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The analytical expressions and the numerical values of the renormalization constants of O�a� improved
static-light currents are given at one-loop order of perturbation theory in the framework of heavy quark
effective theory: the static quark is described by the HYP action and the light quark is described either
with the Clover or the Neuberger action. These factors are relevant to extract from a lattice computation
the decay constants fB, fBS and the set of bag parameters Bi associated with B� �B mixing phenome-
nology in the standard model and beyond.
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I. INTRODUCTION

The extraction of important quantities like Vub or
jVts=Vtdj needs the nonperturbative calculation of the had-
ronic form factors that encode the long-distance physics.
For example the B meson decay constant fB has to be
precisely known to determine the exclusive Vub from B!
� �� [1]. The detection of physics beyond the standard model
in the Bs, �Bs system is hopeless if the theoretical uncer-
tainty on the bag parameter BBs associated with the Bs �
�Bs mixing amplitude in the standard model is not reduced

[2]. The most satisfying approach to compute such form
factors is lattice QCD, as it is only based on first principles
of quantum field theory. However, discretization effects
induce important systematic errors if amQ � 1, where a
is the lattice spacing and mQ is the heavy quark mass. The
extrapolation to the continuum limit of physical quantities
involving such heavy quarks is difficult, unless the calcu-
lation is done on a very fine lattice (e.g. a� 0:02 fm),
which is not possible for the moment because of the too
high cost in computation time, or employing the relativistic
heavy quark action [3] with properly tuned parameters [4]
(see [5] for a recent application of this approach). A way
around this problem is the use of heavy quark effective
theory (HQET) [6] in which all degrees of freedom of
O�mQ� are integrated in Wilson coefficients, where mQ �

�QCD. This approach is attractive because the continuum
limit exists and results are independent of regularization. A
strategy to renormalize nonperturbatively the theory has
been proposed and tested for a simple case [7]. A drawback
of the standard Eichten-Hill action [8] is the rapid growth
of the statistical noise on the correlation functions C�x0� at
x0 � 1 fm, making difficult the extraction of hadronic
quantities. A method to reduce UV fluctuations is the use
of HYP links [9] to build the Wilson line of the static
propagator; it has been found that this strategy improves
significantly the signal/noise ratio [10]. In this paper we
give the analytical expressions and the numerical results of
the renormalization constants of static-light bilinear and
four-fermion operators at one-loop of perturbation theory
when the static quark is described by the HYP action and

the light quark is described by the O�a� improved Clover
action or the Neuberger action [11]; in the latter case the
extraction of the bag parameters Bi is much safer theoreti-
cally because there is no mixing among dimension 6 four-
fermion operators of different chirality. This work is an
extension to smeared static quark actions of similar com-
putations done with the Eichten-Hill action and with the
Clover [12,13] and Neuberger actions [14] respectively.
The first of these two new results might be used by the
authors of [15] to give the final number of the Nf � 2 P
wave static-light decay constant computed with the HYP
action. The paper is organized as follows: in Sec. II we will
present results obtained by using the tree-level improved
static-light operators and in Sec. III we will give renormal-
ization constants of four-fermion operators, leaving the
presentation of the numerical result of the bag parameter
BBs to a future paper.

II. TREE LEVEL IMPROVED STATIC-LIGHT
CURRENT

A well known approach to reduce the cutoff dependence
of matrix elements computed on the lattice is to improve
the Wilson light quark action by adding an O�a� term
which is irrelevant in the continuum limit, for example,
the Sheikholeslami-Wohlert Clover one [16]. One needs
also to improve the inserted operators: in the literature,
authors defined rotated fields  0 � �1� a r2 6D� [17]. We
will choose r � 1 for the rest of the paper. In principle one
could also rotate the static field but it has been shown that it
is not necessary in the computation of O�a� improved on
shell matrix elements at tree level [18]. A tree level, the
improved bilinear static-light operator will then read

 OI
� �

�h� 0 � �h� �
a
2

�h� 6D ; (1)

where � is any Dirac matrix and we choose the symmetric

definition of the covariant derivative D� �x� �
U��x� �x	�̂��Uy�x��̂� �x��̂�

2a . The static quark action reads
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 SHQET �
X
n

hy�n�
h�n� � Vy;HYP
4 �n� 4̂�h�n� 4̂��

	 a�mhy�n�h�n�; (2)

where V4 is a HYP-smeared link in time direction and �m
is a counterterm introduced to cancel the linear divergent
part of the static quark self-energy [8]. The light quark
action reads

 SClover � SW � a4cSW
X
n;�;�

�
ig
a
4

� �n����P�� �n�
�
; (3)

where P�� is the discretized strength tensor. The
Sheikholeslami-Wohlert coefficient cSW can be fixed at
its tree level value ctree

SW � 1 to be consistent with a one-
loop calculation in perturbation theory. We collect in
Table I the Feynman rules which are used. We follow the
notations of [19–22] in the rest of the paper and we
summarize them in Appendix A.

