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We study the approach, initiated by Marinari et al., to the static interquark potential based on Polyakov
lines of finite temporal extent, evaluated in Coulomb gauge. We show that, at small spatial separations, the
potential can be understood as being between two separately gauge invariant color charges. At larger
separations Gribov copies obstruct the nonperturbative identification of individually gauge invariant color
states. We demonstrate, for the first time, how gauge invariance can be maintained quite generally by
averaging over Gribov copies. This allows us to extend the analysis of the Polyakov lines and the
corresponding, gauge invariant quark-antiquark state to all distance scales. Using large scale lattice
simulations, we show that this interpolating state possesses a good overlap with the ground state in the
quark-antiquark sector and yields the full static interquark potential at all distances. A visual representa-
tion of the Gribov copies on the lattice is also presented.
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I. INTRODUCTION

The interquark potential is a principal tool in lattice
studies of quark confinement [1]. This potential can be
understood as composed of antiscreening and screening
effects. In perturbation theory the antiscreening structures
are paradigm effects of non-Abelian gauge theories and
their dominance underlies asymptotic freedom. Screening
effects lower the energy but, in perturbative calculations,
are seen to be small compared to antiscreening. Nonper-
turbatively, however, screening due to light quarks starts to
dominate at sufficiently large distances implying string
breaking. Hence, as was stressed, for example, in [2],
confinement with a linearly rising potential at large inter-
quark distances is a feature only of Yang-Mills theory with
no light quarks.

Although the potential itself must be gauge invariant, it
is initially unclear how to construct it since the heavy
fermions are not gauge invariant. On the lattice one mea-
sures the vacuum expectation value of the gauge invariant
Wilson loop and its large-time behavior [1],

 WrT � expf�TV�r�g; (1)

where r and T denote the spatial and temporal extent of the
loop. Wilson’s formulation is based on connecting the
fermions by a path ordered exponential to produce a single
gauge invariant object. However, this is not unique and in
this paper we will study other ways of constructing gauge
invariant probes of the potential.

To clarify our notation we denote states constructed
from the heavy fermionic fields of the theory by jqx �qyi.
These are not physical states as they are not gauge invari-

ant. Gauge invariant quark-antiquark states will be denoted
by jQx �Qyi.

As discussed above, the most familiar way to ensure
gauge invariance is to link the fermions by a Wilson line.
Then the Wilson loop (1) may be found from the transition
amplitude

 WrT � h �QyQxje�HT jQx �Qyi; r � jx� yj; (2)

which describes the creation of a static quark-antiquark
pair at t � 0 and its subsequent annihilation at time t � T,
see Fig. 1.

Inserting a complete set of energy eigenstates, (2) be-
comes at large times

 WrT � jh �QyQxj0xyij2 expf�TV�r�g; (3)

where j0xyi signifies the lowest energy state with a heavy
quark and antiquark fixed at x and y. For practical compu-
tational purposes it is of course important that the matrix
element in front is sufficiently large or, put differently, that
the state jQx �Qyi has a substantial overlap with the true
quark-antiquark ground state. Gauge invariance alone does
not ensure this and, in particular, Wilson loops do not have
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FIG. 1. The static interquark potential from unsmeared Wilson
loops.
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such a strong overlap. This is remedied on the lattice by the
technique of ‘‘smearing’’ [3–5].

Although Wilson loops are gauge invariant and hence
potentially physical they cannot be interpreted as ampli-
tudes connecting separately physical, single quark and
antiquark states. This is symbolically displayed in Fig. 1
by the lines connecting the external sources (small circles).
However, in the perturbative sector physically distinguish-
able constituent structures are expected [6]. To incorporate
this constituent picture into the description of the potential
we would require a gauge invariant quark state jQxi built
out of the heavy, but gauge dependent, fermionic state jqxi.

Such an approach was, in fact, initiated by Dirac [7]
many years ago in QED and during the last decade or so
this idea has been developed into a fully fledged alternative
approach to charges in gauge theories [6,8–10]. The pro-
cess of constructing a gauge invariant quark from the
matter states jqxi is called ‘‘dressing’’ and details of the
construction will be summarized in the next section. We
will see that the dressing for a static charge takes its
simplest form in Coulomb gauge. In that gauge, the fermi-
onic state jqxi itself captures the dominant gluonic contri-
bution to the perturbative quark constituent of our quark-
antiquark configuration. As such, the state jqx �qyi evaluated
in Coulomb gauge has a large overlap with the true quark-
antiquark ground state, j0xyi, at short distances.

This observation allows us to develop an alternative to
the unsmeared (or ‘‘thin’’) Wilson loop description of the
quark-antiquark system. We can now make the gauge
invariant identification that for heavy static quarks,

 jQx �Qyij@iAi�0 � jqx �qyi: (4)

This is gauge invariant as long as each orbit of the gauge
group has one unique representative satisfying the
Coulomb gauge condition. Thus the expectation value of
the Hamiltonian in the state (4) should give an alternative
approach to the interquark potential, see Fig. 2.

An immediate question, which we will address in this
paper, is to what extent does the good perturbative overlap
found in Coulomb gauge extend to the nonperturbative
regime? If it does, then, as well as producing an alternative
to smearing, we can start to address issues related to the

details and range of validity of the constituent quark
picture.

In this paper we will test this approach to the interquark
potential. That is, we will use Coulomb gauge fermions to
measure the potential. On a lattice this means that we first
take a Coulomb dressed Q �Q state on a time slice separated
by a distance r and let it evolve during a time interval T, see
Fig. 2. This yields a correlator of two separate finite length
Polyakov lines with link variables in Coulomb gauge. The
correlation of finite length Polyakov lines was first studied
on the lattice by Marinari et al. in [11]. They considered
SU(3) gauge theory and obtained an upper limit for the
string tension which overestimated the true value by
roughly 50%. It was recently confirmed [for an SU(2)
gauge theory] that finite length Polyakov line correlators
indeed yield the correct value for the full string tension
[12]. One of the goals of this paper is to apply this approach
not just to the string tension but to the full interquark
potential. Using both perturbation theory and lattice gauge
simulations, we will find that the potential between two
Coulomb dressed quarks and that obtained from Wilson
loops are in good agreement.

