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We explore the highly nonperturbative hot region of the QCD phase diagram close to Tc by use of an
imaginary chemical potential � which avoids the sign problem. The simulations use four flavors of
staggered fermions and are carried out on a 163 � 4 lattice. The number density and the quark number
susceptibility are consistent with a critical behavior associated with the transition line in the negative �2

half-plane. We compare the analytic continuation of these results with various phenomenological models,
none of which provides a satisfactory description of data, a failure on which we make some comments.
These results complement and extend the information obtained via the analysis of the susceptibilities
evaluated at zero �, yielding a simple description of the candidate strongly interacting quark-gluon
plasma phase. As a byproduct of our analysis we investigate the Polyakov loop and its hermitian
conjugate. Our data offer vivid evidence of the importance of the complex nature of the functional
integral measure, which results in L��� � �L��� for a real chemical potential �.
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I. INTRODUCTION

Theoretical arguments and experimental evidence sug-
gest that hadronic matter undergoes a transition to a plasma
of quarks and gluons at high temperature [1]. At extremely
high temperatures quarks and gluons are nearly free, and
should be described by the Stefan-Boltzmann law with the
appropriate degrees of freedom. When temperature is not
much higher than the critical temperature—say,
Tc < T< ’ 2Tc—strong interactions among the constitu-
ents give rise to nonperturbative effects. In short, at large T
the quark-gluon plasma (QGP) is a gas of nearly free
quarks, which becomes strongly interacting at lower tem-
peratures T � �1� 3�Tc [2,3].

Several proposals have been made to characterize the
properties of the system in such a nonperturbative phase.
For instance the above-mentioned strong interactions
might be enough to preserve bound states above Tc, while
colored states might appear, deeply affecting the thermo-
dynamics of the system [4]. Analytic techniques are being
refined more and more, so as to be able to capture the
features of the system closer and closer to Tc [5]. Model
theories of quasiparticle physics have been considered as
well [6,7]. In this work we study this interesting dynamical
region by lattice QCD simulations at T ’ 1:1Tc (the reason
for this choice will be clear in the following), and a nonzero
baryon density.

In principle, lattice QCD simulations at nonzero baryon
density are plagued by the sign problem [8]. However, it
has been realized that this problem can be circumvented
thanks to physical fluctuations, which grow relatively large
in the quark-gluon plasma phase. In this work we adopted
the imaginary chemical potential approach [9–16], which
avoids the sign problem and makes possible conventional

lattice QCD simulations. The interested reader might want
to consult Refs. [17,18] for recent reviews and [19,20] for
more pedagogical introductions into the subject.

Other studies in the quark-gluon plasma phase have
addressed the higher temperature regime [21–25]. Here
we analyze in detail the nonperturbative behavior close
to Tc, in the candidate strongly coupled quark-gluon
plasma (sQGP) region (some preliminary results have
appeared in [26]). We note that in the sQGP region the
chiral critical line lies in the imaginary chemical potential
plane, and that such a chiral line ends in the proximity of
the endpoint of the Roberge-Weiss line [27]. We focus
our analysis on the particle number and its susceptibility,
on the chiral condensate, and on the Polyakov loop, and
we find that the results are consistent with those expected
of a critical behavior associated with the critical line at
imaginary chemical potential. Hence, the numerical results
are compatible with simple power law behavior of the
equation of state as a function of the imaginary chemical
potential �I, yielding a modified form of the Stefan-
Boltzmann law.

The rest of this paper is organized as follows. Section II
is devoted to the analysis of the particle number and the
chiral condensate, which are related by the Maxwell equa-
tion. In Sec. III we discuss the behavior of the Polyakov
loop. It turns out that our approach offers a particularly
simple description of an apparent puzzle, and, at the same
time, gives direct evidence of the phase of the determinant
at nonzero, real chemical potential. The implications on the
equation of state are summarized in Sec. III, while Sec. IV
discusses our results in the light of phenomenological
proposals, and alternative lattice approaches. The last sec-
tion is a short summation.
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II. THERMODYNAMICS OF THE HOT PHASE
CLOSE TO Tc

Let us remind ourselves of the critical lines in the phase
diagram in the T, �2 plane (Fig. 1): at high temperature
there is the Roberge-Weiss transition at � � �T=3, asso-
ciated with the phase of the Polyakov loop, ending at T �
TRW. At lower temperatures the QGP region is limited by a
chiral transition at negative �2, which continues into the
physical chiral transition at positive �2, i.e., real chemical
potential [11,12].

