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The potentials between two B mesons are computed in the heavy-quark limit using quenched lattice
QCD at m� � 400 MeV. Nonzero central potentials are clearly evident in all four spin-isospin channels,
�I; sl� � �0; 0�, (0, 1), (1, 0), (1, 1), where sl is the total spin of the light degrees of freedom. At short
distance, we find repulsion in the I � sl channels and attraction in the I � sl channels. Linear
combinations of these potentials that have well-defined spin and isospin in the t-channel are found, in
three of the four cases, to have substantially smaller uncertainties than the potentials defined with the
s-channel �I; sl�, and allow quenching artifacts from single hairpin exchange to be isolated. The BB��
coupling extracted from the long-distance behavior of the finite-volume t-channel potential is found to be
consistent with quenched calculations of the matrix element of the isovector axial-current. The tensor
potentials in both of the sl � 1 channels are found to be consistent with zero within calculational
uncertainties.
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I. INTRODUCTION

Nuclei and nuclear processes can be described with
remarkable precision by treating the nucleons as nonrela-
tivistic particles interacting via a local potential. The
wealth of nucleon-nucleon (NN) scattering data has en-
abled the construction of precise phenomenological poten-
tials, defined up to unitary transformations, which are used
to calculate the spectra of the light nuclei. As expected
from QCD, the two-body potentials alone are insufficient
to reproduce the spectra, but when supplemented with
three- and four- (and higher) body interactions successfully
reproduce the structure of light nuclei [1,2]. During the last
15 years or so, immense effort has been put into developing
an effective field theory (EFT) to describe the interactions
between nucleons [3,4], and to allow for a systematic
improvement of nuclear physics phenomenology using
the approximate chiral symmetry of QCD. The values of
the counterterms that appear at a given order in the EFT
expansion have to be obtained from experiment or lattice
QCD. In situations where experiments are not possible,
lattice QCD is the only rigorous calculational technique
with which to determine such counterterms. Recently, NN
scattering [5] and hyperon-nucleon scattering [6] have
been calculated at finite lattice spacing with fully dynami-
cal lattice QCD using the mixed action approach by mea-
suring the finite-volume shifts of two particle energies
[7,8].1 Because of limited computational resources, the

calculations were performed at unphysical pion masses,
m� * 350 MeV, at the upper limits of the range of appli-
cability of the EFTs (we note also that gauge configura-
tions generated with the fourth root trick were used). Until
the computational resources for lattice QCD calculations
are significantly greater than presently available, it will not
be possible to calculate NN scattering parameters at a large
number of different energies and then construct NN poten-
tials in the same way that NN cross section measurements
are processed. However, in addition to extracting the NN
phase-shifts at various moments, one can hope to learn
qualitative information about the EFT describing NN in-
teractions by performing lattice QCD calculations of sys-
tems that are similar.

In this work we study the potential between two B���

mesons in the heavy-quark limit [10–13],2 a limit in which
the potential is a well-defined object. B mesons are
isospin- 1

2 hadrons, and in the heavy-quark limit the spin
of the light degrees of freedom (ldof) becomes a good
quantum number, sl �

1
2 , as spin-dependent interactions

with the heavy quark are suppressed by 1=mb. At distances
which are large compared with the chiral symmetry break-
ing scale, ��, the EFT describing the interactions between
two B mesons is the same as that between two nucleons as
the isospin-spin quantum numbers are the same. The dif-
ferences between the two EFTs are in the values of the
counterterms. At distances that are of order, or shorter than
�� the interactions between two B mesons will be arbi-

1Recently [9], a source-dependent and energy-dependent po-
tential has been calculated with quenched lattice QCD. This
potential can be used to determine the quenched phase-shift at
one energy, and contains the same information as can be ex-
tracted using the method of Refs. [7,8].

2The B and B� mesons are degenerate in the heavy-quark limit
and henceforth we will use B meson to denote the B and B�

supermultiplet.
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trarily different from that between two nucleons as the
structure of the hadrons are very different, and, in particu-
lar, that strong-Coulomb interaction between the heavy
quarks becomes dominant, behaving as ���r�1�=r as the
separation, r! 0.

In addition to providing insight into the NN potential,
the potentials between B mesons are interesting in their
own right. A precise determination of the potentials be-
tween two B mesons will allow for investigations of pos-
sible shallow bound states. These would be molecular
tetraquark states, similar to the deuteron in the NN sector.
The location of such molecular states would be very sensi-
tive to the potentials (due to the fine-tunings) and as such,
quenched calculations at the unphysical pion mass would
in general provide unreliable results.

Lattice calculations of the potentials between two B
mesons in the heavy-quark limit have been performed
previously [14–24]. However, given the large statistical
uncertainties in those calculations, the potentials remain
largely unexplored. We have chosen to work in a relatively
small lattice volume in order to explore the intermediate
and short-distance components of the potential, but this is
at the expense of having contributions from image pairs
somewhat mask the long-distance component. Further, we
have attempted to extract the tensor potentials in the sl � 1
channels, but have not found results that are statistically
different from zero. Because of limited computational
resources, we have performed quenched calculations and
have used only a single lattice spacing and volume. Lattice
perturbation theory at finite volume is used to remove the
leading (and divergent) O��s=b� contributions, obtaining a
potential with O�b� and O��2

s=b� lattice-spacing uncer-
tainties (where b is the lattice spacing). However, calcu-
lations at smaller lattice spacings are required in order to
determine the potentials in the continuum precisely. It is
important to stress that the long-distance component of the
potential computed in quenched QCD is polluted by the
presence of ‘‘one-hairpin exchange’’ (OHE), as discussed
in Ref. [25], which becomes dominant at large distances
due to its exponential falloff, as opposed to the Yukawa-
type behavior of one-pion exchange (OPE). However, the
OHE contribution can be isolated by defining potentials
with well-defined t-channel spin-isospin quantum num-
bers. In three of the t-channel potentials, quenching arti-
facts are expected to be higher order in the quenched EFT
expansion. Using these finite-volume t-channel potentials,
we are able to investigate the long-range part of the
infinite-volume potential and extract a BB�� coupling
consistent with that measured in quenched lattice calcula-
tions of axial matrix elements.

The outline of our paper is as follows. In Sec. II, we
discuss the numerical implementation of our calculation.
Sections III and IV present our single particle results for
the heavy hadron spectrum, including exotic states.
Section V presents the main results of our work, the BB

potentials in the various channels. These results are then
discussed in Sec. VI. In Appendix A we provide details of
the perturbative lattice calculations needed in this work.

II. DETAILS OF THE LATTICE CALCULATION

Our calculations were performed using 284 quenched
configurations of dimension 163 � 32 generated with the
DBW2 action [26,27] for � � 1:04, giving a lattice spac-
ing of b � 0:0997� 0:0015 [28]. On each of these con-
figurations, eight Wilson light-quark propagators, equally
spaced in the time direction and offset in space, were
generated from smeared sources to determine the light
hadron spectrum. The light-quark mass selected gave rise
to a pion mass of m� � 402:5� 6:7 MeV, and the other
hadron masses that are shown in Table I. The finite lattice
spacing and finite-volume effects have not been removed
from these masses and are expected to be a few percent
[29].

In order to compute the potential between two Bmesons
separated by lattice vectors r � b�n; 0; 0�, b�0; 0; n� for
n � 0; . . . ; 8 and additionally by r � b�1; 1; 0�, b�2; 1; 0�,
Wilson light-quark propagators were generated from
smeared sources on one time slice located at each point
in the x-z plane on two adjacent spatial slices in the
y-direction on each gauge configuration. Therefore, a total
of �1:4� 105 light-quark propagators were generated.
This choice of lattice separation vectors was dictated by
the available computational time, and not by physics. The
calculations were performed on a 16-node dual-Xeon clus-
ter and a number of workstations. The total computational
cost of this work was �40 Gflop-yrs.

In the heavy-quark limit, the heavy-quark propagator is
the tensor product of a Wilson line and a positive-energy
projector,

 SQ�x; t; t0� �
�
1	 �4

2

� Yt
t0�t0

U4�x; t0�; (1)

whereU��x� are the gauge link variables and the product is
time ordered. Our Dirac matrices use the Euclidean Dirac
convention. The light-quark propagator, S�x; t; y; t0�, is
generated with the unimproved Wilson action, thereby
introducing O�b� discretization errors. It is generated
from a gauge-invariant Gaussian smeared source.

