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We study the evolution of heavy quarkonium states with temperature in a quark-gluon plasma (QGP) by
evaluating the in-medium Q- �Q T-matrix within a reduced Bethe-Salpeter equation in both S- and P-wave
channels. The underlying interaction kernel is extracted from recent finite-temperature QCD lattice
calculations of the singlet free energy of a Q- �Q pair. The bound states are found to gradually move above
the Q- �Q threshold after which they rapidly dissolve in the hot system. The T-matrix approach is
particularly suited to investigate these mechanisms as it provides a unified treatment of bound and
scattering states including threshold effects and the transition to the (perturbative) continuum. We apply
the T-matrix to calculate Q- �Q spectral functions as well as pertinent Euclidean-time correlation functions
which are compared to results from lattice QCD. A detailed analysis reveals large sensitivities to the
interplay of bound and scattering states, to temperature-dependent threshold energies, and to the
reconstructed correlator used for normalization. We furthermore investigate the impact of finite-width
effects on the single-quark propagators in the QGP as estimated from recent applications of heavy-quark
rescattering to RHIC data.
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I. INTRODUCTION

Bound states of heavy quarks (charm and bottom, Q �
c, b) have long been recognized as valuable objects for
spectroscopy in quantum chromodynamics (QCD), thereby
illuminating the nature of the static quark-antiquark poten-
tial (cf. Ref. [1] for a recent comprehensive overview). This
opportunity carries over when embedding quarkonia into
hot and/or dense matter, providing a rich laboratory for the
study of medium modifications. The latter include (Debye)
color screening of the Q- �Q interaction, dissociation reac-
tions induced by constituents of the medium, and the
change in thresholds caused by mass (or width) modifica-
tions of open heavy-flavor states (D and Bmesons or c and
b quarks). The challenge is to develop a theoretical frame-
work that allows a comprehensive description of heavy
quarkonia in the quark-gluon plasma (QGP) and their
production in ultrarelativistic heavy-ion collisions.

Lattice QCD (lQCD) calculations have made substantial
progress in characterizing in-medium quarkonium proper-
ties from first principles. In particular, it has been found
that ground-state charmonia [2–5] and bottomonia [6] do
not dissolve until significantly above the critical tempera-
ture, Tc. This finding has been qualitatively supported in
model calculations based on potentials extracted from
lQCD, using either a Schrödinger equation to solve the
bound-state problem [7–10], or a T-matrix approach which
simultaneously accounts for scattering states [11]. The
survival of low-lying quarkonia above Tc, in connection
with effects of color screening, parton-induced dissocia-
tion and medium modified open-charm and -bottom thresh-
olds, has recently been implemented for heavy-ion
collisions [12,13].

A more quantitative (and reliable) comparison of model
calculations to lQCD can be performed at the level of
(spacelike) Euclidean-time correlation functions [14,15].

The latter are directly evaluated in lQCD with good accu-
racy, while the conversion of (timelike) spectral functions
as evaluated in model approaches merely involves a
straightforward convolution with a thermal weight func-
tion (as opposed to an inverse integral transform when
going from Euclidean to Minkowski space). One of the
challenges in such studies is that the model calculations
need to describe not only the bound-state part of the
spectral function but also its continuum part as well as
threshold effects. In Ref. [10] a quantitative calculation of
Euclidean correlators was performed using temperature-
dependent heavy-quark potentials in a Schrödinger equa-
tion. The latter has been used to determine the bound-state
spectrum in �-function approximation [characterized by a
binding energy and amplitude (or decay constant)], while
the (onset of the) continuum was approximated with per-
turbation theory. While general trends of the lQCD corre-
lators were captured, significant discrepancies were
established especially in the S-wave charmonium channels
(�c and J= ). In particular, the importance of a reliable
treatment of the continuum threshold was recognized.

In the present paper we evaluate charmonium and bot-
tomonium correlators using a different method. The basic
input are still in-medium Q- �Q potentials as estimated from
(Nf � 2, 3) lQCD, but we will employ these within a
scattering equation to calculate the in-medium Q- �Q
T-matrix [11]. The main advantage of the T-matrix ap-
proach is that it simultaneously incorporates bound and
scattering states based on the same interaction. Especially
for situations of dissolving bound states (as expected for
the problem at hand), the T-matrix provides a more com-
prehensive, and thus more reliable, description of the
underlying nonperturbative effects. At the correlator level,
the high-energy limit can be recovered by appropriate
normalization of the uncorrelated (perturbative) limit,
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and no decomposition into bound-state and continuum
parts is necessary. In addition, the T-matrix equation al-
lows for a straightforward implementation of in-medium
single-particle (quark) properties via pertinent self-energy
insertions in the two-particle Green’s function, which we
will also investigate. One has to keep in mind, however,
that the applicability of the potential approach at finite
temperature is not guaranteed (new scales, such as the
Debye mass, may introduce, e.g., retardation effects).
Therefore, one of the objectives of analyses as performed
in this paper is to investigate not only how but if a many-
body treatment based on a suitably defined heavy-quark
potential can be employed for a realistic evaluation of in-
medium quarkonium properties. This also raises the ques-
tion of how to properly define the finite-temperature heavy-
quark potential. While our calculations represent un-
quenched QCD, we will discuss our results in the context
of lQCD correlators in quenched approximation. Such a
comparison is meaningful above Tc (T * 1:2Tc), where
the heavy-quark free energies show little sensitivity to the
flavor content of the theory (Nf � 0, 2, 3) when analyzed
as a function of T=Tc [16].

Our article is organized as follows: in Sec. II we recall
the basic setup of, and input to, the two-body scattering
equation, including partial-wave expanded potentials and
single-quark self-energy insertions. In Sec. III we evaluate
the finite-temperature T-matrices for S- and P-wave quar-
konia. We first construct heavy-quark potentials from
lQCD in Sec. III A, including a discussion of its short-
and long-distance limits, inherent uncertainties in its ex-
traction, and relations to single-quark properties. This will
be followed by our baseline results for the finite-
temperature quarkonium T-matrices in Sec. III B. In
Sec. IV the latter are first employed to construct pertinent
spectral functions (Sec. IVA), followed by a calculation of
Euclidean correlators (Sec. IV B) and a discussion of their
properties in comparison to other model and lQCD results
(Sec. IV C). Section V contains our conclusions and an
outlook.

II. SCATTERING EQUATION AND
IDENTIFICATION OF BOUND STATES

In this section we summarize the main features of the
T-matrix approach to study quark-antiquark interactions in
the QGP, as employed in Ref. [11]. It utilizes a three-
dimensional reduction of the Bethe-Salpeter equation
which neglects virtual particle-antiparticle loops and
amounts to resumming the scattering series in ladder ap-
proximation. The pertinent Lippmann-Schwinger equation
for the off-shell T-matrix in a given partial-wave channel
(specified by angular momentum l) reads [17]
 

Tl�E; q0; q� � Vl�q
0; q� �

2

�

Z 1
0
dk k2Vl�q

0; k�G �QQ�E; k�

� Tl�E; k; q��1� 2fQ�!k��; (1)

where q (q0) are the incoming (outgoing) relative quark
three-momenta in the center of mass (CM) frame and E is
the CM energy [18]. Equation (1) is written for vanishing
total 3-momentum of the heavy-quark pair, which gives
the above (simple) form of the Pauli blocking factor
with fQ�!� � �exp�!=T� � 1��1. The intermediate two-
particle propagator is evaluated in the Blankenbecler-
Sugar (BbS) reduction scheme [19] (uncertainties due to
other reduction schemes have been checked to be small
[11]),

 G �QQ�E; k� �
m2

!k

1

s=4�!2
k � 2i!k Im��!k; k�

; (2)

where !k is the solution of the quark dispersion relation,

 !k �
�����������������
m2 � k2

p
� Re��!k; k�; (3)

with a quark-mass term (m) and self-energy (�) to be
discussed below. The interaction kernel of the scattering
equation, Vl�q0; q�, is provided by the heavy-quark poten-
tial in momentum space. It follows from a Fourier trans-
formation of the coordinate-space potential, V�r�, which
we obtain from lQCD calculations as elaborated in
Sec. III A below. The components of the potential in the
partial-wave basis are given by
 

Vl�q
0; q� �

1

8�

Z �1

�1
duq0qV� ~q

0; ~q�Pl�uq0q�

�
1

8�

Z �1

�1
duq0qPl�uq0q�

Z
d3rV�r�ei� ~q� ~q

0� ~r; (4)

with Pl�x� the Legendre polynomial of degree l and uq0q �
cos	� ~q; ~q0�.