While � approaches �T=3 at a constant temperature
T ’ TRW, one approaches the point where the chiral tran-
sition meets (within errors) the Roberge-Weiss transition.
Within the current numerical accuracy the endpoint of the
two transitions cannot be resolved, and the nature of the
critical behavior around T � TRW, � � �T=3 is an inter-
esting question in itself. If T is slightly larger than TRW we
are approaching the Roberge-Weiss transition, if slightly
lower we hit the chiral transition, and at T � TRW we
might expect interesting critical phenomena whose univer-
sality class is not known a priori. Note that in the chiral
limit the � � 0 transition should be of first order, and we
do not expect any tricritical point along the critical line at a
real chemical potential. A possible occurrence of an end-
point at finite mass in the T,� plane depends on dynamical
details, which are not known, and are not relevant for the
present study.

We have then carried out simulations on a 163 � 4
lattice using four flavors of staggered fermions at � �
5:1, which, according to our previous results [12], yields
T ’ TRW, endpoint of the Roberge-Weiss (RW) transition,.
Fermions are fully degenerate, with a bare dimensionless
mass (a being the lattice spacing) m̂ � ma � 0:05.
Previous work indicates that this lattice with Nt � 4is

coarse (opposed to fine). On a coarse lattice we need quark
masses ma � 0:025 to show behavior representative of
QCD in the chiral limit [28].

For Nf � 4 the finite temperature, zero density transi-
tion is of first order in the chiral limit. Earlier work [28]
suggests that the critical value of the mass mca above
which the transition disappears satisfies 0:05>mca >
0:2, and our previous results confirm that the transition
remains of first order at ma � 0:05. So we do not expect
any endpoint in the T, � plane for this mass value.

We used a standard hybrid Monte Carlo algorithm: note
that with an imaginary chemical potential the standard
trick of reducing the number of flavors via an even-odd
partitioning still applies. So we can simulate four-
continuum flavor using MyM in the measure, without
taking the square root.

We note that existing parametrization can successfully
describe the data for a small chemical potential. Here, we
examine all the available intervals of chemical potential,
from zero to the RW transition, taking data for 26 �I
values. For each � we performed O�104� unit length
trajectories, measuring each of five of them.

For our lattice the value of the (dimensionless) �̂ � �a
which is relevant for the Roberge-Weiss transition reads
�̂ � �=12 (the temperature being T � 1=�aNt� and in our
case Nt � 4). With a slight abuse we will omit in the
following the hat-notation, nevertheless measuring � and
T in unit of inverse lattice spacing.

First, we check our data for the particle number against a
simple free field behavior. We have numerically computed
the free field results for real chemical potential on a 163 �
4 lattice, and mq � 0:05, and we have fitted them to an
expression motivated by one-dimensional QCD [29],
which turns out to be an excellent parametrization:

 n���free �
3 sinh��=T�

K � cosh��=T�
: (1)

where K is a fit parameter, yielding the free field results for
the number density as a function of imaginary chemical
potential

 n��I�free �
3 sin��I=T�

K � cos��I=T�
: (2)

We then considered the ratio between the numerical
results and such free field results, RF��I� �
n��I�=n��I�free (Fig. 2). We observe a clear dependence
ofRF��I� on�I: the results are qualitatively different from
a free field, and the discrepancy cannot be accounted for by
any simple renormalization of the degrees of freedom. This
behavior should be contrasted with that of Fig. 12 of
Ref. [22], where the results at high temperature did differ
from a free field behavior by a constant factor very close to
1.

As a second attempt at interpreting our data in terms of
the simplest parametrizations, we consider an analogy with
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FIG. 1. Schematic phase diagram for four-flavor QCD in the T,
�2 plane. The candidate sQGP phase is bound by the chiral
(pseudo)critical line in the negative �2 half-plane.
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the hadron resonance gas (HRG) model [30,31]. We will
discuss more fully these aspects in the last section.

