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We study the a0 and � mesons with the overlap fermion in the chiral regime with the pion mass as low
as 182 MeV in the quenched approximation. After the �0� ghost states are separated, we find the a0 mass
with the q �q interpolation field to be almost independent of the quark mass in the region below the strange
quark mass. The chirally extrapolated results are consistent with a0�1450� being the u �d meson and
K�0�1430� being the u�s meson with calculated masses at 1:42� 0:13 GeV and 1:41� 0:12 GeV,
respectively. We also calculate the scalar mesonium with a tetraquark interpolation field. In addition to
the two-pion scattering states, we find a state at�550 MeV. Through the study of volume dependence, we
confirm that this state is a one-particle state, in contrast to the two-pion scattering states. This suggests that
the observed state is a tetraquark mesonium which is quite possibly the ��600� meson.
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I. INTRODUCTION

Unlike pseudoscalar, vector, and tensor mesons, the
scalar mesons are not well known in terms of their SU�3�
classification, the particle content of their composition, or
their spectroscopy. Part of the problem is that there are too
many experimental candidates for the q �q nonet. Figure 1
shows the current experimentally known scalar mesons
whose number more than doubles that of a nonet. One
viable solution is that low-lying scalars, such as the
��600�, a0�980�, and f0�980�, are tetraquark mesoniums
whose classification and spectroscopy have been studied in
the MIT bag model [1] and the potential model [2].
Another suggestion is that a0�980� and f0�980� are K �K
molecular states [3]. Other candidates for tetraquark meso-
niums include vector meson pairs produced in �� reactions
[4] and hadronic productions [5] and the recently discov-
ered charmed narrow resonances [6].

Under the supposition that a0�980� and f0�980� are
tetraquark mesoniums on account of the fact that they are
favored by spectroscopy studies [1,2], small two-photon
decay widths [7], and the pattern of� and J=� decays [8],
the question remains: where is the isovector scalar q �q
state? From Fig. 1, we see that one candidate is
a0�1450�. However, in the conventional wisdom of the
quark model, its mass is too high. Not only is it higher
than a2�1320� and a1�1230�, in contrast to the spin-orbit
splitting pattern in charmonium, but it is even slightly
higher than K�0�1430� which contains a strange quark and
is believed to be the s �u or s �d meson in practically all the
models [9]. According to the quark counting rule, mesons
and baryons made up of strange quarks are expected to lie
higher than their counterparts with u=d quarks.

Notwithstanding the success of the quark potential model
in describing charm and bottom hadrons, its applicability
to light hadrons with SU�6� symmetry has been ques-
tioned, since chiral symmetry plays an essential role
[10,11] in light hadron dynamics. Might it be that the scalar
q �q meson is yet another challenge to the SU�6� quark
model’s delineation of light hadrons?

Lattice QCD is perhaps the most desirable tool to ad-
judicate the theoretical controversy surrounding the issue
and to reveal the nature of the scalar mesons. In fact, there
have been several calculations to study the a0 meson with
the �  interpolation field in the quenched approximation
[12–14] and with dynamical fermions [15–19]. In calcu-

FIG. 1 (color online). Spectrum of scalar mesons together with
�, �, a1, and a2 mesons.
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lations with relatively small quark masses, it is found that
the a0 mass does not change much below the strange quark
mass. Consequently, the chiral limit result is consistent
with a0�1450�. Furthermore, it is emphasized that the
would-be �0� ghost states give negative contributions to
the a0 correlator in both the quenched case [13] and the
partially quenched case [16] when the quark mass is lower
than the strange quark mass. Thus it is essential to take out
these quenched or partially quenched artifacts before one
can confidently obtain the a0 mass. In the case of �, a
calculation of the tetraquark mesonium with the
pseudoscalar-pseudoscalar four-quark interpolation field
[20] has been performed. From the deviation of the lowest
state mass from that of the expected two-pion scattering
state, it was suggested [20] that a bound mesonium state is
seen.

In the present work, we shall use the overlap fermion
[21] to calculate a0 and the scalar tetraquark mesonium.
The overlap fermion has the benefit of having exact chiral
symmetry at finite lattice spacing. Since chiral symmetry
plays a pivotal role in these mesons in chiral effective
theories (in particular, it is concluded in the recent disper-
sion analysis of �� scattering that the occurrence of � is
on the basis of ‘‘current algebra, spontaneous symmetry
breakdown, and unitarity’’ [22]), we believe it is desirable
to adopt a fermion action which explicitly exhibits the
spontaneously broken chiral symmetry at finite lattice
spacing.