Note that p0 and p are the ingoing and outgoing fermion
momenta, respectively. We also introduce an infrared regu-
lator � for the gluon propagator. We symmetrize the vertex
Vab��;hhgg by introducing the anticommutator of SU�3� gen-
erators, normalized by a factor 1

2 .
At one loop of perturbation theory, a bare matrix ele-

ment regularized and renormalized in a continuum
scheme-for example in the dimension regularization
(DR) and in the MS scheme-is written generically in terms
of its tree level part
 

hO�p;��iDR;MS �

�
1	

�MS
s ���
4�

�
	 ln

�
�2

p2

�
	 CDR

��

� hO�p�itree; (4)

where 	 is the O�g2� coefficient of the anomalous dimen-
sion of the operator. The same bare matrix element regu-
larized on the lattice reads
 

hO�p; a�ilat �

�
1	

�s0�a�
4�

�	 ln�a2p2� 	 Clat�

�
hO�p�itree

	O�a�: (5)

At this level of perturbation theory one can identify
�MS
s ��� with the bare coupling �s0�a�. One can then write

that
 

hOiDR;MS �

�
1�

�s0�a�
4�

�	 lna2�2 	 Clat � CDR�

�
hOilat

	O�a�

� Z�a��hOilat 	O�a�: (6)

The matching constant between the matrix element renor-
malized at the scale � � a�1 in the continuum and the
bare matrix element regularized on the lattice is then given
by Clat � CDR. In the following we will be concerned with
the static-light currents and discuss Clat.

Let us consider the bare hadronic matrix element regu-
larized on the lattice hH2jO

I
�jH1i

lat where H1 contains the
light quark q and H2 contains the static quark h. It is
computed from the ratio

 R�t; t1; t2� � Z1Z2

C�3�J1;OI
�
;J2
�p; p0; t; t1; t2�

C�2�J1
� ~p; t1�C

�2�
J2
� ~p0; t2 � t�

where

 C�2�Ji � ~p; t� �
X
~x

ei ~p
 ~xhJi�t; ~x�J
y
i �0�i

is a 2-point correlation function, Ji is an interpolating field
of the hadron state Hi containing either the static quark
field h or the light quark field q,
 

C�3�J1;O�;J2
� ~p; ~p0; t; t1; t2� �

X
~x; ~y

ei� ~p
 ~x� ~p
0
 ~y�hJ2�t2; ~y�

�OI
��t�J

y
1 �t1; ~x�i

is a 3-point correlation function in which the operatorOI
� is

inserted at time t.
Eventually Zi � hH

�0�
i jJ

y
i j0i, where H�0�i is the hadron

ground state containing either the static quark h or the light
quark q. As usual we determine hH�0�2 jO

I
�jH

�0�
1 i

lat in the
interval of t where R�t; t1; t2� is constant (i.e. ground states

TABLE I. Feynman rules.

static quark propagator a�1� e�ip4a 	 
��1

vertex Va�;hhg�p; p
0� �ig0T

ah4�e
�i�p4	p

0
4�a=2

vertex Vab��;hhgg�p; p
0� � 1

2 ag
2
0h4�h4�fT

a; Tbge�i�p4	p04�a=2

light quark propagator a�i	 
 �p	 am	 1
2 p̂

2��1

vertex Va�;qqg�p; p0� �igTa�	� cosa�p	 p0�� � i sina�p	 p0���
vertex Vab��;qqgg�p; p0�

iag2
0���
2 fTa; Tbg�	� sina�p	 p0�� 	 i cosa�p	 p0���

improved vertex VI�;qqg �g0T
a r

2 

P
�����sina�p� p0�� cosa2 �p� p

0���

static-light bilinear current O�1
�1

improved static-light bilinear current OI
�1 ;qq

� i
2 �1�6

improved static-light bilinear current OI
�1 ;qqg

� aig0r
2 �1	� cosa�p	 p0��

gluon propagator in the Feynman gauge a2����
ab�2W 	 a2�2��1
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are safely isolated). As the spectator quark does not play
any role in the renormalization of OI

