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A calculational scheme for obtaining the electric polarizability of the neutron in lattice QCD with
dynamical quarks is developed, using the background field approach. The scheme differs substantially
from methods previously used in the quenched approximation, the physical reason being that the QCD
ensemble is no longer independent of the external electromagnetic field in the dynamical quark case. One
is led to compute (certain integrals over) four-point functions. Particular emphasis is also placed on the
physical role of constant external gauge fields on a finite lattice; the presence of these fields complicates
the extraction of polarizabilities, since it gives rise to an additional shift of the neutron mass unrelated to
polarizability effects. The method is tested on a SU�3� flavor-symmetric ensemble furnished by the MILC
Collaboration, corresponding to a pion mass of m� � 759 MeV. Disconnected diagrams are evaluated
using stochastic estimation. A small negative electric polarizability of � � ��2:0� 0:9� � 10�4 fm3 is
found for the neutron at this rather large pion mass; this result does not seem implausible in view of the
qualitative behavior of � as a function of m� suggested by chiral effective theory.
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I. INTRODUCTION

An important characteristic of hadrons is their stiffness
when subjected to outside forces, which are typically con-
veyed by external electromagnetic fields. This response is
summarized in hadron polarizabilities. Understanding
these quantities will contribute to making hadron structure
more palpable. Experimentally, polarizabilities are acces-
sible, e.g., via soft Compton scattering; heuristically, in
such an experiment, the photon electric and magnetic fields
polarize the target hadron, which in turn manifests itself in
the Compton scattering amplitude observed. Accordingly,
polarizabilities are effects of second order in the external
fields.

The aforementioned sensitivity of low-energy Compton
scattering to hadron structure can be cast in precise termi-
nology [1], permitting stringent tests of theoretical under-
standing of that structure. Starting with the leading order in
the low-energy expansion, the non-Born (i.e., structure-
dependent) part of the scattering amplitude is determined
by the static dipole electric and magnetic polarizabilities �
and �. These are given by the hadron mass shift in the
presence of external static electric and magnetic fields,
specifically the part of the mass shift which depends quad-
ratically on those fields, in accordance with a (spin-
independent) effective dipole interaction Hamiltonian

 H�2�eff � �
1

2
��E2 � �B2�: (1)

The present investigation focuses on the electric polariz-
ability � of the neutron.

Lattice hadron polarizability calculations have hitherto
been carried out only in the quenched approximation [2–
9]. The reason for this lies in the fact that, in the case of
polarizabilities, the complication implied by going from a
quenched to an unquenched calculation involves more than
just the usual vastly increased effort required to generate a
dynamical quark ensemble. In addition, a quenched calcu-
lation is simpler due to the gauge ensemble being indepen-
dent of the external electromagnetic field; after all, the only
way the external field can influence the gauge ensemble is
through the quarks, whose backreaction on the gauge fields
is precisely truncated in a quenched calculation. This is no
longer true in the dynamical quark case.

This physical difference manifests itself formally in the
fact that substantially different computational schemes
have to be used in the dynamical quark case as compared
to the quenched case. In the quenched case, one can simply
generate gauge configurations in the absence of the exter-
nal electromagnetic field and introduce the latter a poste-
riori by an appropriate modification of the link variables in
those configurations. The requisite hadron two-point func-
tions are then evaluated directly using the modified gauge
configurations. By contrast, in a fully dynamical calcula-
tion, as discussed in more detail below, one in principle
would need to generate the gauge ensemble anew for each
external field considered. The prohibitive cost of such a
scheme can be mitigated to some extent by expanding in
the external field, leading, in effect, to the calculation of
(certain space-time integrals over) four-point functions. In
general, these include disconnected contributions.
However, even resorting to such a four-point function
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method leads to a substantially more expensive calculation
than one is confronted with in the quenched case; an early
exploratory study of four-point function methods [3] (using
a quenched ensemble) highlights this point.1

The most of this situation has been made hitherto in a
series of investigations [2,5–9] taking full advantage of the
simplifications offered by the quenched approximation. An
initial study of the electric polarizability of neutral hadrons
[2] using staggered fermions yielded results both for the
neutral pion and the neutron. This was later extended to
include all neutral members of the baryon octet, as well as
the baryon decuplet and the vector meson octet, in inves-
tigations using both Wilson and clover fermions [5,7];
these studies surveyed a range of pion masses down to
about 500 MeV. Also the magnetic polarizability of a wide
array of hadrons was investigated using the same range of
pion masses and fermion actions [6,8,9]; these studies
included also charged hadrons, in particular, the entire
baryon octet and decuplet as well as selected pseudoscalar
and vector mesons.

The present work extends the aforementioned work in
two main aspects:

(i) Use of a dynamical quark ensemble: As discussed
above, dynamical quark calculations of polarizabil-
ities were rendered intractable in the past by the
associated computational cost. Recent increases in
available computing resources are making quantita-
tive four-point function calculations, appropriate for
dynamical ensembles, feasible. This investigation
presents the first result for the electric polarizability
of the neutron in a dynamical quark ensemble, albeit
obtained at a still rather heavy pion mass of
759 MeV.

(ii) Recognition that, on a finite spatial volume, a con-
stant gauge field is not a pure gauge, but has physical
consequences which must be disentangled from po-
larizability effects.

Some elaboration on the latter issue, which is also relevant
in the quenched approximation, is useful at this point. As
noted further above, hadron polarizabilities can be probed
via the mass shift in the presence of external electromag-
netic fields. The hitherto preferred method [2,5,7] of in-
troducing a constant electric field in, say, the 3-direction is
to represent it by a nonvanishing 3-component of the gauge
field,

 A3 � E�t� t0�: (2)

This choice has the advantage that jumps in the gauge field
at the lattice boundaries (inducing spurious localized elec-
tric fields there) occur only in the temporal direction. In
this case, hadron two-point functions evaluated in the bulk

of the lattice are insensitive to the jumps, which only occur
far in the past or the future from the point of view of the
measurement.

However, there is an ambiguity in the prescription (2),
namely, at which time t0 one chooses to begin counting
time. Different choices of t0 correspond to different con-
stant shifts of A3. Working in a spatially infinite setting,
this ambiguity would be inconsequential, since constant
gauge fields are then pure gauges. However, on a finite
space, the spatial boundary conditions (which in the fol-
lowing will be taken to be periodic) restrict the available
gauge transformations and only allow for discrete shifts of
the gauge fields. As a simple example, consider a charged
particle in a constant field on a circle of length L described
by the Hamiltonian H � ��i@x � A�

2. Its energy eigen-
values are En � �2�n=L� A�2, where n can be any inte-
ger. The ground-state energy therefore is E0 � A2 as long
as A 2 ���=L;�=L	, and E0 is periodic in A with period
2�=L, reflecting the residual discrete gauge invariance.
The spectrum explicitly depends on A and, compared
with the case A � 0, the ground-state energy can deviate
by as much as �E0 � �2=L2. Thus, while this is ultimately
nothing but a finite size effect, it vanishes rather slowly
(only as a power of L) as the spatial volume is increased. It
is a priori unclear how difficult it is in practice to deal with
this effect by using different lattice sizes. Within the
present investigation, that avenue is closed at any rate,
since the dynamical quark ensemble which will be used
is only available at one spatial volume. Instead, measure-
ments at several different t0 in (2) will be used in order to
treat this effect.