For the study of a0, it is well known that there are �0�
ghost states in the quenched [13,14] and partially quenched
[16] cases. These ghost states become the physical �� and
�0� states in the full dynamical calculation without partial
quenching. Such physical two-meson states in full QCD
have been seen when the quark masses are light enough
[15]. Thus, in order to obtain a0�1450� and possibly
a0�980� in the quenched approximation, one needs an
algorithm which can fit multiple states including the �0�
ghost states which lie lower in mass than the I � 1 scalar
q �q below the strange quark mass region. We have devel-
oped a sequential empirical Bayes method (SEBM) for
constrained-curve fitting [23] to fit multiple states. This
is based on the constrained-curve fitting of lattice data with
Bayesian priors [24,25]. In the sequential empirical Bayes
method [23], one extracts the priors for the mass and
spectral weight from a subset of data by fitting the two-
point correlation function starting from the large time
separation. First, one fits the ground state in a time window
and then uses its fitted mass and spectral weight as priors to
fit the first excited state in an extended time window. The
process is repeated until time slices are exhausted. One
then does a constrained-curve fit to the rest of the data set
with the extracted priors. This method has been employed
to fit the Roper resonance, the radially excited nucleon, and
S11�1535� on top of the �0N ghost states [11]. It has also
been used in extracting radially excited states of 1P char-
monium [26].

It turns out that, for the range of quark masses that we
fitted, the three-volume dependence (from a comparison of
163 � 28 and 123 � 28 lattices) of the spectral weights of
the respective ghost �0N two-particle scattering state and
the bound one-particle baryon state come out in agreement
with expectation, as derived in Refs. [11,27]. We regard
this as a highly nontrivial test for the fitting method.
Similarly, in the study of the pentaquark state ���1540�,
we fitted the state in addition to the �0KN ghost state and
found from the volume dependence that it is in agreement
with the KN scattering state for a large range of quark
masses [27]. Through these studies, we are more confident
that the fitting method is capable of fitting multiple states
including the ghost states. It is of course limited by how
good the data are and how many states one can fit, given the
number of time slices of the lattice. We shall use this
algorithm in the present study of a0�1450� and ��600�.
The smallest pion we have is 182(8) MeV, which is sub-
stantially lower than most of the previous calculations of
a0; this allows us to study the behavior of a0 with the
pseudoscalar meson mass ranging from 1.3 GeV down to
182 MeV. This is important in revealing that the a0 mass is
very insensitive to the quark mass in the range from the
strange quark down to the physical u=d mass. This turns
out to have significant phenomenological implications on
the pattern of scalar mesons [28]. For the study of the ��
mesonium with the tetraquark interpolation field on our
lattice, it is crucial for the pion mass to be lower than
�300 MeV in order to be able to disentangle the ��
scattering states from the one-particle mesonium, in order
to reveal the nature of the fitted states from the tetraquark
correlator. Thus, for both the case of a0�1450� and of
��600�, it is essential to study them in the chiral regime
where m� is smaller than 300 MeV.

II. a0�1450� AND K�0�1430� MESONS

Our calculation is based on data from 163 � 28 and
123 � 28 lattices with 300 quenched Iwasaki gauge con-
figurations (� � 2:264) and overlap fermions with a lattice
spacing a � 0:200�3� fm determined from f��m��.
Accordingly, our lattice sizes are 3.2 fm and 2.4 fm, re-
spectively. We will discuss the scale determination from
the Sommer scale r0 later to assess the systematic error in
scale setting. A subset of these quark propagators was used
to study the quenched chiral logs in pion and nucleon
masses [29], the Roper and S11 [11], and the pentaquarks
[27].

There has been a concern that lattice spacing of 0.2 fm
may be too coarse for the overlap fermion and specula-
tion that the range of the overlap Dirac operator may be
as long as four lattice units [30]. However, direct
calculation [31] at lattice spacings of 0.2, 0.17, and
0.13 fm with Iwasaki gauge action reveals that the range
of the operator is comfortably small in each of these
cases (one lattice unit in Euclidean distance and two
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units in ‘‘taxi driver’’ distance, the latter being defined as
rTD 	 kx
 yk1 �

P
��1;4jx� 
 y�j) and it approaches

zero toward the continuum limit. Thus, we do not think
there is an issue regarding locality of the overlap operator
at 0.2 fm that we base our results on.