An intriguing aspect of the present investigation is the
obvious physical fact that the constituent picture has a
limited range of validity. Thus any interpretation of the
interquark potential as that arising between two physical
quarks must break down. It has been argued in Refs.[6,10]
that this is consistent with the observation that the gauge
invariance of the dressed charges breaks down nonpertur-
batively due to Gribov copies [13,14]. In this regime the
potential defined by the finite length Polyakov lines can
only be interpreted as arising from the state which corre-
sponds to one gauge invariant, but overall colorless, object.
However, it is not a priori obvious that the residual gauge
invariance of the states (4) due to copies will let us extract a
potential, let alone the confining one. Therefore, another
aim of the work reported here is to study how Coulomb
gauge Gribov copies affect the interquark potential. One
might wonder whether summing over such copies could
mean that the potential vanishes (as the construction is not
gauge invariant with respect to transformations between
Gribov copies). In fact we shall see that we can extract the
potential in this way.

The structure of this paper is as follows. First we shall
discuss what is known about the perturbative interquark
potential. This will include a discussion of the relevant
ingredients of the dressing approach to static charges and a
summary of their use in identifying the screening and
antiscreening structures found in the potential. This will
allow us to clarify the significance of Coulomb gauge for
the description of static quarks. Then, in Sec. III, the non-
perturbative regime will be investigated on the lattice.
Results from the use of unsmeared Wilson loops will be
compared with those that arise from finite length Polyakov
lines in Coulomb gauge. In Sec. IV we will then investigate
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FIG. 2. The static interquark potential from dressed quarks.

HEINZL, LANGFELD, LAVELLE, AND MCMULLAN PHYSICAL REVIEW D 76, 114510 (2007)

114510-2



in more detail the Gribov copies that arise in this approach
and present arguments and evidence for why the interquark
potential is insensitive to such copies. We will end with
some comments and conclusions.

II. PERTURBATIVE POTENTIAL

A. Dressing approach

In order to be physical, charges must be invariant under
gauge transformations which map A! �A and jqxi !
�xjqxi. The generic form for a charged single-fermion
state is thus given by [15]

 jQxi � hx�A�jqxi; (5)

where the field dependent dressing, hx�A�, must transform
as

 hx�
�A� � hx�A��

y
x ; (6)

for jQxi to be a gauge singlet. Note that the dressing h�A�
can be viewed as a field dependent gauge transformation.
The invariance of (5) from (6) is a minimal requirement
and there are many ways to construct such invariant states.
The simplest manner to write down a gauge invariant state
involving a fermion-antifermion pair at different points x
and y is to connect them by a straight Wilson line. This is,
however, not physically attractive and, as the need for
smearing on the lattice shows, is also not the best thing
to do in practice.

At a more fundamental level, the problem with such a
description may already be seen in QED [16] where the
potential between two static fermions, separated by a
distance r � jx� yj and connected (dressed) by a string,
is easily calculated to be proportional to e2r�2�0�. This is a
linearly rising potential (with a divergent coefficient)
which would imply confinement in QED. However, upon
quantisation the associated state is clearly infinitely excited
and thus energetically unphysical. On a discrete lattice the
coefficient would be finite, but this would still correspond
to a highly excited state which will decay. The reason why
the energy is so high is that the electric field is only non-
zero on the path of the Wilson line, e.g.,

 E �x� � �2�x?���x3�n; (7)

where n is the unit vector in the x3 direction and x? �
�x1; x2�. The large energy of such thin strings is exactly the
reason why smearing Wilson lines is numerically efficient
in lattice calculations of the interquark potential: It im-
proves the overlap with the ground state [3–5].

Instead of this we look for a physically motivated de-
scription of the dressing of two static charges [17]. We
demand that a dressed state is gauge invariant and static as
an asymptotic state [8,9]. This produces a dressing which
factors into two parts:

 h � ei�ei�: (8)

For a static charge, � is the field dependent transformation
into Coulomb gauge. This part of the dressing we also call
the ‘‘minimal’’ dressing since the state ei��x�jqxi is gauge
invariant on its own. Hence, its Q �Q analogue,

 jQx �Qyi � ei��x�e�i��y�jqx �qyi; (9)

may be expected to have a large overlap with the true Q �Q
ground state j0xyi (involving the full dressing). The addi-
tional part of the dressing, �, is the time integral of the �
rotated A0 component of the potential. So in Coulomb
gauge it is just the (long) Polyakov line of A0 from the
current time to infinity.

It turns out to be a nontrivial task to find a closed
expression for �, the transformation into Coulomb gauge
in the non-Abelian case. It is, however, simple to obtain a
perturbative expansion for � to high orders. Absorbing the
coupling, g, into the vector potential, the minimal dressing
at leading order (LO) is

 � �
@iAi
r2 	O�g2�: (10)

In the Abelian limit this is the result proposed by Dirac [7]
to describe a static electron. At next-to-leading order
(NLO) and beyond we have

 � � �1 	 �2 	 �3 	O�g4�; (11)

where explicit expressions for the �n’s can be found in
[6,10]. Given this solution for �, it is then reasonably
straightforward to construct the additional part of the
dressing to the same order in the coupling by using � to
gauge rotate A0. This perturbative construction can be
extended to an arbitrary order, however, the above suffices
to calculate the NLO potential.