Another aspect of the same issue is that the Hamiltonian
in the presence of the field (2) is not time independent.
Physics at two widely separated times differ precisely by a
shift in the external gauge field A3. If the electric field E is
very small, the strong dynamics can instantaneously adjust
to the change in the external field as time passes; one will
observe an adiabatic change in the physical spectrum. The
hadronic two-point function will generally not fall off as a
simple exponential in Euclidean time, even for large such
times. Both the hadron’s energy as well as its wave func-
tion will contain time dependences. This is reminiscent of
the behavior induced by the acceleration of charged had-
rons in the electric field [10]. That particular effect is
negligible for sufficiently heavy hadrons, such as nucleons.
By contrast, the constant gauge field effect discussed here
is one of the dominant effects, and care needs to be taken to
disentangle it from the nucleon polarizability.

A way to avoid the time dependence discussed above is
to instead use a gauge field representation of the type

 A0 � �Ex3 (3)

inducing the same external electric field as (2); indeed, in
the present work, also this case will be investigated.
However, it should be noted that this choice also has

1The four-point functions considered in [3] are different from
the ones which are calculated in the present work, since different
theoretical approaches are used. However, the computational
complexity resulting from the two approaches is similar.
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disadvantages which, on balance, are no less problematic
than the time dependence engendered by (2). Namely, the
advantage of time independence using (3) is offset by the
fact that spatial translational invariance is lost; the repre-
sentation (3) conflicts with spatial periodicity and the
periodic boundary conditions enforce a spike in the electric
field resulting from the jump in A0 as one crosses the
boundary of the lattice in the 3-direction.2 In effect, the
neutron thus propagates in a spatially varying potential and
its energy contains, e.g., contributions from quantum me-
chanical zero-point motion in that potential. Also the neu-
tron’s internal wave function is distorted by the electric
field spikes. As a consequence, it is not straightforward to
isolate the polarizability from the full measured mass shift.

II. MEASUREMENT METHOD

A. Neutron two-point function

The objective of the present investigation is to extract
the neutron mass from the neutron two-point function in
the presence of an external electric field. The neutron two-
point function is the correlator

 hN�0 �x
0� �N��x�i �

1

Z

Z
�DU	�D � 	�D 	


 exp��S� ; � ;U	�N�0 �x0� �N��x�; (4)

with the lattice discretization of the functional integral to
be specified below. Both the action S and the (smeared)
neutron fields N, �N in general depend on the external
electromagnetic field A�. At face value, this would imply
that one needs to generate lattice ensembles using an action
modified by the external field in order to evaluate (4). That
would clearly be prohibitively expensive using dynamical
quarks. However, decomposing the action as

 S � S0 � SE ; (5)

where S0 is the action in the case of vanishing external
field, one can rewrite (4) as

 hN�0 �x0� �N��x�i �
he�SEN�0 �x

0� �N��x�i0
he�SEi0

; (6)

with h. . .i0 denoting the average in the absence of the
external field,

 hOi0 �
1

Z0

Z
�DU	�D � 	�D 	 exp��S0�O: (7)

While this reduces the problem to integrations over the
lattice ensemble in the absence of the external field, ex-
pectation values such as the ones in (6) generally suffer
from severe overlap problems. The crucial step which
renders the problem somewhat more tractable results
from the fact that it is sufficient to know the quadratic
term in the Taylor expansion of (6) with respect to the
external field in order to extract the neutron polarizability.
Then, one can expand

 exp��SE� � 1� SE � S
2
E=2� . . . (8)

and the evaluation of (6) reduces to the calculation of
certain space-time integrals over four-point functions, as
will be discussed in detail below. Before proceeding to
describe this perturbative expansion, it is now possible to
specify how the functional integration in (7) will be carried
out. As usual, decomposing S0 into its pure gauge and
fermion parts,

 S0 � SG � SF ; (9)

the integration is cast in terms of an average over an
ensemble of gauge fields U,

 hOi0 �
1

Z0

Z
�DU	 exp��SG;eff�hOiU ; (10)

governed by the action SG;eff which includes the effects of
both the pure gauge term as well as the determinant of the
Dirac operator from SF. Adopting 2� 1 flavor Asqtad
quark fields to evaluate the determinant, one can utilize
the corresponding dynamical quark ensembles made avail-
able by the MILC Collaboration [11–13]. The numerical
results reported in the present work were obtained using 99
configurations from the SU�3� flavor-symmetric ensemble
with quark masses given by ams � aml � 0:05, where the
lattice spacing a � 0:124 fm is determined by heavy quark
spectroscopy [14]. Computation at such a relatively large
quark mass is comparatively inexpensive and serves pri-
marily to validate the concepts developed in this work as
well as giving a first indication of the feasibility of a
broader calculational effort within the framework ad-
vanced here.

The aforementioned configurations were originally gen-
erated on 203 
 64 lattices. In the present work, these
lattices were chopped in half in the time direction, i.e.,
measurements were carried out on 203 
 32 lattices con-
taining the first 32 time slices of the original 203 
 64
lattices. Correspondingly, quark propagators determining
the quantities hOiU, cf. (11), were evaluated using Dirichlet
boundary conditions at the temporal edges of the chopped
lattices. The lattices were furthermore HYP-smeared [15]
to reduce the effect of dislocations.

2Note that, in the lattice formulation, there exist discrete
choices of E which mitigate this problem, namely, integer multi-
ples of 2�=aL, where L is the extent of the lattice in the relevant
direction and a denotes the lattice spacing. However, this argu-
ment relies on the compactness of the gauge link variables and,
on realistic lattices, corresponds to strong electric fields. By
contrast, hadron electric polarizabilities are given specifically
by the term quadratic in E of a Taylor expansion of their mass.
To isolate this term, it is necessary to vary E over a denser set of
values than provided by the aforementioned discrete choices, for
which the Taylor expansion will generally not converge well on
lattices of a practical size.
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For a given gauge configurationU, the expectation value

 hOiU �

R
�D � 	�D 	 exp��SF�OR
�D � 	�D 	 exp��SF�

(11)

needs to be evaluated. At this point, a hybrid approach is
adopted [16,17]: While the gauge ensemble used in the
average (10) is generated using Asqtad quarks, (11) is
evaluated using domain-wall quarks [18,19]. The reason
for this choice lies in the longer-term goal of extending the
present investigation to light quark masses at which a
chirally well-behaved quark discretization becomes impor-
tant. Thus, the fields  , � in (11) are taken to be five-
dimensional,  �x; s� and � �x; s�, where x labels four-
dimensional space-time and s labels the fifth coordinate.
The latter is subdivided into Ls � 16 spacings, s 2
f0; . . . ; Ls � 1g, and  �x; s� � 0 outside that range (i.e.,
derivatives in the fifth direction have hard boundaries).
This value of Ls is sufficient to keep the residual mass
mres which characterizes explicit chiral symmetry breaking
by the domain-wall fermion discretization suppressed by
more than an order of magnitude compared to the quark
mass discussed further below [16,17]. The boundaries s �
0 and s � Ls � 1 provide domain walls which support
quasi–four-dimensional light physical quark modes; left-
handed modes are bound to s � 0 and right-handed modes
to s � Ls � 1. It is useful to define corresponding four-
dimensional projected quark fields

 ��x� �
1� �5

2
 �x; 0� �

1� �5

2
 �x; Ls � 1� (12)

 

���x� � � �x; 0�
1� �5

2
� � �x; Ls � 1�

1� �5

2
: (13)

In terms of the above fields, the action SF in (11) reads
 

SF� ; � ;U	 � �
X
x;s

X
�

� �x; s�
�
1� ��

2
�U��x� �x� e�; s�

�  �x; s�	 �
1� ��

2
��Uy��x� e��


  �x� e�; s� �  �x; s�	
�

�
X
x;s

� �x; s�M5 �x; s� �
X
x

���x�mf��x�;

(14)

where � runs over all five dimensions and U5 � 1. Note
that the fermion fields also carry a flavor index; in the final
term, i.e., the quark mass term, which is constructed di-
rectly in terms of the projected four-dimensional quark
fields � and ��, mf in general represents a (diagonal)
matrix in flavor space. In the SU�3� flavor-symmetric
case studied here, mf is given by one single number.