The T-matrix equation (1) is solved with the algorithm
of Haftel and Tabakin [20]: after discretizing the momen-
tum integration, Eq. (1) is converted into a matrix equation,

 

XN
k�1

F �E�ikT�E�kj � Vij; (5)

where, schematically, F � 1� wVG �QQ�1� 2fQ� (with
w denoting the integration weight). The solution for the
T-matrix then follows from matrix inversion.

To assess the presence of heavy quark-antiquark bound
states, the T-matrix has to be studied below the Q- �Q
threshold, Eth � 2!q�0. The nonrelativistic potential,
Vl�q0; q�, is only defined for real external three-momenta,
and therefore an evaluation of T below the Q- �Q threshold
requires a prescription for the subthreshold continuation of
the potential. For S-wave scattering, we follow the stan-
dard convention of setting the momenta to zero [21],

 T0�E< Eth� � T0�E; q0 � q � 0�: (6)

The reliability of this continuation can be checked by
exploiting the (numerical) matrix form of the scattering
equation. Since a bound state corresponds to a pole of the
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amplitude on the real energy axis below threshold, it
follows that the determinant of the transition matrix F
must vanish at the bound-state energy [20],

 detF �E� � 0; E < Eth: (7)

A similar condition arises from the solution of the
Schrödinger equation for the bound-state problem
[20,22]. This is equivalent to finding the zeros of the Jost
function in scattering (S-matrix) theory. For P-wave states,
the potential is proportional to the ingoing and outgoing
quark momentum and therefore the continuation in Eq. (6)
cannot be applied. However, the condition Eq. (7) remains
valid and will be used to determine P-wave bound states
[23].

The quark self-energy figuring into the two-particle
propagator, Eq. (2), receives contributions from interac-
tions with (light) antiquarks and gluons in the heat bath. In
Ref. [11] this was schematically written as

 � � ~��
Z
fqTQqSq; (8)

where ~� denotes the gluonic piece and the second term
involves the heavy-light quark T-matrix closed by a light-
quark propagator, Sq, and a thermal distribution, fq. Rather
than using an explicit model calculation for TQq [24], in the
present work we constrain ourselves to the following levels
of approximation: (a) a fixed heavy-quark mass m (i.e.,
Re� � 0) together with a small imaginary part, Im� �
�0:01 GeV, mostly for numerical purposes (to avoid
�-function like bound states in the T-matrix); (b) a
temperature-dependent heavy-quark mass as estimated
from the asymptotic value of the lQCD heavy-quark inter-
nal energies; (c) a heavy-quark width as calculated in an
effective model for resonance (plus perturbative gluon)
interactions in the QGP [25], which has been shown to
give reasonable agreement with data on suppression and
elliptic flow of semileptonic electron spectra from heavy-
quark decays in Au-Au collisions at RHIC [26]. We also
note that interactions with heavy antiquarks from the me-
dium can be safely neglected due to the smallness of the
number of Q’s in the system. This is different to (and
simpler than) the situation of the light-quark self-energy
which, in turn, figures into the calculation of the T-matrix,
constituting a self-consistency problem as has been eval-
uated, e.g., in Ref. [11].

III. TEMPERATURE EVOLUTION OF HEAVY
QUARKONIUM T-MATRICES

A. Quark-antiquark potential from lattice QCD

For the driving kernel of the scattering equation we
focus on heavy-quark potentials from lQCD. There is an
ongoing discussion how to properly extract them from the
(static) heavy-quark free energy (which is the quantity
computed in lQCD). The use of the free energy as a

potential leads to a dissociation temperature of ground-
state charmonia of about Tdiss ’ 1:1Tc [27], while the
lattice analysis of spectral functions suggests that �c and
J= survive up to around 2Tc. These higher values for Tdiss

can be recovered if the (color-singlet) internal energy,

 U1 � F1 � T
dF1

dT
; (9)

is identified with the Q- �Q potential [8–11]. Another pos-
sibility, namely, a certain linear combination of U1 and F1,
has been suggested in Ref. [8]. The temperature derivative
of discrete lQCD ‘‘data points’’ involved in the extraction
of U1 induces significant uncertainty which is comparable
to, e.g., the difference between quenched and unquenched
results (after rescaling of the critical temperature), as
studied in Ref. [11]. In view of this situation, one presently
has to accept a level of uncertainty in the potential. To
adequately account for this, we adopt two versions of the
internal energy, Eq. (9), as the potential: (i) based on fits to
the three-flavor lQCD results for the free energy from
Ref. [28], we explicitly perform the temperature derivative
in Eq. (9); (ii) we directly fit the two-flavor lQCD internal
energy data as extracted in the calculation of Ref. [29].
Further investigations of the impact of using different
definitions of the Q- �Q potential will be considered in
future work.

In order to ensure the convergence of the scattering
equation (1), the long-distance limit of the potential has
to be normalized to zero, which is commonly done by
subtracting the asymptotic value of the potential,

 V�r; T� � U1�r; T� �U
1
1 �T�; (10)

with U11 �T� 
 U1�r! 1; T�. In Refs. [8–10,30,31], the
linearity of the Schrödinger equation is exploited to trade
the internal energy at infinite distance into the energy of the
bound states. In Ref. [10], U11 �T� is interpreted as an
effective in-medium contribution to the quark mass,
�mQ�T� � U11 �T�=2 and implemented as a change in the
Q- �Q threshold energy, Eth � 2mQ �U

1
1 �T�, in the calcu-

lation of the mesonic spectral function. It is argued that this
correction should not modify the mass operator in the
Schrödinger equation since quarks inside a bound state
do not ‘‘sense’’ the medium and therefore should not be
subject to medium-induced mass modifications. This am-
biguity in the interpretation of the internal energy at infi-
nite distance can be resolved within the many-body
scattering equation approach. The interaction of the quark
with the surrounding medium induces a self-energy which
is encoded in an effective mass change (�mQ � Re�). As
such, this medium effect has to be included in the two-
particle propagator, Eq. (2), and therefore contributes in a
nonlinear way as it is iterated to all orders in the scattering
equation series. As we discuss in the following sections,
this not only modifies the Q- �Q threshold energy but the
evolution of the binding energy (total mass of the bound
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state) with temperature, leading to different dissociation
temperatures when the effective in-medium mass is con-
sidered. In principle, the subtraction constant of the poten-
tial should vanish at short distances as to recover the
perturbative normalization. This would require additional
information (or assumptions) on the r-dependence which
we do not consider in the present work. The calculated
binding effects (and associated dissociation temperatures
of the quarkonia) should therefore be considered as an
upper limit. In addition, we have checked the subtraction
procedure for the vacuum case: starting from the T � 0
Cornell potential, a typical string breaking scale of rsb ’
1:2–1:4 fm [16,32] translates into a subtraction constant of
Vsb ’ 1–1:2 GeV; employing the correspondingly sub-
tracted potential in the Lippmann-Schwinger equation
(1), together with heavy-quark masses mc�b� �

m0
c�b� � Vsb=2 and m0

c�b� � 1:32�4:73� GeV, we recover
the correct (empirical) J= (�) and  0 (�0) masses.

In line with neglecting the r-dependence in the subtrac-
tion constant for the potential, we do not consider possible
momentum dependencies of the in-medium quark mass (or
self-energy). Instead, we will consider two limiting scenar-
ios, namely, (a) no in-medium mass correction and (b) in-
medium effective mass as given by �mQ�T� � U11 �T�=2.