In a nutshell, the HRG model describes the system as a
gas of weakly interacting resonances. The pressure of the
HRG model reads:

 

P�T;�� � P�T; 0�

T4
’ F�T�

�
cosh

�
Nc�
T

�
� 1

�
(3)

 F�T� ’
Z
dm��m�

�
m
T

�
2
K2

�
m
T

�
; (4)

and the argument of the hyperbolic cosine, �Nc�=T�, tells
us that in the hadronic phase one can only excite baryonic
degrees of freedom.

Let us remind ourselves here that general arguments
guarantee that the partition function is periodic at imagi-
nary �, and that the strong coupling analysis shows that
periodicity is smooth at low temperature. Hence, the num-
ber density reads [12]

 n��I� �
X
k

bFk sin�kNcNt�I�: (5)

When HRG holds true, one term in the Fourier series
should suffice:

 n��I� �
@P���
@�

� K�T� sin�NcNt�I�: (6)

Previous comparisons with the hadron resonance gas
model used the Taylor expansion of the thermodynamics
observables. In order to make sure that a Taylor series does
indeed converge to the appropriate trigonometric function,
one would have, in principle, to compute an infinite num-
ber of terms, where, at the best, only the first six terms of
the series have been computed [31]. Obviously, the Fourier
analysis—which is automatic within the imaginary chemi-
cal potential approach—needs only one parameter fit to

assess the validity, or lack thereof, of the HRG
parametrization.

In Fig. 3 we display the ratios

 RB��I� �
n��I�

sin�3�I=T�
(7)

 Rq��I� �
n��I�

3 sin��I=T�
: (8)

RB��I� should be a constant for a simple hadron gas (cf.
again Ref. [22]), while, mutatis mutandis, Rq��I� should
be a constant for a ‘‘hadron gas’’ made of quarks. Both RB
and Rq stay constant only for a short interval of chemical
potential, indicating the region where n��I� / �I. The
deviation from a linear behavior (for �I > 0:05), as well
as from the simplest trigonometric parametrizations (for
�I > 0:15), are evident from the plot.

We now move on and propose to describe the particle
number in the critical region as

 n��I� � A�I��c2
I ��

2
I �
�: (9)

This ansatz for n��I� takes into account that n��� should
be an odd function of�. Moreover, it reproduces a singular
behavior of the quark number susceptibility at a genuine
critical point. Namely, the most divergent part of the quark
number susceptibility �q behaves as

 �q��I� /
1

��c2
I ��

2
I �
� (10)

where � � 1� �, while �c
I � �=12 if the critical point

coincides with the Roberge-Weiss line.
We then fit our data to Eq. (9) with �c

I either open or
constrained. A fit to our entire interval with unconstrained
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FIG. 3. Rx��I� (defined in Eqs. (7) and (8)) as a function of�I,
showing the limitations of a linear approximations, as well as the
deviations from the simplest trigonometric parametrizations
motivated by a hadron resonance gas model.
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FIG. 2. RF��I� � n��I�=n��I�free as a function of �I , show-
ing very clear evidence of a deviation from a free field behavior.
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�c
I gives A � �0:94�4�, �c2

I � 0:0804�2�, � � 0:28�2�
with a reduced ~�2 � 2:4. This is the fit to all data shown
in Fig. 4.

We checked the stability of these results by choosing
different ranges in chemical potential, and we obtained the
exponent � ranging between 0.34(8) and 0.26(3), �c2

I
between 0.078(4) and 0.091(12), with reduced ~�2 ranging
between 1.8 and 5.

If we constrain �c2
I � ��=12�2 the quality of the fits

decreases giving a reduced ~�2 ’ 12. If we limit the fitting
interval to �I > 0:15, we need to add a constant to the
function to approximate the regular component. In prac-
tice, we fit to

 n��I� � A�I��c2
I ��

2
I �
� � B: (11)

We obtain A � �0:54�4�, � � 0:14�1�, B � �0:010�3�, a
reduced ~�2 � 1:79. This is the second fit shown in Fig. 4.

We also consider a critical behavior supplemented by a
regular linear term:

 n��I� � A�I��
c2
I ��

2
I �
� � B�I: (12)

This form of the regular term respects the symmetries of
n��� and hence can be used for analytic continuation, at
variance with the simple modification considered above,
when we supplemented n��� by a constant. The results for
this fit are A � �1:04�7�, �2

I � 0:62�7�, � � 0:62�7�, and
B � �0:26�4�, with a reduced �2 � 1:74.