Using spectral flow analyses, the five-dimensional mass
parameter M5 in (14) was chosen to take the value M5 �

1:7 in order to optimize the chiral properties [16,17].
Finally, the quark mass was adjusted such as to match
the pion mass obtained in the present hybrid approach to
the lightest pion mass extracted from a pure Asqtad calcu-
lation [14]; this yields [16,17] the choice amf � 0:081.

The domain-wall fermion action (14) also determines
the interaction between the quarks and the external electric
field. The additional electromagnetic gauge field A� gen-
erating the external electric field modifies the gauge link
variables,

 U��x� ! exp�iaqfA��x��U��x�; (15)

where a denotes the lattice spacing; note that the fractional
electric charge qf varies according to flavor. Note also that
the particular forms of A� used in this work, cf. (2) and (3),
are all such that A� is constant in the� direction; hence the
simple form (15) for the exponentiated integral along the
link. Inserting the modified link variables (15) into the
domain-wall fermion action (14) and separating off the
part which remains for vanishing external field, A� � 0,
yields the five-dimensional interaction
 

SE;5d � �
X
x;s

X
�

� �x; s�
�

1� ��
2

�eiaqfA��x� � 1�U��x�


  �x� e�; s� �
1� ��

2
�e�iaqfA��x�e�� � 1�


Uy��x� e�� �x� e�; s�
�

(16)

generating a vertex which couples the five-dimensional
domain-wall fermion fields  , � to the external field.

To arrive at a practicable computational scheme, in the
calculations presented further below, the external gauge
field A� is not coupled directly to the five-dimensional
fields according to (16), but instead to the corresponding
four-dimensional projected quark fields �, ��.
Accordingly, a renormalization factor zV must be included
with the four-dimensional coupling to compensate for the
effect of the projection of the quark fields. Thus, the
modified interaction vertex used in practice is
 

SE � �zV
X
x

X
�

���x�
�
1� ��

2
�eiaqfA��x� � 1�


U��x���x� e�� �
1� ��

2
�e�iaqfA��x�e�� � 1�


Uy��x� e����x� e��
�
: (17)

The renormalization factor zV will be determined in
Sec. IVA. The reason for the adoption of the modified
interaction (17) lies in the practical expense of storing full
five-dimensional propagators as opposed to ones which
have been projected down to four dimensions at source
and sink. This modus operandi constitutes a compromise
which certainly should be revisited as storage constraints
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change. Using full five-dimensional propagators and cou-
pling the conserved five-dimensional current to the exter-
nal electromagnetic field directly via (16) would be the
most consistent treatment, and would eliminate the need
for renormalization of the interaction vertex.

Finally, it is necessary to specify the neutron sources and
sinks �N, N in (4):

 N��x� � ����C�5����bcdQ
�d�
b��x�Q

�d�
c� �x�Q

�u�
d� �x� (18)

 

�N ��x� � �Q�u�d��x� �Q�d�c� �x� �Q�d�b��x��bcd����C�5���; (19)

where C denotes the charge conjugation operator and Q is
a Wuppertal-smeared [20] quark field (with the superscript
denoting flavor), constructed iteratively as (where the
superscript now momentarily labels iterations):
 

Q�i��x� � �1� 6��Q�i�1��x�

� �
X�3

���1

Uy��x� e��Q�i�1��x� e��: (20)

Here, � and the number of iterations imax are free parame-
ters, chosen such as to generate a good overlap between the
neutron source and the true neutron ground state [21]. The
iteration starts at Q�0� � � and ends at Q�imax� � Q. The
sum over directions � in (20) runs only over the three
spatial dimensions, but includes terms associated with both
positive and negative displacements in each dimension
[i.e., e�� � �e�, Uy���x� e��� � U��x�]. Note that
smearing constitutes a linear operation on the quark fields,
i.e., there exists a matrix P such that

 Q�x� � P�x; y���y�; �Q�x� � ���y�Py�y; x�: (21)

P is proportional to the unit matrix in the Dirac indices, but
not in the space-time and color indices, nor in the flavor
indices once the external electric field is introduced via the
substitution (15). Note, thus, that the presence of the
external electric field can influence the smearing if one
insists on manifest invariance of the neutron sources and
sinks with respect to gauge transformations of the external
field. However, it is not imperative to preserve such mani-
fest invariance; not doing so merely corresponds to evalu-
ating (gauge-invariant) physical observables in a particular
gauge. In the treatment to follow, the most general case will
be considered, i.e., the perturbative expansion discussed
below will include the diagrams resulting from expanding
the source and sink fields in the external field. This will
make it possible to separately assess the influence of such
terms. Ultimately, unambiguous extraction of the neutron
electric polarizability will be seen to necessitate discarding
such diagrams, and thus foregoing manifest invariance of
the neutron sources and sinks with respect to gauge trans-
formations of the external field; nevertheless, it will be
verified that the effect of including additional smearing
diagram contributions on the final result for the polariz-

ability is negligible, thus rendering this issue moot in any
case.

B. Perturbative expansion

Having defined all of the objects entering the neutron
two-point function (4), one can proceed to extract the
quadratic term of its Taylor expansion with respect to the
external field A�. Both the interaction SE and the smeared
neutron sources N and �N in general contain a dependence
on A�. Expanding (17), one obtains two relevant vertices,

 SE � SE;1 � SE;2 �O�A
3
��; (22)

which can be written as bilinear forms,

 SE;i � ��Mi�; (23)

with
 

M1�x;y� � �iazVqf
X
�

�
1���

2
A��x�U��x���x� e�;y�

�
1���

2
A��x� e��U

y
��x� e����x� e�; y�

�

(24)

 

M2�x;y� �
a2

2
zVq

2
f

X
�

�
1���

2
A2
��x�U��x���x� e�;y�

�
1���

2
A2
��x� e��U

y
��x� e����x� e�; y�

�
:

(25)

Thus, M1 and M2 are matrices in the space-time, color,
Dirac and flavor indices, summation over which is implied
in (23).

On the other hand, also the smeared fields defined by
(20) need to be expanded in the external field,

 Q�i� � Q�i�0 �Q
�i�
1 �Q

�i�
2 �O�A

3
�� (26)

(where the subscript denotes the order in the external field).
Modifying the link variables in (20) according to (15) and
expanding in A�, one has an iterative construction of the
smeared fields separated order by order in the external
gauge field,
 

Q�i�0 �x� � �1� 6��Q�i�1�
0 �x�

� �
X�3

���1

Uy��x� e��Q
�i�1�
0 �x� e�� (27)

 

Q�i�1 �x� � �1� 6��Q�i�1�
1 �x� � �

X�3

���1

Uy��x� e��


 �Q�i�1�
1 �x� e�� � iaqfA��x� e��


Q�i�1�
0 �x� e��� (28)
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Q�i�2 �x� � �1� 6��Q�i�1�
2 �x�

� �
X�3

���1

Uy��x� e��
�
Q�i�1�

2 �x� e��

� iaqfA��x� e��Q
�i�1�
1 �x� e��

�
a2q2

f

2
A2
��x� e��Q

�i�1�
0 �x� e��

�
: (29)

Equivalently, the smearing matrix P in (21) can be written

in expanded fashion,

 P � P0 � P1 � P2 �O�A3
�� (30)

(the original quark field � is of course of zeroth order in
A�).