TABLE I. The masses of the light hadrons at finite lattice
spacing and finite volume.

Quantity bM M [MeV]

m� 0:2034� 0:0015 402:5� 6:7
m� 0:3754� 0:0080 743� 19
mN 0:5756� 0:0080 1139� 23
m� 0:6770� 0:0095 1340� 28

m� �MN 0:102� 0:014 201� 27

WILLIAM DETMOLD, KOSTAS ORGINOS, AND MARTIN J. SAVAGE PHYSICAL REVIEW D 76, 114503 (2007)

114503-2



To determine the single particle energies of the heavy
hadrons, the correlators

 CB�t; t0� �
X

x
Tr
SQ�x; t; t0�Sy�x; t; x; t0��H�x�; (2)

 

C�b=�b
�t; t0� �

X
x
Sk
0k
Q;���x; t; t0�	

ijk	i
0j0k0 �Sii

0
�x; t;x; t0�����

���Sjj
0
�x; t;x; t0����H�x�; (3)

were computed, where the Dirac matrices are � � C�5,
C�i for the �b and �i

b, respectively. The trace is over color
and spinor indices, and the function H�x� is unity if a
heavy-quark source was placed at the point x, and vanishes
elsewhere. In the baryon correlators, upper indices label
color and lower Greek indices label spin.

In order to measure the potential, we computed the
correlators CI;sl�t; t0;

~~r� given by

 C0;0�t; t0;~r� �
X

x

A�1�0 � A

�2�
0 �H�x�; (4)

 C1;0�t; t0;~r� �
X

x

A�1�0 	 A

�2�
0 �H�x�; (5)

 C0;1�t; t0;~r� �
1

2

X
x

A�1�	 	 A

�1�
� � A

�2�
	 � A

�2�
� �H�x�; (6)

 C1;1�t; t0;~r� �
1

2

X
x

A�1�	 	 A

�1�
� 	 A

�2�
	 	 A

�2�
� �H�x�; (7)

where
 

A�1�0 � trD
trC�S
y�x; t; x	 r; t0�SQ�x; t; t0��

� �0trC
SfSy�x	 r; t; x; t0�SQ�x	 r; t; t0�g�T�T0 �;

(8)

 

A�2�0 � �tr
SfSy�x; t; x	 r; t0�SQ�x	 r; t; t0�g

� �0
S
y�x	 r; t; x; t0��TSQ�x; t; t0��0�; (9)

 

A�1�� � tr
��SQ�x; t; t0�Sy�x; t; x; t0��

� tr
��SfSy�x	 r; t; x	 r; t0�SQ�x	 r; t; t0�g�;

(10)

 

A�2�� � �tr
SQ�x; t; t0�SfSy�x; t; x	 r; t0�SQ�x	 r; t; t0�g

� ��S
y�x	 r; t; x; t0����; (11)

�0 �
1
2 �1	 �4��5 and �� �

1
2 �1� i�1�2��1	 �4� and

trC, trD, and tr indicate traces over color, spin, and both.
Here Sf. . .g indicates translation of the propagators by the
lattice vector�r and the transpose T denotes spin transpose
only. The different contributions to the various correlators,

A�1�0;� and A�2�0;�, correspond to the two contractions shown in
Fig. 1.

For each correlator, we determine the ground state en-
ergy by seeking plateaus in the ensemble jackknife average
of the effective energy,

 bEI;sl�t� t0� � log
�CI;sl�t� 1; t0�

CI;sl�t; t0�

�
: (12)

III. THE HEAVY HADRON SPECTRUM

In the heavy-quark limit, the mass of the B meson is

 MB � mb 	
��1=2;1=2 	O�1=mb�; (13)

where mb is the heavy-quark mass and ��I;sl denotes the
energy of the ldof with total isospin I and spin sl. To
determine ��1=2;1=2 from lattice calculations, the energy,
E1=2;1=2, of a meson composed of a Wilson line (static color
source) and a light antiquark is computed using Eqs. (2)
and (12). This by itself does not isolate ��1=2;1=2, as the
interactions of the static source with the gauge fields gen-
erate a residual mass [30] for the heavy quark, 
m, which
while vanishing in dimensional regularization, is nonzero
on the lattice and scales as 1=b with the lattice spacing
[31]. Therefore, both E1=2;1=2 and 
m diverge as 1=b, but
the difference between them is finite in the continuum
limit, and is ��1=2;1=2,

 

�� 1=2;1=2 � E1=2;1=2 � 
m; (14)

and more generally, ��I;sl � EI;sl � 
m.
The residual mass of the static source has been com-

puted previously out to the two-loop level in quenched
lattice perturbation theory for the Wilson action [32]. At
the one-loop level, the residual mass for a gauge action, f,
is given by
 


m���f �
�����

3�2b

Z �

��
d~qx

Z �

��
d~qy

�
Z �

��
d~qzG

�f�
00 �q̂x; q̂y; q̂z; 0�

�
�����
b

S�f�; (15)

(a) (b)

FIG. 1. Disconnected and connected quark contractions con-
tributing to the correlation functions in Eqs. (4)–(7). Heavy and
light lines correspond to the heavy and light-quark propagators,
respectively.
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where q̂� � 2 sin�~q�=2�, and ~q � qb is dimensionless.

G�f�00 �k̂x; k̂y; k̂z; k̂t� is the lattice gluon propagator for the
particular gauge action, f. This has the form
G�Wilson�

00 �k̂x; k̂y; k̂z; k̂t� � 1=k̂2 for the Wilson action, but
is considerably more complicated for improved actions,
such as the Lüscher-Weisz (LW) [33,34], DBW2 [26,27],
and Iwasaki [35] actions. For these actions, the form of the
propagator was presented in Refs. [36,37] and involves an
improvement coefficient, c1, with cLW

1 � �1=12,
cDBW2

1 � �1:406 86, and cIwasaki
1 � �0:331 (for a recent

review of lattice perturbation theory, see Ref. [38]). The
quantity S�f� has been computed previously for the Wilson
action, S�Wilson� � 2:1173, and for the improved actions we
find that S�DBW2� � 0:6921, S�LW� � 1:8335, and
S�Iwasaki� � 1:3598 (we have used the corrected gluon
propagator of Ref. [37] so these numbers differ from those
presented in Ref. [39] where an uncorrected propagator of
Ref. [36] was used). At the one-loop level, the choice of
scale is not well defined, but as the only scale in the lattice
calculation is the lattice spacing, it is convenient to use
� � 1=b.3 Therefore, at the one-loop level, and using
���2 GeV� � 0:299� 0:015,4 we have 
m���DBW2 � 410�
21 MeV for the DBW2 action.

One can make an improved estimate of the residual mass
term by using the Brodsky-Lepage-Mackenzie (BLM)
scale-setting procedure [40], which includes the part of
the two-loop contribution arising from the running of the
strong coupling over the momenta in the one-loop diagram.
This BLM-improved residual mass is given by5

 
m��	�
2��

f �
�����
b

S�f� �
��2����

4�b
T �f����; (16)

where
 

T �f���� �
1

3�2

Z �

��
d~qx

Z �

��
d~qy

�
Z �

��
d~qzG

�f�
00 �q̂x; q̂y; q̂z; 0�

� log
�q̂2

x 	 q̂
2
y 	 q̂

2
z

�2b2

�
; (17)

and � � 11 for quenched QCD. The ��2� term in Eq. (16)
can be perturbatively removed by defining the BLM scale,

q��f�, such that log�q��f�b� � T �f��b�1�=�2S�f��, and there-
fore,

 
m��	�
2��

f �
��2�q��f��
b

S�f�: (18)

For the Wilson action, we find T �Wilson��b�1� � 1:562
which produces a BLM scale q��Wilson� � 1:446=b that
has previously been shown to accurately estimate the full
two-loop result for the residual mass using the MS cou-
pling [32].6 For the improved actions, we find that
T �DBW2��b�1� � �0:239, which leads to q��DBW2� �

0:841=b, T �LW��b�1� � 1:121, which leads to q��LW� �

1:358=b and for the Iwasaki action, T �Iwasaki��b�1� �

0:437, which leads to q��Iwasaki� � 1:174=b. Therefore, us-
ing ���q��DBW2�� � 0:326� 0:018, the BLM-improved es-
timate of the residual mass for our DBW2 lattices is


m��	�
2��

DBW2 � 447� 25 MeV. The systematic error on
the residual mass comes from the uncertainty of
���q��DBW2��; since the BLM procedure includes the
�-enhanced part of two-loop contributions, this is reason-
able although one could also take this error to be the

difference between 
m��	�
2��

DBW2 and 
m���DBW2.
In Table II we present the extracted lattice energies and

resultant energies of the ldof for the B meson and the �b
and �b heavy baryons. The effective mass ratios corre-
sponding to these measurements are shown in Fig. 2. The
statistical errors are determined by the jackknife proce-
dure, omitting a single configuration at each evaluation.
Further, a bootstrap analysis was also performed on the
data, with both techniques providing similar central values
and uncertainties. We have fit both one and two time-
dependent exponentials to the correlation functions in
order to extract the ground state energy. The fitting was
performed by �2-minimization, taking into account corre-
lations between different time slices. The differences be-
tween the extracted ground state energies from these
procedures is encapsulated in the systematic error. The
fitting range quoted in Table II is that used in fitting a
single exponential to the correlation function. This range

3Perhaps a better estimate would be � � �=b as that is the
maximum momentum in the one-loop diagram. The typical
momenta in the one-loop diagram are expected to be somewhat
less than this.

4The strong coupling on these DBW2 lattices has been deter-
mined to be ���b�1� � 0:154 in the MS-scheme [39], signifi-
cantly smaller than the experimentally constrained value of
���2 GeV� � 0:299� 0:015. This suggests that the perturbative
relation between the value of the plaquette and the strong
coupling is only slowly convergent.

5Our definition of the improved residual mass is different than
that in Ref. [31] but agrees with Ref. [32].

6At finite lattice spacing, the definition of the BLM scale
becomes ambiguous as the two-loop contributions that the
BLM procedure is attempting to resum become dependent on
the details of the discretization. In particular the continuum
log�j ~qj2� becomes a complicated function of the lattice momenta
and improvement coefficients. A full two-loop calculation will
be required to determine the efficacy of our BLM estimate using
���q�� for the improved actions and a priori there is no reason to
assume the agreement found for the unimproved Wilson action
persists in these cases. As an indication of possible lattice
artifacts in the definition of T we have also computed ~q��f� by
replacing log�jq̂j2� ! log�j ~qj2� in Eq. (17), finding ~q��Wilson� �
1:671=b, ~q��DBW2� � 0:918=b, ~q��LW� � 1:552=b, and
~q��Iwasaki� � 1:318=b. Similar perturbative shifts in the BLM
scale are induced by self-consistently evaluating T at the scale
q��f�.
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was determined by examining fits for different values of
the starting time slice, and looking for stability over a
number of time slices. Differences in the extracted energies
resulting from varying the fitting intervals are also incor-
porated into the systematic error. To eliminate uncertain-
ties common to the energies of two different hadrons, we
formed the correlated differences between the energies of
the ldof in the various systems. The residual masses of the
static sources cancel in these combinations and the results
are displayed in Table III.

IV. EXOTIC BARYONS

As a by-product of computing the potential between two
B mesons, we have computed the masses of baryons
formed from a static source transforming in the 6 of color
and two light antiquarks with �I; sl� � �0; 1�, which we
denote as ��6, or �I; sl� � �1; 0�, which we denote as ��6.
These are calculated by putting two static sources, each in
the 3 of color at the same point in space, and requiring the
light antiquarks to have the appropriate values of �I; sl�. As
the spin of the ldof decouples from the static source(s) and
is a good quantum number, the ldof form a color �6. While
the Casimir of the �3 representation is C��3� � 4=3, it is
C�6� � 10=3 for the 6 representation, and the residual
mass that must be subtracted from the energy calculated

on the lattice is 
m��	�
2��

6;DBW2 � 1116� 62 MeV. The effec-
tive mass plots for these hadrons are shown in Fig. 3 and
the energies of the ldof are shown in Table IV. These results
suggest that these states are considerably more massive
than the nonexotic hadrons and achieve plateaus at earlier
times. Unfortunately, the ratio of signal to noise decreases
exponentially with time due to the presence of lighter states
in the variance of the correlator, and thus we cannot
exclude the possibility of an additional plateau at later
times (this statement is true for all observables computed
in this work). As such exotic baryons have not been ob-
served and heavy quarks transforming in the 6 (or other

TABLE III. The mass differences between the hadrons com-
prised of one static color 3 source and light (anti)quarks. The
residual mass of the static source cancels in the differences,
leaving the differences between the energy of the light degrees of
freedom, denoted by 
 ��. The first uncertainty is statistical and
the second is systematic.

Hadrons bE � b
 �� 
 �� [MeV]

�b � B 0.2395(75)(72) 474(15)(14)
�b � B 0.304(08)(12) 601(16)(24)

�b ��b 0.0641(98)(96) 126(19)(19)

2 4 6 8 10 12 14 16
t b

0.4

0.6

0.8

1

1.2

b E

B

b

b

FIG. 2 (color online). Effective mass ratios of the correlation
functions for the B (bottom, red), �b (middle, green), and �b
(top, violet). The shaded regions correspond to the fit range,
central value, and uncertainty (statistical and systematic errors
are added in quadrature) for each hadron.

TABLE II. The spectrum of hadrons comprised of one static color 3 source and light
(anti)quarks, for a light-quark mass giving the light hadron spectrum shown in Table I.
E�DBW2� is the mass of the hadron determined in the lattice calculation. ����	�

2��
DBW2 � E�DBW2� �


m��	�
2��

DBW2 is the BLM-improved determination of the energy of the ldof. The first uncertainty is
statistical and the second uncertainty is systematic.

Hadron Fit range bE�DBW2� E�DBW2� [MeV] ����	�
2��

DBW2 [MeV]

B 11! 15 0.5539(37)(50) 1096(18)(10) 649(31)(10)
�b 9! 14 0.7934(65)(22) 1570(27)(04) 1123(36)(04)
�b 10! 14 0.8575(74)(74) 1697(29)(15) 1250(38)(15)

2 4 6 8 10 12
t b

1

1.1

1.2

1.3

1.4

b E 6

6

FIG. 3 (color online). The effective mass plots for the exotic
hadrons, ��6 and ��6.
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higher representations) of color are not required in nature
(see Refs. [41–43] for a number of proposals) and are not
expected to be found, we do not dwell on these results
further.

V. B-MESON POTENTIALS

In the heavy-quark limit, the separation between the two
B mesons is a good quantum number and the potential,
V�r�, is simply defined by the difference between the
energy of the two B mesons separated by a displacement
vector r (defined by the separation of the static 3 color
sources) and the energy of two infinitely separated B
mesons,

 VI;sl�r� � EI;sl�r� � 2MB �
��I;sl�r� � 2 ��1=2;1=2; (19)

where the isospin and spin of the ldof can take the values
I � 0, 1 and sl � 0, 1.7 Contributing to both of these
energies are the interactions between the ldof, the inter-
actions between the ldof and the static sources, and the
interactions between the static sources. As jrj ! 1, each
of the contributions factorize, leaving the contribution
from two noninteracting B mesons, and therefore a vanish-
ing potential.

The lattice calculation is a straightforward extension of
the calculation of �� for the heavy hadrons. The energy,
EBBI;sl�r�, of two B mesons composed of static sources and
light quarks, placed on the lattice with relative displace-
ment r, is computed using the correlators in Sec. II. The
potential computed on the lattice then becomes

 V latt
I;sl
�r� � EBBI;sl�r� � 2E1=2;1=2; (20)

where

 E BB
I;sl
�r� � ��I;sl�r� � 
V R�r� 	 2
m (21)

(the subscript R labels the color representation of the
heavy-quark system dictated by the light quantum numbers
I and sl). The residual masses of the static sources induced
by interactions with the gauge fields cancel in V latt

I;sl
�r�.