For the purpose of illustrating the systematics associated
to the analytic continuation, we have also performed sim-
ple polynomial fits. We postpone to the last section a
discussion of the analytic continuation, and we now go
back to the quark number susceptibility as entailed in
Eq. (10), for which our results indicate � � 1� � ’ 0:7.
Figure 5 shows �q obtained by numerical differentiation of
n��I�. Note that n��I� is a decreasing function of �I,
hence the quark number susceptibility is a negative func-

tion. The numerical quality is of course poor, but, anyway,
a fit to the form of Eq. (10) with an open �c

I gives � �
0:66�16�, while a fit with constrained �c

I gives � �
0:44�22�, in agreement with the above estimates, within
the large errors.

The chiral condensate h �  i can be inferred from the
chiral equation of state in either phase, and also in the
presence of an explicit chiral symmetry breaking term. To
make a closer contact with thermodynamics, we consider
the Maxwell relations (the temperature is constant and its
dependence is omitted) [32]:

 

@n��;m�
@m

�
@h �  i��;m�

@�
: (13)

Considering the m dependence in the expression for
n��; T�,

 n��;m� � F�m����c2
I �m� ��

2�� (14)

where F�m� depends only on the quark mass, and using
Eq. (13) we arrive at
 

h �  i��� � H�m���c2
I �m� ��

2���1 � K�m���c2
I �m�

��2�� � h �  i0 (15)

where H�m�, K�m� depends only on the mass and h �  i0 is
an integration constant which can be fixed, e.g., by the
chiral condensate at zero chemical potential.

We have then fitted the chiral condensate to the leading
term at � ’ �c,

 h �  i � K�b��2��c � A; (16)

obtaining a nice fit with a reduced ~�2 � 0:79, A �
0:552�6�, b � 0:06628�8�, K � �0:63�2�, and �c �
0:47�2� in reasonable agreement with � estimated from
the number density. By constraining the fitting interval
�I > 0:2 the subleading contributions are less important,
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FIG. 4. n��� fitted to the form predicted by the simple critical
behavior at imaginary � (Eq. (9)).
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FIG. 5. The quark number susceptibility obtained by numeri-
cal differentiation of the results for the quark number.
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and �c � 0:32�12� gets even closer to �. The numerical
results for the chiral condensate and the fits described
above are shown in Fig. 6.

It might be interesting to compare this critical behavior
with that of the endpoint of QCD from model field theories
[33–35].

III. THE POLYAKOV LOOP

In the same spirit we have fitted the traced Polyakov
loop L � hTrPi to a power law form:

 L��I� / ��
c2
I ��

2
I �
�: (17)

Figure 7 displays the results of the fit of the absolute value
of the Polyakov loop, which indeed looks satisfactory.

It is interesting to look in more detail into the behavior of
L � hTrPi.

The Polyakov loop P satisfies the same relation as the
quark propagator at nonzero chemical potential [36]:

 P��� � Py����: (18)

This relation implies that, while both L � hTrPi and
�L � hTrPyi are real at real chemical potential, L � �L, as
noted in [25,37–40]. We will show that the results at
imaginary chemical potential offer a particularly simple
illustration of these ideas, as well as direct evidence of the
complex phase of the determinant.

The asymmetry at real chemical potential is easily
understood by considering the distribution of the
Polyakov loops in the complex plane for � � 0, since
the Z3 center symmetry is broken by the dynamical quarks,
the root corresponding to the phase� � 0 is preferred, and
the average is nonzero. A nonzero, positive chemical po-
tential encourages forward propagation: the distribution of
the phases is further peaked at � � 0, while the two other

phases have the same probability. Hence, the Polyakov
loop remains real, and the final average is again real,
different from zero, and slightly larger than the one at
zero density. �L instead describes backward propagation:
again the Polyakov loop remains real, however its length is
reduced, hence L��� � �L���.

Notice that at a first naive look it may sound strange that
while configuration by configuration the Polyakov loop
and its hermitian conjugate are always the complex con-
jugate of each other, their expectation values, even being
real, differ from each other. However it should be clear that
the complex nature of the functional integral measure plays
an essential role in this respect, since the real part of the
expectation value is not just the expectation value of the
real part. In that sense the fact that L��� � �L��� is directly
linked to the complex nature of the fermion determinant,
thus also giving a qualitative feeling about the severeness
of the sign problem (for analogous interpretations of the
complex phase continued to �2 < 0, see also
Refs. [8,41,42]).