Returning to the neutron two-point function, expanding
(6) in powers of SE, inserting (22) and discarding terms
which contribute only at higher than quadratic order in the
external field yields

 

hN�0 �x
0� �N��x�i � h�1� SE � S

2
E=2�N�0 �x

0� �N��x�i0�1� hSE � S
2
E=2i0 � hSEi

2
0�

� hN�0 �x
0� �N��x�i0 � h�SE;1 � SE;2 � S

2
E;1=2�N�0 �x

0� �N��x�i0 � hSE;1 � SE;2 � S
2
E;1=2i0hN�0 �x

0� �N��x�i0

� hSE;1i0hSE;1N�0 �x0� �N��x�i0 � hSE;1i20hN�0 �x
0� �N��x�i0: (31)

As usual, the denominator in the original expression (6) has the effect of subtracting disconnected (in the statistical sense)
pieces. Furthermore, inserting the more specific forms (18), (19), (21), and (23), one arrives at (the superscripts of the
smearing matrices P and the quark fields � denoting a fixed flavor):

 

hN�0 �x0� �N��x�i � ��0�0 �C�5��0�0�b0c0d0�bcd����C�5���P
�d�
b0k0 �x

0; u0�P�d�c0l0 �x
0; v0�P�u�d0m0 �x

0; w0�Py�u�md �w; x�P
y�d�
lc �v; x�P

y�d�
kb �u; x�




�
�

�
��d�k0�0 �u

0���d�l0�0 �v
0���u�m0�0 �w

0� ���u�m��w�
���d�l� �v�

���d�k��u�
�
� ��M1�� � � ��M2��

�
1

2
� ��M1��� ��M1��

��
0
� h��d�k0�0 �u

0���d�l0�0 �v
0���u�m0�0 �w

0� ���u�m��w�
���d�l� �v�

���d�k��u��
��M1��i0h� ��M1��i0

� h��d�k0�0 �u
0���d�l0�0 �v

0���u�m0�0 �w
0� ���u�m��w�

���d�l� �v�
���d�k��u�i0




�
1�

�
� ��M1�� � � ��M2�� �

1

2
� ��M1��� ��M1��

�
0
� h� ��M1��i20

��
(32)

Applying Wick’s theorem (i.e., evaluating the h. . .iU aver-
ages over the quark fields, cf. (10) and (11)), and retaining
only contributions quadratic in the external gauge field,
one finally arrives at a diagrammatic representation, de-
picted in Fig. 1, for the desired quantity, namely, the
quadratic term in the Taylor expansion of the neutron
two-point function with respect to the external field. The
diagrams in Fig. 1 are to be read as follows:

(a) Solid lines are point-to-point quark propagators
K�f�c

0c
�0� �x

0; x� � h��f�c0�0 �x
0� ���f�c� �x�iU. Note that these

are propagators between four-dimensional sources
and sinks, i.e., an initially four-dimensional source
is propagated in five dimensions using the domain-
wall quark action (14) and finally projected back to
four-dimensional space-time according to the corre-
spondence (13). Of the three propagator chains con-
necting neutron source and sink, two are associated
with flavor down, f � d, and one with flavor up,
f � u. The quark loops imply a sum over all three
flavors.

(b) � denotes quark source or sink smearing of zeroth
order in the external field, i.e. P0 in the decomposi-

tion (30). Similarly,
L

corresponds to P1 and �
corresponds to P2.

(c) 
 denotes a vertex insertion linear in the external
field, i.e., multiplication by M1, cf. (24). Similarly,N

corresponds to M2, cf. (25).
(d) At the neutron source and sink, symbolized by the

ovals, color and Dirac indices must be contracted in
accordance with the first line of the right-hand side
of (32).

(e) Each diagram summarizes several elementary terms
in the Wick expansion of (32). For every contribu-
tion in which the quark lines run literally as shown,
there is a corresponding contribution in which the
two down quark lines connecting neutron source and
sink cross (i.e., the sinks are exchanged). The latter
contribution receives an additional minus sign from
the exchange. Furthermore, for each diagram, there
are several ways of distributing vertices and smear-
ings over the quark sources, sinks and propagators,
only one of which is shown in each case. Note that
the combinatorics are different for vertices and
smearings. On the one hand, there are six ways of
distributing two 
 vertices such that they reside on
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different quark lines connecting neutron source and
sink (i.e., exchanging two such vertices amounts to a
new contribution3); on the other hand, there are only
three ways of distributing two

L
sink smearings in

the neutron sink [since the product �P0 � P1 � P2�
3

contains only three terms consisting of two factors
P1 and one factor P0], and analogously for the
neutron source. Note that the labeling of the dia-
grams reflects these multiplicities; in each label, the
integer inside the parentheses denotes the number of
individual contributions from the Wick expansion of

(32) summarized by the diagram.
(f) As usual, each quark loop implies an additional

minus sign. In order to keep with standard nomen-
clature, these signs were not absorbed into the pre-
factors, but must be included separately when
evaluating the diagrams.

(g) Each contribution finally must be averaged over the
gauge ensemble, where, as already remarked after
Eq. (31), statistically disconnected parts are sub-
tracted. Thus, denoting the gauge ensemble average
as

 hOiG �
1

Z0

Z
�DU	 exp��SG;eff�O; (33)

diagram J01�2� is to be evaluated as

I01(12)

1
2

I02(12)

1
2

I03(6) I11(6)

I12(6) I13(12) I14(12) I21(6)

I22(6) I23(6) I24(12) I25(6)

I26(6) J01(2)

1
2

J02(6) J03(2)

J11(6) J12(6) K01(2)

1
2

FIG. 1. Contributions to the neutron two-point function quadratic in the external gauge field. The nomenclature is explained in detail
in the main text.

3To be completely precise, this only applies when both vertices
reside on quark lines connecting neutron source and sink; on the
other hand, in the diagrams labeled J01�2�, J02�6� and K01�2�,
no additional contributions stemming from exchange of the
vertices are implied. Any such duplications which may arise
from the Wick expansion of (32) are already taken into account
through the prefactor of the diagram (such a duplication actually
only occurs in the case of J02�6�, the statistically connected part
of which, cf. item (g), originally enters with a prefactor of 1=2).
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J01(2) G
G

G

[where of course only items (a)–(f) apply to the objects inside the averages]. Diagrams J02�6�, J03�2�, J11�6� and J12�6�
are treated analogously. The more complicated case K01�2� is evaluated as

K01(2) G
G G

G
G

GG

2
22

Note that the naming of the different contributions is
intended to be mnemonic. The initial character differen-
tiates between contributions of varying number of discon-
nected parts; I denotes connected diagrams, J
disconnected ones with two parts and K the disconnected
diagram with three parts. The digit following the initial
character indicates the power of the external electric field
contributed specifically by the source and sink smearings.
The next digit is simply a running index numbering the
contributions in each class. Finally, as already mentioned
under item (e) above, the integer in the parentheses denotes
the number of individual contributions from the Wick
expansion of (32) summarized by the diagram.