However, a perturbative subtraction corresponding to the
differences in interactions between the static sources in the
continuum and on the lattice (which at leading order in the
strong coupling arises from one-gluon exchange (OGE))

V R�r� � V cont

OGE �V latt
OGE remains. Therefore, the ener-

gies measured in the lattice calculation, and the potential
between two B mesons in the continuum are related by

 VI;sl�r� � EBBI;sl�r� � 2E1=2;1=2 	 
V R�r�: (22)

In the cases where the spin of the ldof is sl � 1, the
potential receives contributions from both a central com-
ponent and a tensor component,

 V�S�1��r� � VC�r� 	 Ŝ12VT�r�; (23)

where

 Ŝ 12 �
3
2�Ŝ	�r̂x � ir̂y� 	 Ŝ��r̂x 	 ir̂y� 	 2Ŝzr̂z�2 � 2Ŝ2;

(24)

Ŝi are the spin operators, and r̂ is the unit vector in the
direction of the displacement. It follows that the central
and tensor potentials can be determined from the potential
at x and z displacements,

 V�S�1�
C �r� � 1

3�V
�S�1��rêz� 	 2V�S�1��rêx��;

V�S�1�
T �r� � 1

3�V
�S�1��rêz� � V�S�1��rêx��;

(25)

where êj is the unit vector in the ‘‘j’’ direction.

A. Lattice-spacing effects in a finite volume

The potential measured in the lattice calculation will
differ from that at infinite volume due to the presence of
image B mesons resulting from the periodic boundary
conditions in the spatial directions of the lattice.
Therefore, the single particle energies that are extracted

TABLE IV. The spectrum of exotic baryons comprised of a static color 6 source and light
antiquarks, for a light-quark mass giving the light hadron spectrum shown in Table I. E�DBW2� is
the mass of the hadron determined in the lattice calculation. Using the BLM-improved one-loop
lattice perturbation theory calculation of the residual mass, as discussed in the text, we present
results for ����	�

2��
�6;DBW2

� E�DBW2� � 
m��	�
2��

6;DBW2 , where the residual mass term is evaluated at the

scale q��DBW2� given in the text. The difference between the masses of the exotic states is given in
the last line.

Hadron Fit range bE�DBW2� E�DBW2� [MeV] ����	�
2��

�6;DBW2
[MeV]

��6 6! 10 1.253(08)(02) 2480(16)(04) 1364(64)(04)
��6 7! 11 1.278(10)(05) 2529(20)(10) 1413(65)(10)

b
E�DBW2� 
 ��

��6 ���6 — 0.025(13)(05) 49(25)(11)

7We classify these states using the quantum numbers of the
infinite-volume continuum. For sl � 0, 1 this is legitimate as
there is an exact correspondence between these representations
of O(3) and the A1 and T1 representations of H(3) [44]. The
continuum symmetry is O(3) as the presence of the infinitely
massive quarks breaks O(4) to its spatial subgroup.
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correspond to the energy of the single particle that is
interacting with its images, located at jrj> L. In the case
of the energy of two particles interacting in a periodic
cubic volume, the potential energy, V�L��r�, measured in-
cludes the sum over the contributions from the images8

 V�L��r� � V�r� 	
X
n�0

V�r	 nL�: (26)

When the displacement between the mesons is jrj> L=2
the interaction with the nearest image is more important
than the interaction within the volume. Consequently, we
have only computed the potential for jrj � 8 lattice spac-
ings on 163 � 32 lattices. After taking the continuum limit

of the lattice calculation, the finite-volume effects due to
the images must be removed to recover the infinite-volume
continuum limit potential, V�r�. This is discussed below.

The finite lattice spacing, b, eliminates ultraviolet modes
on the lattice leaving jqj<�=b, and hence the strong-
Coulomb potential that exists between two static sources
due to OGE is significantly modified for jrj less than a few
b. In the heavy-quark limit, the OGE potential is spin
independent but does depend upon the color representation
of the combined heavy-quark system.

The potential between two static color 3 sources com-
bined into a color �3, at a finite lattice spacing, b, and in a
finite volume becomes

 

V latt
�3;LO
�r���

�����

3�2b

Z �

��
d~qx

Z �

��
d~qy

Z �

��
d~qzG00�q̂�ei~q
~r

!�
�����

3�2b

�
2�
~L

�
3 Xjnij� ~L=2

n
ei2�n
~r= ~LG00

�
2sin

�
�nx

~L

�
;2sin

��ny
~L

�
;2sin

�
�nz

~L

�
;0
�
; (27)

where ~L � L=b is the spatial extent of the lattice in lattice units, and ~r � r=b is the displacement between the static
sources in lattice units. The summation in Eq. (27) is over all� ~L=2< nx; ny; nz < ~L=2. This finite-volume expression has
an infrared divergence due to the n � 0 mode, however, the difference between the finite-volume OGE potentials at finite
lattice spacing and in the continuum is of the form

 
V �L�
�3;LO
�r� � �

�����

3�2b

�
2�
~L

�
3
�� ~L

2�

�
2 X1

n

ei2�n
~r= ~L

jnj2
�

Xjnij� ~L=2

n
ei2�n
~r= ~LG00�n̂x; n̂y; n̂z; 0�

�
; (28)

where n̂i � 2 sin��ni= ~L�, and is well behaved in the infrared. Spurious contributions from ill-defined low-momentum
gluon modes included in the above sums cancel to a large extent with residual effects at most of O�b2�. Further discussion
of this issue and the numerical evaluation of 
V �L�

�3;LO
�r� can be found in Appendix A.

The BLM procedure is again used to set the scale of the correction factor, leading to

 


V �L�
�3;NLO

�r� � �
�����

3�2b

�
2�
~L

�
3
�� ~L

2�

�
2 X1

n

ei2�n
~r= ~L

jnj2

�
1�

������
4�

log
�
4�2�jnj2�
�2L2

��

�
Xjnij� ~L=2

n
ei2�n
~r= ~LG00�n̂x; n̂y; n̂z; 0�

�
1�

������
4�

log
�
jn̂j2

�2b2

���

� �
�����
r

�
A�~r; ~L� �

������
4�

B�~r; ~L;��
�

� �
���q��~r; ~L��

r
A�~r; ~L� 	 . . . (29)

The coefficient functions A�~r; ~L� and B�~r; ~L;�� eval-
uated on DBW2 lattices, using the techniques in
Appendix A, are given in Table V at the required separa-
tions. The resulting BLM scale and potential shifts are
given in Table VI (results for the color 6 OGE potential
are related by 
V �L�

6;�N�LO�r� � �1=2
V �L�
�3;�N�LO

�r�). The

correction factors, 
V �L�
�3;LO
�r� and 
V �L�

6;LO�r�, should be
added to the lattice measurements of EI;sl � 2E1=2;1=2 to
give the potential. At relative displacements that are large
compared with the lattice spacing, this correction factor
scales as b2=jrj3, as expected. However, there are still O�b�
lattice artifacts from the discretization of the light-quark
and gluonic sectors. Higher order perturbative contribu-
tions also persist but are suppressed by powers of ���jrj�.
These can only be eliminated using data at different lattice

8This is correct for interactions via single particle exchange
but receives corrections that we discuss in Sec. V D.
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spacings or using a light-quark action that is
O�b�-improved.

B. The lattice and continuum finite-volume potentials

Using the techniques described in Sec. II we have com-
puted the correlation functions corresponding to the energy
differences of Eq. (20). The statistical errors are deter-
mined by the jackknife procedure, omitting a single con-
figuration at each evaluation. Further, a bootstrap analysis
was also performed on the data, with both techniques
providing similar central values and uncertainties. To
eliminate uncertainties common to both the energies of
the two B mesons and twice the mass of one B meson, we
formed the correlated differences between the energies of
the ldof in the various systems allowing for different fitting
ranges. The resulting effective energy plots are shown in
Figs. 4 and 5.