Finally, for the potentials in momentum space we in-
troduce a relativistic correction motivated by the velocity-
velocity (Breit) interaction in electrodynamics [33], see
also Ref. [11]. It amounts to the following factor:

 V�q0; q� ! V�q0; q��1� q02=!2
q0 �

1=2�1� q2=!2
q�

1=2:

(11)

The two potentials used in this work are summarized in
Fig. 1. For case (i) discussed above (extraction from the 3-
flavor lQCD free energy), it evolves rather smoothly with
temperature (left panel), while for case (ii) (2-flavor lQCD
internal energy) the potential is initially more attractive

(especially at intermediate distances, r ’ 0:4 fm), but
weakens rapidly with temperature (right panel) for T &

1:5Tc and slows down thereafter. The rapid decrease is
mostly induced byU11 �T�, which, at the maximum (for T ’
Tc) is almost�1 GeV larger in Ref. [29] (cf. Fig. 4 therein)
than in Ref. [28] (cf. Fig. 7 therein); on the other hand,
above T ’ 1:2Tc, U11 �T� is around 0.5 GeV in both com-
putations, and the extracted potentials in Fig. 1 agree
reasonably well (as further discussed in Ref. [29], the
uncertainties due to the actual light-quark masses used in
the two computations are assessed to be small). Unless
otherwise mentioned, our calculations below are based on
the potential extracted from F1 in Ref. [28] (left panel in
Fig. 1).

B. Quarkonium T-matrices in the QGP

We now turn to the numerical results for the finite-
temperature T-matrices in the c- �c and b- �b sectors, obtained
by solving the scattering equation (1) in both S- and
P-wave channels as described above.

1. S-wave states

In a first step, we consider the case of narrow quark
spectral functions with Im� � �10 MeV (for numerical
purposes) and constant (temperature-independent) heavy-
quark masses (Re� � 0). The latter are fixed so that the
corresponding ground states are located approximately at
their vacuum masses for the lowest considered temperature
(T � 1:1Tc), yielding mc � 1:7 GeV and mb �
5:15 GeV. Figure 2 summarizes the on-shell S-wave c- �c
scattering amplitude as a function of CM energy, for
several temperatures from 1:1Tc to 3:3Tc, as well as the
determinant function detF �E� (in arbitrary units). Since
we do not include the hyperfine (spin-spin) interactions, �c
(�b) and J= (�) states are degenerate. At the lowest
temperature, we recover the charmonium ground state at
E � 3:0 GeV, and also find a cusp at the c- �c threshold
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FIG. 1 (color online). Q- �Q color-singlet potential for several temperatures above Tc, as defined in Eq. (10); left panel: based on F1

from Ref. [28] (Nf � 3-QCD) in connection with Eq. (9); right panel: based onU1 as numerically evaluated from Nf � 2-QCD results
in Ref. [29]. Note the different energy scales on the two graphs.
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energy indicating that the first-excited state (ascribed to the
 0) has just melted. The determinant function, detF �E�,
vanishes exactly at the ground-state energy coinciding with
ReT�E� � 0, thus corroborating our subthreshold continu-
ation of the T-matrix, Eq. (6). For higher energies detF �E�
approaches zero again, but as soon as the threshold is
reached it deviates indicating that the first excited state
has already crossed into the continuum spectrum [34]. As
the temperature is increased, the bound charmonium state
gradually moves toward threshold, indicating a reduction

of its binding energy. At the same time, the magnitude of
the T-matrix is appreciably reduced. The J= �1S� survives
as a bound state well beyond Tc, eventually crossing the
threshold at about �2:8–3:0�Tc, after which it turns into a
resonance and rapidly melts in the hot system [35]. Our
results agree reasonably well with those of Ref. [11], with
some differences in size and shape of the scattering am-
plitude, in particular, a larger dissociation temperature.
This is mostly due to a different parametrization of the
Q- �Q potential (reflecting the uncertainties in a derivation
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FIG. 2 (color online). Real and imaginary parts of the T-matrix for S-wave c- �c scattering in the QGP based on potentials derived
from the lQCD free energy of Ref. [28]. Also shown is the determinant function detF (dashed line, arbitrary units). From left to right
and up to down, the temperatures are �1:1; 1:5; 2:0; 2:5; 3:0; 3:3�Tc.
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FIG. 3 (color online). Same as in Fig. 2 but for S-wave b- �b scattering. From left to right and up to down, the temperatures are
�1:1; 1:5; 1:8; 2:1; 2:7; 3:5�Tc.
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of the Q- �Q internal energy from a fit to the free energy,
cf. Sec. III B 4 below) and a different choice of the two-
particle propagator, which implies deviations at order
O�p=m�. The robustness of this approach to dynamically
generate quarkonium bound and scattering states and their
evolution with temperature is confirmed and extended in
the following to study other quarkonium states.

The results for S-wave b- �b scattering are depicted in
Fig. 3. At the lowest temperature the T-matrix exhibits two
bound states, as well as the remnant of a third one. The
bound-state locations are again quantitatively confirmed by
the vanishing determinant of the transition matrix (dashed
lines), while it barely reaches zero at the location of the
third structure in the T-matrix, which carries much smaller
strength, indicating that it has practically melted in the
medium. The two bound states at E � 9:35, 10.05 GeV
are ascribed to the ground and first-excited bottomonium
states ��1S�, �b and ��2S�, �0b, respectively. The ��2S�
moves above the b- �b threshold at T � 1:8Tc, whereas the
1S state survives in the QGP until much higher tempera-
tures, beyond T � 3:5Tc.

2. P-wave states

Next we study Q- �Q scattering in a relative P-wave. In
order to assess the formation of bound states in this channel
we rely on the condition in Eq. (7) and determine the zeros
of detF �E�, which is plotted in Fig. 4 for several tempera-
tures for both charm and bottom. We only find one c- �c
bound state at the lowest temperature (T � 1:1Tc), at E �
3:4 GeV ( just below threshold), which we associate with
the 1P charmonium, �c. As the temperature increases, the
�c state rapidly shifts into the continuum.

The P-wave b- �b system exhibits two bound states at the
lowest temperature, which we may identify with the
�b�1P� and �b�2P� as their energies (E � 9:95,
10.25 GeV) are close to the nominal values in the vacuum.
The �b�2P� state moves beyond threshold for T � 1:3Tc
and the �b�1P� for T � 2:3Tc. Both the mass and the

binding energies, �EB � Eth �M�, of the S- and P-wave
states are summarized in Tables I and II for several
temperatures.

3. Continuum scattering

The T-matrix approach also encompasses the continuum
part of the spectrum. This is not easily appreciated in
Figs. 2 and 3 because of the different scales of the narrow

TABLE II. Same as in Table I for P-wave quarkonia.

T=Tc 1.1 1.3 1.5 2 2.3

M��c�1P�� 3.38 
 
 
 
 
 
 
 
 
 
 
 


EB��c�1P�� �0 
 
 
 
 
 
 
 
 
 
 
 


M��b�1P�� 9.95 10.05 10.11 10.23 10.30
EB��b�1P�� 0.35 0.25 0.19 0.07 �0
M��b�2P�� 10.25 10.30 
 
 
 
 
 
 
 
 


EB��b�2P�� 0.05 �0 
 
 
 
 
 
 
 
 


TABLE I. Summary of masses and binding energies (in
[GeV]) for S-wave quarkonia in the QGP as extracted from
the finite-temperature T-matrix determinant, Eq. (7).

