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Just how different are the SU(2) and SU(3) Landau-gauge propagators in the infrared regime?

A. Cucchieri and T. Mendes

Instituto de Fisica de Sao Carlos, Universidade de Sdo Paulo, Caixa Postal 369, 13560-970 Sdo Carlos, Sdo Paulo, Brazil

O. Oliveira
Department of Physics, University of Coimbra, 3004-516 Coimbra, Portugal

and Instituto de Fisica de Sdo Carlos, Universidade de Sao Paulo, Caixa Postal 369, 13560-970 Sdo Carlos, Sdo Paulo, Brazil

P.J. Silva

Department of Physics, University of Coimbra, 3004-516 Coimbra, Portugal
(Received 24 May 2007; published 18 December 2007)

The infrared behavior of gluon and ghost propagators in Yang-Mills theories is of central importance
for understanding quark and gluon confinement in QCD. While simulations of pure SU(3) gauge theory
correspond to the physical case in the limit of infinite quark mass, the SU(2) case (i.e. pure two-color
QCD) is usually employed as a simplification, in the hope that qualitative features be the same as for the
SU(3) case. Here we carry out the first comparative study of lattice (Landau) propagators for these two
gauge groups. Our data were especially produced with equivalent lattice parameters in order to allow a
careful comparison of the two cases. We find very good agreement between SU(2) and SU(3) propagators,
showing that in the IR limit the equivalence of the two cases is quantitative, at least down to about 1 GeV.
Our results suggest that the infrared behavior of these propagators is independent of the gauge group
SU(N,), as predicted by Schwinger-Dyson equations.
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I. INTRODUCTION AND MOTIVATION

Despite recent progress, the infrared structure of Yang-
Mills theory is still not fully understood. For QCD, the
study of the infrared limit is of central importance for the
comprehension of the mechanisms of quark and gluon
confinement and of chiral-symmetry breaking. In what
concerns confinement, in Landau gauge, the infrared be-
havior of gluon and ghost propagators is linked with the
Gribov-Zwanziger [1,2] and the Kugo-Ojima [3] confine-
ment scenarios. These confinement mechanisms predict, at
small momenta, an enhanced ghost propagator and a sup-
pression of the gluon propagator. The strong infrared di-
vergence for the ghost propagator corresponds to a long-
range interaction in real space, which may be related to
quark confinement. The suppression of the gluon propa-
gator, which should vanish at zero momentum, implies
(maximal) violation of reflection positivity and may be
viewed as an indication of gluon confinement. Moreover,
the interest in the propagators goes beyond the confinement
mechanism, as they are inputs for many phenomenological
calculations in hadronic physics (see, for example,
Refs. [4,5]).

Analytic studies of gluon and ghost propagators using
Schwinger-Dyson equations (SDE) [6—8] seem to agree
with the above scenarios. (The reader should, however, be
aware that, in the literature, there are solutions of the SDE
[9,10] that do not comply with the Gribov-Zwanziger or
the Kugo-Ojima predictions at small momenta.) Moreover,
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when dynamic quarks are neglected and assuming that
g> ~ 1/N.—as suggested by analysis of the large N, limit
[11]—the SDE become independent of the number of
color N,. Thus, they predict that gluon and ghost propa-
gators be independent of N..

The Landau-gauge gluon propagator D(k?) has been
investigated with lattice techniques in quenched QCD
[i.e. pure SU(3) Yang-Mills theory] [12-30], in pure
SU(2) Yang-Mills theory (in 2, 3, and 4 space-time dimen-
sions) [31-41] and in full QCD [42-45]. All lattice studies
in 4D suggest a finite nonzero infrared gluon propagator
[20,24,26,27,42], in contradiction with the infrared
Schwinger-Dyson solution. On the other hand, finite-size
effects are very large and not yet well controlled, even in
the 3D case [34]. Only in two space-time dimensions [41],
using a lattice side L up to about 40 fm, does one find that
D(0) extrapolates to zero as L goes to infinity. Let us note
that investigation of SDE on a 4-torus [46] suggests that the
gluon propagator indeed approaches the infinite-volume
limit very slowly, especially for its low-momentum com-
ponents. On the other hand, even with an infrared-finite
propagator, one clearly finds [27,28,33,36,45] that
reflection-positivity is violated when sufficiently large lat-
tice volumes are considered. Finally, in the 2D SU(2) case
[41] and in the 4D SU(3) case (using asymmetric lattices)
[26,30] it was found that the gluon propagator complies
with the pure power-law behavior predicted analytically
[6,8].
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The lattice-Landau-gauge SU(2) and SU(3) ghost
propagator G(k*) has been studied in [22,25,28—31,38—
41,43,47-53] and in all cases an enhancement of the
propagator compared to the tree-level behavior 1/k* was
observed. Concerning the comparison between lattice re-
sults and the SDE solution, the two propagators seem to
agree only qualitatively. In particular, in three and in four
space-time dimensions, the infrared exponent obtained
using lattice simulations is always smaller than the one
predicted analytically. On the other hand, on the 2D SU(2)
case [41], the ghost propagator shows an infrared behavior
1/k*#, in agreement with the SDE solution [8].