Three independent analyses of the results of the lattice
calculation were performed. In each of the analyses, we
have fit both one and two time-dependent exponentials to
the correlation functions in order to extract the ground state
energy. The fitting was performed by �2-minimization,

taking into account correlations between different time
slices. The fitting range in each analysis was determined
by examining fits for different values of the starting time
slice, and looking for stability over a number of time slices
(in some cases, different fit ranges were selected in each
analysis). The central values of the energies and potentials
are the averages of the results of the three independent
analyses, while the differences are encapsulated in the
systematic error. The fits and ranges used in one analysis
are shown in Figs. 4 and 5 (the horizontal location of the
shaded regions denotes the fitting range) and are those used
in fitting a single exponential to the correlation function.

The effective mass plots for the correlators defining the
central potentials at j~rj � 0, 1, 2, 3, 4, 5, 6, 7, 8 are shown
in Fig. 4 and those for the potentials at displacements of
~r � �1; 1; 0� and (2, 1, 0) are shown in Fig. 5. It is not
possible to further decompose these latter potentials into
the central and tensor components, without additional in-
formation. However, given that the tensor potentials at all
the other displacements are found to be very small, it is not
unreasonable to assume that they are also small for these
displacements, and therefore we can assume that they
provide a good determination of the central potentials
alone. For a number of combinations of I, sl, and ~r, it
was not possible to extract a signal, as plateaus were not
present in the effective energies, and fits are omitted in the
effective mass plots and tables below.

After applying the perturbative one-loop matching dis-
cussed above, we determine the various finite-volume po-
tentials. The central potentials extracted from the lattice
calculation in each of the spin-isospin channels are given in
Tables VII, VIII, IX, and X. The lattice central potentials,
Vlatt�L�
I;sl

, are shown in Fig. 6, and the central potentials with
the leading order finite-lattice spacing correction included
(as discussed above), V�L�I;sl

, are shown in Fig. 7. In each
channel there is a clean signal for the central potentials,
with two or more of the displacements having potentials

TABLE V. The functions A�~r; ~L� and B�~r; ~L;�� that contrib-
ute to the difference between the finite-lattice spacing and
continuum OGE potentials at finite volume.

~r A�~r; 16� B�~r; 16; b�1� A�~r;1� B�~r;1; b�1�

(1,0,0) 	0:2656 �0:04261 0.2654 �0:0938
(1,1,0) 	0:2011 �0:1791 0.2102 �0:2236
(2,0,0) 	0:1203 �0:2352 0.1629 �0:2451
(2,1,0) 	0:1144 �0:2130 0.1370 �0:2750
(3,0,0) 	0:1206 �0:0750 0.1083 �0:2357
(4,0,0) �0:0176 �0:1975 0.0665 �0:2048
(5,0,0) 	0:0592 	0:0874 0.0370 �0:1653
(6,0,0) �0:1055 �0:1359 0.0176 �0:1261
(7,0,0) 	0:0409 	0:2310 0.0054 �0:0921
(8,0,0) �0:1593 �0:1247 0.0020 �0:0647

TABLE VI. Corrections to the potential between two static color 3 sources combined into the
�3 representation, displaced by ~r computed on 163 � 32 DBW2 lattices with a lattice spacing of
b � 0:0997� 0:0015 fm. The quoted uncertainty is due to the uncertainty in �s�2 GeV�, and
that of the lattice spacing. The next-to-leading-order (NLO) result does not use the BLM scale,
q�, but the sum of the leading-order (LO) and NLO contributions.

~r bq��~r; 16� b
V �L�
�3;LO
�r� b
V �L�

�3;NLO
�r� 
V �L�

�3;NLO
�r� [MeV]

(1,0,0) 0.9229 �0:0794�40� �0:0828�41� �163:8�8:6�
(1,1,0) 0.6406 �0:0425�21� �0:0524�26� �103:7�5:4�
(2,0,0) 0.3762 �0:017 98�90� �0:0272�14� �53:8�2:8�
(2,1,0) 0.3941 �0:015 29�77� �0:0227�11� �45:0�2:4�
(3,0,0) 0.7327 �0:012 02�60� �0:013 98�70� �27:7�1:4�
(4,0,0) 269.6 	0:001 319�66� �0:002 54�13� �5:04�26�
(5,0,0) 2.092 �0:003 54�18� �0:002 17�10� �4:30�23�
(6,0,0) 1.904 	0:005 25�26� 	0:003 48�17� 	6:90�36�
(7,0,0) 16.87 �0:001 747�87� 	0:000 836�42� 	1:654�87�
(8,0,0) 1.479 	0:005 95�30� 	0:004 73�24� 	9:37�49�
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that are clearly nonzero. For the sl � 1 channels the tensor
potentials are found to be consistent with zero and are
smaller than VT � 40 MeV in both cases for the entire
range of displacements (the tensor potentials were also
found to be small and poorly determined in Ref. [17]).
At large distances, this is not consistent with our expecta-
tions from the NN system at the physical value of m�, but

may result from the relevant B���B���M couplings (M rep-
resents the various mesons) being small or giving rise to
cancellations, or from the unphysically large pion mass.
Further studies of this issue are warranted. The measure-
ments at ~r � 0 contain no information about the contin-
uum potentials, which diverge as� ���r�1�=r. As discussed
in Secs. III and IV, the lattice energies measured for
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FIG. 4 (color online). The effective mass plots for the central potentials at j~rj � 0, 1, 2, 3, 4, 5, 6, 7, 8 for each spin-isospin channel.
Red stars correspond to �I; sl� � �0; 0�, green squares to �I; sl� � �1; 0�, blue triangles to �I; sl� � �0; 1�, and magenta diamonds to
�I; sl� � �1; 1�. Extracted masses and uncertainties (statistical and systematic uncertainties have been added in quadrature) from one of
the contributing analyses are shown as the shaded regions in channels where a signal can be extracted. The horizontal location of the
shaded regions denotes the fitting range. Note that the energy scales of the plots differ.
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coincident B mesons, in fact, determine the energies of the
�b and �b and their exotic partners.

C. Potentials with t-channel quantum numbers

Up until this point we have classified the potentials
between the B mesons in terms of the s-channel quantum
numbers, the total isospin, and spin of the ldof. These
potentials are extracted from the energies calculated on
the lattice by subtracting twice the B-meson mass. The
statistical and systematic uncertainty in determining the
B-meson mass propagates through to all four central po-
tentials, leading to larger uncertainties in the potential than
from the calculation of the energy of the two B mesons
alone. Motivated by the success of traditional nuclear
physics phenomenological potentials constructed from
the exchange of mesons in the t-channel, we have formed
linear combinations of the s-channel potentials to give
potentials with well-defined spin and isospin quantum
numbers that can be identified with the exchange of one
or more hadrons. The central potential can be decomposed
as

2 4 6 8 10 12 14
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r 2
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1.15
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FIG. 5 (color online). The effective mass plots for the poten-
tials at displacements ~r � �1; 1; 0� and (2, 1, 0) which are linear
combinations of the central and tensor potentials. Red stars
correspond to �I; sl� � �0; 0�, green squares to �I; sl� � �1; 0�,
blue triangles to �I; sl� � �0; 1�, and magenta diamonds to
�I; sl� � �1; 1�. Extracted masses and uncertainties (statistical
and systematic uncertainties have been added in quadrature)
from one of the contributing analyses are shown as the shaded
regions in channels where a signal can be extracted, and are
given in Tables VII, VIII, IX, and X. The horizontal location of
the shaded regions denotes the fitting range. Note that the energy
scales of the plots differ.

TABLE VIII. The extracted lattice and continuum potentials in the I � 1, S � 0 channel. The
first uncertainty is statistical, while the second is systematic.

~r bEBB10 �~r� bV latt�L�
I�1;S�0�~r� bV�L�I�1;S�0�~r� V�L�I�1;S�0�~r� [MeV]

0 1.278(10)(05) 	0:170�12��11� 	1 	1

1 1.199(07)(03) 	0:091�10��10� 	0:133�10��10� 	262�21��21����
2
p

1.184(08)(01) 	0:076�11��10� 	0:102�11��10� 	203�22��20�
2 1.158(07)(02) 	0:050�10��10� 	0:064�10��10� 	126�20��20����

5
p

1.158(09)(01) 	0:050�12��10� 	0:062�12��10� 	122�23��20�
3 1.142(06)(06) 	0:034�10��12� 	0:041�10��12� 	82�19��23�
4 — — — —
5 1.134(05)(04) 	0:026�09��11� 	0:027�09��11� 	54�18��21�
6 1.140(07)(04) 	0:032�10��11� 	0:030�10��11� 	60�20��21�
7 — — — —
8 1.138(07)(03) 	0:030�10��10� 	0:028�10��10� 	55�20��21�

TABLE VII. The extracted lattice and continuum potentials in the I � S � 0 channel. The
first uncertainty is statistical, while the second is systematic.