T=Tc 1.1 1.5 2.0 2.5 3.0 3.3

M�J= ; �c� 2.99 3.13 3.25 3.34 �3:40 
 
 


EB�J= ; �c� 0.41 0.27 0.15 0.06 �0 
 
 


M� �2S�� �3:40 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


EB� �2S�� �0 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


T=Tc 1.1 1.5 1.8 2.1 2.7 3.5

M��; �b� 9.35 9.47 9.59 9.70 9.81 9.86
EB��; �b� 0.95 0.83 0.71 0.60 0.49 0.44
M���2S�� 10.05 10.18 10.28 
 
 
 
 
 
 
 
 


EB���2S�� 0.25 0.12 �0 
 
 
 
 
 
 
 
 


M���3S�� �10:30 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


EB���3S�� �0 
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FIG. 4 (color online). Pole identification function ( detF ) for charmonium (left) and bottomonium (right) P-wave scattering at
several temperatures.
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bound-state signal and the amplitude above threshold. Note
that the determinant of the transition matrix, detF , van-
ishes for some energies above threshold (cf. Figs. 2– 4),
possibly indicating resonant scattering in the continuum.
Indeed, as can be seen in Fig. 5, the T-matrix for c- �c S- and
P-wave scattering exhibits substantial correlations above
threshold. The imaginary part shows a distorted resonant
shape, which peaks at approximately the same energy
where the real part vanishes. The nonperturbative effects
of the Q- �Q rescattering above threshold are evident as we
compare the T-matrix to its Born approximation, V (dash-
dotted line in Fig. 5). We confirm that the T-matrix shows
the expected behavior at high energies, i.e., the real part
converges to the Born approximation and the imaginary
part tends to vanish. Finally, Fig. 6 displays the imaginary

part of the S-wave scattering amplitude on a logarithmic
scale over a wide energy range below and above the Q- �Q
threshold.

We recall that nonperturbative strength in the continuum
regime of the T-matrix could play an important role for
providing short thermalization times for both light and
heavy quarks in the QGP phase of ultrarelativistic heavy-
ion collisions, cf. Refs. [11,25,26].

4. Sensitivity to lQCD potential

In Fig. 7 we show the c- �c S-wave scattering amplitude
based on the potential fitted directly to the internal energy
data of Ref. [29]. We have kept mc � 1:7 GeV for com-
parison with our previous results. The T-matrix exhibits
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FIG. 5 (color online). c- �c scattering amplitude in S- (up) and P-wave (below) above threshold. The Born approximation to the
amplitude is also shown (dash-dotted).
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two bound states with a stronger binding, as to be expected
from the potential comparison in Fig. 1. With the same bare
quark mass, the ground state is located at a much lower
energy, E � 2:2 GeV, translating into a binding energy of
about 1.2 GeV, in agreement with the results of Refs. [9,36]
within a Schrödinger equation using the same potential. As
the temperature increases, the bound states rapidly shift to
higher energies, reflecting the rapid reduction of the po-
tential strength at low temperatures. This trend slows down
beyond 2Tc, and the ground state eventually dissolves at
T ’ 2:5Tc. The large binding within this potential requires
appreciable bare quark masses (mc � 2 GeV) in order to
reproduce the nominal position of the charmonium ground
state in the vacuum. The strong attraction is presumably
related to the entropy contribution to the Q- �Q free energy
at large distances (cf. Figs. 3 and 4 in Ref. [29]), which
peaks at Tc and decreases steeply with temperature. The
long-distance limit of the internal energy, U11 , which in-
herits this behavior, is subtracted to generate the Q- �Q
potential, cf. Eq. (10). As mentioned in Sec. III A, U11
might be interpreted as a contribution to the in-medium
quark mass, m�c�T� � mc �U11 �T�=2, i.e., a quark self-
energy contribution. However, if no further r-dependence
(or momentum dependence) is considered, the simple sub-
traction of U11 from the internal energy distorts the nor-
malization of the potential at short distances, where it
should be described by perturbative QCD (one-gluon ex-
change). A more detailed investigation of these interplays
will be carried out in future work.

5. In-medium heavy-quark masses

To end this section we present results for the c- �c and b- �b
S-wave T-matrices when an in-medium heavy-quark mass

is implemented, according to m�Q�T� � mQ �U11 �T�=2.
We readjust the corresponding bare masses so that the
quarkonium ground states are located at approximately
their vacuum energies for the lowest temperature consid-
ered, as in Sec. III B (namely, mc � 1:11 GeV and mb �
4:56 GeV). This facilitates the comparison to our results in
Figs. 2 and 3, emphasizing the effect of the temperature
evolution of the heavy-quark mass. Figure 8 shows the
S-wave charmonium scattering amplitude, with real and
imaginary parts displayed separately. The T-matrix exhib-
its a considerable shift to lower energies as the temperature
is increased, reflecting the rather rapid decrease of U11 �T�
beyond Tc. Note that, while the Q- �Q threshold energy is
reduced, the binding energy of the bound states also de-
creases with increasing temperature. This compensates the
downward shift of the bound states which slows down for
higher temperatures. The effective quark mass not only
modifies the Q- �Q threshold, but also moderately changes
the binding energies of the bound states since it enters the
two-particle propagator in the scattering equation.
Therefore, the dissociation temperatures slightly change.
For example, using the bound-state condition in Eq. (7), we
find Tdiss � 2:5Tc for the charmonium ground state, as
compared to �3Tc in the calculation with a fixed quark
mass in Sec. III B 1.

The corresponding results for b- �b S-wave scattering are
displayed in Fig. 9. The behavior of the T-matrix is similar
to the charmonium case. In particular, one observes that the
bottomonium ground state is considerably shifted to lower
energies as the temperature is increased. Beyond T �
2:0Tc, however, the reduction in the binding energy com-
pensates the Q- �Q threshold shift and the ��1S� state
moderately evolves to higher energies.

-200

0

200

400

600

G
eV

-2

2.0 2.5 3.0 3.5

-20

0

20

40
G

eV
-2

2.0 2.5 3.0 3.5

E
cm

 [GeV]

2.0 2.5 3.0 3.5

FIG. 7 (color online). Same as in Fig. 2 for the potential derived from the lQCD internal energy of Ref. [29]. From left to right and up
to down, the temperatures are �1:10; 1:15; 1:20; 1:50; 2:00; 2:50�Tc.

D. CABRERA AND R. RAPP PHYSICAL REVIEW D 76, 114506 (2007)

114506-8



IV. QUARKONIUM SPECTRAL FUNCTIONS AND
EUCLIDEAN-TIME CORRELATORS

A. Spectral function

The T-matrix formalism used above can be directly
applied to evaluate mesonic spectral functions for the
different quarkonium channels. The spectral functions en-
code the information on both the bound and scattering
states in the continuum (E> Eth), similar to the
T-matrix. Moreover, they allow for a quantitative connec-
tion between the present approach and Euclidean-time
correlation functions, which have been calculated in lattice
QCD with rather high precision [3,6]. Such a comparison
has recently been conducted in Ref. [10] where the heavy-
quark interaction in the QGP has been studied by solving
the bound-state problem using a Schrödinger equation with
either a screened Cornell-type potential or lQCD-based
internal energies (similar to the present work). The quar-
konia spectral functions were then composed of �-function
like bound states with weights determined by the decay
constant of the state and a continuum assuming free quark

propagation with a threshold behavior taken from pertur-
bative QCD [37,38],

 

��!; T� �
X
i

2MiF
2
i ��!

2 �M2
i �

�
3

8�2 !
2f�!;Eth���!� Eth�: (12)

The decay constants are related to the (derivative of the)
radial wave function at the origin for S- (P-)wave states
[39], while the functional form of the continuum threshold,
given by f�!;Eth�, depends on the specific channel
(pseudoscalar, vector, scalar, axial-vector) [37,38]. The
threshold energies were set to Ec �c

th � 4:5 GeV and Eb �b
th �

11 GeV, based on the phenomenological observation that
no narrow mesonic resonances appear in the spectrum
beyond this energies. The resulting correlation functions
qualitatively reproduced the features observed in lQCD for
the scalar channel (�c;b), whereas sizable discrepancies
were found for the pseudoscalar and vector channels
(�c;b and J= , �).
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8.8 9.2 9.6 10.0 10.4

E
cm

 [GeV]

0

20

40

60

80

G
eV

-2

1.1 Tc
1.5 Tc
2.0 Tc
3.0 Tc
3.3 Tc

8.8 9.2 9.6 10.0 10.4

E
cm

 [GeV]

-60

-40

-20

0

20

G
eV

-2

1.1 Tc
1.5 Tc
2.0 Tc
3.0 Tc
3.3 Tc

FIG. 9 (color online). Imaginary (left) and real (right) parts of the b- �b S-wave scattering amplitude using an effective bottom mass as
explained in the text.