We first report results on a0 for which we use �  as the
interpolation field. Since a0 is an isovector, one only needs
to calculate the correlator with the connected insertion.
Shown in Fig. 2 are a0 correlators as a function of time
for nine quark cases with pion mass from m� �
182�8� MeV to m� � 764�5� MeV. It is seen that for
pion mass lower than �600 MeV, the a0 correlator starts
to develop a negative tail, and it is progressively more
negative at earlier time slices for smaller quark masses.
This is a clear indication that at least one of the ghost �0�
states, being lightest in mass, are dominating the correlator
over the physical a0 at larger time slices. This has been
reported in the literature for the quenched [13,14] and
partially quenched [16] calculations, where the ghost con-

tribution has been removed with the help of resummed
hairpin diagrams. The ghost �0� contribution in the a0

correlator has been studied in chiral perturbation theory
[13,16]. The one-loop hairpin diagram gives the following
contribution to the isovector scalar meson propagator:

 �h�p� �
1

V3T

X
k


4r2
0m

2
0

��p
 k�2 �m2
���k2 �m2

��
2 ; (1)

where V3 � LxLyLz is the three-volume of the lattice, r0 is
the coupling between the scalar interpolation field and the
�0 and � [13,16] or the matrix element h0j �  j�0�i, and
m2

0 � 2Nf	t=f2
� is the hairpin insertion mass which is

related to the topological susceptibility 	t in the pure
gauge theory.

The Fourier transform (FT) of the dimensionless �h�p�
for the case of ~p � 0 gives the following contribution to
the scalar meson correlator on the Euclidean lattice:

FIG. 2 (color online). a0 correlators from the �  interpolation field for several quark masses with corresponding pion masses in
MeV.

LATTICE QCD STUDY OF THE SCALAR MESONS . . . PHYSICAL REVIEW D 76, 114505 (2007)

114505-3



 

GS� ~p � 0� � FTfa2�h� ~p � 0�g

� 

r2

0m
2
0NT

2N3
S

X
~k

�1� E�t�

2E4
�

e
2E�t

� �t! NT 
 t�; (2)

where E� �
������������������
~k2
�m2

�

q
and the �1� E�t� factor is due to

the double pole of the would-be �0 ghost propagator in the
loop. NS and NT are the number of lattice points in the
space and time directions, respectively. The result for the
more general partially quenched case has been derived in
Ref. [16] and the corresponding expression for the would-
be �0 
 N one-loop contribution to the nucleon correlator
is derived in the study of Roper and S11�1535� [11].

We shall use the expression

 W�1� E�t�e

E�0�t; (3)

where W is referred to as the spectral weight in later
discussion, to model the fit of each ghost-state contribu-
tion. Here we allow the energy, E�0�, of the interacting
�0 
 � to be fitted to the data, but retain the double pole
character of the prefactor 1� E�t. This should be a good
approximation when the �0 
 � interaction is weak (N.B.
in the large Nc consideration, the meson-meson interaction
is of the order 1=Nc) so that the prefactor due to the double
pole in the would-be �0 propagator remains largely valid
when higher orders are included. We have used a similar
expression to fit the �0N ghost states in the nucleon and

S11�1535� correlators [11] and found that their spectral
weights have the correct three-volume dependence for
the range of quark masses we calculated. Thus, we shall
employ this form to fit the a0 correlator and, as a cross
check, we will examine if the 1=E4

� dependence in Eq. (2)
is borne out from the fit.

We use the above-mentioned SEBM [23] to perform the
curve fitting with the weightW of Eq. (3) constrained to be
negative, to reflect the ghost nature of the state as shown in
Fig. 2, and the total energy of the would-be �0 and �
constrained to be not far from the energy of the two non-

interacting pions, i.e. 2
�������������������
p2
n �m2

�

p
with discrete lattice

momenta pn � 2�n=La, n � 0;�1; . . . . In the course of
studying SEBM [23], we extracted the priors from a subset
of the data and applied them in a constrained fit of the rest
of the data; we found that the results were very compatible,
without detectable bias, with those obtained when the
priors were applied to the full data set. In the present
work, we extracted the priors from 100 gauge configura-
tions and applied them to a fit of the remaining 200
configurations; we find that the results are very close to
those obtained when the priors were applied to the full 300
configurations, except the latter had smaller errors. We
shall report the results based on the 300 configurations
here. For m� � 250 MeV on the 123 � 28 lattice, we
have been able to fit four states with the lowest one and
the third lowest one being the ghost �0� states which are
close to the noninteracting pair with each meson at zero
momentum, and one unit of lattice momentum (p1), re-
spectively. The second state has a positive weight and is
interpreted as the physical a0 with the usual exponential

FIG. 3 (color online). Fitted a0 correlators with a low-lying ghost �0� state for several quark masses.
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form e
Et. We show in Fig. 3 the fits to the a0 correlators
for several low quark masses.