�, one may relate
hH�0�2 jO

I
�jH

�0�
1 i

lat to h �h�p0�jOI
�jq�p�i

lat. That is why it is
justified to compute the matching constants between the
currents renormalized in a continuum scheme and the bare
currents regularized on the lattice by considering the ma-
trix elements of quarks,1 which are the only states appro-
priate to do perturbative calculations. We stress that the
mass counterterm �m is canceled in R: thus we will not
consider it in our one-loop computations.

At this order of perturbation theory, h �h�p0�jOI
�jq�p�i

lat is
given by
 

h �h�p0�jOI
�jq�p�i

lat �
��������
Z2h

p �������
Z2l

p �
1	

�s
4�

CF
� ln�a2�2�

	 d1 	 n� �l	m�

	G�d2 	 h� q� 2dI��
�

� h �h�p0�jO�jq�p�itree

� Zlath �h�p0�jO�jq�p�itree; (7)

where

 	0�	0 � G�;
��������
Z2h

p
� 1	

�s
4�

CF

�
e
2
� ln�a2�2�

�
;

��������
Z2h

p
� 1	

�s
4�

CF

�
f	 fI 	 ln�a2�2�

2

�
;

d1 	 �d2 � dI�G, hG, n� �q	 dI�G and ��l	m� are
contributions given by the 1PI vertex diagrams shown in
Fig. 1 and Z2h;l come from the quark self energies. Finally
the expression of Clat reads
 

Clat �
e	 f	 fI

2
	 d1 	 n� �l	m�

	G�d2 	 h� q� 2dI�: (8)

We have collected the numerical values of the various
constants in Table II for the HYP parameter sets �i � 0
(corresponding to standard Eichten-Hill action), �1 � 1:0,
�2 � �3 � 0 (corresponding to APE blocking [25]), �1 �
0:75,�2 � 0:6,�3 � 0:3 (HYP1) and�1 � 1:0,�2 � 1:0,
�3 � 0:5 (HYP2); their analytical expression is written in

Appendix B, while we have collected Clat in terms of �i for
axial and scalar static-light currents in Table III. For the
first set of �i our results agree with [12,13].

We note that the one-loop corrections for the set HYP2
are very small compared to the set �i � 0, confirming the
observation that UV fluctuations are strongly suppressed
by this action [10], which improves highly the signal/noise
ratio. It is particularly impressive on the constant e related
to the static field renormalisation. In that case the tadpole
contribution is much smaller for HYP2 than for Eichten-
Hill (5.96 vs 12.23) and the ‘‘sunset’’ contribution is nega-
tive instead of positive (� 9:58 vs 12.25). Another inter-
esting property of the HYP2 action is that the contribution
coming from the chiral symmetry breaking term of the
light quark action is reduced compared to what is found
with the other static quark actions, in particular, HYP1, as

FIG. 1. Diagrams giving the one-loop correction to the O�a� improved static-light current with the O�a� improved light quark action.

TABLE II. Numerical values of contributions to the correction
at one loop of perturbation theory of the O�a� improved static-
light current regularized on the lattice to its tree-level expression;
f, fI, l, and m are extracted from [18] whereas e was computed
in [24].

�i 0 APE HYP1 HYP2

e 24.48 3.17 2.52 �3:62
d1 5.46 4.98 4.99 4.72
d2 �7:22 �3:33 �3:70 �1:87
dI �4:14 �2:79 �2:80 �1:99
h �9:98 �3:40 �4:43 �1:95
n 0.73 �2:33 �1:80 �2:88
q �2:02 �0:61 �0:78 �0:19

f 13.35
fI �3:63
l �3:42
m 7.35

TABLE III. Lattice contribution to the matching constant be-
tween the axial (scalar) static-light current regularized on the
lattice and its counterpart renormalized in the continuum. We
indicated the contribution � � d2 	 h� q� 2dI coming from
the chiral symmetry breaking term of the light quark action.