In summary, for the Landau gauge, the SDE gluon and
ghost propagators agree, at least qualitatively, with the
lattice propagators. However, while analytic studies using
Schwinger-Dyson equations predict the same infrared be-
havior for the SU(2) and SU(3) gauge groups, lattice
simulations usually assume that the two cases are different,
although their qualitative infrared features may be the
same. In this paper, we carry out a comparative study of
lattice-Landau-gauge propagators for these two gauge
groups. Our data were especially produced by considering
equivalent lattice parameters in order to allow a careful
comparison of the two cases. We note that we do not
assume a power-law behavior for the propagators, but
just compare the raw data in the two cases.

II. NUMERICAL SIMULATIONS

We consider four different sets of lattice parameters,
with the same lattice size N* and the same physical lattice
spacing a for the two gauge groups (see Table I). The first
three cases are chosen to yield approximately the same
physical lattice volume V = (Na)* = (1.7 fm)*. This al-
lows a comparison of discretization effects. The fourth case
corresponds to a significantly larger physical volume, i.e.
V =~ (3.2 fm)*, in order to study finite-size effects. For all
four cases, 50 configurations were generated [55] using the
Wilson action. The gluon and the ghost propagators

k,k
D) = 605, =)D, (1)

TABLE I. Lattice setup. The lattice spacing was computed
from the string tension, assuming /o = 440 MeV. For SU(3),
the lattice spacing was taken from [54]. The corresponding S
values for SU(2) were computed using the asymptotic scaling
analysis discussed in [35].

N* a (fm) Na (fm) Bsu) Bsui)
16* 0.102 1.632 2.4469 6.0
244 0.073 1.752 2.5501 6.2
324 0.054 1.728 2.6408 6.4
324 0.102 3.264 2.4469 6.0
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were computed for four different types of momenta:
(k,0,0,0), (k, k,0,0), (k k k0), and (k, k k k). In the
computation of D(k?) and G(k?), an average over equiva-
lent momenta and color components was always per-
formed. In this work we use the field definitions and the
choice of momenta reported in [35] for the SU(2) case and
in [26] for SU(3). In particular, each component k is given
(in lattice units) by k = 2sin(wn/N), where n is an integer.

Here, we do not check for possible effects of the break-
ing of rotational invariance [56]. In particular, we always
compare results for the SU(2) and the SU(3) groups using
the same type of momenta in the two cases. We also do not
consider possible Gribov-copy effects. Indeed, even
though they can play an important role in the infrared
behavior of the propagators [21,31], with our set of lattice
volumes and for the statistics considered here these effects
should always be smaller than the statistical error.

The propagators were computed in the minimal Landau
gauge, obtained by minimizing the functional

S[Q] = =) TrU(x), A3)
X,

where Uf}(x) = Q(x)UM(x)Q*(x +é,) is the gauge-
transformed link and &, is the unit vector along the wu
direction. For SU(2) the gauge fixing was performed using
a stochastic-overrelaxation algorithm (see [35] for details),
while for SU(3) a Fourier-accelerated steepest-descent
algorithm was used (see [26] for details).

In what concerns the evaluation of the ghost propagator,
in the SU(2) case the Faddeev-Popov matrix was inverted
using the method described in [31], while the SU(3) simu-
lation relies on the method discussed in Ref. [47] (consid-
ering more than one source). In the calculation of the gluon
and of the ghost propagators, the statistical errors were
computed with the (single-elimination) jackknife method
in the SU(3) case and with the bootstrap method (using
1000 bootstrap samples) in the SU(2) case. We checked
that these errors are in agreement with those obtained
considering 1 standard deviation.