T-MATRIX APPROACH TO QUARKONIUM CORRELATION . . . PHYSICAL REVIEW D 76, 114506 (2007)

114506-9



In the present approach, the Q- �Q system is interacting
also above the Q- �Q threshold with the same potential that
generates the bound-state solutions, which, in particular,
accounts for the transition between the discrete and the
continuum part of the spectrum. To properly match the
nonperturbative rescattering part of our T-matrix spectral
function to the perturbative (noninteracting) term, we ex-
pand the spin structure of the former in 1=mQ which allows
a smooth matching between the LS classification of char-
monia and the helicity representation at high energy.
Nonperturbative effects play an especially important role
when reduced binding energies drive states toward and
across the two-particle threshold. The mesonic spectral
function is given by the imaginary part of the heavy-quark
two-point (current-current) correlation function in momen-
tum space, G�E; ~P�, as pictorially represented by its per-
turbation series in Fig. 10. The correlation function can be
calculated from the T-matrix by closing the external legs
with the appropriate momentum integrations and the cor-
responding current operator. Schematically, one has

 G � G0 �G0TG0; (13)

where G0 is the lowest order correlation function, which
represents the uncorrelated Q- �Q propagator in a given
mesonic channel,
 

G0�E; ~P � ~0;T� � iNfNc
Z d3k

�2��3

� Trf�M��� ~k��M���� ~k�g

�GQ �Q�E; k��1� 2fQ�!k��; (14)

with ��� ~k� � �!k�
0 � ~k ~��mQ�=2mQ the positive/nega-

tive energy projectors, �M � �1; �5; ��; ���5� andNf�Nc�
the number of flavors (colors). We take Nf � 1, Nc � 3 as
in Ref. [10] to ensure the same normalization of the lowest
order correlation function. Equation (14) denotes the finite-
temperature result, and we have used the explicit decom-
position of the single particle propagator, SQ, in terms of
energy projectors, which recovers the BbS 3D-reduction
scheme used in the calculation of the T-matrix.

The Q- �Q rescattering is encoded in the second (two-
loop) term of Eq. (13). A proper connection has to be made
between a potential description of the interaction and the
relativistic invariant amplitude entering �G 
 G0TG0

(see the Appendix for details). In particular, we have thus
far suppressed the tensor structure of T (and V) in Dirac
space. At high energies the Q- �Q interaction should corre-
spond to perturbative one-gluon exchange, which has a
vector structure, whereas at low energies, according to
lQCD, the potential is compatible with a scalar structure
[40,41]. In the absence of further information, especially
for the intermediate energy regime, we consider both ten-
sor structures alternatively and write for the matrix ele-
ments TD � �u ~� uT �v ~�v, with ~� � 1, �� and u�v� the
positive (negative) energy Dirac spinors. This leads to the
following traces to be evaluated in Eq. (13):

 Tr ��M; ~�� � Trf��� ~k��M���� ~k�~����� ~k
0
��M��� ~k

0
�~�g:

(15)

It turns out that they can be written in a partial-wave
expansion as performed for the T-matrix,

 Tr ��M; ~�� � a�M;~�
0 �k; k0�P0�cos	kk0 �

� a�M;~�
1 �k; k0�P1�cos	kk0 �

� a�M;~�
2 �k; k0�P2�cos	kk0 �; (16)

so that all angular integrations can be done analytically by
using the orthogonality of the Legendre polynomials. We
thus have
 

�G�E;T� � NfNc
1

8�4

Z
dk k2GQ �Q�E; k��1� 2fQ�!k��

�
Z
dk0 k02GQ �Q�E; k0��1� 2fQ�!k0 ��

�T ��M; ~�;E; k; k0�; (17)

with the kernel T given by
 

T ��M; ~�;E; k; k0� 

Z
d�cos	kk0 �Tr��M; ~�; k; k0; 	kk0 �

� T�E; ~k; ~k0�

� 8��a0�k; k
0�T0�E; k; k0�

� a1�k; k
0�T1�E; k; k0��; (18)

and al coefficients as tabulated in Table III. We note that,
for a given channel, e.g. pseudoscalar, in principle both the
S- and P-wave components of the T-matrix contribute to
the correlation function, whereas the usual spectroscopic
(nonrelativistic) characterization of quarkonium states is
based on orbital angular momentum quantum numbers (LS
scheme). The (undesired) mixing of S- and P-wave com-
ponents in the correlation function is related to the use of
the helicity basis (JM scheme) of theQ- �Q spectrum at high
energies, in which a different partial-wave decomposition
of the T-matrix follows. However, for the scalar and pseu-
doscalar channels the coefficient in Table III corresponding
to the ‘‘natural’’ partial wave is leading in the nonrelativ-

V V V +++ ...

+ T

FIG. 10. Diagrammatic representation of the Q- �Q correlation
function. The solid dots represent �M operators specifying
different mesonic channels.
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istic (heavy-quark) expansion, whereas the other one, in-
troducing an admixture of the ‘‘unnatural’’ partial wave, is
of higher order, cf. Table IV. For simplicity, we shall work
with the nonrelativistic approximation for the al coeffi-
cients, which filters the appropriate partial wave for the
scalar and pseudoscalar channels (and for consistency with
the spin-averaged nature of the interaction potential we
shall consider pseudoscalar/vector, scalar/axial vector de-
generacy for the correlation functions as done for the
T-matrix) [42]. We comment below on the accuracy of
this approximation.

B. Euclidean-time correlation functions

The Euclidean-time correlation function is defined as the
thermal mesonic two-point correlation function in a mixed
Euclidean-time-momentum representation [37,38,43]. It
can be expressed in a spectral representation as an integral
transformation of the mesonic spectral function (here
~P � ~0),

 G�
; T� �
Z 1

0
d!��!; T�K�
;!; T�; (19)

where the kernel of the transformation,

 K �
;!; T� �
cosh�!�
� �=2��

sinh�!�=2�
; (20)

is symmetric with respect to 
 � �=2 (and 
 2 �0; ��).
The Euclidean-time correlation function scans the full

spectrum of the system. In particular, for 
! 0 the kernel
decreases rather slowly with energy and thus the correla-
tion function is dominated by contributions of the Q- �Q
continuum. On the other hand, for 
! �=2, the kernel
exhibits the maximal decrease, so that the correlation
function becomes mostly sensitive to the contribution
from the low-energy region of the spectrum, in particular,
the bound states. To isolate the medium effects on the
mesonic spectral function from the temperature depen-
dence introduced by the kernel, it has been proposed
[3,6] to normalize the correlation function at a given
temperature to a so-called ‘‘reconstructed’’ correlation
function,

 Gr�
; T� �
Z 1

0
d!��!; T � 0�K�
;!; T�; (21)

which is obtained by replacing ��!; T� by a reference
spectral function (for instance, the vacuum spectral func-
tion), transformed with the same finite-temperature inte-
gral kernel. To facilitate the comparison to the results in
Ref. [10], in Sec. IV C 1 we first adopt their choice of the
reconstructed correlator by using ��!; T � 0� of the form
in Eq. (12), where the coupling constants and masses for
the bound-state part are extracted from a Cornell-potential
based fit to the vacuum spectrum, and the shape function
f�!;Eth� is given by the perturbative QCD continuum. For

the open-charm (bottom) threshold, we take Ec �c�b �b�
th �

2MD�B� � 3:74�10:56� GeV, but also check the sensitivity
to changes in the pertinent free open heavy-flavor meson
thresholds by using Ec �c

th � 4:5 GeV (as in Ref. [10]) and
2mc � 3:4 GeV (for the fixed mc case). As we shall see,
the use of a simplified spectral function as in Eq. (12) may
introduce spurious features in the normalized correlation
function which could mask the actual effect of the
medium-modifiedQ- �Q interaction. To enable a more direct
comparison to lQCD evaluations, in Secs. IV C 2 and
IV C 3 we normalize our results to actual (vacuum) spectral
functions calculated in our approach.