A fermionic field dressed by (8) has two independently
gauge invariant structures: � and the minimally dressed
fermion. Given these separately gauge invariant terms, it is
instructive to investigate their relative contributions to the
potential. The potential between two such dressed quarks is
found by sandwiching the Yang-Mills Hamiltonian be-
tween states of a dressed quark and antiquark spatially
separated by a distance r. As in QED, the LO dressing
generates the Coulombic electric field typical of short
distances [6] and the additional part of the dressing makes
no contribution here. So to LO we find

 VLO�r� � h �QyQxjHYMjQx �Qyi � E0 �
g2CF
4�r

: (12)

Here, E0 collectively denotes contributions independent of
the distance r. As usual, CF denotes the quadratic Casimir
in the fundamental representation. The result (12) corre-
sponds to a one-gluon exchange at tree level as will be
briefly discussed in the following subsection.

At NLO we focus on the minimally dressed quark where
we only retain the Coulomb dressing. The higher order
terms in the minimal dressing (11) modify the essentially
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Abelian result (12) and generate the paradigm antiscreen-
ing effects which underlie asymptotic freedom. In momen-
tum space [18], working in an arbitrary covariant gauge
[19] in d spatial dimensions, the chromo-electric commu-
tators produce at NLO the correction

 �
3g4CFCAkikj

k4

Z ddp

�2��d
1

�k� p�2
iDTT

ij �p�; (13)

where iDTT
ij �p� is the gauge invariant two-point function of

the transverse components AT of the spatial vector poten-
tial and CA is the quadratic Casimir in the adjoint repre-
sentation. The potential from the minimal dressing at this
order in perturbation theory thus becomes

 Vmin
NLO�k� �

g2CF
k2

�
1	

g2CA
48�2 12 ln

�
�2

k2

��
; (14)

where � is a renormalization scale. The factor of 12 in
front of the logarithm demonstrates that the minimal dress-
ing description yields the dominant antiscreening part of
the quark potential which is thus generated by the glue
needed to make quarks gauge invariant. The expected
factor of 11 in the true ground state (familiar from the �
function) requires an additional �1 term which is pro-
duced by screening due to gauge invariant glue—recall
that the additional dressing, �, is gauge invariant, see [20].
The sign of this smaller effect shows that it lowers the
overall energy.

In three dimensions [21] the minimal ressing generalizes
this antiscreening/screening divide in the interquark poten-
tial despite the fact that this super-renormalizable lower
dimensional theory has a vanishing � function. It is note-
worthy that the relative weighting of the divide at NLO is
almost identical in both three and four dimensions. The
renormalization of these physical descriptions of charges
has been investigated at next-to-NLO (NNLO) and a can-
cellation of nonlocal divergences was shown [22]. This
was a highly nontrivial check of the construction.

We note also that the arbitrary path dependence of Q �Q
states dressed by a Wilson line may be factorized order by
order in perturbation theory. This yields a product dressing
consisting of a gauge invariant, but path dependent,
gluonic term and a separately gauge invariant structure of
two fermions dressed with the above minimal (or
Coulomb) dressing [23].

B. Wilson loop approach

To make the transition from the dressing description to
the lattice formulation, it is helpful to briefly recapitulate
the perturbative route to the potential in terms of Wilson
loops, Polyakov lines, and Feynman graphs as initiated in
[24] and reviewed in [25]. A path integral definition of the
static interquark potential V�r� may be given as follows.
We consider the partition function

 Z��� �
Z

DA exp
�
��SYM 	 ��; A

0��

�
(15)

in the presence of a static external q �q source (at x and y,
respectively),

 �axy�z� � �gTa���z� x� � ��z� y��: (16)

The measure in (15) implicitly contains gauge fixing terms
as does the action SYM. The partition function Z is the
exponential of the Schwinger functional,

 Z��� � expf�iW���g; (17)

which yields the static potential in the large-time limit,
T ! 1, plus constant self-energy contributions �,

 W��� ! T�V�r� 	 ��: (18)

If we define the untraced Polyakov line

 PT�x� � T exp
�
�ig

Z T

0
dtA0�t; x�

�
; (19)

we may rewrite the amplitude (15) as an expectation value,
or more properly a two-point function, given by

 Z��� � htrPT�x�P
y
T�y�i �

Z
DA trPT�x�P

y
T�y�e

�SYM :

(20)

In contrast to the dressing approach to the potential, gauge
invariance is not manifest here since the nonlocal operator
trPT�x�P

y
T�y� transforms nontrivially as the Polyakov lines

do not trace a closed loop. However, for some gauge
choices (e.g., Landau or Coulomb gauge) one expects the
spatial part of the gauge potential to decay sufficiently fast
in temporal direction that one can close the integration
contours to form a rectangular Wilson loop [26]. Choosing
spatial and temporal extent r and T, respectively, the
resulting Wilson loop (expectation value) is

 WrT �

�
trP exp

�
�ig

I
rT
dx�A

�
��
� expf�TV�r�g;

(21)

with the final expression being approached in the large-
time limit, T ! 1. From this familiar gauge invariant
construction, perturbative calculations in covariant gauges
of the potential have been performed to two loops [27,28].

To connect with the minimal-dressing approach, it is
useful to recall the calculation of the perturbative inter-
quark potential in Coulomb gauge [29–32]. Taking into
account that the Coulomb gluon propagator has a trans-
verse and an instantaneous part, we have, at NLO,
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where the dotted lines represent ‘‘unphysical’’ instanta-
neous Coulomb gluons, A0, with propagator

 D00�k� �
i

k2 ; (23)

while the ‘‘curly’’ lines correspond to ‘‘physical’’ trans-
verse gluons ATi with propagator

 DTT
ij �k

0; k� �
i

k2
0 � k	 i	2

�
�ij �

kikj
k2

�
: (24)

The full vertical lines represent the heavy-quark propaga-
tors or, equivalently, the untraced Polyakov lines.

Looking at (22) we note that only gluonic two-point
insertions contribute. The second diagram corresponds to
the minimal contribution to the potential (13) while the
third diagram is the smaller screening contribution and
may be traced back to the separately gauge invariant
dressing, �, of (8).