Because of the fact that there are expected to be two to
three ghost states below the a0 on the 163 � 28 lattice, we
have, unfortunately, not been able to fit all of them to
extract the physical a0 with the SEBM fitting in this
case. There are not enough time slices to fit five states.
Otherwise, we could have compared the spectral weights
from the 123 � 28 and 163 � 28 lattices and checked the
expected volume dependence of the one-particle a0 and
two-particle �0 
 � states. However, we could and did
compare the ratio of the a0 correlators C12�t�=C16�t� be-
tween the 123 � 28 and the 163 � 28 lattices. As was
derived in the course of studying pentaquark states [27],
the spectral weight of a one-particle state in the point-sink

correlator is proportional to unity, whereas that of a weakly
interacting two-particle state is proportional to 1=V3. We
show the ratio of the a0 correlators C12�t�=C16�t� in Fig. 4
for the cases of m� � 764�5� MeV and m� �
182�8� MeV. In the case of the heavier pion, the ratio of
the correlators for the whole time range is close to unity.
This reflects the fact that there are no ghost states, so the
lowest state is just the scalar q �q meson and the ratio of the
spectral weights is independent of the volume. On the other
hand, the ratio for the m� � 182�8� MeV case is close to
�V3�12�=V3�16�

1 � 2:37 for t � 3, indicating that the
lowest state is the expected two-particle ghost �0� state.

In addition, we can check the 1=E4
� dependence in the

spectral weight W as suggested in Eq. (2). We adopted the
fitting form in Eq. (3) based on the premise that the higher
loop diagrams are not important. If the spectral weight
indeed exhibits the 1=E4

� dependence, it would lend sup-
port for such an assumption. We note that there are two
ghost �0� states below the physical a0 on the 123 � 28
lattice for pion mass below 250 MeV. In this case, the
lowest interacting would-be �0 and � scattering state is
close to the noninteracting pair with each meson at zero
momentum; the second is close to the noninteracting pair
with each meson having one unit of lattice momentum, i.e.
p1. We have been able to fit four states in the time window
from t � 12–13 to t � 2. The third state has a positive
weight and is interpreted as the physical a0 with the usual
exponential form e
Et. Plotted in the left panel of Fig. 5 is
the spectral weight W1 that we fitted for the lowest ghost
�0 
 � state as a function of the pion mass. We see that as
m� decreases, it is quite singular. We fitted with 1=E4

� from
the pion mass from 575 MeV down to 200 MeV. It is found
that one can obtain a good fit down to m� � 270 MeV.
Below�270 MeV, there is a deviation. This is presumably
due to the higher-order effect. Similarly, we plot the spec-
tral weight W2 in the right panel in Fig. 5. We see that it is
nonzero below m� � 250 MeV and its magnitude in-
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FIG. 4 (color online). Ratio of a0 correlators at 123 and 163

lattices for the cases of m� � 764�5� MeV and m� �
182�8� MeV. While the expected two-particle ghost �0� state
shows volume dependence at lower quark mass, the one-particle
a0 state does not show any volume dependence at higher quark
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creases as E� decreases. However, it does not increase
nearly as fast as 1=E4

�. We conjecture that we may not
have isolated the second ghost state in our SEBM fit and it
may have included a higher ghost contribution. Since the
second ghost state starts to show up belowm� � 250 MeV
where the fitted spectral weight W1 starts to deviate from
the expected 1=m4

� behavior, we do not quote results on a0

below m� � 250 MeV.
Given the caveats of the ghost-state fitting, we interpret

the second state from our resultant fit from the 123 � 28
lattice which has the ordinary exponential form in time and
positive spectral weight to be the physical a0. We plot its
mass as a function of the corresponding m2

� in Fig. 6
together with that of a1 for comparison. The latter does
not have ghost-state contamination and is thus easier to
calculate. We see that above the strange quark mass, a1 lies
higher than a0 as expected from the quark model of heavy
quarks. However, when the quark mass is smaller than the
physical strange quark mass, a0 levels off, in contrast to a1