It is clear from Eq. (19) that the full energy regime of the
spectral function figures into the calculation of the
Euclidean-time correlation function. The approximations
introduced in Sec. IVA are expected to be reliable includ-
ing energies above the Q- �Q threshold where nonperturba-
tive effects from the Q- �Q interaction prevail, as signified
by the large enhancement in the T-matrix. For higher
energies in the continuum region, we do not expect these
approximations to hold. However, the high-energy part of
the continuum is only relevant for 
! 0, where the nor-
malized correlator approaches 1 and is no longer sensitive
to the evolution of the quarkonia states with temperature.

C. Numerical results

In this section we discuss our results for the quarkonium
spectral functions and correlators. Our emphasis is on a
systematic illustration of how various assumptions and

TABLE IV. Lowest order of al coefficients in a �1=mQ� ex-
pansion.

�M; ~� a0�k; k0� a1�k; k0�

S,S O�k2=m2
Q� �2 kk0

m2
Q
�O�k2=m2

Q�

S,V O�k2=m2
Q� 2 kk0

m2
Q

PS,S 2�O�k2=m2
Q� O�k=mQ�

PS,V �2�O�k2=m2
Q� 0

TABLE III. al coefficients in a partial-wave basis up to L � 1.

�M; ~� a0�k; k
0� a1�k; k

0�

S,S k2k02

m4
Q

��
!k!k0

m2
Q
� 1� kk

0

m2
Q

S,V 4 k2k02

m4
Q

2 kk0

m2
Q

PS,S 1�
!k!k0

m2
Q
� k2�k02

m2
Q
� k2k02

m4
Q

�
!k!k0

m2
Q

kk0

m2
Q

PS,V �2�1�
m2
Q�!k!k0

m2
Q
� � 4�k

2�k02

m2
Q
� kk0

m2
Q
� 0

V,S 3�1�
!k!k0

m2
Q
� � 2

!k!k0

m2
Q
� 4

3
kk0

m2
Q

��2
!k!k0

m2
Q
� 1� kk

0

m2
Q

V,V �6� 4 k2�k02

m2
Q
� 8

3
k2k02

m4
Q

�4�1�
!k!k0

m2
Q
� kk

0

m2
Q

AV,S �1�
!k!k0

m2
Q
� 4

3
k2k02

m4
Q

�2
!k!k0

m2
Q
� 3� kk

0

m2
Q

AV,V 2�2
!k!k0

m2
Q
� 1� 8

3
k2k02

m4
Q
� �4

!k!k0

m2
Q

!k!k0

m2
Q
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effects reflect themselves in the correlators, and how these
features qualitatively compare to direct evaluations of
correlator ratios in lQCD. We recall that the latter are
thus far restricted to quenched QCD, while our underlying
heavy-quark potentials in this section pertain to Nf � 3
QCD. However, as discussed in the Introduction, above Tc
at least a qualitative comparison should still be meaningful.

1. Constant heavy-quark mass and small width

Following our studies of the T-matrices in Sec. III B, we
first investigate mesonic spectral functions and normalized
correlation functions for a constant quark mass (mc;b �

1:7, 5.15 GeV), and therefore the continuum threshold does
not depend on temperature. The S-wave charmonium spec-
tral function is shown in the left panel of Fig. 11 for several
temperatures, together with the uncorrelated (perturbative)
two-particle continuum, Eq. (14). As expected, the spectral
function exhibits the same charmonium bound states as
found in the T-matrix, as well as their evolution to higher
energies as the temperature rises. At all temperatures, the
(nonperturbative) rescattering of the Q- �Q system dynami-
cally generates substantial enhancement of strength above
the c- �c threshold relative to the uncorrelated two-particle
continuum (at T � 1:1Tc a remnant of the first excited
state,  �2S�, is still visible). This important effect is also
in line with what has been found for the T-matrix above
threshold (especially when a bound state passes into the
continuum).

The corresponding normalized Euclidean correlation
function for the same set of temperatures is displayed in
the right panel of Fig. 11. The normalized correlator con-
verges to unity at 
! 0, which confirms the correct nor-
malization of the continuum part of the spectrum (it is also
symmetric with respect to �=2). At low 
, where the
integral in Eq. (19) is mostly dominated by the continuum
region, the normalized correlator moderately increases,

reaches a maximum, and then flattens/drops for 
 ap-
proaching �=2, indicating a loss of strength of the corre-
lator for T > 1:5Tc relative to the zero-temperature one in
the low-energy part of the spectrum. The temperature
evolution of the correlation function is a combined result
of a decrease in binding energy of the bound states and the
contribution of the nonperturbative continuum. The drop at
large 
 is in qualitative agreement with the lQCD charmo-
nium S-wave correlators [3], but the latter exhibit a weaker
temperature dependence (with appreciable deviations from
unity only beyond T � 1:5Tc) and somewhat less reduc-
tion at large 
.

The charmonium spectral functions and normalized cor-
relators for the P-wave channel are displayed in Fig. 12. As
was discussed in Sec. III B, we only find a single bound
state (�c) just below the threshold at T � 1:1Tc, which
rapidly melts into the continuum as temperature increases.
Consequently, a sizable threshold enhancement effect is
observed. Despite the fast melting of the P-wave state, the
normalized correlation function steeply rises in the low-

regime, due to (i) the contribution from the nonperturbative
rescattering above threshold, and (ii) a larger threshold
energy in the schematic vacuum spectral function entering
the reconstructed correlator. For 
! �=2, the correlator
stays well above unity, due to the absence of an energy gap
between the P-wave state and the continuum, which ren-
ders the (enhanced) continuum contribution to the correla-
tor dominant even for 
! �=2. The main features of our
results at a given temperature are qualitatively in line with
the lQCD P-wave correlators [3]; however, the tempera-
ture dependence is not: our correlators attenuate with
temperature whereas the lQCD correlators increase. This
appears to be a rather direct indication that the in-medium
c- �c threshold is lowered with increasing temperature.

While our results are qualitatively similar to those of
Ref. [10], the following observations are in order. In
Ref. [10], the increase of the correlator at low and inter-
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mediate 
 is induced by the temperature-dependent de-
crease of the continuum threshold. Thus far, we have not
considered the temperature effect on the Q- �Q threshold.
However, the nonperturbative enhancement in the spectral
function around threshold and above, which is not included
in Ref. [10], turns out to be essential for a quantitative
assessment of the quarkonium correlation (and spectral)
functions, especially when the energy gap between the
discrete and continuum parts of the spectrum is small or
absent [30,44,45]. Nevertheless, our results leave room for
a lowering of the Q- �Q threshold energy, since a downward
shift of strength in the spectral function would improve
(i) on the large-
 decrease in the S-wave correlator, and
(ii) on the temperature dependence in the P-wave correla-
tor, as discussed below.

The bottomonium spectral and correlation functions
follow a similar pattern as for the charmonium system.
The results for S-wave scattering are displayed in Fig. 13.
At large Euclidean time, the correlator decreases with
temperature as the two excited bottomonia disappear into
the continuum. Despite the survival of the ��1S� state up to
rather high temperatures, the correlator looks rather similar
to the charmonium case. We find slightly more enhance-

ment at low 
, partly due to the continuum enhancement
over the zero-temperature case which becomes more rele-
vant as the bound-state binding energies decrease with
temperature.

The P-wave bottomonium correlator, Fig. 14, shows a
large enhancement at all 
, even larger than that of the
P-wave charmonium correlator. A similar enhancement is
observed in the scalar bottomonium correlator from lQCD
[6]. As the temperature increases, the two bound states
gradually move to higher energies and the correlator is
notably attenuated. Again, as the ground state approaches
the continuum the nonperturbative threshold strength in the
spectral function is the decisive source of the remaining
correlator enhancement. This reiterates the point that a
comprehensive description of the Euclidean-time correla-
tors should account for both the bound-state properties and
Q- �Q correlations above threshold.