~r bEBB00 �~r� bV latt�L�
I�S�0�~r� bV�L�I�S�0�~r� V�L�I�S�0�~r� [MeV]

0 0.783(11)(02) �0:325�13��10� �1 �1

1 0.960(12)(08) �0:148�14��13� �0:231�15��13� �456�30��25����
2
p

0.990(27)(07) �0:118�28��12� �0:170�28��12� �337�56��24�
2 1.056(13)(08) �0:052�15��13� �0:079�15��13� �156�30��25����

5
p

— — — —
3 1.097(20)(15) �0:011�21��18� �0:025�21��18� �49�42��36�
4 1.132(12)(06) 0.024(14)(12) 0.022(14)(11) 43(28)(23)
5 1.143(09)(05) 0.035(12)(11) 0.033(12)(11) 65(23)(22)
6 1.150(09)(05) 0.042(12)(11) 0.046(12)(11) 90(23)(22)
7 — — — —
8 — — — —
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TABLE IX. The extracted lattice and continuum central potentials in the I � S � 1 channel.
The first uncertainty is statistical, while the second is systematic. The asterisks attached to the
r �

���
2
p

and
���
5
p

potentials indicate that these are the sum of the central and tensor contributions.

~r bEBB11 �~r� bV latt�L�
I�S�1�~r� bV�L�I�S�1�~r� V�L�I�S�1�~r� [MeV]

0 0.850(06)(04) �0:258�09��11� �1 �1

1 1.000(12)(18) �0:108�14��21� �0:191�15��21� �377�30��41����
2
p
� — — — —

2 — — — —���
5
p
� 1.128(18)(08) 	0:020�20��13� �0:003�20��13� �05�38��25�

3 1.140(10)(10) 	0:032�12��14� 	0:018�12��14� 	36�25��28�
4 1.150(10)(10) 	0:042�12��14� 	0:040�12��14� 	78�25��28�
5 1.145(10)(15) 	0:037�12��18� 	0:035�12��18� 	69�25��36�
6 1.1544(12)(09) 	0:036�14��13� 	0:040�14��13� 	79�28��27�
7 1.149(10)(09) 0.041(12)(13) 0.042(12)(13) 	83�25��27�
8 — — — —

TABLE X. The extracted lattice and continuum central potentials in the I � 0, S � 1 channel.
The first uncertainty is statistical, while the second is systematic. The asterisks attached to the
r �

���
2
p

and
���
5
p

potentials indicate that these are the sum of the central and tensor contributions.

~r bEBB01 �~r� bV latt�L�
I�0;S�1�~r� bV�L�I�0;S�1�~r� V�L�I�0;S�1�~r� [MeV]

0 1.253(08)(02) 	0:145�11��10� 	1 	1

1 1.172(07)(05) 	0:064�10��11� 	0:106�10��11� 	209�21��22����
2
p
� 1.163(06)(01) 	0:055�10��10� 0.081(10)(10) 	161�19��20�

2 — — — —���
5
p
� 1.136(08)(03) 	0:028�11��10� 	0:040�11��10� 	78�22��21�

3 — — — —
4 1.128(07)(04) 	0:020�10��11� 	0:021�10��11� 	42�20��21�
5 1.123(07)(06) 	0:015�10��11� 	0:016�10��12� 	32�20��23�
6 1.134(06)(02) 	0:026�10��10� 	0:024�10��10� 	48�19��20�
7 1.149(10)(09) 0.041(12)(13) 0.042(12)(13) 	83�25��27�
8 1.131(06)(03) 0.023(10)(10) 0.021(10)(10) 	41�19��21�
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FIG. 6 (color online). The finite-volume and finite-lattice spac-
ing central potentials, V latt�L�

I;sl
, extracted from the lattice calcu-

lation. The shaded regions are simple fits to guide the eye. Red
stars, green squares, blue triangles, and magenta diamonds
correspond to �I; sl� � �0; 0�, (1, 0), (0, 1), (1, 1), respectively.
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FIG. 7 (color online). The finite-volume central potentials
extracted from the lattice calculation including the leading
lattice correction to OGE, V�L�I;sl . The shaded regions are simple
fits to guide the eye. Red stars, green squares, blue triangles, and
magenta diamonds correspond to �I; sl� � �0; 0�, (1, 0), (0, 1), (1,
1), respectively.
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VI;sl�jrj� � V1�jrj� 	�1 
�2V��jrj�

	�1 
�2�1 
 �2V���jrj� 	 �1 
 �2V��jrj�; (30)

where it is straightforward to show that, in terms of the
s-channel central potentials,

 V1 �
1

16�V0;0 	 3V0;1 	 3V1;0 	 9V1;1�;

V� �
1
16��V0;0 	 V0;1 � 3V1;0 	 3V1;1�;

V�� �
1
16�V0;0 � V0;1 � V1;0 	 V1;1�;

V� �
1
16��V0;0 � 3V0;1 	 V1;0 	 3V1;1�:

(31)

An important point to observe is that the three potentials,
V�, V��, and V� can be extracted from the lattice calcu-
lation without reference to the B-meson mass. This is not
true for V1. It was pointed out in Ref. [25] that the �0

double pole that is present in quenched calculations will
dominate the interactions between nucleons and B mesons
at long distances. However, we see that this can only
contribute to V�, and not to the other three potentials.
Further, the exchange of a single � will contribute only
to the V�� potential. Therefore, the potential V� does not
receive contributions from hairpins nor from �-exchange,
and does not depend upon the B-meson mass extraction
from the lattice calculation. It is expected to be clean, and
determined by short-range and medium-range interactions.

The finite-volume potentials calculated on the lattice,
V latt�L�
�;�;��;1�~r� were analyzed in a similar manner to the spin-

isospin potentials described previously. The final values
are given in Tables XI, XII, XIII, and XIV, and are shown in
Fig. 8. Effective mass plots for these potentials are shown
in Figs. 9 and 10. The potentials corrected for the finite-
lattice spacing contributions to OGE between the heavy
quarks are also given in Tables XI, XII, XIII, and XIV, and
are shown in Fig. 11. The uncertainties in these potentials
are seen to be significantly smaller than those of VI;sl , in

TABLE XI. The extracted lattice and continuum central po-
tential V�L�� , defined in Eq. (31). The first uncertainty is statisti-
cal, while the second is systematic. The asterisks attached to the
r �

���
2
p

and
���
5
p

potentials indicate that these are the sum of the
central and tensor contributions.

~r bV latt�L�
� �~r� bV�L�� �~r� V�L�� �~r� [MeV]

0 �0:050�17��06� �1 �1

1 �0:0174�33��08� �0:0337�34��08� �66:8�6:8��1:7����
2
p
� �0:0081�25��02� �0:0178�25��02� �35:1�5:1��0:3�

2 — — —���
5
p
� �0:0016�25��09� �0:0049�25��09� �9:7�5:0��1:8�

3 	0:0035�13��00� 	0:0008�12��00� 	1:6�2:6��0:1�
4 	0:0048�13��08� 	0:0035�13��08� 	6:9�2:6��1:5�
5 	0:0054�12��05� 	0:0044�12��05� 	8:8�2:4��1:0�
6 — — —
7 	0:0054�18��02� 	0:0054�18��02� 	10:7�3:6��0:3�
8 	0:0047�16��03� 	0:0053�16��03� 	10:5�3:1��0:6�

TABLE XII. The extracted lattice and continuum central po-
tential V�L��� , defined in Eq. (31). The first uncertainty is statisti-
cal, while the second is systematic. The asterisks attached to the
r �

���
2
p

and
���
5
p

potentials indicate that these are the sum of the
central and tensor contributions.