�i 0 APE HYP1 HYP2

CAlat 26.26 5.71 7.13 0.61
CSlat 12.46 4.46 3.63 1.31
� �6:90 �0:54 �1:75 0.35

1The renormalization constants computed in the MOM scheme
are actually extracted numerically on the lattice by considering
such matrix elements [23].
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indicated in the last row of Table III. The main conse-
quence is that the ratio ZV=ZA between the matching
constants of the vector and axial static-light currents is
closer to 1. Of course this feature is only true at one-loop
of perturbation theory and can change at the nonperturba-
tive level.

III. Bs � �Bs MIXING WITH OVERLAP FERMIONS

In this part we present the results of the computation of
the renormalization constants of static-light four-fermion
operators with the light quark described by the Neuberger
action. The bag parameter BBs associated with the Bs � �Bs
mixing amplitude in the standard model is defined by
 

BBs�
h �Bsj� �bs�V�A� �bs�V�AjBsi

h �Bsj� �bs�V�A� �bs�V�AjBsiVSA

;

h �Bsj� �bs�V�A� �bs�V�AjBsiVSA�h �Bsj� �bs�V�Aj0i

�h0j� �bs�V�AjBsi: (9)

We have to introduce in addition to the operator O1 �
� �bs�V�A� �bs�V�A the following operators of the supersym-
metric basis:

 O2 � � �bs�S�P� �bs�S�P; O3 � � �bs�V�A� �bs�V	A;

O4 � � �bs�S�P� �bs�S	P:
(10)

Then we define as usual the bag parameters Bi�1;...;4 in
terms of the vacuum saturation approximation matrix ele-
ments by

 h �BsjOijBsi��� � h �BsjOijBsiVSABi���:

We define the HQET operators ~Oi�1;...;4 by

 

~O 1 � ~OVV	AA � � �h�	�s�V�A� �h���s�V�A;

~O2 � ~OSS	PP � � �h�	�s�S�P� �h���s�S�P;

~O3 � ~OVV�AA � � �h�	�s�V�A� �h���s�V	A;

~O4 � ~OSS�PP � � �h�	�s�S�P� �h���s�S	P;

(11)

and their associated bag parameter ~Bi, i � 1, 2, 3, 4.
The extraction of BBs from our lattice simulation needs

the following steps:
(1) ~Blat

i �a� are matched onto the continuum MS(NDR)
scheme at NLO in perturbation theory at the renor-
malization scale � � 1=a [14],

(2) ~Bi are evolved from � � 1=a to � � mb by using
the HQET anomalous dimension matrix, known to
2-loop accuracy in perturbation theory [26,27],

(3) ~Bi�� � mb� are finally matched onto their QCD
counterpart, Bi�mb�, in the MS(NDR) scheme at
NLO [26].

The matching scales are such that neither ln�a�� in
step (1) nor ln��=mb� in step (3) correct strongly the

matching constants. In the following we will concentrate
on step (1).

The total lattice fermionic action is S � SHQET 	 SNL
where

 

SHQET
H � a3

X
n

f �h	�n�
h	�n� � Vy;HYP
4 �n� 4̂�h	�n� 4̂��

� �h��n�
VHYP
4 �n�h��n	 4̂� � h��n��

	 �m
 �h	�n�h	�n� 	 �h��n�h	�n��g;

SN
L � a3

X
n

� �n�DN�m0� �n�;

DN�m0� �

�
1�

1

2�
am0

�
DN 	 am0;

DN �
�
a

�
1	

X����������
XyX
p

�
; X � DW �

�
a
;

0< �< 2: (12)

The static quark (antiquark) field satisfies the equation of
motion

 	0h��x� � �h��x�:

The HQET action is invariant under the finite heavy quark
symmetry (HQS) transformations

 

�h ����x� !
HQS�i�

�
1

2

ijk �h����x�	j	k �i � 1; 2; 3�; (13)

and the overlap action is invariant under the infinitesimal
chiral transformation [28]

  !
�

1	 i
	5

�
1�

a
2
DN

��
 ;

� ! � 
�

1	 i

�
1�

a
2
DN

�
	5

�
:

(14)

The matching between the operators regularized on the
lattice and their counterpart of the continuum needs nor-
mally 16 matching constants, as ~O1 and ~O2 can mix with
~O3 and ~O4:

 

~OMS
i ��� � Zij�a�� ~Oj�a�; i � 1; . . . ; 4; j � 1; . . . ; 4:

However, thanks to heavy quark symmetry, these constants
are not all independent. Here we give the details of the
proof, as it was not fully presented in [14] or [29] (it was
independently presented and generalized in [30]). Under
the HQS transformation (13), one has
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~OSS	PP � � ~O�VV	AA�0 ;
~OVV	AA !