2. Sensitivity to the reconstructed correlator

Although our results thus far reproduce some of the
trends of the normalized correlators from lQCD, the
S-wave correlator exhibits a 
 dependence which is incon-
sistent with lQCD results especially for T < 2Tc where the
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increase in the low- and intermediate-
 regime is at vari-
ance with the lQCD correlators which are essentially un-
modified. As discussed above, one reason for this rise is the
threshold mismatch between the finite-temperature spec-
tral function and the vacuum one, which is modeled ac-
cording to Eq. (12). We therefore investigate alternative
inputs for the reconstructed correlator used for
normalization.

First, we vary the continuum energy threshold of the
vacuum spectral function, Eq. (12), in the range Ec �c

th �
3:4–4:5 GeV. The pertinent ratios for S- and P- charmo-
nium correlators are compared in Fig. 15 to our earlier
result (right panels in Figs. 11 and 12) at the lowest
temperature, T � 1:1Tc. Not surprisingly, the low-
 rise
of both amplitudes is reduced (amplified) appreciably due
to the lowered (raised) threshold energies. At large 
, the
S-wave correlator changes less, as expected since the dis-
crete (low-energy) part of the spectrum in the reference
spectral function is unchanged. However, one notices com-
parably larger changes of the P-wave correlator at large 
,

since the small binding of the �c makes the correlator
sensitive to the continuum contribution in the entire 

domain.

Second, we employ as reconstructed correlator the one
based on the zero temperature T-matrix calculated with the
Cornell potential and a subtraction constant defined at the
characteristic string breaking scale in vacuum as discussed
in Sec. III A (the T-matrix properly reproduces the empiri-
cal bound-state spectrum). As it is shown in Fig. 16, be-
cause of an increased (nonperturbative) strength in the T-
matrix-based vacuum correlator (relative to the schematic
one), the correlator ratios in both S- and P-wave are
reduced. For the former, the agreement with lQCD results
appears to improve, while for the latter it becomes worse.

To summarize this section, we note that the correlator
ratios carry significant sensitivity to the underlying recon-
structed correlators used for normalization, inducing ap-
preciable variations in the absolute magnitude and shape of
the normalized correlators. In particular, we find that the
appreciable enhancement above one for the S-wave corre-
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lators found in the previous section is in large part due to
the use of a schematic reconstructed correlator. Using for
the latter the vacuum correlator this feature is limited to a
20% effect. We also found that the open-charm threshold
(i.e., charm-quark mass) has a significant impact on the
normalized correlator. Indeed, as we will see in the next
section, using an in-medium threshold as inferred from the
subtraction in the internal energy, the S-wave correlator is
further reduced for temperatures close to Tc, exceeding one
by merely 5%.

3. In-medium heavy-quark masses and widths

We finally consider the effect of in-medium properties of
the interacting charm quarks, both due to real and imagi-
nary parts of their self-energy.

First, we incorporate an effective in-medium quark mass
as extracted from the large-distance plateau of the internal
energy,

 m�c�T� � m0
c �U

1
1 �T�=2: (22)

We neglect a possible momentum dependence of this
correction, following the discussion in Sec. III B 5. We
recall that in our approach an effective heavy-quark mass
not only modifies the c �c threshold energy (Eth � 2!q�0 �

2m�c), but also figures into the two-particle propagator as a
self-energy contribution and is therefore iterated in the
scattering equation. We implement m0

c ’ 1:3 GeV and
use mc � m0

c � Vsb=2 ’ 1:9 GeV for the vacuum calcula-
tion to properly reproduce the vacuum spectrum employing
the Cornell potential with string breaking effects in the
T-matrix equation, cf. Sec. III A. The pertinent vacuum
spectral function will be used for the reconstructed corre-
lator. The S-wave spectral functions are displayed in the
left panel of Fig. 17. The vacuum spectral function exhibits
two bound states at energies corresponding to the J= and
 0, whereas the continuum opens at about 3.8 GeV (Eth ’
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FIG. 16 (color online). Normalized correlation functions for c- �c S-wave (left) and P-wave (right) scattering with a reconstructed
correlator based on the vacuum T-matrix as calculated within our approach.
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2MD) and exhibits a wide resonant structure above the c- �c
threshold. The ground state in the in-medium spectral
function is first shifted upward to E � 3:4 GeV at 1:1Tc,
due to a reduction in binding energy (and a slightly larger
in-medium m�c), but shifts down to E ’ 3:1 GeV when the
temperature increases despite the reduction in binding, due
to a larger reduction inm�c. The latter is also responsible for
a considerable amount of continuum strength migrating to
lower energies. The ground state dissolves at Tdiss � 3Tc.
The resulting (normalized) S-wave correlator exhibits a
(decreasing) temperature dependence that is roughly in
line with the finite-T lQCD results at temperatures T *

1:5Tc, with changes at the level of 10%–15%. For tem-
peratures close to Tc, the increasing values for U11 �T�
induce a sizable upward shift of the bound-state mass
relative to the T � 0 spectrum, resulting in a reduction of
the correlator which is larger than found on the lattice. This
suggests that the increase of U11 �T� close to Tc does not
(entirely) correspond to an increasing in-medium c-quark
mass (but encodes, e.g., the onset of string formation).
Indeed, recent lQCD analysis of charmonium properties
in quenched QCD finds a temperature dependent J= mass
reduction of only �100 MeV at 1:3; Tc [46], which is
significantly smaller than the change observed in ImG
from 1.1 to 1.5 Tc in the left panel of Fig. 17. For more
stringent conclusions the present uncertainties in the ex-
traction of the heavy-quark potential, as well as the as-
sumption of a 3-momentum independent mass correction
(which upsets the perturbative normalization of the poten-
tials at short distances and therefore represents an upper
estimate of the in-medium mass effect), need to be
scrutinized.

For the P-wave channel (not shown), it is worth noting
that the implementation of m�c�T� improves the tempera-
ture dependence of the normalized correlator as compared
to Fig. 12, even though the magnitude and time depen-
dence are not quantitatively reproduced. Very recently it
has been pointed out that the Euclidean correlator in the
scalar channel receives diffusive contributions from zero-
mode excitations [47] which we have not considered here.
These contributions might cure the discrepancies in the
P-wave channel, according to Refs. [48,49]. We shall
include these contributions in a forthcoming publication.

Our analysis reconfirms the importance of a proper
understanding and implementation of in-medium heavy-
quark masses and threshold effects when conducting quan-
titative comparisons to the lQCD correlators. Further in-
vestigations of the normalization and in-medium mass
issues close to Tc will be reported in future work.

Second, we address the sensitivity of the correlators to
finite quarkonium widths, which constitute an essential
ingredient in the phenomenology of heavy quarks and
quarkonia in heavy-ion collisions. As suggested by recent
analysis of heavy-quark diffusion in a QGP [25,26], as well
as parton-induced breakup reactions of charmonia [12],

charmonium widths are expected to be of the order of
100 MeV or more at temperatures around 1:5Tc. We can
easily incorporate such effects by dressing the charm
quarks with an imaginary self-energy in the two-particle
propagator, Eq. (2) (for small binding energies, EB < T,
the width due to gluon dissociation, g� J= ! c �c, is
suppressed [50]; however, for the spectral function only
the total charmonium width enters). The results for the
S-wave charmonium correlation function in the fixed
quark-mass scenario are indicated in Fig. 18, for a
charm-quark width of 50 MeV (generating charmonium
widths of �100 MeV) in comparison with the narrow-
width limit (for simplicity, we have used the correlator at
1:5Tc as the reconstructed one). The Euclidean correlator
at 2Tc is modified by only a few percent. Especially in view
of other current uncertainties, the correlators appear rather
insensitive to phenomenologically relevant magnitudes of
the quarkonium decay widths; this may not be surprising
since � ’ 0:1 GeV is less than 5% of the charmonium
mass, and also appreciably smaller than the typical QGP
temperature.

