered, as this process involves a neutron
in the final state.

We evaluate the matrix elements M1–M4 using the
package FEYNCALC [15]. This produces an expression for
the spin-averaged-and-summed squared matrix element
jMj2 that is lengthy and not particularly illuminating.
The differential cross section is then
 

d�
d��

�
1

2M2E2

Z d3p0d3p02d3p3d3p�
�2��122E012E022E32E�

�2��4

� �p0 � p02 � p3 � p� � p2 � p�jMj2; (50)

where p� � �E�;p�� is the four-momentum of the out-
going neutrino, and the four vectors p0 � p� k, p02 �
p2 � q, and p3 (which is the outgoing muon momentum)
are written in a similar fashion. We evaluate the integrals in
Eq. (50) by Monte Carlo integration, obtaining a result that
is numerically stable to better than 5% accuracy.

The results of our calculation are shown by the dashed
line in Fig. 4, where the energy dependence of the differ-
ential cross section at a representative outgoing muon
angle of 
� � �=3 is displayed. The solid curve in this
figure shows the differential cross section for the produc-
tion of �� through the photon and W� mediated mecha-
nism of the previous section. The dashed curve shows
results for the production of ��’s through virtual-photon
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1e-16
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1e-12

1e-10

1e-08

dσ
/d

Ω
(f

b/
S

r)

FIG. 4 (color online). The differential cross section in femto-
barns per steradian versus the energy of the incident electron
beam. The solid line gives the result for production of a �� via
the process e�p! ��p ����e (see Sec. III), and the dashed line
is the result for production of a �� via the reaction e�p!
e�n���� (see Sec. IV). Both results were evaluated for a
representative muon angle 
� � �=3.

115 120 125 130 135
E (MeV)

1e-16

1e-12

1e-08

σ 
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b)

FIG. 5 (color online). Total cross sections in femtobarns plot-
ted against the energy of the incident electron beam. The solid
line gives the result for production of a �� via the process
e�p! ��p ����e (see Sec. III), and the dashed line is the result
for production of a �� via the reaction e�p! e�n���� (see
Sec. IV). The dotted line is the bound on BSM contributions
obtained for ep! �p in Sec. II by considering the dimension-
five BSM operator and the nonobservation of the decay �! e�.
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exchange discussed in this section. The differential cross
section for �� production is 4 to 5 orders of magnitudes
larger than that for �� production. Even the
��-production cross section is, however, very small: of
order 10�9 fb at the largest energy considered (Ee �
140 MeV). The variation of the cross section with the
angle 
� is 1 order of magnitude for both cross sections,
so we predict a total cross section for �� production of
order 10�8 fb just below the pion threshold.

The dependence on energy of the total cross section for
the processes e�p! e�n���� and e�p! ��p ����e
(see Sec. III) is shown in Fig. 5. Also shown in Fig. 5 is
the bound of Eq. (26) for ep! �p from photon exchange.
Note that in Fig. 5 we do not display results for energies
exceeding 140 MeV, because above that energy the n��

channel opens and ��’s are copiously produced through
the decay of real pions.

Even at Ee � 140 MeV, the cross section for �� pro-
duction via strong interactions is many orders of magnitude
larger than the cross section for BSM muon conversion in
Eq. (26). Indeed, it may be competitive with BSM mecha-
nisms even if dimension-six BSM operators that induce
EMU are not suppressed by, e.g., minimal lepton-flavor
violation. Thus, any experiment that searches for EMU on
a proton target via BSM processes should discriminate
between the desired reaction and the channel ep!
en����. Such a discrimination requires either detecting
the outgoing electron or detecting the charge of the final-
state muon.