and the other hadrons that have been calculated on the
lattice. This confirms the trend that has been observed in
earlier works at higher quark masses [12,13,16]. The chir-
ally extrapolated mass a0 � 1:42� 13 GeV suggests
that the meson a0�1450� is a q �q state. By virtue of
the fact that we do not see a0�980� which lies lower
than a0�1450�, we estimate the spectral weight ratio
h0j �  ja0�980�i2=h0j �  ja0�1450�i2 to be less than 0.015
from the relative error of the correlator in the time window
where a0 is fitted. We also calculated the K0�1430� mass
with the strange mass fixed atma � 0:26833 which gives a
vector meson mass corresponding to the � mass, and the
u=d extrapolated to the chiral limit. In this case, we also
need to fit and remove the ghost K�0 states due to the
hairpin diagram of the u=d quark. There is no ghost state
due to the s quark, since according to Fig. 2, no ghost state

is seen for quark mass greater than 1=4 of the physical
strange quark mass. As a result, we obtain the K0�1430�
mass at 1:41� 0:12 GeV and the corresponding scalar �ss
state from the connected insertion to be 1:46� 0:05 GeV.
Our findings are quite consistent with the experimental fact
that K0�1430� is basically degenerate with a0�1450�, de-
spite having one strange quark. This unusual behavior is
not understood as far as we know and it serves as a
challenge to the existing hadronic models.

It is known that the scale in the quenched approximation
is not determined uniquely. We note that if the Sommer
scale r0 � 0:5 fm is used for the scale, the lattice spacing
will be 12% smaller, i.e. a � 0:175�3� fm. As a result, all
the masses determined above will be �14% higher in the
r0 � 0:5 fm scale. The same is true with the following
calculation of the �� state and the tetraquark mesonium.

Since we do not see a0�980� in the a0 correlator with the
�  interpolation field, it leaves room for it to be something

other than a q �q state, e.g. a q2 �q2 state as suggested in
model studies. However, it is a challenge to verify it on the
lattice due to the complication that there is a threshold K �K
state nearby (within 10 MeV). Therefore, we shall study
the��600� first which, if present as a tetraquark mesonium,
is several hundred MeV above the �� threshold and sev-
eral hundred MeV below the next �� scattering state with
momentum close to p1. This is so, provided that the pion
mass is lower than�250 MeV, and it may present the best
hope of detecting such a state without the worry of entan-
glement with the collateral two-meson scattering states.
Since the lowest pion mass in our case is 182 MeV, we are
in a position to examine it.

III. ��600� MESON

The � meson was first postulated by M. H. Johnson and
E. Teller as a classical field to explain the saturation
properties and binding energies of nuclei; they estimated
a mass �500 MeV from the surface energy [32]. It has
been suggested that the � is partially responsible for the
enhancement of the �I � 1=2 decay in K ! �� [33].
Although it has been put back in the particle data table
on account of the D� ! �
���� experiment [34], its
experimental existence is still not fully settled due to the
complication that its large width is as large as its mass.
Recent dispersion analysis [35] using the Roy equation has
produced a resonance pole in �� scattering with high
precision. The mass is given as 441�16


8 MeV with a width
of 544�18


25 MeV. Lattice QCD, in principle, is capable of
resolving the issue about its existence.

Resonance can be viewed as a mixture of a bound state
and the scattering states in the usual potential model de-
scription of scattering and resonance. In a coupled channel
approach, one can couple a bound state in the continuum
with the scattering states via a coupling potential resulting
in a bound state leaking to the continuum with a shift in
mass and acquiring a width. On a hypercubic lattice with

 1
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FIG. 6 (color online). a0 and a1 masses are plotted as a
function of m2

�. Also shown is the two-pion mass (dashed line)
which becomes lower than a0 around the strange quark mass
region.
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periodic boundary conditions, the available momenta are
pn � n 2�

La ; n � 0;�1;�2; . . . and therefore the one- and
two-meson spectra for a certain quantum number are dis-
crete. Imagine that one considers a very large box where
the two-meson spectrum has closely spaced levels. When
one looks at the spectral weights of the correlator in the
channel with a specific quantum number, there will be
envelopes of states with enhanced spectral weights which
are the result of the mixture of a bound state and the nearby
scattering states. They are the finite box representation of
the resonances in the continuum. The ‘‘width’’ of the
structure would reflect how far apart in energy the mixing
takes place. If we start to decrease the size of the box, the
spectrum is going to be less dense and states would be
further apart from each other. The number of states under
the envelope diminishes. When the box is small enough so
that the scattering states are spaced enough apart that none
are expected to lie under the envelope, then only the bound
state remains and thus can be identified as such. By being
‘‘far enough apart’’ we mean that we can define the sepa-
ration of the scattering states � to be several times greater
than the width � of the structure, i.e. �� �. In this case,
the bound state and the scattering states are not mixed and
they will each have a different volume dependence in their
spectral weights. Comparing the spectral weights of the
same unmixed state in two lattice volumes is an effective
way of revealing the one- or two-particle nature of the state
[11,27] when the interpolation field projects to both the
bound and scattering spectra in the correlator with a defi-
nite quantum number. This is our approach of identifying,
through the volume study of their spectral weights, both a
bound tetraquark state (the �) and a two-pion scattering
state, which are reasonably well separated and unmixed.