HQS�i� ~OVV	AA;

~OSS	PP !
HQS�i�

� ~O�VV	AA�i ;

~OVV�AA !
HQS�i� Xj�i

j�1;3

~O�VV�AA�j � �
~O�VV�AA�i 	

~O�VV�AA�0�

� � ~OVV�AA�? � � ~OVV�AA�k;

~OSS�PP � � ~O�VV�AA�0 ;
~OSS�PP !

HQS�i� ~O�VV�AA�i :

The different constraints are the following:
 

h ~OVV	AA���i � Z11h ~OVV	AA�a�i 	 Z12h ~OSS	PP�a�i

	 Z13h ~OVV�AA�a�i 	 Z14h ~OSS�PP�a�i;

h ~OVV	AA���i � Z11h ~OVV	AA�a�i � Z12h ~O�VV	AA�i�a�i

	 Z13�h ~OVV�AA�a�i? � h ~OVV�AA�a�ik�

	 Z14h ~O�VV�AA�i�a�i �HQS�i��;

 

X
i�1;3

h ~OVV	AA���i � 3h ~OVV	AA���i

� �3Z11 � Z12�h ~OVV	AA�a�i

� Z12h ~OSS	PP�a�i 	 �Z13 	 Z14�

� h ~OVV�AA�a�i 	 �Z14 	 4Z13�

� h ~OSS�PP�a�i;

implying that

 Z12 � 0; Z14 � 2Z13: (15)

 

h ~OSS	PP���i � Z21h ~OVV	AA�a�i	Z22h ~OSS	PP�a�i

	Z23h ~OVV�AA�a�i	Z24h ~OSS�PP�a�i;

�h ~O�VV	AA�i���i � Z21h ~OVV	AA�a�i�Z22h ~O�VV	AA�i�a�i

	Z23�h ~OVV�AA�a�i? � h ~OVV�AA�a�ik�

	Z24h ~O�VV�AA�i�a�i �HQS�i��;

 �
X
i�1;3

~O�VV	AA�i��� �
~O�VV	AA�0���

� �h ~OSS	PP���i � h ~OVV	AA���i

� �3Z21 � Z22�h ~OVV	AA�a�i � Z22h ~OSS	PP�a�i 	 �Z23

	 Z24�h ~OVV�AA�a�i 	 �Z24 	 4Z23�h ~OSS�PP�a�i

� ��Z11 	 Z21�h ~OVV	AA�a�i � Z22h ~OSS	PP�a�i

� 
�Z13 	 Z23�h ~OVV�AA�a�i 	 �Z14 	 Z24�

� h ~OSS�PP�a�i�;

giving the constraints

 Z21 �
Z22 � Z11

4
; Z24 � ��Z13 	 2Z23�: (16)

 

h ~OVV�AA���i � Z31h ~OVV	AA�a�i 	 Z32h ~OSS	PP�a�i 	 Z33h ~OVV�AA�a�i 	 Z34h ~OSS�PP�a�i;

h ~OSS�PP���i � Z41h ~OVV	AA�a�i 	 Z42h ~OSS	PP�a�i 	 Z43h ~OVV�AA�a�i 	 Z44h ~OSS�PP�a�i;

h ~O�VV�AA�i���i � Z41h ~OVV	AA�a�i � Z42h ~O�VV	AA�i�a�i 	 Z43�h ~OVV�AA�a�i? � h ~OVV�AA�a�ik�

	 Z44h ~O�VV�AA�i�a�i �HQS�i��;
 X
i�1;3

~O�VV�AA�i��� �
~O�VV�AA�0��� � h

~OSS�PP���i 	 h ~OVV�AA���i

� �3Z41 � Z42�h ~OVV	AA�a�i � Z42h ~OSS	PP�a�i 	 �Z43 	 Z44�h ~OVV�AA�a�i

	 �Z44 	 4Z43�h ~OSS�PP�a�i

� �Z31 	 Z41�h ~OVV	AA�a�i 	 �Z32 	 Z42h ~OSS	PP�a�i 	 �Z33 	 Z43�h ~OVV�AA�a�i

	 �Z34 	 Z44�h ~OSS�PP�a�i:

One obtains eventually the constraints

 Z44 � Z33; Z42 � �
Z32

2
;

Z41 �
2Z31 � Z32

4
; Z43 �

Z34

4
:

(17)

The renormalization matrix has the following structure:

 Z �

Z11 0 Z13 2Z13
Z22�Z11

4 Z22 Z23 ��Z13 	 2Z23�

Z31 Z32 Z33 Z34
2Z31�Z32

4 � Z32

2
Z34

4 Z33

0
BBB@

1
CCCA: (18)

Further constraints are obtained thanks to the invariance of
the overlap action under the finite chiral transformation

  ! i	5

�
1�

a
2
DN

�
 ; � ! i � 

�
1�

a
2
DN

�
	5:
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Under such a transformation one has

 

~OVV	AA ! � ~OVV	AA; ~OSS	PP ! � ~OSS	PP;

~OVV�AA ! 	 ~OVV�AA; ~OSS�PP ! 	 ~OSS�PP:

The final result is then

 Z �

Z11 0 0 0
Z22�Z11

4 Z22 0 0
0 0 Z33 Z34

0 0 Z34

4 Z33

0
BBB@

1
CCCA: (19)

There is no mixing of left-left four-fermion static-light
operators regularized on the lattice with dimension 6 op-
erators of different chirality, reducing significantly the
systematic error coming from such a spurious mixing
when the light quark is described by the Wilson-Clover
action: indeed the matching of those operators with their
counterpart renormalized in the continuum MS scheme
does not need any subtraction.

We recall that the overlap propagator without mass
reads2

 

Saboverlap�k� � �ab
a

2�

�
�i�6
!	 b

	 1
�
; b�k� � W�k� � �;

!�k� � a�
����������
XyX

p
�0�k�; (20)

where X0 is the free part of the Wilson kernel with a
negative mass � �

a , and the quark-quark-gluon vertex is
defined by [31]
 

Va;overlap
�;qqg �p; p0� � �ig0Ta

�
!�p� 	!�p0�

�

�
	�c� � is� 	

a2

!�p�!�p0�
X0�p

0�

� �	�c� 	 is��X0�p�
�
: (21)

The renormalization constants of dimension 6 static-light
four-fermion operators are given at one loop of perturba-
tion theory by the diagrams of Fig. 2.

Following the notations of [14], the matching constants
are defined by

 ZMS
11 � 1	

�MS
s

4�

�
7

3
	
ds
3
�

10d1

3
�
c
3
�

4e
3
�
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3
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3
	 4 ln�a2�2�

�
;

ZMS
21 �

�MS
s

4�

�
�

5

36
�
ds
36
�

2dv
9
	
d1

2
	
c
4
�
d

6
�

2

3
ln�a2�2�

�
;

ZMS
22 � 1	

�MS
s

4�

�
16

9
	

2ds
9
�

8dv
9
�

4d1

3
	

2c
3
�

4e
3
�

4f
3
	

4

3
ln�a2�2�

�
;

ZMS
33 � 1	

�MS
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4�

�
41

12
�
dv
6
�

7d1

3
	
c
6
�

4e
3
�

4f
3
	

7d

6
	

7

2
ln�a2�2�

�
;

ZMS
34 �

�MS
s

4�

�
1

2
� dv 	 2d1 	 c� d
 � 3 ln�a2�2�

�
;

ZMS
43 �

�MS
s

4�

�
1

8
�
dv
4
	
d1

2
	
c
4
�
d

4
�

3

4
ln�a2�2�

�
;

ZMS
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�
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�
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�
;

FIG. 2. Diagrams giving the one-loop correction to a static-light four-fermion operator.

2We invite the reader to have a look in Appendix A in which the notations used in those equations are made more precise.
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where c and d1 correspond to diagrams 2(a) and 2(b),
respectively. The matching constant of the axial static-light
current is defined by

 ZMS
A � 1	

�s
12�2

�
5

4
�
e	 f

2
� d1 	

3

2
ln�a2�2�

�
: (22)

We have collected the numerical values of c and d1 in
Table IV and we have given their analytical expression in
Appendix C. We agree with the authors of [14] for the
analytical expression of d1��i � 0� [32] and for its nu-
merical value. f���, ds���, and dv���, involving only light
quark legs and computed in [33], are included in the same
table for � � 1:4 and 1.6 that we chose to perform the
lattice simulation, and d
 � �4:792 010. We obtain for
� � 1:4 and the set HYP1

 ZMS
11 �1=a� � 1	

�MS
s �1=a�

4�
� 20:0579;

ZMS
22 �1=a� � 1	

�MS
s �1=a�

4�
� 19:6915;

ZMS
A �1=a� � 1	

�MS
s �1=a�

4�
� 11:2557:

(23)

Here we would like to make two remarks.
The first one is that the bag parameters ~BMS���i are

matched to ~B�1=a�i with Zij
Z2
A

: in the ratio the quark self-

energies cancel, reducing the corrections.