V. MUON PRODUCTION IN ELECTRON-NUCLEUS
SCATTERING

If the proton target were replaced by a neutron target
(e.g. via the use of neutrons bound inside a deuterium
nucleus), the incoming electron can also interact with the
neutron through its magnetic moment. From Eq. (27), the
matrix element for magnetic-moment interactions introdu-
ces an extra factor—relative to the dominant charge inter-
action—of q�=M. This translates to a factor
Q2=M2 � q0=M � 0:01 in the cross section. Thus, the
electroweak process en! ���e ���n yields a smaller
muon-production cross section than in the case of a proton.
In contrast, the process ep! en���� discussed in
Sec. IV is associated with an isovector matrix element at
leading order in �PT, and so the cross section for produc-
tion of muons will be as large for a neutron target as for a
proton target. In this case the reaction is, however, en!
ep�� ���. For neutrons this muon-production reaction pro-
vides a signal that cannot be distinguished from BSM
electron-muon conversion by detection of the charge of
the final-state muon. (As an aside, we note that in the case
of Z0 exchange, scattering off a neutron is more favorable
due to its much larger weak charge as compared to the
proton. However, the appearance of an extra factor of GF

renders the cross section due to electromagnetic-weak
interference terms negligible when compared to photon
exchange.)

The cross section for muon production is enhanced when
the electron scatters off a heavy nucleus. As an illustrative
example, and to estimate the expected enhancement over
the nucleonic case, we consider electron scattering on a
lead nucleus (208Pb). The low-energy and low three-
momentum transfer region is probed in conventional nu-
clear spectroscopy. In this region, the elastic peak appears
first, although at qPb

0 � �q
2=2mPb instead of qprot:

0 �
�q2=2M, so that the exchanged photon appears to be 2
orders of magnitude softer. In fact, though, the requirement
of producing the muon implies that the photon’s virtuality
is unchanged from Q2 �m2

�; as the differential cross
section scales as �1=�Q2�2 � 1=�2mPbqPb

0 �
2, considering

only the effect of the heavier target yields no particular
enhancement. This fact can also be verified by counting
powers of the target mass and energy transfer in the ex-
pression for the differential cross section in Eq. (35).

The large charge of lead (Z � 82) does tend to increase
the cross section, although nuclear elastic form factors
offset this effect substantially. The typical three-

momentum transfer involved in elastic scattering is jqj ����������������������������
q2

0 � 2mPbq0

q
� m�, which corresponds to a spatial reso-

lution of about 2 fm. But RPb � 7 fm is the typical size of
the charge distribution in 208Pb as determined by fitting a
conventional 2-parameter Fermi distribution for a spherical
nucleus [16], so we do not expect the lead nucleus to
respond coherently to the electromagnetic probe. This
can be quantified if we approximate the elastic form factor
by the diffraction pattern from a spherical charge distribu-
tion of radius RPb. In so doing, we obtain an overall factor
relative to the proton case of

 Z2F2�jqj� � Z2

�
3j1�jqjRPb�

jqjRPb

�
2
; (51)

where j1 is the spherical Bessel function of the first kind.
For lead, F2 � 10�2 at the Q2’s of interest here, in good
agreement with form factors extracted from data on elastic
scattering from 208Pb in this region of energy and momen-
tum transfer [17]. Therefore, if we replace the target proton
by a lead nucleus, we expect an overall increase of the
cross section by Z2F2 � 822 � 10�2 � 67.

Elastic scattering is not the complete story, however,
because the maximum energy of the exchanged photon is
��Ee �m�� � 30 MeV, which is sufficient to excite a
tower of collective states. Studies of inelastic form factors
of the first few excited states (for example, the 3� octupole
in 208Pb) reveal a suppression of�10�2 or more compared
to the elastic peak [18,19]. The width of these excited states
is also small (0.1 MeV for the 3� state); therefore, at low
energies of the exchanged photon, the contribution of the
elastic peak is dominant. At slightly higher energies, q0 *
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10 MeV, giant monopole and multipole resonances can be
excited. These resonances are of empirical importance in
studies of nuclei as they carry nonzero isospin. Although
the resonances have large widths (1–5 MeV), their contri-
bution to the cross section will also be smaller than that
from the elastic peak.