Experimentally, � is a very broad state with a width of
544 MeV according to the recent dispersion analysis [35].
It is natural to ask if it is ever possible to delineate it with a
lattice calculation in Euclidean space. To answer this, we
shall reverse the above discussion on the existence of the
bound state. Suppose one finds a bound state in addition to
the scattering states which are outside the width of the state
at a relatively small volume. To gain information about the
scattering phase shift and hence the real width, we now
increase the box size. As the box size is increased, the
energies of the scattering states will be lowered since the
value of the discrete momenta decreases. When the scat-
tering state above the bound state is lowered to within the
range of the width, it mixes with the bound state (this
actually defines the range of the width) and the two states
avoid the level crossing. From the energy of the scattering
state one can deduce the scattering phase shift using the
Lüscher formula [36–40]. This is valid for elastic scatter-
ing irrespective of how broad the state is. This is studied in
detail in a 2-D lattice model [38] and a spin model [39],
which illustrate how the scattering state mixes with the
bound state and gives rise to the phase shift as the volume is

increased. In a sense, by varying the lattice volume, hence
the momentum, one can use a scattering state to mix with
the bound state and scan the spectrum to obtain the phase
shift and therefore the width of the resonance. The infor-
mation of the width can also be obtained by determining
how far apart in energy the scattering and bound state start
to avoid the level crossing.

In the present manuscript, we are only concerned about
the existence of � and will leave the study of its width to
the future. In this vein, we have chosen the lattice size such
that the two lowest �� scattering states are expected to be
more than half of the experimental width, i.e. 272 MeV,
away from the expected � mass at �600 MeV. If this
expected result is borne out, we can use the volume test
to discern the particle content of the states and thereby
distinguish the bound � from the two-pion scattering
states. This is basically our strategy to seek the existence
of �.

To confirm the existence of ��600� beyond doubt, one
needs to identify both the tetraquark mesonium and the
collateral �� scattering states. Second, one needs to work
on a lattice where the scattering states and the bound state
are well separated (e.g. further apart than half of the width
of the ‘‘would-be’’ resonance) to avoid admixture; this is in
order to discern the nature of these states separately to
make sure that � is indeed a one-particle state, not a two-
particle scattering state. To this end, we used the adaptive
Bayes curve-fitting method [23] as described above to fit
the ground state and the excited states of the tetraquark
correlator with a local interpolation operator � �5 � �5 
for both the source and the sink. We note that it does not
matter what interpolation field one uses for the calculation,
as long as it has overlap with the states of the correspond-
ing quantum number. Being local, the pseudoscalar-
pseudoscalar operator that we adopt will have vector-
vector, scalar-scalar, � � � components after Fierz transform.
This aspect has been discussed in the calculation of the
exotic I � 2 �� states [41]. It is also shown in the penta-
quark study that different interpolation fields are related
through Fierz transform [27] and the masses from these
interpolation fields were verified to be the same in a lattice
calculation [42]. Unlike in the a0 correlator, there are no
�0� ghost states to worry about in this tetraquark channel.
As in Ref. [20], we consider only the connected insertion,
not the single and double annihilation insertions. They are
likely to preferentially project to the higher q �q and glueball
states [20]. To verify this, we use two point sources at t0 �
0 and t0 � 8 and a zero-momentum wall source in the
Coulomb gauge at t � 14 to calculate the disconnected-
insertion correlator at time separations t
 t0 � 0, 6, and
14, and found that they are an order of magnitude smaller
than the corresponding connected-insertion correlator.
This shows that the annihilation diagrams are not likely
to change the results of the connected insertion qualita-
tively. We present our results on the 123 � 28 lattice in
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Fig. 7 as a function of m2
� for the pion mass range from

182 MeV to 250 MeV. We have fitted three states so that we
can trust the results of the two lower ones. The lowest one
is about 100(20) to 60(10) MeV below the �� threshold.
This is most likely the interacting state of two pions with
energy close to and below that of two noninteracting pions
at rest, since the interaction is attractive in the I � 0
channel. It is shown that the energy shift of two interacting
particles in a finite box can be related to the infinite volume
scattering length below the inelastic threshold in a system-
atic 1=L expansion [36]. In particular, for two spinless
bosons with mass m at rest, one has