C. Calculational details

The code written to compute the diverse diagrams in
Fig. 1 relied heavily on the Chroma Library for Lattice
Field Theory [22,23]. In practice, the propagator chains
connecting neutron source and sink were calculated in
sequential fashion. Starting from a space-time location x
and a specific set of color, Dirac and flavor indices a,� and
f, as well as choosing the desired order i of the smearing in
the external field, one constructs the smeared source vector
���P

y�f�
i ba�y; x� using the appropriate iterative procedure

(27), (28) or (29). While no loss of generality is incurred by
performing the calculation for only one particular x, all
combinations of the other indices are ultimately required
for the contractions at the neutron source (of course, differ-
ent flavors are related in a trivial manner). Propagating the
aforementioned specific smeared source vector yields di-
rectly the smeared-to-point propagator K�f�cb�� �z;y�


Py�f�i ba�y;x�. A vertex insertion implies multiplication with
the corresponding matrix Mj, yielding a new source vector

M�f�dcj ���w; z�K
�f�cb
�� �z; y�P

y�f�
i ba�y; x�. This source vector is

then again propagated,4 thus building up the propagator
chain sequentially. When finally arriving at the neutron
sink, the appropriate sink smearing is applied, using again
(27), (28) or (29).

The disconnected quark loops were evaluated using
stochastic estimation. To estimate the trace over all indices
implied by the loop, a basis of 120 stochastic sources (240
for two cases of external fields which engender particularly
strong statistical fluctuations, cf. Sec. IV B) was used.
Again, starting at each stochastic source, propagator chains
were constructed sequentially, and finally contracted again
with the stochastic source. The sources were complex Z�2�
sources, distributed homogeneously over space-time, Dirac
and color space,5 i.e., each point in that product space was

4Note that the positions of the interaction vertices in the
diagrams in Fig. 1 are not external parameters, but integration
variables. Thus, e.g., diagram I01�12� does not represent a full
four-point function, but only a very specific space-time integral
over a four-point function. It is these integrations which render
the calculation tractable by the sequential procedure described
here; they provide precisely the contraction between a vertex and
an attached propagator which permits treating an inserted vertex
simply as one single new source, devoid of external parameters
and spread out over all of space-time, to be submitted to the
subsequent propagation.

5For the flavor SU�3�-symmetric ensemble mu � md � ms
used in this work, it is sufficient to consider one flavor and
weight the result by the appropriate combination of fractional
charges to obtain the full value of the loop diagram.
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associated with a value from the set

 f1� i; 1� i;�1� i;�1� ig (34)

with equal probability.
Disconnected contributions exhibit strong statistical

fluctuations, and two possibilities of reducing these fluc-
tuations were investigated. On the one hand, the conse-
quences of only switching on the external electric field a
short time before the introduction of the neutron source and
switching it off soon after the annihilation by the neutron
sink were explored. This procedure will be referred to as
‘‘chopping’’ the external field in the following. It is moti-
vated by the expectation that, if sufficient time has elapsed
between the introduction of the neutron source and the
neutron mass measurement to filter out the true neutron
ground state, then also any switching-on effects generated
prior to the introduction of the neutron source will have
decayed. However, the statistical fluctuations of discon-
nected diagrams will be significantly affected by chopping
the external field. Summing up contributions due to the
coupling of the external field to vacuum fluctuations far in
the past or the future of the neutron mass measurement,
while not expected to influence the outcome of the latter,
will certainly add statistical noise to it. Chopping the
external field can reduce that noise significantly by dis-
carding irrelevant vacuum fluctuations. This was tested
using the external field A3 � E�t� t0� with t0 � �10a,
where here and in the following, the temporal lattice
boundaries are located at t � �10a and t � 22a, and the
neutron source is located at t � 0. Figures 2 and 3 compare
results obtained without chopping, i.e., A3 � E�t� t0�
throughout the lattice, with results obtained by setting
A3 � E�t� t0� only for �a 
 t 
 14a and A3 � 0 for
other times. As expected, no significant differences arise
in the measured correlator ratio. This is particularly clear in
the connected contributions, which are determined very
accurately; in the disconnected contributions, a significant

reduction of the statistical uncertainty results. Note that the
neutron mass shift is ultimately extracted specifically from
the slope of the correlator ratio shown in Figs. 2 and 3, as
discussed in Sec. III. Because of the advantages offered by
chopping the external field, all further measurements re-
ported in the following, cf. in particular Sec. IV B, were
obtained using chopped external electric fields.

On the other hand, a further possibility of reducing the
uncertainty of stochastic estimation which was explored is
dilution [24], specifically dilution in the Dirac index. In
other words, besides the stochastic estimation scheme
described above, also an alternative scheme was consid-
ered in which each value of the Dirac index in the loop
trace was considered separately, with Z�2� sources distrib-
uted homogeneously only over space-time and color space
in each case, the sum over those values yielding the Dirac
trace at the end. The comparison between the two schemes
was carried out for the external field A3 � Et, chopped as
described further above, with the neutron source again
located at t � 0. Figure 4 shows the respective results
obtained for the disconnected diagrams J01 and J03.
Evidently, for this particular external field and dilution
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unchopped
chopped

FIG. 3. Comparison of results obtained using chopped and
unchopped external fields, analogous to Fig. 2, but showing
the contributions of the connected diagrams I01, I02, I03 and
the disconnected diagrams J01, J03 in one figure.
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FIG. 2. Comparison of results obtained using chopped and unchopped external fields, as described in the main text. The left panel
displays the sum of the connected diagrams I01, I02 and I03; the right panel displays the sum of the disconnected diagrams J01 and
J03. Results are shown as a function of temporal source–sink separation, in each case normalized by the neutron two-point function in
the absence of the external field, i.e., shown are the contributions by the respective subsets of diagrams to the ratio R2 defined in
Eq. (40). All measurements are taken at integer times; data are slightly displaced from those times in the figures for better readability.
The electric field E providing the scale is cast in Gaussian units. Shown are unrenormalized raw data, i.e., for the purpose of this
comparison, zV � 1 in the vertices (24) and (25).
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scheme, there is no computational advantage in dilution;
the statistical uncertainty in fact is slightly larger in the
diluted case. As a consequence, dilution was not consid-
ered any further in the present investigation; this does not
exclude that a comprehensive survey of various implemen-
tations of dilution could yield computationally more ad-
vantageous schemes.

III. INTERPRETATION OF THE NEUTRON
TWO-POINT FUNCTION

The standard method of extracting ground-state hadron
masses is to project the hadron two-point function onto a
definite momentum, consider an appropriate Dirac compo-
nent, and compare the measured data to the corresponding
spectral representation. Choosing, specifically,
zero momentum and unpolarized neutron states,
 

G�p � 0; t� �
Z
d3x0 Tr

�
1� �0

2
hN�x0� �N�x�i

�

! W exp��mt� (35)

for sufficiently large times t, where the neutron source
location defines t � 0, and W characterizes the overlap
between the state created by the operator �N and the true
neutron ground state. Thus, the neutron mass m can be
extracted from the exponential decay of the correlator (35).

Furthermore, if one is calculating the correlator as a
function of a small external parameter, such as an external
electric field E, one can expand in E,

 m � m0 �m1E�m2E2 �O�E3� (36)

 W � W0 �W1E�W2E2 �O�E3� (37)

and then the Taylor expansion of (35) contains the qua-
dratic term
 

G�2��p � 0; t� � exp��m0t��W2 �W0m2t�W1m1t

�W0m2
1t

2=2	E2: (38)

Using the fact that the neutron’s electric dipole moment
vanishes, m1 � 0, and dividing by the correlator G0 ob-
tained in the absence of the external field,

 G0�p � 0; t� ! W0 exp��m0t�; (39)

one has

 R2�t� �
G�2��p � 0; t�
G0�p � 0; t�

!