~r bV latt�L�
�� �~r� bV�L��� �~r� V�L��� �~r� [MeV]

0 �0:0539�56��07� �1 �1

1 �0:0228�24��08� �0:0383�25��08� �75:9�5:2��1:5����
2
p
� �0:0158�21��02� �0:0256�22��02� �50:8�4:4��0:3�

2 �0:0064�22��07� �0:0115�22��07� �22:7�4:3��1:3����
5
p
� �0:0062�42��05� �0:0105�42��05� �20:7�8:4��1:0�

3 �0:0003�23��12� �0:0029�22��12� �5:7�4:5��2:3�
4 	0:002 05�82��50� 	0:001 58�82��50� 	3:1�1:6��1:0�
5 	0:003 43�09��32� 	0:0030�09��03� 	6:0�1:9��0:6�
6 — — —
7 	0:002 94�55��07� 	0:003 09�55��07� 	6:1�1:1��0:1�
8 — — —

TABLE XIII. The extracted lattice and continuum central po-
tential V�L�� , defined in Eq. (31). The first uncertainty is statisti-
cal, while the second is systematic. The asterisks attached to the
r �

���
2
p

and
���
5
p

potentials indicate that these are the sum of the
central and tensor contributions.

~r bV latt�L�
� �~r� bV�L�� �~r� V�L�� �~r� [MeV]

0 �0:0390�49��03� �1 �1

1 �0:0136�39��02� �0:0292�40��02� �57:7�7:8��0:4����
2
p
� �0:0033�31��05� �0:0131�31��05� �25:9�6:3��1:0�

2 	0:005 39�66��02� 	0:000 29�70��02� 	0:58�1:4��0:0����
5
p
� 	0:005 87�53��15� 	0:001 61�57��15� 	3:2�1:2��0:3�

3 	0:007 87�71��12� 	0:005 25�73��12� 	10:4�1:4��0:2�
4 	0:007 67�61��22� 	0:007 20�61��22� 	14:2�1:2��0:4�
5 	0:006 64�97��04� 	0:006 23�97��04� 	12:3�1:9��0:1�
6 — — —
7 	0:005 09�50��07� 	0:005 25�50��07� 	10:4�1:0��0:1�
8 	0:004 55�62��24� 	0:005 44�62��24� 	10:8�1:2��0:5�

TABLE XIV. The extracted lattice and continuum central po-
tential V�L�1 , defined in Eq. (31). The first uncertainty is statisti-
cal, while the second is systematic. The asterisks attached to the
r �

���
2
p

and
���
5
p

potentials indicate that these are the sum of the
central and tensor contributions.

~r bV latt�L�
1 �~r� bV�L�1 �~r� V�L�1 �~r� [MeV]

0 �0:117�16��03� �1 �1

1 �0:0616�96��25� �0:0520�96��25� �103�19��04����
2
p
� �0:0193�74��04� �0:0210�74��04� �42�15��0:7�

2 �0:0135�58��18� �0:0101�58��18� �20�12��4����
5
p
� �0:0020�78��10� �0:0019�78��10� �4�16��2�

3 	0:0030�43��17� 	0:0037�43��17� 	7:4�8:4��3:3�
4 	0:0093�45��10� 	0:0094�45��10� 	16:6�8:9��2:0�
5 	0:0069�19��01� 	0:0064�19��01� 	12:6�3:8��0:1�
6 — — —
7 	0:0074�43��14� 	0:0057�43��14� 	11:2�8:4��2:8�
8 	0:0051�29��07� 	0:0055�29��07� 	10:8�5:7��1:4�
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part due to the fact that the B-meson mass extraction, and
its associated uncertainty, does not contribute. The most
striking potential is V�; it is clear that this potential is of
shorter range than V� and V�� , due to the absence of OPE
and OHE.

D. Extrapolation to infinite-volume potentials

The final stage of analysis is to use the extracted finite-
volume potentials in either the s- or t-channels to deter-
mine the infinite-volume forms. At short distances, jrj &

��1
� (j~rj & 2 for our analysis), the infinite-volume extrapo-

lation must be done empirically, fitting functions with the
correct long-distance behavior to the results of lattice
calculations in multiple volumes. In principle, this extrapo-
lation can be performed systematically for larger jrj as
effective field theory describes the potential in this regime.
Here we explore how the matching to EFT can be imple-
mented, focusing on the isovector potentials.

In QCD, the long-range pieces of the infinite-volume,
t-channel isovector potentials are expected to have the
form

 V�1��� �r� !
jrj!1 g2m2

�

24�f2
�

e�m�jrj

jrj
	 V�2���� �jrj� 	 . . . ; (32)

 V�1�� �r� !
jrj!1 g2

�

4�
e�m�jrj

jrj
	 V�2��� �jrj� 	 . . . ; (33)

where V�2��� and V�2���� are the two-pion exchange potentials
defined in Ref. [45] (with nucleon couplings replaced by
the relevant couplings of the B sector), f� � 132 MeV, g
is the chiral coupling of pions to heavy mesons occurring in
the heavy-meson chiral perturbation theory Lagrangian
[46–50], and g� is a phenomenological BB� coupling.
The ellipses denote contributions suppressed at large
separations.

Ideally, lattice determinations of the meson masses and
potentials at long distances could be used to fit the cou-
plings in the above equations (the two-pion contributions
contain additional parameters). However, a number of
issues complicate this analysis. The quenched nature of
our calculations introduces artefacts as in this case, the �0

meson remains degenerate with the pions but has a modi-
fied propagator [51,52],

 G�0 �q2� �
i

q2 �m2
� 	 i	

	
i�M2

0 � ��q
2�

�q2 �m2
� 	 i	�

2 (34)

(M0 and �� are couplings occurring in the quenched chiral
Lagrangian [51,52]), that produces unphysical components
of the potential. In particular, both of the isovector
t-channel potentials receive contributions from one-pion–
one-�0 exchange that are longer range than the two-pion
exchange contributions. These contributions are calcu-
lable, but involve additional low energy constants.
Additional issues are introduced by the unphysically large
quark mass used in our calculations with the identification
of the dominant contribution in V� depending on the quark
mass. At the physical mass, single � exchange is subdo-
minant to two-pion exchange, however here, m� < 2m� so
it is �-exchange that persists to the longest distance. In our
calculation, 2m� ��� and, in both channels, the two
Goldstone boson exchange contributions are indistinguish-
able from short-distance contributions not describable in
EFT. Finally, the formula for the potential at finite volume
in Eq. (26) is valid only for single particle exchange and is
significantly modified if two or more particle exchange
effects are included at infinite volume; the two particles
can interact with sources in different periodic copies.

Since only the longest range contribution to the potential
in each channel can be identified, we fit our results at large
separations, jrj>��1

� , using the finite-volume versions
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FIG. 8 (color online). The central finite-volume lattice potentials V latt�L�
�;��;�;1, as defined in Eq. (31). The statistical and systematic errors

have been added in quadrature.
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(computed using Eq. (26)) of the simplified infinite-volume
potentials,

 V�1��� �r� !
jrj!1 g2m2

�

24�f2
�

e�m�jrj

jrj
	 �0�

e���jrj

jrj
; (35)

 V�1�� �r� !
jrj!1 g2

�

4�
e�m�jrj

jrj
	 ��

e���jrj

jrj
: (36)

The short-distance forms in the above equations are en-

tirely model dependent and are the simplest forms that we
could find that provide a reasonable description of the data.
Using the measured values and uncertainties ofm� andm�

and the physical value of f� we first determine the cou-
plings g and g� by setting �� � �0� � 0 and fitting the
finite-volume potentials at the two largest separations.9

These fits are shown by the dashed red curves in Fig. 12
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FIG. 9 (color online). The effective mass plots for the central potentials at j~rj � 0, 1, 2, 3, 4, 5, 6, 7, 8 for each t-channel potential.
Red stars correspond to V�, green squares to V��, blue triangles to V�, and magenta diamonds to V1. Extracted masses and
uncertainties from one of the contributing analyses are shown as the shaded regions in channels where a signal can be extracted.