Higher n-point functions will only contribute at two-
loop order and above in the coupling. We mention in
passing that this order has never been worked out in
Coulomb gauge as one is faced with a number of difficul-
ties. First, there are severe infrared singularities [33].
Second, integrations over energies (p0) tend to diverge
badly. Third, there are nontrivial contributions from the
Faddeev-Popov measure and the Christ-Lee terms [34,35]
induced by the curvature of the configuration space. Items
two and three seem to be related [36–38].

Working out the diagrams of (22) the potential in mo-
mentum space becomes

 VNLO�k� �
g2CF
k2

�
1	

g2CA
48�2 �12� 1� ln

�2

k2

�
; (25)

where the quantity in brackets determines the running
coupling. Asymptotic freedom arises because the antiscre-
ening or minimal-dressing contribution yields a factor
	12, cf. (14), as compared to the �1 from the screening
vacuum polarization term.

One can understand the different signs at NLO by noting
that ‘‘physical’’ particles (like the transverse gluons) in a
loop always entail screening by unitarity [39,40]. At small
distances this effect is due to virtual particles in the loop.
At large distances, however, screening effects may be
caused by real particles. This is the case for string breaking
in QCD where light dynamical quark pairs pop out of the
vacuum and combine with the heavy probe quarks to form
heavy-light mesons. This in turn leads to a saturation of the
potential at long distances. The same happens in pure
gluodynamics if the heavy sources are in higher group
representations such that they can be screened by dynami-
cal gluons.

Beyond NLO the separation into screening and antiscre-
ening structures is not so straightforward and the only
systematic approach is through the dressing decomposition
(8). So, for example, at NNLO physical particles in loops

can now contribute to antiscreening [22]. The gauge trans-
formation properties of the dressing ensures that, at all
orders in perturbation theory, the separation of forces into
screening and antiscreening ones is gauge invariant and
hence physical. How this is achieved in the nonperturbative
sector is an open question.

III. NON-PERTURBATIVE REGIME

The use of Coulomb gauge in the nonperturbative re-
gime has received much attention recently: There have
been investigations using lattice techniques [12,41–46],
variational arguments [47–50], Schwinger-Dyson equa-
tions [51] and explicit analytic solutions [10]. In particular
the so-called Coulomb potential has been studied in great
detail. This potential arises from the short Polyakov line
correlator (20) in the limit T ! 0 [12,44–46] and must not
be confused with the full static potential, which we address
in the present study. In this section we shall recall the key
ingredients of the lattice approach and then see how to
extract the interquark potential from finite length Polyakov
lines.

A. Numerical setup

The dynamical degrees of freedom are the unitary ma-
trices U��x� 2 SU�2� which are associated with the links
of a N4 cubic lattice with lattice spacing a. The partition
function is given by

 Z �
Z

DUp�U�; with p�U� � expf�S�U�g; (26)

where the Wilson coupling � is the only free parameter of
the simulation. It multiplies the gauge invariant Wilson
action,

 S�U� �
1

2

X
�<
;x

trU��x�U
�x	��U
y
��x	 
�U

y

 �x�; (27)

which is used throughout this paper. The integration mea-
sure is given in terms of single-site Haar measures dU��x�:

 DU �
Y
x;�

dU��x�: (28)

The latter are invariant under left and right multiplication
by SU(2) group elements and normalized to unity,R
dU��x� � 1. This ensures the gauge invariance of DU

and, therefore, of the partition function. Under a gauge
transformation ��x�, the links change according to

 U��x� !
�U��x� � ��x�U��x��

y�x	��: (29)

In order to impose Coulomb gauge in a lattice simulation,
one firstly determines a link dependent gauge transforma-
tion, h�x�, from the ‘‘action principle,’’

 Sfix �
X
t;x;i

trhUi�t; x�!
h

max (30)
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which, on each gauge orbit, looks for the representative
hUi that is closest to the unit matrix. Note that the sum over
times, t, guarantees that this is done term by term on each
time slice.

Lattice configurations in Coulomb gauge are then made
up from the gauge transformed links hU��t; x�. The search
for a maximum of the gauge fixing functional Sfix is
performed with a standard iteration and over-relaxation
procedure. For reasonable lattice sizes, present day algo-
rithms will typically find a local (rather than the global)
maximum of the gauge fixing action (30) on each orbit.

Starting with the same ‘‘seed’’ configuration U��x�, we
might end up in several, almost degenerate, maxima of (30)
implying that the lattice definition of the Coulomb gauge
configuration is ambiguous. This is the lattice version of
the continuum Gribov ambiguity discussed in Sec. I. Two
configurations h1U��x� and h2U��x� with both h1�x� and
h2�x� satisfying (30) are hence called Gribov copies of
each other. Since we are primarily interested in the effects
induced by Gribov copies, we do not employ sophisticated
tools such as simulated annealing or Fourier acceleration
which are invoked (with little success it must be said) to
find the global maximum of (30).

B. Confining potential from unsmeared Wilson loops

The standard way to calculate the potential of a static
quark-antiquark pair is to investigate the transition ampli-
tude (2), which we now write as

 W�r; T� � h �QyQxje�HT jQx �Qyi; (31)

where, as before,H denotes the Yang-Mills Hamiltonian, T
a Euclidean time interval and r � jx� yj the separation
between quark and antiquark. Recall that the latter are
connected by a parallel transporter along a straight line.
We will evaluate W�r; T� via lattice Monte Carlo simula-
tions employing rectangular Wilson loops (see Fig. 1). As
discussed in Sec. I, there are sophisticated lattice tech-
niques [3–5] available for enhancing the overlap,
h �QyQxj0xyi, with the quark-antiquark ground state by us-
ing (spatially) smeared Wilson loops. However, since we
are not only interested in the static potential per se, but also
in the overlap of different interpolating states with the true
ground state, we refrain from adopting these techniques
and content ourselves with a thorough comparison of un-
smeared Wilson loops, where there is only an overall gauge
invariant quark-antiquark state, with individually dressed
Coulombic states as pictorially summarized in Figs. 1 and
2.