�
W2

W0
�m2t

�
E2; (40)

allowing one to extract the neutron electric polarizability
 � � �2m2; (41)

cf. (1), from the slope of (40) as a function of t.
Two assumptions underlie this procedure, namely,

time independence of the Hamiltonian and spatial transla-
tional invariance. As already indicated in Sec. I, neither of
the external gauge fields (2) and (3) investigated in the
present work satisfies both of these assumptions simulta-
neously. As a result, the standard analysis discussed above,
which would be appropriate in infinitely extended space-
time, needs to be reconsidered in more detail.

A. Temporally varying gauge field

Consider first the case of the external field (2),

 A3 � E�t� t0� � A� Et: (42)

In this case, one does have spatial translational invariance,
but there is no invariance under arbitrary temporal shifts. A
translation in time corresponds to a shift in the constant
component A of the gauge field, and, on a space of finite
extent, different A are in general physically inequivalent,
since only gauge transformations which shift A by certain
finite increments exist. Therefore, the Hamiltonian in the
presence of the field (42) is time dependent6 (with a
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FIG. 4. Comparison of results obtained using undiluted and diluted stochastic sources, as described in the main text. Diagram J01
(left) and diagram J03 (right) are displayed as a function of temporal source–sink separation, each normalized by the neutron two-
point function in the absence of the external field, i.e., shown are the individual contributions by the two diagrams to the ratio R2

defined in Eq. (40). All measurements are taken at integer times; data are slightly displaced from those times in the figures for better
readability. The electric field E providing the scale is cast in Gaussian units. Shown are unrenormalized raw data, i.e., for the purpose
of this comparison, zV � 1 in the vertices (24) and (25).

6Note that one cannot argue external fields of the type (2) to be
gauge equivalent to time-independent ones such as (3) on a finite
coordinate space; the corresponding gauge transformation con-
flicts with the boundary conditions.
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periodicity which depends on the strength of the electric
field E).

These observations affect the above analysis in two
ways. For one, the correlator (35) really depends on two
external parameters, E and A. As a consequence, the
correlator ratio (40) contains all quadratic dependences
which can result in the presence of the two parameters,
 

R2�t� !
1

W0
�WAA

2 A2 �WAE
2 AE�WEE

2 E2�

� �mAA
2 A2 �mAE

2 AE�mEE
2 E2�t: (43)

On the other hand, for a small external field, the ground-
state neutron mass and wave function adjust adiabatically
as time evolves; this implies that the overlap coefficients
W��2 (and also m��2 ) in (43) are time dependent, complicat-
ing the extraction of the neutron mass shift from the slope
of the correlator ratio as a function of time. Even with the
expanded set of data obtained within the present work, not
enough information is available to disentangle these time
dependences in the most general case. However, in one
specific situation, which will be argued below to be the
relevant one as far as the extraction of the neutron electric
polarizability is concerned, the slope of R2�t� indeed does
yield the neutron mass shift directly; namely, when the
Hamiltonian is stationary in time. In that case, time depen-
dences in the coefficients W��2 (and m��2 ) are relegated to
higher than linear order,7 and one can indeed equate, up to
a minus sign, the slope ofR2�t�, cf. (43), with the mass shift

 �m � mAA
2 A2 �mAE

2 AE�mEE
2 E2: (44)

Moreover, since a shift in A is equivalent to a shift in time,
stationarity of the Hamiltonian in time also implies statio-

narity in A, i.e., the mass shift (44) [and consequently the
slope of R2�t�] is stationary in A in this particular situation.
Thus, in analyzing the measured data below, the slope of
R2�t�,

 S2 �
dR2

dt
; (45)

will be extracted8 and, for givenE, the unique external field
will be sought out at which S2 is stationary with respect to
A. Since this is then necessarily the point at which the
Hamiltonian is stationary in time, at that point, then, one
can identify

 S2 � ��m: (46)

To complete the analysis, it is necessary to discuss in more
detail the dependence of the neutron mass shift �m on the
parameters E and A, and, in particular, the relevance of
stationarity in A. In general, the part of the neutron mass
shift which is of second order in the external gauge field
(42) can be written as a quadratic form in the parameters E
and A, cf. (44). However, this quadratic form is not yet
defined unambiguously and its coefficients can conse-
quently not yet all be interpreted as bona fide physical
properties of the neutron. To see this, consider shifting
the entire neutron mass measurement process by a time
increment �t, i.e., the neutron source, which starting with
(35) has so far been assumed to be located at t � 0, shall,
for the sake of the following argument, now be located at
t � �t. If one concomitantly introduces a shifted time coor-
dinate t0 � t� �t and a shifted

 

�A � A� E�t; (47)

then, in terms of the shifted quantities, the problem takes a
form identical to the original one, i.e., one measures the
mass shift
 

�m � mAA
2

�A2 �mAE
2

�AE�mEE
2 E2 (48)

 � mAA
2 A2 � �mAE

2 � 2�tmAA
2 �AE

� �mEE
2 � �tmAE

2 � �t2mAA
2 �E

2
(49)

 � �mAA
2 A2 � �mAE

2 AE� �mEE
2 E2: (50)

Thus, in terms of the original definition ofE and A, cf. (42),
the shifted measurement yields a quadratic form for the
mass shift with different coefficients �mAE

2 and �mEE
2

(whereas the remaining coefficient is invariant, �mAA
2 �

mAA
2 ). Therefore, the question arises how the neutron elec-

tric polarizability is to be extracted from the total mass
shift �m; evidently, polarizability effects enter both the

7As already mentioned at the end of Sec. II A, and discussed
further in Sec. IV B, here, an additional technical issue arises:
While stationarity of the Hamiltonian guarantees that the neutron
wave function is stationary, there is, in addition, a time depen-
dence contained in the smeared neutron sink via Eqs. (28) and
(29). As a result, the overlap between neutron wave function and
sink can still contain contributions linear in time if one insists on
manifest invariance of the neutron sink with respect to gauge
transformations of the external gauge field, implying the inclu-
sion of (28) and (29) in the smeared sink construction. On the
other hand, if one restricts the calculation to the fixed gauge field
(42) and foregoes manifest invariance of the neutron sink with
respect to gauge transformations of the external field, it is
legitimate to use the time-independent smeared sink (27) alone.
In terms of the diagrammatic representation of Fig. 1, this
corresponds to discarding all diagrams involving smeared sinks
other than �. In the analysis below, both options will be treated,
and the final result for the neutron electric polarizability will be
seen to be uninfluenced by this choice. A way to avoid this issue,
not explored within the present investigation, would be to use a
point neutron sink; such a sink would be simultaneously time-
independent and invariant under gauge transformations of the
external field. On the other hand, a point sink would have a small
overlap with the true neutron wave function, implying a lessened
efficiency in the extraction of the neutron ground-state signal.

8In practice, the average slope over a fixed measurement time
interval will be determined in order to reduce the statistical
uncertainty.
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coefficients �mEE
2 and �mAE

2 , which can be traded off against
one another, as demonstrated above.