9Simple fits using the infinite-volume long -range behavior
were considered in Ref. [17].
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and the resulting couplings are found to be

 g� � 2:17� 0:08; g � 0:57� 0:06: (37)

These couplings are stable under decreasing the minimum
separation toward the point where the finite-volume poten-
tial crosses zero however the �2 of the fit worsens. Having
determined these parameters, we reconstruct the infinite-
volume potentials that are shown in the figure as the solid
red lines.

If the couplings ��0�� in Eqs. (35) and (36) are included as
fit parameters, we obtain instead

 g� � 3:02� 0:09; g � 0:69� 0:03; (38)

with the finite-volume fits and their infinite-volume recon-
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FIG. 10 (color online). The effective mass plots for the poten-
tials at displacements ~r � �1; 1; 0� and (2, 1, 0). Red stars
correspond to V�, green squares to V��, blue triangles to V�,
and magenta diamonds to V1. Extracted masses and uncertainties
from one of the contributing analyses are shown as the shaded
regions in channels where a signal can be extracted.
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FIG. 11 (color online). The central finite-volume potentials V�;��;�;1, as defined in Eq. (31) (the lattice potentials plus the leading
lattice-spacing corrections to OGE). The statistical and systematic errors have been added in quadrature.
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FIG. 12 (color online). Fits to the finite-volume isovector t-channel potentials. The dashed lines correspond to the finite-volume fits
to the lattice data, and the solid curves are the infinite-volume extrapolations.
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structions shown as the dashed and solid blue curves in
Fig. 12. In this case we have set the minimum separation,
rmin, used in our fits to be 2b for V�� and 3b for V� although
the fits vary only slightly under changes of rmin from b to
5b. Averaging the two sets of extractions, we find

 g� � 2:6� 0:1� 0:4; g� 0:63� 0:05� 0:06; (39)

where the second error is an estimate of systematic errors
determined by differences between the two fits and varia-
tion of the fit range. These numbers represent our best
estimates of the couplings but we caution that we are
currently unable to investigate the full systematics of this
determination. Further refinement would require lattice
calculations at a range of different volumes, lattice spac-
ings, and quark masses. However, we note that the short-
distance behavior of the infinite-volume potentials cannot
be extracted model independently.

In both isovector channels, the agreement of the two
infinite-volume extractions at large separations suggests
that the long-range piece of the extraction is robust. The
pion coupling, g, is related to the forward limit of
hBjja�5jB

�i, the matrix element of the isovector axial-
vector current, through partial conservation of the axial
current (PCAC) and the value we extract is consistent with
direct determinations of the quenched axial coupling:
0.42(4)(8) [53], 0.69(18) [54], 0.48(3)(11) [55], 0.517(16)
[56]. We note that extraction of this coupling from the
potential does not require renormalization of the axial
current and suffers from different systematic effects.
Agreement between the two procedures is encouraging.

The isoscalar channels suffer from more severe unphys-
ical artefacts in quenched QCD and we are not able to
extract meaningful information from the long-distance
potentials. For V�, EFT predicts a long-range single
Goldstone boson exchange potential [25]

 

V�1�� �jrj� !
jrj!1 g2

0m
2
�

24�f2
�

�
�1� ���

e�m�jrj

jrj

�
M2

0 � ��m
2
�

2m�
e�m�jrj

�
(40)

(g0 is the �0 axial coupling occurring in the quenched
heavy-meson chiral Lagrangian [49,50]) with a long-
distance exponential tail dominating. Unlike the other
channels, the suppression of the subleading contribution
is not exponential and our data is insufficient to resolve
these pieces. V1 is not determined by single particle ex-
change (though many phenomenological approaches in the
nucleon sector include exchange of the ��550� resonance)
and in this channel our data are particularly poor. In both
isoscalar channels two-�0 exchange is also present and
enhanced compared to two-pion, and one-�0–one-pion

exchange, further polluting the signals. Larger volumes
and multiple quark masses will be needed to perform
extractions of couplings in these channels.

VI. DISCUSSION

We have studied the potentials between two Bmesons in
the heavy-quark limit. The calculations were performed on
163 � 32 quenched lattices with a spatial length of
�1:6 fm, and with a quark mass such that m� �
400 MeV. The leading lattice space corrections to the
one-gluon-exchange potential between the two heavy-
quark propagators in the finite volume were included in
order to extract the physical potential between Bmesons in
the continuum but at finite volume. We find clear evidence
of repulsion between the B mesons in the I � sl channels
and attraction in the I � sl channels. Three of the four
potentials defined with t-channel spin-isospin quantum
numbers have significantly smaller uncertainties than the
potentials defined with s-channel quantum numbers. From
the large separation behavior of these potentials at finite
volume, B-meson couplings to the � and � were extracted.

This calculation can be improved in a number of areas
but shows that a rigorous first principles calculation of the
B-meson potential is achievable in the near future. The
next stage of our study will progress from unphysical
quenched QCD to fully dynamical QCD. This is manda-
tory for connection to the real world but will also signifi-
cantly simplify the analysis of the long-range potential
using EFT. To separate the different components of the
potential in the short, intermediate, and long-range regimes
requires multiple volumes and quark masses. Finally cal-
culations at a number of different lattice spacing are re-
quired to control the remaining discretization effects.
Completion of this ambitious program will provide deep
insight into the BB system and, ultimately, nuclei.
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APPENDIX: FINITE LATTICE-SPACING
CORRECTION TO THE POTENTIAL

The finite lattice-spacing correction to the potential (in
the �3 color channel) is given by

 
V�L�
QQ;�3
�r� � �

�����

3�2b

�
2�
~L

�
3
�� ~L

2�

�
2 X1

n

ei2�n
~r= ~L

jnj2

�
Xjnij� ~L=2

n
ei2�n
~r= ~LG00�n̂x; n̂y; n̂z; 0�

�
; (A1)

arising from the difference between continuum and lattice
one-gluon exchange evaluated at finite volume.

The lattice contribution to this expression is simple to
evaluate for the DBW2 action (the full form of the im-
proved gluon propagator is given in Ref. [36]), however
calculating the continuum contribution is somewhat subtle.
Difficulties arise in both the infrared and ultraviolet re-
gimes. Both the lattice and continuum finite-volume sums
are IR divergent, however, provided both are regulated in
the same way a sensible result ensues; the simplest proce-
dure is to omit the zero mode.10

While the continuum contributions to A and B, defined
in Eq. (29), are strictly UV convergent, that convergence is
highly oscillatory. Computing these contributions is sim-
plified by the use of the Poisson summation formula which
allows the sum to be rewritten as

 

X
n�0

e2�in
~r= ~L

jnj2
� x2

X
n�0

e2�in
~r= ~L

jnj2�jnj2 	 x2�
	
X
n�0

e2�in
~r= ~L

�jnj2 	 x2�

� x2
X
n�0

e2�in
~r= ~L

jnj2�jnj2 	 x2�
�

1

x2

	
L�
j~rj

e�2�xj~rj=L 	 �
X

m�0

e�2�jm	~r= ~Ljx

jm	 ~r= ~Lj
;

(A2)

which is independent of the value of x. The sums on the
right-hand side of this expression are more convergent than
that on the left-hand side and can be numerically evaluated
reliably. Similar techniques allowed us to deal with the
analogous differences defining the function B.

In the limit that j~rj ! 0, the continuum contribution is
singular, leading to a correction factor of

 
V�L�
QQ;�3
�r� ! �

2 �����
3r

	 . . . ; (A3)

which is nothing other than the strong-Coulomb interaction
between the heavy quarks in the continuum. In the con-
tinuum limit and infinite-volume limit, b� r� L, the
leading correction factor is found to be

 
V�L�
QQ;�3
�r� ! �

���r�1�b2

6r3 �1	 12c1 � 12c3
1� 	 . . . ;

(A4)

where we have used the BLM procedure to set the scale.
This improved perturbative shift can be eliminated for
suitable choices of c1. Clearly, the Lüscher-Weisz-
improved value of c1 � �

1
12 maximally improves the lat-

tice calculation. That is to say that, neglecting the small c3
1

contribution, the correction factor that must be applied to
the lattice calculation in order to recover the continuum
potentials is minimized by Lüscher-Weisz improvement.
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