Finally, we inquire whether quasielastic scattering
should be taken into account. By quasielastic scattering,
we are referring to those events in which a muon is pro-
duced and a nucleon is knocked out of the nucleus. This
phenomenon requires the additional kinematic restriction
that the three-momentum transfer exceed the Fermi mo-
mentum of the nucleon in the nucleus. Therefore, the
relevant energy regime is now defined by the conditions
��jqj � kF� and the theta functions imposed above, i.e.,
��Ee � q0 � E�� and ���k� q� l2�

2�. These two theta
functions are unchanged from the nucleonic case, as they
originate from the kinematics of the leptonic portion of the
process, which is unaffected by changing the target from a
nucleon to a nucleus. These restrictions imply that the
maximum value of �k� q� l2�2 is given by
 

�Ee � q0�
2 � E2

e � k2
F �m

2
� � 2m��Ee � q0�

� 2EekF cos�k̂ q̂�  0; (52)

where the inequality imposed by the theta function ���k�
q� l2�2� is satisfied so long as 0< q0 < q<0 , where q<0 is
the lesser root of the above quadratic in q0. Clearly, this
requires that q<0 > 0, which is equivalent to the condition

 cos�k̂ q̂� 
m�

kF
�
k2
F �m

2
�

2EekF
: (53)

As j cos�k̂ q̂�j � 1, we obtain the restriction

 Ee 
�kF �m�

2

�
: (54)

If we assume a simple picture of the nucleus with constant
density � � �nuc � 0:16 fm�3, then kF � 260 MeV,
which implies that Ee  187 MeV. This exceeds the
pion-production threshold in ordinary electron-nucleus
scattering (no muon production). It is highly desirable
that the electron beam energy not be above the pion
threshold at around 140 MeV, and in this case we need
not include the contribution from quasielastic scattering,
since Eq. (54) makes clear that it is important only at
energies well above pion threshold. This is significantly
different to the usual situation in inelastic electron-nucleus
scattering (i.e. without muon production), in which pion
production occurs at energies that exceed the quasielastic
peak. When muon production happens, additional kine-
matic restrictions (viz., the energy cost of producing a
muon) imply that the quasielastic peak is only important
at energies that exceed the threshold for pion production.
This is another distinguishing feature of the muon-
production process.

VI. CONCLUSIONS

We have examined the possibility of discovering physics
beyond the standard model through lepton-flavor violation
in fixed-target electron scattering. Our main findings can
be summarized as follows:

(i) We have obtained a model-independent constraint on
the magnitude of LFV in electron-nucleon scattering
from beyond-the-standard-model effects using a
general low-energy effective interaction with cou-
plings constrained by experimental bounds on the
nonobservance of �! e�. The cross section for
LFV from the lowest-dimension operator, �< 7�
10�15 fb, is too small to be experimentally acces-
sible with current technologies. The contribution of
higher-dimension LFV operators to ep! �p could
be larger, but is still unobservably small at present.
This is in accord with similar estimates that have
been made previously within specific extensions of
the standard model [2,3].

(ii) We have identified two main sources of background
in inclusive ep scattering within the standard model
when only the energy of the outgoing muon is mea-
sured, and performed detailed calculations of the
relevant cross sections. The reaction e�p!
���e ���p is the principal background if the charge
of the muon is measured, and its cross section varies
from the order of 10�16 fb at incident electron en-
ergy Ee � 120 MeV to 10�13 fb at Ee � 140 MeV.

(iii) If the charge of the muon is not measured, the
dominant source of background comes from ��’s
produced by the decay of virtual pions. Leading-
order chiral perturbation theory gives this reaction’s
total cross section ��ep! en����� to be about
10�11 fb at incident electron energy Ee �
120 MeV and �10�8 fb near the pion threshold.
This background swamps any LFV signal in ep
scattering unless the outgoing electron is also de-
tected or/and �� events are vetoed.

(iv) Using a heavy nucleus as a target enhances both the
desired LFV effects and the background. At the low
energies carried by the exchanged photon in e�p!
��p�e ���, the role of collective nuclear excitations
can be neglected in comparison to the leading effects
of elastic scattering from a finite-size target. This
could enhance the cross section for e�p!
��p�e ��� by as much as 2 orders of magnitude,
but the cross section is still too small to be experi-
mentally detectable at present.
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APPENDIX A: PHASE-SPACE EVALUATION FOR
FINAL STATE p� ����e

In this appendix, we explain how to obtain Eq. (35) from
Eq. (34). We first employ a useful relation for elastic
scattering,
 Z d3p0