An apparent puzzle then arises when one considers the
behavior at imaginary chemical potential: there the mea-
sure is real and one can show that the absolute value of L
and �L are equal as well as their real parts. What is then the
fate of the asymmetry, which is present at real chemical
potential?

Consider

 Lo=e��� � L��� 	 L���� � L��� 	 �L���; (19)

where Eq. (18) has been used in the last equality. Lo=e are,
respectively, even and odd in �. Remember that the ana-
lytic continuation to imaginary chemical potential of an
even function is real, while the analytic continuation of an
odd function is purely imaginary. Hence, the analytic
continuation of the even observable Le��� � L��� �
�L��� at imaginary chemical potential is the real part of
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L��I�; while the analytic continuation of Lo��� � L��� �
�L��� is the imaginary part of L��I� at imaginary �. L
itself has no definite �-parity and its analytic continuation
develops an imaginary part.

We conclude that we must search for the analytic con-
tinuation of the asymmetry L � �L, which is present at real
chemical potential in the imaginary part of the Polyakov
loop, which is nonzero in presence of an imaginary chemi-
cal potential. Figure 8 shows the imaginary part of L��I�: it
is different from zero, offering clean, direct evidence of the
asymmetry L � �L, hence of the complex phase of the
determinant at real chemical potential. In the same Fig. 8
we have also plotted n��I� (both L and n with an appro-
priate normalization), to show its correlation with L��I�.
This correlation is in agreement with the lattice interpre-
tation of the number operator n as ‘‘counting’’ the links
winding forwards minus those winding backwards, and it
should become exact in the heavy quark limit when the
model reduces to a Polyakov loop model [43,44].

Let us now come back to the critical behavior of jLj:
since Im�L��I� / n��I��, we might expect that jL��I�j
approaches zero with a similar power law. The fit of
Fig. 7 gives an exponent of 0.45(2), in the same range as
�. It would be interesting, of course, the study of the string
tension and other correlators in the same range of chemical
potentials.

IV. ANALYTIC CONTINUATION

Let us remind ourselves that general arguments guaran-
tee that the analytical continuation f�x� is unique in the
analyticity domain. In practice, however, f�x� is unknown
and has to be approximated by some series expansion or

suitable ansatz. In either case, one has to pay attention to
the fact that, by modifying the original expression by a
nonleading term, the difference in physical quantities is
still nonleading. We refer to our earlier publications
[12,19,22] for a more complete discussion of these points,
including the usage of Padé approximants to improve the
convergence [16,45].

When these considerations are applied to the case at
hand, we conclude that we do not expect that the singular
critical behavior of a quantity is able to describe the
quantity far from the critical regime (where the regular
terms become dominant).

The region where the leading critical behavior describes
correctly the data is not known a priori. It might well be
that subleading regular contributions play some role. To
address this point we compare the analytic continuation
obtained by use of different parametrizations.

In Fig. 9 we show the analytic continuated curves ob-
tained from the fits described in Sec. II above, as an
indicator of systematic errors. For each curve we also
draw associated error bands, coming from statistical errors
alone.

As expected, all the results agree well with each other
until � � j�cj, the critical point at imaginary chemical
potential which defines the radius of convergence. In this
region the systematic errors are below the statistical ones.

For�>�c the Taylor series does not seem to converge,
confirming that the distance from the nearest singularity
defines the radius of convergence of the Taylor series. This
contrasts with the behavior of the two fits which contain a
term associated with a critical behavior.

From Fig. 9 we infer that the analytic continuation of the
fit functions which took into account a singularity seem
reasonably stable under variations of the regular contribu-
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FIG. 8. The imaginary part of the Polyakov loop, divided by
the coefficient of the linear term of a fit at small �, as a function
of the imaginary chemical potential, demonstrating the relevance
of the phase of the determinant for a real chemical potential; in
the same plot we show the number density, again normalized by
the coefficient of the linear term.
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tion, i.e., the regular term remains subleading at least until
�< 1:, i.e., �=T < 4:

Let us then compare

 n��� � A���c2
I ��

2�� (20)

with � ’ :4 with a simple Stefan-Boltzmann behavior.
The results are shown in Fig. 10. Note that coefficient A

has a nontrivial dimension, again indicating that the system
is not free.