Let us first discuss the evaluation of (31). Rewriting the
amplitude as

 W�r; T� � expf�Tv�r; T�g; (32)

the interquark potential V�r� emerges as the limit

 V�r� � lim
T!1

v�r; T�: (33)

The large T limit ensures that excited states which
contribute to the matrix element (31) are suppressed. In
this limit v�r; T� becomes independent of T. Figure 3
(upper panel) shows � lnW�r; T� � Tv�r; T� as a function
of T for several values of r. Deviations from the linear
behavior are clearly visible at small values for T. The
curves for larger values of r seem to be more affected by
excited states.
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FIG. 3 (color online). The dependence of unsmeared Wilson
loops on T; 164 lattice, � � 2:4.
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In practice, we fit the logarithm of (32),

 � lnW�r; T� � b�r� 	 V�r�T (34)

to a linear function in T (we call this a T fit). Only data
points with T 
 Tth, for some threshold time Tth, are taken
into account. Using small values for the threshold time, say
Tth � 2a, the �2

T=dof becomes unacceptably large. This
indicates large deviations from linear behavior and implies
that the signal is contaminated by contributions from ex-
cited states. We have therefore made a more conservative
choice for the threshold,

 Tth � 4a; �164 lattice; � � 2:4� (35)

and included only T fits satisfying

 �2
T=dof < 2: (36)

The lower panel of Fig. 3 shows

 vs�r; T� � �� lnW�r; T� � b�r��=T � v�r; T� � b�r�=T

(37)

as a function of T. It is reassuring to note that, for T > 4a,
the contributions from excited states are within the statis-
tical error.

The T fit described above also provides us with the
desired static interquark potential V�r�. Generically, the
quark-antiquark pair is aligned along the main crystallo-
graphic direction, e.g., f100g, of the lattice. In order to
check for artifacts arising due to rotational symmetry
breaking, the spatial sides of the Wilson loop were placed
along the diagonal axes f110g and f111g as well. Our final
result for the unsmeared loop and Tth � 4a is shown in the
upper panel of Fig. 4. To increase the number of statisti-
cally significant data points for V�r� we also relaxed the
condition (36) by using the threshold Tth � 3a, see Fig. 4,
lower panel. Also included in this graph is the solid line
from the fit to the Tth � 4a data. We find that Tth � 3a data
approach this line reasonably well. Note that the contribu-
tion of the excited states in the Tth � 3a data yields a slight
overestimate of the string tension.

Finally, the potential V�r� is fitted to the universal func-
tion

 V�r� � V0 �
�
r
	 �r; (38)

with offset V0, Coulombic coefficient �, and string tension
� to be determined (we call this a V fit). Our findings are
summarized in Table I.

Not unexpectedly, we find that caution is required when
the static potential is extracted from unsmeared Wilson
loops: There is a significant contribution from excited
states the suppression of which requires a sufficiently large
Euclidean time extent T. For the present settings employ-
ing a 164 lattice and � � 2:4, we find a 7% drop in the
string tension from �a2 � 0:0908 to �a2 � 0:0847 if we

impose the more rigorous bound (36) for the T fit. Note
also that calculations which use smeared Wilson loops for
an overlap enhancement find smaller values for the string
tension, see, e.g., [52]. This indicates that, even for the case
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FIG. 4 (color online). The static potential extracted from un-
smeared Wilson loops as a function of the quark-antiquark
distance r using Tth � 4a (upper panel) and Tth � 3a (lower
panel) as threshold for the T fit; 164 lattice, � � 2:4.

TABLE I. Fit of the static potential to the function (38) for a
164 lattice and for � � 2:4.

V0 � �a2 �2
V=dof

Tth � 3a 0.487(1) 0.204(1) 0.0908(4) 13.0
Tth � 4a 0.501(3) 0.212(2) 0.0847(8) 4.7
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of the more conservative bound (36), there are probably
still some contributions from excited states.

C. Confining potential from Coulomb dressed quarks

In what follows we will employ lattice gauge configu-
rations which have been transformed to the Coulomb
gauge along the lines described in Sec. III A. Our working
hypothesis here is that we can extract the physical inter-
quark potential despite the presence of Gribov copies. The
authors of [11,12] found that the large distance part of the
potential, i.e., the string tension, is not affected by Gribov
copies. However, no physical explanation of this observa-
tion was given. Although the copies obstruct the interpre-
tation of the resulting potential as that arising between
separately invariant single quark sources [6] we shall dem-
onstrate that they do not affect the overlap with the ground
state.

The overlap of a Coulomb dressed, single heavy-quark
state at t � 0 with the analogous state at t � T is given by a
finite length Polyakov line (evaluated in Coulomb gauge),

 

hPT�x� �
YT
t�0

h�U�U0�x; t�; (39)

where hU��x� denotes the link after gauge fixing.
According to (20) the potential of two static Coulomb
dressed quarks can then be extracted from the correlator
of two Polyakov lines of finite temporal extent,

 C�r; T� � htrhPT�x�
hPyT�y�i: (40)

This correlator was studied in [12] with an emphasis on the
Coulomb (minimal antiscreening) potential obtained from
the limit T ! 0. In this paper, we will concentrate on the
full static potential (large T behavior) and the impact of
Gribov copies. For sufficiently large values of T the excited
states are suppressed and we expect C�r; T� to be domi-
nated by the true Q �Q ground state j0xyi. Hence, defining
quantities analogous to (32) and (33),

 C�r; T� � expf�Tu�r; T�g; U�r� � lim
T!1

u�r; T�;

(41)

we expect U�r� to coincide with the static potential V�r�
extracted from unsmeared Wilson loops. The purpose of
the present subsection is to scrutinize this expectation by a
detailed numerical investigation.