In order to compare the propagators from the different
simulations, the gluon and ghost propagators were renor-
malized accordingly to

1
R

1
Gk = ek 4)

using u = 3 GeV as a renormalization point. The lattice
data were interpolated (using splines) to allow the use of
such a renormalization point in all the simulations. We
have checked that the interpolation reproduces perfectly
the lattice data. Let us note that, due to breaking of rota-
tional invariance, the renormalization factors Z(u?) de-
pend, in general, slightly on the type of momenta. Here
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we use, for all momenta k, the factor Z(u?) obtained from
the on-axis momenta (k, 0, 0, 0).

III. RESULTS

The renormalized SU(2) and SU(3) propagators can be
seen for the various lattice setups in Fig. 1 (gluon) and in
Fig. 2 (ghost) for the on-axis momenta (k, 0, 0, 0). (Results
are similar when considering the other types of momenta.)
In all figures we report, on the horizontal axis, the squared
magnitude k> (in GeV?) of the four-momentum k. These

LSS L L L L L L L L L L ) L L B B

14 -
4 —
—e 3 ]
P~ 4
< s == —
f ]
v A— A
6 16 ]
4 _]
2 —
0 | T t t
0 3 4 5
14 ]
_ ]
g g -
a 4
6 —
4 ]
2 —
0111111111111111111lTlllllllllllllllkkkkl(
0 3 4 5
14 -
4 —
—e3 ]
O -t —
a 4
6 —
4 -
2 —
011111111ll11111111lllllllllllllkkklxxxxlxxxx
0 4 5
TTTTTTTTT‘TTTTTTTTT‘TTTTTTTTT‘TTTTTTTTT‘TTTTTTTTT
14— —
8 ]
S
=) 4
e} —

FIG. 1 (color online). Renormalized gluon propagator as a
function of the squared magnitude k> of the four-momentum
k, for on-axis momenta (k, 0, 0, 0). We show results for the SU(3)
and the SU(2) cases. In the two top plots we report data for the
three sets of lattice parameters with approximately the same
physical lattice volume V. In the two bottom plots we report data
for the two sets of lattice parameters with 8 = 6.0 for SU(3) and
B = 2.4469 for SU(2). In all cases we show only data for k* <
5 GeV2. For larger momenta, the data using different lattice
setups agree well.
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figures show that, for the set of momenta accessible in our
simulations, finite-volume and finite-spacing effects are
under control. Moreover, they show that the SU(2) and
SU(3) propagators are essentially equal, with slight differ-
ences in the low-momentum region. Similar results have
been recently presented by Williams [57]. In Figs. 3
(gluon) and 4 (ghost) we show the ratios of SU(3) over
SU(2) propagators. The statistical errors were computed
assuming Gaussian-error propagation. Note that in the case
of the gluon propagator there are momenta for which the
discrepancy from 1 for the ratio is about 10% or larger.
However, these deviations are not systematic and are
probably due to a combination of several effects. These
may include breaking of rotational invariance, small sta-
tistics, and finite-size effects, such as those related to the
global Z(N,) symmetry of the lattice action [58—61].
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FIG. 2 (color online). Renormalized ghost propagator as a
function of the squared magnitude k> of the four-momentum
k, for on-axis momenta (k, 0, 0, 0). The data are organized as in
Fig. 1.
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FIG. 3 (color online).

Ratios of SU(3) over SU(2) gluon
propagators for the four lattice setups considered.

IV. CONCLUSIONS

In summary, considering a careful choice of the lattice
parameters, we were able to carry out an unambiguous
comparison of the lattice Landau gluon and ghost propa-
gators for SU(2) and SU(3) gauge theories. The data show
that the two cases have very similar finite-size and discre-
tization effects. Moreover, we find very good agreement
between the two Yang-Mills theories (for our values of
momenta larger than 1 GeV), for all lattice parameters and
for all types of momenta. Below 1 GeV, the results for the
two gauge groups show some differences, especially for
the gluon propagator. Note, however, that all ratios are
compatible with 1 within 2 standard deviations.

In this sense, our results suggest that the propagators are
the same for all SU(N,) groups in the nonperturbative
region, as predicted by Schwinger-Dyson equations. Of
course, given the lattice volumes considered, further stud-
ies are required before drawing final conclusions about the
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FIG. 4 (color online). Ratios of SU(3) over SU(2) ghost
propagators for the four lattice setups considered.

comparison below 1 GeV. In particular, it will be interest-
ing to investigate if this agreement persists also in the deep-
infrared region, where the gluon propagator may show a
turnover and a suppression, as predicted in the Gribov-
Zwanziger scenario.
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