2Ep0
�4��p� q� p0� �

1

2M

�
q2

2M
� q0

�

where q0 � p020 � p20; (A1)

which enables Eq. (34) to be rewritten as

 

d��
2�

8M2Ee

Z d3l2
�2��32E��

Z
d4q

Z
d4p02

�4��p2�p02�q�

�
�
q2

2M
�q0

�Z d3l1
�2��32E��

d3l�e
�2��32E�e

��4��p02� l1� l�e� l2�jMj
2: (A2)

For massless neutrinos, the phase-space integrals over
neutrino momenta in the second line of Eq. (A2) can be
rewritten as

 Z
d4L�4��L� p02 � l2�

Z d3l1
�2��32E��

d3l�e
�2��32E�e

� �4��L� l1 � l�e�jMj
2: (A3)

Noting from Eq. (33) that Eq. (A3) has a factor �p02 � l� 

l1 � l�e 
 l1, the integrals over d3l�e and d3l1 are [20]

 

Z d3l1
�2��32E��

d3l�e
�2��32E�e

�4��L� l1 � l�e�l�e :l1

�
�L2

4�2��6

�L0�
�L2�; (A4)

where L2 � L2
0 �L2. Using the resultant expression for

Eq. (A3) in Eq. (A2), performing the d4L and d4p02 inte-
grations with the aid of corresponding delta functions, and
using Eq. (29), we obtain

 

d� �
�2G2

F

4�2M2Ee

Z d3l2
2E��

Z d4q

q4 
�
q2

2M
� q0

�
I�q; l2�;

I�q; l2� � �p2 � q� l2�
2

�
p02:l2
p042

T 2 �
1

2p022
T 1

�
p02��p2�q�

����p2 � q� l2�2���E� E�� � q0�; (A5)

where T 1, T 2 are given by Eq. (33). With the aid of the
only remaining delta function, the

R
d4q can be recast as

 Z d4q

q4 
�
q2

2M
� q0

�
I�q; l2�

� M
Z dq0

��2q0M�2

������������������������
q2

0 � 2Mq0

q
��Ee � E�� � q0�

�
Z
d�q���p2 � q� l2�2��p2 � q� l2�2

�

�
p02:l2
p042

T 2 �
1

2p022
T 1

�
�p02��p2�q�;q2��2Mq0�

: (A6)

The step functions ��E� q0 � E��� and ���p2 � q�
l2�2� provide the upper and lower limits on the dq0 integral.
The latter step function also provides bounds on the angu-
lar integrations involving d cos
q, d�q. This determines
the support for the various integrals as �ql0; q

u
0	,

�cos
lq; cos
uq	, ��l
q; �u

q	 and leads to (35). In our numerical
calculations, we have used a constant value for GF�Q

2 �
0:01 GeV2� � 1:05� 10�5 GeV�2 as determined by its
standard-model running in the MS scheme [21].

APPENDIX B: NUMERICAL NOTES

The integrals in Eq. (35) are performed as follows. We
choose the�ẑ axis to be along the electron beam direction.
The polar angle 
� is measured from the �ẑ axis in the
vertical plane containing this axis. The azimuthal angle��

is measured anticlockwise from the �ẑ axis in a plane
containing this axis. The position of the detected muon is
then uniquely specified by the angles 
� and ��. Once the
position of the muon is specified as above, for a fixed
momentum p� we can determine the range of q0 for which
the step functions in Eq. (35) do not vanish. This procedure
determines the bounds on cos
q at fixed beam energy Ee,
from which bounds on �q follow. The numerical evalu-
ation of the multiple integral is then performed using
standard quadrature methods. At the low Q2 values in-
volved here the Q2 dependence of GE and GM induces a
correction of 5%–10% in the cross section, as compared to
using their q2 � 0 values. We have taken this into account
in the numerical results presented in Sec. III, using a
standard dipole parametrization obtained from studies of
e�p scattering:

 GE�Q2� �
GM�Q

2�

1� 	
�

1

�1�Q2=0:71 GeV2�2
: (B1)

For the range of Q2 relevant to the process considered
here, this parametrized form is accurate to better than 1%.
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