As we will have to deal with gauge fixing ambiguities let
us first address the issue of residual gauge invariance. As is
appropriate for a Hamiltonian formulation, the Coulomb
gauge prescription (30) is implemented on time slices, t �
const. Hence, we may still perform spatially homogeneous,
purely time dependent residual gauge transformations,
��t�, on the gauge fixed links,

 

hU��t; x� !
��t�hU��t; x� � ��t�hU��t; x��

y�t�; (42)

which, in continuum language, obviously leave the (van-
ishing) divergence of A�t; x� invariant.

Let us now convince ourselves that the correlator C�r; T�
of (40) is invariant under (42),

 

tr��t�PT�x�
��t�PyT�y�� tr��0�PT�x��y�T���T�P

y
T�y��

y�0�

� trPT�x�P
y
T�y�; (43)

where the links can, in fact, be taken in any gauge. Thus,
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FIG. 5 (color online). u�r; T� extracted from the correlation of
finite length Polyakov lines calculated from Coulomb gauge
fixed lattice configurations (upper panel). The static potential
calculated from finite length Polyakov lines (lower panel). Both
on a 164 lattice with � � 2:4.
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C�r; T�, and with it the potential U�r� from (41), are not
affected by the trivial residual gauge freedom (42).

For a quark trial state which is not completely invariant
because of Gribov copies, one might naively expect that
the average over gauge copies causes the correlator C�r; T�
to vanish. This would imply that the distribution of copies
is completely random. Our numerical simulations, how-
ever, show that this is not the case: We obtain a clear signal
for C�r; T�, which is orders of magnitude larger than the
underlying noise. We therefore apply the linear T fit to the
function � lnC�r; T� subject to the rigorous bounds

 Tth � 4a; �2
T=dof < 2: (44)

The fit results allow us to extract u�r; T� to high accuracy
as shown in Fig. 5, upper panel. The outcome is clearly
encouraging: Not only is the Gribov noise absent, it also
appears that the overlap with the ground state is largely
enhanced. In Fig. 5 even the r � 7a data are statistically
significant. This is also true for the plot of the static
potential U�r� defined in (41). Finally, we have again fitted
the parametrization (38) of the potential to the present data
(Fig. 5, lower panel). The results of this V fit are listed in
Table II.

For comparison, the parameters for the fit with threshold
Tth � 3a have also been included. The results seem to be
more stable than those from the fits to unsmeared Wilson
loop data (cf. Table I). This once again signals the larger
ground state overlap of the Coulomb dressed Q �Q states as
compared to the q �q states linked by an unsmeared Wilson
line.

Concluding this subsection we reemphasize the striking
fact that Gribov copies seem to have no noticeable effect
on the interquark potential. As a result, possible contami-
nation by excited states notwithstanding, it is fair to say
that the potentials calculated from unsmeared Wilson loops
and from Coulomb dressed quark states do agree.

IV. ON THE IMPACT OF GRIBOV COPIES

In the last section we have shown that the static poten-
tials obtained from finite length, Coulomb dressed
Polyakov lines and from unsmeared Wilson loops agree.
Our calculations have required a substantial processing of
raw numerical data such as the subtraction of divergent
self-energies. The question therefore arises whether the
agreement between standard and Coulomb gauge calcula-
tions also holds for the bare finite time amplitudes, W�r; T�
and C�r; T� from (32) and (41), respectively.

If this were true, we would be in a much better position
to understand the impact of Gribov copies as this issue
could be properly addressed before renormalization.

A. Gribov noise

Let us start with a description of the actual numerical
procedure which is used to calculate the expectation value
of an observable O�U� in Coulomb gauge. Using standard
Monte Carlo techniques, a link configuration fUg is gen-
erated according to the gauge invariant probability distri-
bution p�U�, cf. (26). Without gauge fixing an expectation
value is calculated as

 hOi �
Z

DUp�U�O�U�: (45)

If we evaluate this after an arbitrary gauge transformation,
U ! �U, using invariance of the probability measure
DUp�U�,

 hOi �
Z

DUp�U�O��U� �
Z

DUp�U�
Z

D�O��U�;

(46)

we obviously obtain zero whenever the projectionR
D�O��U�, i.e., the group average of O, vanishes. For

gauge variant field combinations this is what typically
happens.

However, the situation will be different after gauge
fixing where, as a result of the gauge fixing algorithm,
any seed configuration will change into a Coulomb gauge
configuration

 fUg ! fhUg; h � h�U�; (47)

with (yet unknown) probability P�hU� characterizing the
algorithm. We emphasize that the proper way to interpret
the transformation (47) is as a change of variables [34]
implying curvilinear coordinates and a metric formulation
which, however, will not be needed here.

It will be sufficient to define the expectation value of an
operator O�U� in Coulomb gauge according to

 hhOii �
Z

DhUP�hU�O�hU�; (48)

where the double bracket emphasizes that O�U� need not
be gauge invariant. Note, however, that the dressed opera-
torO�hU� is, by construction, invariant up to Gribov copies
as h always picks an orbit representative. If there were no
Gribov noise the chosen representative would be unique.
This uniqueness is corrupted by the unavoidable random-
ness inherent in the gauge fixing algorithm implying a
distribution of representative copies. It is this distribution
which we want to study in the following.

To this end let us rewrite the expectation value (48) in
terms of the Yang-Mills functional integral. The probabil-
ity of picking a particular copy hU is given by the gauge
group average

TABLE II. Fit of the static potential U�r� to the function (38)
for a 164 lattice and for � � 2:4.