It is then amusing to notice that by using simple argu-
ments from the theory of critical phenomena we arrive at a
modified (lattice) Stefan-Boltzmann law, which would
correspond to � � 1, and a large �c2

I ’ 0:5. In this frame-
work a large �c

I can be interpreted as a spinodal point at
imaginary chemical potential far away from the Roberge-
Weiss line.

Obviously, Eq. (20) accounts for a slower increase of the
particle density closer to Tc than in the free case. This is
expected on physical grounds, as well as from the behavior
of the susceptibilities [38,46–50], and of course accounts
for the behavior observed in Fig. 2.

From the results above, we conclude that the data in the
candidate region for a strongly coupled QCD are accounted
for by a conventional critical behavior: clearly, a free field
behavior would have been incompatible with it. In other
words, the nonperturbative features of the plasma are
closely related with the occurrence of the critical line at
negative �2.

V. THERMODYNAMICS AND PARTICLE
CONTENT

Early in this article we have contrasted our data with
some very simple parametrizations motivated by the HRG

approach. Here we discuss this point in some more detail,
in particular, we wish to examine the proposal that in the
deconfined, strongly interacting region considered here
one might observe either colored and colorless [51] bound
states: in short, at large T the QGP is a gas of nearly free
quarks, which becomes strongly interacting at lower tem-
peratures T � �1� 3�Tc, see, e.g., [52,53] for recent re-
views and a complete set of references.

In Ref. [24] the following parametrization was proposed
for the contribution of the colored states to the subtracted
pressure �PC � PC�T;�� � PC�T; 0� (we slightly sim-
plify the notation):
 

�PC
T4 � �Fq�T����cosh��u=T�� 1�� �cosh��d=T�� 1��

�Fqq�T���cosh�2�u=T�� 1�� �cosh�2�d=T�� 1�

� �cosh���u��d�=T�� 1�: (21)

The susceptibilities at zero chemical potential can be easily
computed from Eq. (21), and we recognize that their ratios
allow the identifications of the relevant degrees of freedom.
This prediction for the susceptibilities ratio was contrasted
with the numerical results, finding a poor agreement.

The imaginary chemical potential approach gives the
possibility to check directly the consistence of various
phenomenological models by analytically continuing
from real to imaginary �. We can subject our data to the
same analysis by analytically continuing Eq. (21) from real
to imaginary chemical potential. Setting �isospin � �u �

�d � 0, and including the contribution from baryons and
tetraquarks we get:
 

�P

T4 � Fq�T��cos��=T� � 1� � Fqq�T��cos�2�=T� � 1�

� Fqqq�T��cos�3�=T� � 1�

� Fqqqq�T��cos�4�=T� � 1� (22)

giving in turn:
 

n��I; T� � Fq�T� sin��I=T� � 2Fqq�T� sin�2�I=T�

� 3Fqqq�T� sin�3�I=T�

� 4Fqqq�T� sin�3�I=T�: (23)

From the point of view of the imaginary chemical po-
tential analysis, checking these forms corresponds to per-
forming a Fourier analysis of our results. We have then
fitted our data to the form

 nK��I� �
XK
j�1

Fj sin�j�I=T�: (24)

The results of the fits are shown in Fig. 11. The reduced ~�2

ranges from 84 to 2.85 (F1 to F4), but the errors on the
parameters grow big and the parameters themselves are not
stable. Wesummarizee the results in Table I, and we con-
clude that, even if the trigonometric fits might eventually

 0
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 1

 1.5

 2

 2.5

 3

 0  0.2  0.4  0.6  0.8 1

n(
µ)

µ

Analytic Continuation 

Stephan Boltzmann

FIG. 10. n��� from analytic continuation, together with a free
field behavior is shown for comparison. The fits suggest that the
slower increase observed in the interacting case with respect to
the free case can be described by an overall exponent smaller
than 1.
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converge, it is hard to attach any simple physical interpre-
tation of the parameters F1, F2, F3, F4 as contribution from
free quarks, diquarks, baryons, and tetraquarks.