 �E � E
 2m � 

4�a0

mL3

�
1� c1

a0

L
� c2

�
a0

L

�
2
�

(4)

where c1 � 
2:873 and c2 � 6:3752 from one-loop cal-
culation [36]. However, it is pointed out [43] that there are

would-be �0 hairpin diagram contributions at the one-loop
order for �� scattering, which spoils the relation between
�E and the scattering length a0 in Eq. (4). It has L0 and L2

terms in the I � 0 channel in addition to the leading 1=L3

term in Eq. (4). Since our calculation is done in the
quenched approximation, using the full QCD one-loop
chiral perturbation formula [36] to extract the scattering
length of �� scattering from the energy shift in the finite
box channel is not applicable. We shall, instead, compare
our results to that derived in quenched chiral perturbation
theory. The quenched one-loop �� scattering energy shift
in the finite box, which includes the hairpin diagrams, has
been derived [43]. The energy shift is

 �E � E
 2m� � �Etree � �Eone-loop (5)

where the tree-level result for the I � 0 channel is

 �Etree �

7

4f2
�L

3 ; (6)

with f� � 132 MeV at the physical pion mass, and the
one-loop result is given [43] as

 �Eone-loop � m�

�
B0�m�L�
2 � A0�m�L�
�

�O
�

�2

�m�L�3

��
; (7)

where

 
 	
m2

0=3

8�2f2
�
; � 	

m2
�

16�2f2
�
: (8)

We interpolate B0�m�L� and A0�m�L� listed in Ref. [43]
for the range of m�L appropriate for our calculation on the
123 � 28 and 163 � 28 lattices and plot �E for 
 � 0:10,
0.15, and 0.18, which cover the range of 
 corresponding to
the Witten-Veneziano formula for the �0 mass and from the
study of quenched chiral log in the pseudoscalar meson
masses [29]. The results are presented in Fig. 8 together
with our data on the 123 � 28 lattice (left panel) and the
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163 � 28 lattice (right panel) from the lowest state in our
calculation, which we believe is the two-pion scattering
state. We see that our data are reasonably consistent with
the one-loop quenched chiral perturbation calculation [43]
for the range of 
, i.e. from 0.10 to 0.18, especially for
m�L � 2:8 for the 123 � 28 lattice and m�L � 3:5 for the
163 � 28 lattice. This is true despite the fact that we have
not included the disconnected insertion in our calculation.
This is consistent with our earlier finding that the discon-
nected correlator is about an order of magnitude smaller
than the connected one at several time separations.

We note that the tree-level energy shift in Eq. (6) is the
same in quenched and full QCD. If the energy shift from
the loop is small compared to the tree result in both the
quenched and full QCD, then the quenched energy shift in
Eq. (5) would agree with the full QCD case in Eq. (4). To
this end, we plot the energy shift from Eq. (4) with the tree-
level scattering length aI�0

0 � 7m�

16�f2
�

in Fig. 8 and find that it

is about a factor of 2 to 3 smaller than our data in the low
m�L region. This shows that the loop contribution in the
quenched case is enhanced compared to that in full QCD
and not small compared to the tree part, and thus one
cannot apply the full QCD relation in Eq. (4) to obtain
the scattering length. One can only compare the energy
shift to that of the quenched chiral perturbation theory as
was done in the last paragraph.

The third state in Fig. 7 with a large error bar is about
1 GeVabove the lowest state. The fact that it is higher than
the energy of the noninteracting two-pion state (each pion
with momentum p1 � 524 MeV), as indicated by the
higher solid line, is an indication that the highest fitted
state is always higher than the true state, as it inevitably
includes the unfitted higher states and hence cannot be
taken as a good signal for a definite state.

One interesting aspect of the spectrum is that there is an
extra state between the lowest �� scattering state and the
third state which presumably encompasses the higher scat-
tering states. It has a sizable spectral weight, as large as that
of the lower �� scattering state. The mass is around
600 MeV. It is tantalizing to identify it with ��600�. To
verify this, we study the volume dependence of the spectral
weight of these states. It was advocated in the study of the
Roper resonance, the pentaquark, and the ghost state
[11,27] that one efficient way of distinguishing a one-
particle state from a two-particle scattering state in a finite
box is to study the volume dependence of its spectral
weight. From the normalization factor of 1=