V0 � �a2 �2
V=dof

Tth � 3a 0.505(1) 0.214(1) 0.0827(2) 11.0
Tth � 4a 0.510(2) 0.217(1) 0.0807(4) 6.5
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 ��hUjU� �
Z

D���hUj�U�; (49)

which is gauge invariant by fiat,

 ��hUj�U� � ��hUjU�: (50)

The gauge dependent quantity ��hUj�U� in (49) denotes
the (gauge dependent) probability distribution for obtain-
ing the output copy hU when the numerical procedure was
initiated with input �U and hence characterizes the gauge
fixing algorithm. With these prerequisites, we find for the
distribution P in (48):

 P�hU� �
Z

DU��hUjU�p�U�: (51)

Inserting this into (48) the expectation value becomes

 hhOii �
Z

DUp�U�
Z

DhU��hUjU�O�hU�: (52)

Before we proceed further let us check that we recover the
familiar formula under the assumption that there is no
Gribov ambiguity. In this case, the gauge fixing algorithm
would map U to the unique Coulomb gauge representative
h0U implying a sharp distribution

 ��hUjU� � ��hUjh0U�; where h0 � h0�U�: (53)

In this case, (52) results in the expression,

 hhOii �
Z

DUp�U�O�h0U�; (54)

which is gauge independent by the (assumed) uniqueness
of h0�U�.

In the generic case, when Gribov copies are present, (53)
is no longer true. Nevertheless, gauge invariance is main-
tained due to the invariance property (50) of��hUjU�. This
allows for the definition of a gauge invariant average over
Gribov copies,

 

�O�U� �
Z

DhU��hUjU�O�hU�; (55)

which indeed satisfies �O��U� � �O�U�. Finally, upon plug-
ging this into (52), the expectation value may be compactly
written as

 hhOii � h �Oi; (56)

where the brackets on the right-hand side indicate the
standard average with the Yang-Mills probability distribu-
tion, p�U�.

Let us apply this now to the finite length Polyakov loop
correlator, i.e.,

 O�U� � C�U� � tr�PT�x�P
y
T�y��; (57)

and analyze its gauge invariant average �C�U� associated
with Coulomb gauge. Since C�U� is gauge dependent it
could nevertheless happen that this average (‘‘Gribov

mean’’),

 

�C�U� �
Z

DhU��hUjU�C�hU�; (58)

though gauge invariant, actually vanishes when the copies
are averaged over. We will show shortly that this is not the
case. Therefore, �C�U� can indeed be interpreted as a non-
trivial gauge invariant observable.

Let us consider a specific example. For a 164 lattice and
� � 2:4 we have generated a single sample configuration
to which we apply a random gauge transformation. The
result, call it U is submitted to the gauge fixing algorithm
which produces a Gribov copy configuration, h1U. With
this configuration, we calculate the correlator

 C1 �
1

N3

X
x

trh1PT�x�
h1PyT�y�; (59)

where y � x	 re3. We choose the distances r � 3a and
T � 4a for the present example. Repeating this procedure
200 times, leaves us with observables Ci, i � 1 . . . 200.
Their numerical values are distributed as shown in Fig. 6.

Note that for a gauge invariant (i.e., noise free) field
combination, such as the plaquette, one would find a �
function distribution according to (53). However, for C�U�
in (58) we find a broad distribution with mean � and
standard deviation s given by:

 � � 0:0498�1�; and s � 0:0011�1�: (60)

A bootstrap analysis was used for the error estimate in

0.046 0.048 0.05 0.052 0.054

C

0

100

200

300

400

FIG. 6. Gribov noise distribution of the correlator C from (57)
for one sample configuration U and distances r � 3a and r �
4a.
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these values. As they depend significantly on the gauge
fixing algorithm as well as the observable under consid-
eration their interpretation in terms of physical quantities is
somewhat limited. They do, however, provide information
on the impact of Gribov copies since (i) � significantly
differs from zero and (ii) the relative width s=� of the
distribution is only of the order of 2%. This rules out the
possibility that the average over Gribov copies induces a
null result.

B. Gauge invariant signals from Gribov-noisy data

As a first step, we will investigate the relation between
the data from finite length Polyakov lines and gauge in-

variant Wilson loops. Again using the 164 lattice and � �
2:4, we have generated 10 seed configurations U. For each
seed configuration, we produced 10 Gribov copies of it. We
have then calculated r � 3a and T � 4a Wilson loops
which are averaged over the spatial coordinates. The result
is called W�U�. For each Gribov copy, the spatial average
of finite length Polyakov lines was also obtained (denoted
as C�hU�). As in the previous subsection, there will be a
distribution of values of C�hU� because of the Gribov
noise.

This data is shown in Fig. 7. For each seed configuration
(and therefore for each value W�U�) there is a band of
values for C�hU� produced by the Gribov copies. If we
assume a perfect correlation of the expectation values, i.e.,

 hhCii / hWi; (61)

the data would be symmetrically scattered around the solid
line also shown in Fig. 7. If, on the other hand, the Gribov
noise were uncorrelated to the underlying seed configura-
tion, the scatter plot would be homogeneous. Our findings,
shown in Fig. 7 upper panel, suggest that a significant
correlation survives the Gribov average.

To further test this correlation between finite length
Polyakov lines and gauge invariant Wilson loops, we com-
pare v�r; T� from (32) as obtained from unsmeared Wilson
loops, with u�r; T� from (41). Figure 7, lower panel, shows
the corresponding scatter plot. We clearly observe a linear
correlation between the two quantities:

 u�r; T� � v�r; T� 	 	�T�: (62)

The important observation is that 	�T� does not contribute
to the r dependent part of the static potential. Hence, we
find that only the unobservable offset of the potential is
changed if finite length Polyakov lines are employed rather
than unsmeared Wilson lines. This observation has far
reaching consequences: Gribov copies will affect the quark
self-energies, but their impact on the r dependence of the
static potential is limited.