As a first step towards disentangling the different effects
at play, the immutable character of the coefficient �mAA

2
should be noted, which allows it to be interpreted as an
unambiguous property of the neutron. This property more-
over is separate from the electric polarizability; as verified
by explicit calculation below, also at E � 0 one obtains the
mass shift �m � �mAA

2 A2, encoding the response of the
neutron to distortion by the presence of the constant back-
ground field.9 With �m � �mAA

2 A2 representing the re-
sponse of a neutron already in the absence of any
external electric field, one would indeed expect modifica-
tions of this response due to a distortion of the neutron by
an additional electric field to occur only at higher than
quadratic order in the external gauge field. The
representation independence of �mAA

2 , i.e., its independence
of the choice of �t, thus seems plausible, and is consistent
with the interpretation of the �mAA

2 A2 term as a response
separate from the electric polarizability.

On the other hand, in view of (49), there is one special
representation, i.e., choice of �t, which seems particularly
transparent, namely, the representation in which �mAE

2 van-
ishes, such that10

 �m � �mAA
2 A2 � �mEE

2 E2: (51)

The form (51) suggests an interpretation of the data in
terms of two, now cleanly disentangled effects, namely,
the polarizability effect determined by �mEE

2 and the effect
of introducing a constant background field, embodied in
the coefficient �mAA

2 . Thus, in this special representation, the
electric polarizability is given by

 � � �2 �mEE
2 : (52)

In other words, to isolate the electric polarizability effect
from the complete mass shift, one simply sets A � 0 in the
representation (51).

Finally, it is possible to rephrase this prescription for
extracting the neutron electric polarizability in a manner

which is independent of the particular representation, i.e.,
the choice of �t. Setting A � 0 in the representation (51) is
tantamount to evaluating the mass shift �m at the extre-
mum in A. However, this way of stating the prescription
does not rely on that specific representation; after all, in
view of (48) and (50) in conjunction with (47), different
representations are related by shifting the value of A, and
the extremum of �m as a function of A is invariant under
such shifts. Thus, one can isolate the neutron electric
polarizability in any and all representations by seeking
out the stationary point of the mass shift as a function of A.

In view of this, and the equivalence of shifts in A with
shifts in time, the neutron electric polarizability can indeed
be extracted by considering the correlator ratio R2�t�,
cf. (43), specifically for external gauge fields in the vicinity
of which the Hamiltonian is stationary in time; this vali-
dates the arguments presented further above in conjunction
with Eqs. (44)–(46).

B. Spatially varying gauge field

In the case of the gauge field (3),

 A0 � �Ex3; (53)

one does have a time-independent Hamiltonian, and con-
sequently one can straightforwardly extract the energy of
the neutron ground state from the exponential time decay
of the neutron two-point function. However, this invariance
under translations in time comes at the expense of breaking
spatial translational invariance. The linear dependence of
(53) on x3 conflicts with the periodic boundary conditions;
when traveling through the lattice in the 3-direction, as the
boundary is traversed, A0 is forced to jump, implying a
spike in the electric field which is present in addition to the
constant electric field induced by (53).

Therefore, the neutron is not propagating in a spatially
homogeneous background and its momentum is not a good
quantum number.11 As a result, the ground-state energy
one extracts from the decay of the neutron two-point
function contains not only the desired mass shift associated
with the electric polarizability, but further contributions
due to, e.g., the effective movement in a spatially varying
potential and additional distortions of the neutron by the
electric field spikes. Within the present investigation, no
prescription for disentangling the neutron electric polar-
izability from these other effects with a level of cogency
comparable to the one discussed in the previous section
emerged. Nevertheless, the ground-state energy obtained
below using the external gauge field (53) is consistent with
the polarizability mass shift obtained using the external

9Note that the effect of such a constant background field is
equivalent to a modification of the boundary conditions in the
relevant direction, introducing nontrivial Bloch momenta vary-
ing with quark flavor.

10A way to understand how the simplified dependence (51)
arises is the following: Choosing �t such as to realize (51) shifts
the mass shift measurement time interval towards the time t � 0.
Now, in view of the definition (42), the time t � 0 is special in
that the A and E directions in parameter space are, in a sense,
orthogonal there: At t � 0, a change of E affects only the slope
of A3, but not its value; at other times, this is not the case and a
change in E also implies an adjustment of the value of A3 itself,
which could be equally effected (or compensated) by a change in
A. It is this implicit relation between E and A which generates
the coupled dependence (44); however, if one measures near t �
0, the implicit relation is dissolved and it is natural to obtain the
decoupled dependence given by (51).

11It is, of course, still legitimate to use a zero-momentum
neutron sink, as in (35), since it will presumably have a finite
overlap with the true neutron ground-state wave function.
However, that wave function itself will not carry a definite
momentum.
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field (42), suggesting that the contamination by the addi-
tional effects mentioned above is not dominant. At least as
far as the neutron’s effective propagation in a spatially
varying potential is concerned, this seems plausible, since
the quantum mechanical zero-point energy associated with
such motion is suppressed by the comparatively large mass
of the neutron.

Note that, although superficially the external fields (42)
and (53) seem quite similar, and simply related by an
exchange of the temporal with a spatial direction, the
physical issues arising in the two cases are quite distinct.
This is due to the way the mass measurement is set up. Up
to exponentially suppressed effects, the neutron mass is
determined by physics within a limited time interval, be-
tween neutron source and sink. The temporal boundaries,
located far in the past or the future of the measurement,
have a negligible effect on the latter. By contrast, one
cannot similarly contain the region relevant for the mea-
surement in the spatial directions. In situations with spatial
translational invariance, by projecting onto a definite mo-
mentum, one explicitly weights all of space equally during
the entire measurement process. Even in the absence of
spatial translational invariance, it is up to the dynamics to
determine whether there is a significant probability of
finding the neutron near the spatial boundary. Thus, in
general, the spatial boundary conditions have a crucial
influence on the problem.

In the case of the external field (42) discussed in the
previous section, this entails that shifts of the gauge field
A3 by a constant A have a physical effect, since gauge
transformations designed to remove such a shift conflict
with the spatial boundary conditions. As a consequence,
physics varies locally with time, as discussed extensively
further above. On the other hand, the neutron mass mea-
surement is insensitive to the behavior of the external field
at the temporal boundaries.

In the case of the external field (53), one encounters a
largely converse situation: The neutron ground state is
sensitive to the spatial boundary, at which it encounters
spikes in the external electric field; on the other hand, as
long as one is not in the vicinity of the boundary, physics
does not vary locally in space. The latter is due to the fact
that one can indeed remove constant shifts in the field A0 in
the time interval relevant for the neutron mass measure-
ment using gauge transformations. These transformations
do of course need to exhibit additional nontrivial structures
located far in the past and the future of the measurement,
but these structures will not influence the measurement.
This also motivates the fact that no explicit freedom of
shifting A0 by a constant is included in (53), in contradis-
tinction to (42). Such shifts are not expected to yield new
physics according to the above argument.

Comparing the two cases, ultimately (42) can be treated
in a more satisfactory fashion because the positioning of
the neutron source and sink allows one to contain and

control the breaking of temporal translational invariance
introduced by the field (42). By contrast, in the case of (53),
there is no analogous control; the neutron dynamics must
be allowed to explore space and, in general, the breaking of
spatial translational invariance will influence the measure-
ment in a nontrivial fashion.