������
V3

p
for a

particle in a box and the way the correlator is constructed,
i.e. with a point source and a zero-momentum sink, the
spectral weight of a one-particle state does not explicitly
depend on volume, whereas the spectral weight of a weakly
interacting two-particle state has an explicit 1=V3 depen-
dence [27]. This is true when the one-particle state is
reasonably separated from the scattering states so that the
mixing of the two states is not strong enough to spoil the

characteristic volume dependence of their respective spec-
tral weights. Since we have two lattices with sizes 123 �
28 and 163 � 28, the spectral weight ratio for a two-
particle state should be W12=W16 � V3�16�=V3�12� �
163=123 � 2:37. Plotted in Fig. 9 are the ratios of the
spectral weights for the lowest state in Fig. 7 and the first
excited state around 600 MeV. We see that the spectral
weight ratio W12=W16 for the lowest state clusters around
2.37, confirming our speculation that it is the interacting
two-pion state. On the other hand, the spectral weight ratio
W12=W16 of the excited state near 600 MeV turns out to be
consistent with unity. This suggests that this state is a one-
particle state, not a �� scattering state, and strongly sup-
ports the identification of it to be the ��600�. Furthermore,
by virtue of the fact that the ratios of spectral weights of
these two low-lying states are consistent with unity and
V3�16�=V3�12�, it suggests that the mixing of the two
states, if any, is small. In other words, the two states with
an energy separation of �300 MeV are reasonably well
separated compared to half of the decay width of ��600�.
Extrapolated to the chiral limit, the mass of the one-particle
state is 540� 170 MeV.

There have been concerns that the zero mode contribu-
tions which are finite volume effects may contaminate the
results when the volume is small for the quark mass under
study. In the case of the chiral condensate, the zero modes
can be avoided by doubling the contribution from the chiral
sector, which does not have zero modes [44]. For the pion
mass calculation, the zero modes can be removed by con-
sidering the correlator of the pseudoscalar-pseudoscalar
(PP) and scalar-scalar (SS) combination hPPi 
 hSSi
[45,46]. We have studied the zero mode contributions to
the pion mass calculation on the same set of lattices used in
the present study [29] by comparing the pion mass from the
hPPi correlator and the hPPi 
 hSSi correlator and found
that there is no difference in the pion masses within errors.
We concluded that the volume is large enough for this
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FIG. 9 (color online). Spectral weight ratio W12=W16 as a
function of m2

� for the lowest state (filled circle in Fig. 7) and
the next lowest state (filled square in Fig. 7).
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lattice that the zero mode contribution is less than the error
for the range of quark mass studied. In the present study of
a0�1450�, K�0�1430�, and ��600�, we do not see any in-
dication of mass divergence for small quark masses. We
thus believe that the zero mode contributions are within
errors in the connected insertions.

Although the lattice study of tetraquark states started
some time ago [20,41,47,48], we believe this is the first
time that both the one-particle state and its concomitant
scattering state are identified and their nature verified
through the volume dependence of the spectral weights.
Short of such identification, we do not think one is able to
rigorously confirm the existence of the tetraquark
mesonium.

Finally, we note that the calculation of the tetraquark
state with the � �5 � �5 interpolation field has first been
attempted [20]. It was found that in the I � 0 channel, the
ground state is lower than the expected two-interacting-
pion state from chiral perturbation theory and is interpreted
as a bound state—a tetraquark mesonium. However, in this
analysis the full QCD formula in Eq. (4) was employed,
which we pointed out earlier is not applicable to quenched
calculations. If the quenched chiral perturbation calcula-
tion [43], which has a different lattice length dependence,
is used one might come to a different conclusion.

IV. CONCLUSION

To conclude, we calculated the isovector a0 with the �  
interpolation field and ��600� with the tetraquark interpo-

lation field. With the overlap fermion, we have come down
in the chiral region with very low pion mass [182(8) MeV]
in the quenched approximation. After removing the fitted
�0� ghost states, we found the lowest a0 at 1:42�
0:13 GeV and K�0 at 1:41� 0:12 GeV, which are consis-
tent with the experimental a0�1450� and K�0�1430� being
the q �q states and confirm the earlier findings in quenched
and partially quenched calculations at higher quark
masses. In addition, we have been able to fit the I � 0
scalar tetraquark correlator and have identified, through the
volume study of their spectral weights, both the lowest
interacting two-pion state and a one-particle state at 540�
170 MeV. This suggests that ��600� does exist as a parti-
cle and it is a tetraquark mesonium. This is consistent with
the recent dispersion relation analysis of �� and K �K
scattering with the Roy equation, which has led to the �
pole at 441�16


8 MeV with a width �� � 544�18

25 MeV [35].

Further lattice calculations with a dynamical fermion in the
chiral region with m� < 300 MeV are needed to check
these results.
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