The second remark concerns the numerical value of the
renormalization constants: one needs to define the expan-
sion parameter �s in terms of the lattice coupling, in order
to improve as much as possible the perturbative computa-
tion. We decided in our analysis to use the constant
�V�3:41=a�, that is related to the average plaquette
h1=3 Tr�U��i [34], and the ratio �MS=�V , to compute

�MS
s �1=a� at two loops of perturbation theory. An alter-

native approach could have been to choose the scale � �
q� between 1=a and �=a, as done in [12], and include the
spreading in the systematic error as done in [27]. Of course
in that case the logarithmic terms appearing in (6) must be
taken into account.

IV. CONCLUSION

In this paper we have calculated the one-loop corrections
at O�a� of static-light currents �h�q and four-fermion op-
erators � �h�q�� �h�q� in lattice HQET with a hypercubic
blocking of the Wilson line which defines the static quark
propagator. It determines the renormalization of the opera-
tors which are used to compute in the static limit of HQET
the decay constant fB and the bag parameters Bi associated
with the Bs � �Bs mixing amplitude in the standard model
and beyond.

In particular we have given values of the renormalization
constants of the static-light four-fermion operators when
the light quark is described by the overlap action, which
is an elegant way to restore on the lattice the chiral sym-
metry of the continuum but is highly demanding in com-
putation time, so that a nonperturbative renormalization
procedure, like the Schrödinger functional scheme [35], is
not underway yet. However, a further step could be to
compute in this scheme—i.e. nonperturbatively—the
matching constants of static-light bilinear currents when
the light quark is described in the bulk by the Neuberger
operator [36].
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APPENDIX A: NOTATIONS

We give here the notations that appear in the main part of
the paper and below in the analytical expressions of match-
ing constants.

TABLE IV. Numerical values of c, d1���, f���, ds���, and
dv��� defined in the text.

� 1.4 1.6

f��� �17:47 �13:24
ds��� 2.55 3.06
dv��� 0.056 0.068
d1��;�i � 0� 0.648 0.707
d1��;APE� 0.320 0.346
d1��;HYP1� 0.285 0.306
d1��;HYP2� 0.032 0.026

�i 0 APE HYP1 HYP2

c 4.53 �3:63 �3:24 �7:82
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k
�
Z �

��

d4k

�2��4
;

Z
~k
�
Z �

��

d3k

�2��3
;

U��n� � eiag0Aa��n�Ta � 1	 iag0Aa��n�Ta �
a2g2

0

2!
Aa��n�Ab��n�TaTb 	O�g3

0�;
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� �n� � eiag0Ba��n�Ta � 1	 iag0Ba��n�Ta �

a2g2
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Ba��n�Bb��n�TaTb 	O�g3

0�;

Aa��n� �
Z
p
eip�n	a=2�Aa��p�; Ba��n� �

Z
p
eip�n	a=2�Ba��p�; F2 �

X4

i�1

F2
i ; ~F2 �

X3

i�1

F2
i

�� � sinak�; c� � cos
�a�p	 p0��

2

�
; s� � sin

�a�p	 p0��
2

�
; M� � cos

�k�
2

�
;

N� � sin
�k�

2

�
; W � 2N2; E2 � ~N2 	

a2�2

4
; E2

1 �
� ~N2�2 	

~�2

4

1	 2 ~N2
:

 B�1�� �k� �
X
�

h���k�A��k�; h���k� � ���D��k� 	 �1� ����G���k�;

D��k� � 1� c1

X
���
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�<�;�;���
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�N2
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�N2

�N2
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�
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�
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1	 �2�1	 �3��; c2 � �4=3��1�2�1	 2�3�; c3 � 8�1�2�3:

APPENDIX B: MATCHING CONSTANTS OF O�a� IMPROVED OPERATORS

Here we give the analytical expressions of the constants d1, d2, dI, n, h, and q.
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APPENDIX C: STATIC-LIGHT VERTEX WITH THE OVERLAP ACTION

Here we give the analytical expressions of c and d1���:
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