V. CONCLUSIONS AND OUTLOOK

In the present article we have evaluated spectral proper-
ties of heavy quark-antiquark interactions (charm and bot-
tom) in the quark-gluon plasma within a T-matrix
approach which allows for a comprehensive treatment of
bound and scattering states. The basic interaction was
taken to be a two-body potential which, following earlier
works, has been identified with the heavy-quark internal
energy evaluated in thermal lattice QCD. The finite-
temperature T-matrices confirm the previously found sur-
vival of the S-wave ground state in the QGP for tempera-
tures up to �2:5� 3Tc (> 3:5Tc) for �c=J= (�b=�), as
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calculation (the correlators have been normalized to the one at
1:5Tc).

D. CABRERA AND R. RAPP PHYSICAL REVIEW D 76, 114506 (2007)

114506-16



well as for excited bottomonia. The dissociation mecha-
nism is characterized by a bound state passing through the
Q- �Q threshold, at which point a strong reduction and
broadening of the (imaginary part of the) T-matrix occurs.
Thereafter, the Q- �Q system remains strongly correlated in
the continuum, as indicated by resonantlike structures in
the T-matrix (albeit at much reduced magnitude) which
exceed the Born approximation up to energies of 1–2 GeV
above the Q- �Q threshold.

We have proceeded to calculate Q- �Q current-current
correlation functions, which, in the timelike regime, follow
from the T-matrix by folding with theQ- �Q propagator. The
imaginary part of the correlation function (spectral func-
tion) corroborates the importance of threshold effects in the
dissolution mechanisms, resulting in large (nonperturba-
tive) enhancements over the perturbative form of the con-
tinuum. These, in turn, give substantial contributions to the
Euclidean correlators primarily at large and intermediate
time, 
, which cannot be neglected in quantitative analyses
of lattice QCD results. Assuming constant heavy-quark
masses, some qualitative features of the lQCD correlators
(large-
 decrease in the S-waves, overall increase in the
P-waves) can be reproduced. However, the magnitude of
the signal in the S-wave channels, as well as the tempera-
ture dependence in the P-wave channels, are inconsistent
with lQCD.

We have found an appreciable sensitivity of the
Euclidean correlator ratios to the reference spectral func-
tion used for normalization (usually taken as a vacuum
form). The choice of shape and onset of the continuum
introduces 
-dependencies in the normalized correlator
which can affect the interpretation of medium effects in
the calculated spectral functions. To reduce uncertainties
due to the normalization of the Euclidean correlators, we
have calculated the spectral functions of the system at zero
temperature in our scattering approach, using the Cornell
form of the interaction potential with string breaking ef-
fects. The corresponding vacuum spectral functions cor-
rectly reproduce vacuum quarkonium states as well as the
onset of the continuum at the open-charm (-bottom) thresh-
old. From the evaluation of the Euclidean correlators nor-
malized with the vacuum spectral function we have
inferred that the lQCD evaluations favor a temperature-
dependent decrease of the heavy-quark mass (Q- �Q thresh-
old), which pushes spectral strength to lower energies and
improves on the large-
 and temperature dependence of the
correlators. However, large values of the effective quark
mass close to Tc, as suggested by the large-distance limit of
the internal energy, entail too strong a reduction of the
S-wave charmonium correlator close to Tc.

Our approach furthermore allows establishing a closer
connection to quarkonium phenomenology in heavy-ion
collisions by incorporating finite-width effects. For ex-
ample, when implementing in-medium heavy-quark
widths of �50 MeV in the two-particle propagator of the
scattering equation (inducing a charmonium width of

�100 MeV as suggested by phenomenology), we find
only few-percent changes in the Euclidean correlators,
which are superseded by other current uncertainties.

In conclusion, our results suggest that lQCD-based po-
tential approaches, when consistently implementing both
bound and scattering states in a nonperturbative scheme,
are a valuable tool to quantitatively interpret the lQCD
computations on Euclidean correlation functions, and thus
evaluate the properties of quarkonium spectral functions in
the QGP (supporting the notion of an ‘‘in-medium’’ heavy-
quark potential). Significant uncertainties remain in the
extraction of an appropriate Q- �Q potential, as well as in
the determination of the in-medium open-charm and
-bottom masses. If quantitative agreement between model
calculations and lQCD correlators can be established, ap-
plications to high-energy heavy-ion collisions will subject
the theoretical results to experimental tests. Hopefully, this
facilitates progress on the long-standing challenge of con-
necting heavy-quarkonium observables to properties of the
finite-temperature QCD phase transition.
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APPENDIX: THREE-DIMENSIONAL REDUCTION
OF THE BETHE-SALPETER EQUATION

The Bethe-Salpeter equation forQ- �Q scattering with the
BbS three-dimensional reduction of the two-particle
propagator [19,51] reads, in the CM frame,

 M �E; ~q0; ~q� � V � ~q0; ~q� �
Z d3k

�2��3
V � ~q0; ~k�

m2

!k

�
��� ~k����� ~k�

s=4�!2
k � i�

M�E; ~k; ~q�; (A1)

where the invariant amplitudes M and V are actually
operators (truncated amplitudes) which act in the direct
product of the Dirac spaces of each fermion. The BbS
scheme, originally formulated for the nucleon-nucleon
(NN) interaction, exploits the following decomposition
of the single-particle propagator in terms of positive-
energy and negative-energy states,

 SF�k
0; ~k� �

m
!k

��� ~k�

k0 �!k � i�
�
m
!k

���� ~k�

k0 �!k � i�
:

(A2)

Consequently, the full four-dimensional two-particle
propagator, iSQ�k� P=2�S �Q�k� P=2�, is replaced by the
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following function:

 ��k0�
m2

!k

��� ~k����� ~k�

s=4�!2
k � i�

; (A3)

which has the same discontinuity across the right-hand cut
and puts the quark (antiquark) on the positive (negative)
energy shell, suppressing virtual antiquark (quark) contri-
butions. Note that, since both fermions are equally off-shell
the energy transfer at the interaction is zero (BbS neglects
retardation effects), and this allows for a description in
terms of a static potential, V� ~q0; ~q�, as done for instance in
the boson exchange model of the NN interaction [51].

One can take matrix elements in Eq. (A1)
between the appropriate Dirac spinors, ~T� ~V� 

�u� ~q� �v�� ~q0�M�V �u� ~q0�v�� ~q� (see Fig. 19 for kinemat-
ics), and then Eq. (A1) can be rewritten as (helicity indices
omitted)

 

~T�E; ~q0; ~q� � ~V� ~q0; ~q� �
Z d3k

�2��3
~V� ~q0; ~k�

m2

!k

�
1

s=4�!2
k � i�

~T�E; ~k; ~q�; (A4)

where we have used the following representation of the
energy projectors:
 

��� ~k� �

P

 u
� ~k� �u
� ~k�

2m
;

��� ~k� �
�
P

 v
�� ~k� �v
�� ~k�

2m
:

(A5)

The connection between ~T, ~V and the actual (static) po-
tential V and the T-matrix in Eq. (1) can be derived by

considering a tensor structure for ~V and performing a
nonrelativistic reduction of the resulting amplitude (for
instance consider ~V given by the Yukawa scalar-meson
exchange amplitude, which can be fully derived from the
Lagrangian, LS � gS ����). It turns out that ~V� ~q0; ~q� �
V� ~q0; ~q� �O�q2=m2�, with V related to the corresponding
potential in coordinate space by

 V�r� �
1

�2��3
Z
d3k ei ~k ~rV� ~k�; (A6)

and ~k � ~q0 � ~q. The partial-wave decomposition of the
potential (and of T) is given by

 V� ~q0; ~q� � 4�
X
l

�2l� 1�Vl�q0; q�Pl�cos	q0q�; (A7)

and then Eqs. (1) and (4) follow. The temperature depen-
dence is accounted for by introducing a �1� 2fQ� factor
for each two-particle loop, and the quark self-energy enters
the two-particle propagator by the replacement

 �s=4�!2
k � i��

�1 ! �s=4�!2
k � 2i!k Im���1 (A8)

in Eq. (A4), with !k satisfying the dispersion relation in
Eq. (3).
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