C. Gribov gallery

In order to trace out the origin of the ideal correlations
discovered in the previous subsection, let us visualize the
spatial dependence of the Gribov copies. This dependence
can change the r dependence of the finite length Polyakov
line correlator as follows. We note that a similar investi-
gation for the case of Landau gauge was performed in [53].
Generally two different runs of the gauge fixing algorithm
result in two different maxima along the orbit of a seed
configuration, U�. This in turn yields two Gribov copies,
say hU� and chU�, which are related by a residual copy
gauge transformation, c. Knowing that the Coulomb gauge
(30) has a trivial residual gauge freedom consisting of
purely time dependent gauge transformations (42), we
need to distinguish between genuine copies ch and those
of the form ��t�h�x� which would also satisfy the
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FIG. 7 (color online). Scatter plot for ten seed configurations
U (upper panel). Scatter plot of u�r; T�, see (41), versus v�r; T�,
see (32), for several values of r and T (lower panel).
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Coulomb gauge condition. We therefore define

 ~c�x� � ��t�c�x�; (63)

and use the purely time dependent degree of freedom ��t�
to bring ~c as close to unity as possible,

 

X
x;t

tr~c�x; t�!
��t�

max: (64)

This should suppress the contamination by trivial copies.
In other words, a space dependent ~c�x� with tr~c�x�=2 not
being 1 everywhere signals the presence of a nontrivial
Gribov copy. With these prerequisites we can now inves-
tigate how such a copy affects the finite length Polyakov
loop correlator.

Defining the spatial pure gauge link,

 M�yx; t� � ~cy�y; t�~c�x; t�; (65)

the Polyakov line correlator associated with the copy chU�

may be written as

 Cxy�
chU� � htrchPT�x�

chPyT�y�i

� htrM�yx; 0�hPT�x�M
y�yx; T�hPyT�y�i; (66)

This means that, whenever the matrices ~c�x� differ signifi-
cantly from unity, an additional nonlocal correlation is
induced to the correlator of finite length Polyakov lines.

Figure 8 illustrates the space dependence of ~c�x� for two
generic lattice configurations for � � 2:4 at a fixed time
slice. The density of points in the graph is a direct measure
for the deviation of tr~c=2 from 1. Although the underlying
seed configuration is UV noisy, tr~c changes rather
smoothly throughout space. This explains why M�yx� is
not too different from unity for moderate distances jy� xj.
Note that M�yx� strongly depends on the efficiency of the
gauge fixing algorithm in singling out a unique maximum
on the gauge orbit. Without adapting the algorithm, there
will be also a substantial dependence of M�yx� on the
volume since the algorithms generically become inefficient
for large volumes. This fact can be seen from Fig. 8 where
two different volumes have been used in conjunction with
the same gauge fixing algorithm. For the larger volume
(lower panel), the modulation induced by M�yx� is much
more pronounced. The finite size effect which we observe
here clearly deserves further study. Of particular interest is
the question whether the volume dependence is just an
algorithmic artifact or whether there is some real physics
behind it.

An attractive feature of the Coulomb gauge is the fact
that the Gribov link,M�yx; t�, is purely spatial (i.e., located
in a single time slice t) and thus does not interfere with time
evolution and the transfer matrix formalism. Hence, as
long as the field combination C�hU� does not vanish
upon averaging over Gribov copies, this average only
affects the definition of the interpolating trial state,
jQx �Qyi. In other words, different gauge fixing algorithms

will correspond to different Ansätze for the quark-
antiquark trial states which might differ in their overlap
with the true ground state, j0xyi. This is somewhat remi-
niscent of the situation arising in the process of smearing
Wilson lines.

V. CONCLUSIONS AND DISCUSSION

In this paper we have developed a formalism based on
Coulomb gauge fixing which allows us to incorporate the

FIG. 8 (color online). Region of space where tr~c�x�=2 resulting
from (64) significantly deviates from 1, both on a 164 lattice
(upper panel) and on a 244 lattice (lower panel)
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ubiquitous Gribov copies in a systematic and gauge invari-
ant way. This has been achieved by defining, for the first
time, a Gribov average of gauge variant field combinations.

We have applied this to a thorough lattice investigation
of Polyakov lines of finite temporal extent introduced by
Marinari et al. in [11] and further studied in [12,44–46].
These lines, even if traced, are not often studied on the
lattice since their expectation value, without gauge fixing,
is zero due to their lack of gauge invariance. Using our
formalism, we have shown that, and explained why, they
have a physical interpretation when working in Coulomb
gauge. This has enabled us to extract the confining inter-
quark potential and to analyze the Gribov copies associated
with that gauge and their impact on the overlap with the
ground state in the quark-antiquark sector.

We have seen that the value of the string tension ob-
tained from the correlator of finite length, dressed
Polyakov lines lies below that obtained from our simula-
tions with unsmeared Wilson loops (compare Tables I and
II). This indicates that the Coulomb dressed Polyakov lines
are, as we expected, less contaminated by overlaps with
higher energy states. Indeed, even using shorter lines in this
approach give a smaller string tension than for unsmeared
Wilson loops of larger temporal extent.

Many topics brought to light here deserve further explo-
ration. In particular, Gribov copies have been demonstrated
not to hinder the measurement of the full quark-antiquark
potential in this construction. They merely contribute to the
definition of the interpolating quark-antiquark state, and
we have demonstrated in this paper that its overlap is even
better than that of the state where quark and antiquark are

joined by a thin flux line. It would be interesting to study in
a more systematic way the contributions of excited states to
the finite length Polyakov lines. There is also an obvious
extension of this, namely, to use other gauges and so test
whether, as we predict, other dressings have a poorer over-
lap with the true ground state of Yang-Mills theory.

The Gribov induced nonlocality seen in Sec. IV C hin-
ders a proper definition of the constituent quark picture. We
would argue that our results support the expected break-
down of a constituent picture of quarks and antiquarks in
the confining region. The structure of the copies displayed
in Fig. 8, their volume dependence and sensitivity to
algorithms therefore merit further investigation. It would
also be very interesting to probe the Gribov nonlocality in
the high temperature deconfinement regime where the
constituent quark picture is expected by many to make
sense. In this context, it would also be important to study
the relation between the Gribov nonlocality and the con-
fining vortices advocated in, e.g., [54]. If the confining
vortices are removed, see [54], do the Gribov copies seen
in Fig. 8 vanish with them thereby giving rise to a con-
stituent quark picture?
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