This result is not unexpected, as the Fourier parametri-
zation (Eq. (24)) is not compatible with the critical fits
(Eq. (9)). Does this mean that the occurrence of colored
bound states is ruled out?

Not really: apart from the fact that extending a hadron
resonance gas description to colored states is a nontrivial
assumption anyway, given the nontrivial interactions that
one could expect, we should also consider that the masses
themselves might well depend on the chemical potential
[6,54]—the so-called Bluhm-Kampfer-Soff (BKS) effect.
From the perspective of the present study, the BKS effect is
indeed very natural, in view of the phase diagram in Fig. 1,
and the related analysis of the data in terms of critical
behavior which we have presented above. Remember, in
fact, that the coefficients of the hadron gas parametrization
in Eq. (21) above represent the contribution of the spec-
trum of resonances, hence their temperature dependence is
inferred from one of the masses.

For instance, in Ref. [4] it was proposed that

 Mcoloured 
 11:5Tc��T=3Tc�
0:5 � 0:1Tc=�T � Tc�� (25)

yielding the decoupling of the colored masses at the critical
point. A similar decoupling should take place at the critical
line at negative �2, which is not compatible with the

simple factorization of the terms depending on temperature
and fugacities implied by the HRG model (Eq. (21)).

In Ref. [54] it was underscored that if the derivatives of
the masses with respect to the chemical potential

 M00�T� �
@2M�T;��

@�2 �T;� � 0� (26)

are large enough, the simple interpretation of the zero
chemical potential susceptibilities as probes of particle
contents has to be revised, and, more generally, the decou-
pling of the prefactor and the simple trigonometric factors
predicted by the HRG model is no longer true. Hence, we
cannot use simple forms as those of Eq. (21) to assess the
particle content of the sQGP gas.

Our analysis supports this point of view. It is interesting
to note that a recent direct calculation [55] of the colored
spectrum indicates the survival of heavy colored states
above Tc. Of course the binding mechanisms and the
dissociation patterns for heavy quarks and light quarks
are different.

VI. SUMMARY AND OUTLOOK

We have studied the critical behavior of the system in
proximity of the critical endpoint of the chiral and RW line
in the negative �2. We have given a simple description of
the nonperturbative features of the sQGP phase, based on
the analysis of the critical behavior in the imaginary �
plane. We have proposed an equation of state of the form

 n��� � A���2
Ic ��

2��

with � ’ 0:3, which accounts nicely for all the features of
the numerical data. The exponent would read � � 1 for a
Stefan-Boltzmann-like law.

The results thus obtained should be valid in the entire
analiticity domain. Practical limitations—discussed at
length in previous work—do arise because of numerical
accuracy.

As for the particle content of the system, our results
suggest that a fit to
 

�P

T4 � Fq�T��cos��=T� � 1� � Fqq�T��cos�2�=T� � 1�

� Fqqq�T��cos�3�=T� � 1�

� Fqqqq�T��cos�4�=T� � 1�

cannot afford any definite conclusion. This does not come
as a surprise. The masses themselves, hence the coeffi-
cients, will depend on � in some complicated way, which
should anyhow conjure to give the simple behavior ob-
served in the data. The fact that the masses themselves
should depend on the chemical potential while approach-
ing the critical endpoint offers a simple realization of the
BKS mechanism. It should also be pointed out that extend-
ing a hadron resonance gas description to colored states is a
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n(µI)
F1
F2
F3
F4

FIG. 11. Results of the fits of n��I� to the trigonometric
functions (Eq. (24)), see text for details.

TABLE I. Parameters of the Trigonometric Fits.

F1 F2 F3 F4 �2=d:o:f:

�0:110�1� � � � � � � � � � 84
�0:071�3� �0:023�2� � � � � � � 11.11
0:028�15� �0:114�14� 0.029(4) � � � 4.18
0.43(11) �0:55�13� 0.257(66) �0:049�14� 2.85
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nontrivial assumption anyway, given the nontrivial inter-
actions that one could expect.

It would be very interesting to confront the numerical
results in a broader range of temperatures with these ideas,
as well as with analytic calculations and phenomenological
models. Future work should hopefully be able to give a
coherent account of critical behavior, high temperature
expansions, and particle contents in the region of the
strongly interacting quark-gluon plasma. We hope that
the simple description offered here might be of help in
building such a complete picture.
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