IV. MEASUREMENT RESULTS

A. Quark wave function renormalization

To determine the renormalization factor zV in (24) and
(25), a measurement of the number of valence quarks in the
neutron was carried out and subjected to the condition that
this number equal three. In practice, this is realized by
measuring the appropriate three-point function, i.e., a dia-
gram of the type I03, with the difference that the lone
operator insertion is of the form ofM1, cf. (24), without the
weighting by the quark electric charge qf, and with a
formal external gauge field

 A0�x� � ��x0 � t�; (54)

where t is a time between neutron source and sink.
Normalizing this by the neutron two-point function yields,
up to an additional factor i stemming from the Euclidean
treatment of the time coordinate, the (lattice analogue of
the) expectation value of

R
d4xj0A0 in the neutron, where

j0 denotes the temporal component of the quark current. In
view of (54), this reduces to the number of (valence) quarks
n �

R
d3xj0 present at the time t. Figure 5 displays the

plateau obtained measuring n at different insertion times t
for fixed neutron source and sink. Taking the average of the
displayed plateau values, one infers

 zV � 1:12� 0:12; (55)

where the uncertainty was obtained using the jackknife
method. This measurement of zV enters all further mea-
surements below; its uncertainty will be jackknifed into
those measurements.

 2

 2.5

 3

 3.5

 4  5  6  7  8

n

t/a

FIG. 5. (Unrenormalized) number of valence quarks n in the
neutron measured for a range of insertion times. The neutron
source is located at t � 0 and the neutron sink at t � 13a.
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B. Neutron mass shift

Measurements of the neutron mass shift according to the
discussion in Sec. III were taken for the following cases:
With the location of the neutron source once again defining
t � 0, the external gauge field (42) was studied for the
cases t0 � �10a, t0 � 0 and t0 � 6a (where a denotes the
lattice spacing) at a fixed nonvanishing value of E.
Furthermore, the case E � 0 at a fixed nonvanishing value
of A in (42) was investigated. The external gauge field (53)
was treated for a fixed nonvanishing value of E, where the
plane x3 � 0 was taken to define locations maximally
distant from the lattice boundary in the 3-direction, and
was simultaneously used as the location of the neutron
source (i.e., the smeared quark sources were constructed
using an initial position x in (21) located in the x3 � 0
plane).

Furthermore, as discussed in Sec. II C, to suppress fluc-
tuations in disconnected diagrams, these external gauge
fields were chopped in the time direction, i.e., A3 � 0 and
A0 � 0 for t <�a and t > 14a in the following. Only for
�a 
 t 
 14a do A3 and A0 take the forms (42) and (53),
respectively. The temporal boundaries of the lattice, at
which Dirichlet boundary conditions are enforced on the
quark fields, are located at t � �10a and t � 22a.

Stochastic estimation of the disconnected diagrams was
based on 120 stochastic sources, as described in Sec. II C,
except for the cases t0 � �10a and E � 0 in (42), for
which 240 stochastic sources were used.

Figures 6–10 display measurements of the ratio

 R2�t� �
G�2��p � 0; t�
G0�p � 0; t�

; (56)

cf. (40) and (43), for all the aforementioned external gauge
fields, in units of the relevant external field magnitude.
That is, R2 is shown in units of A2 for the case E � 0
and in units of E2 in the other cases; furthermore, here and
in the following, Gaussian units are adopted. Different
subsets of diagrams from Fig. 1 contributing to R2 are
shown in the individual plots (a)–(d) in each case.
Figures 6–10 (a) show only the contributions from con-
nected diagrams with lowest-order smearing, i.e., the dia-
grams I0 � . Figures 6–10 (b) show the result of including
all connected diagrams, I �� . Note that, in the case of the
external field (53), there are no connected contributions
beyond I0 � , since smearing occurs only in the spatial
directions and thus never involves the gauge field compo-
nent A0. Figures 6–10 (c) show the result of including all
diagrams with lowest-order smearing, i.e., the diagrams
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FIG. 6. Contributions by selected subsets of diagrams, as specified in the main text, to the ratio R2, as a function of temporal source–
sink separation t. All measurements are taken at integer times; data are slightly displaced from those times in the figures for better
readability. These results were obtained using an external field of the form (42), i.e., A3 � E�t� t0�, with t0 � �10a, where t � 0
corresponds to the neutron source location. The electric field E providing the scale is cast in Gaussian units.
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FIG. 7. Contributions by selected subsets of diagrams, as specified in the main text, to the ratio R2, as a function of temporal source–
sink separation t. All measurements are taken at integer times; data are slightly displaced from those times in the figures for better
readability. These results were obtained using an external field of the form (42), i.e., A3 � E�t� t0�, with t0 � 0, where t � 0
corresponds to the neutron source location. The electric field E providing the scale is cast in Gaussian units.
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�0� . Finally, Figs. 6–10 (d) show the sum of all diagrams
depicted in Fig. 1. Note that, in the SU�3� flavor-symmetric
case investigated in this work, the only nonvanishing dis-
connected diagrams are J01 and J03, regardless of the
external field used. This is due to the fact that the discon-
nected loop with a linear external field insertion is propor-
tional to the sum of the quark charges, and therefore

vanishes. Thus, Figs. 6–10 (c) and Figs. 6–10 (d) contain
the same disconnected contributions.

In comparing Figs. 6–8, which display the results ob-
tained using the external gauge field (42) for various t0, the
different vertical scales should be noted. Compared to the
case t0 � �10a, the cases t0 � 0 and t0 � 6a exhibit only
very small slopes, which are determined with relatively
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FIG. 9. Contributions by selected subsets of diagrams, as specified in the main text, to the ratio R2, as a function of temporal source–
sink separation t. These results were obtained using an external field of the form (53), i.e., A0 � �Ex3; for this background, there are
no smearing contributions beyond zeroth order in the external field, i.e., case (b) is identical to case (a), and case (d) is identical to
case (c). The electric field E providing the scale is cast in Gaussian units.
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FIG. 10. Contributions by selected subsets of diagrams, as specified in the main text, to the ratio R2, as a function of temporal
source–sink separation t. All measurements are taken at integer times; data are slightly displaced from those times in the figures for
better readability. These results were obtained using an external field of the form (42) with E � 0, i.e., A3 � A. The constant
background gauge field A providing the scale is cast in Gaussian units.
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small uncertainties, cf. also Table I. The foremost obser-
vation to be drawn from Figs. 6–8 is that the slope of R2

indeed depends sensitively on t0, or, equivalently, the
constant offset A in the external gauge field (42), as ex-
pected. This is also corroborated by the E � 0 measure-
ment displayed in Fig. 10. As explained in Sec. III A, these
measurements taken together will make it possible to
disentangle the constant field effect from the electric polar-
izability. Before proceeding towards this central goal, a
few further remarks about the data are in order.

For one, there is a strong cancellation between the
diagram I02 and the corresponding contact term I03,
cf. Fig. 11. The contact term I03, which originates from
expanding the gauge link variables to second order in the
external field, cf. (17), (22), and (25), is not negligible, as a
naive continuum limit might suggest; rather, it contributes
to the renormalization of the I02 diagram. Presumably, in
the continuum limit, it would be admissible to disregard
diagrams such as I03, at the expense of having to consider
a strong renormalization of the diagram I02 as its two
vertices are permitted to approach each other.

Second, one can furthermore observe from Figs. 6–10
that the disconnected diagrams consistently tend to give a
negative contribution to the slope of the ratio R2�t� for an
external field of the form (42), cf. also Table I. For the
external field (53), the contribution is very slightly posi-
tive. However, it should be emphasized that the contribu-
tions are in no case large enough to be significant
compared to the statistical uncertainty.

Third, as noted in Sec. III A, the higher-order (in the
external field) sink smearing diagrams contained in
Figs. 6–8 (b),(d) in general contribute additional linear
time dependences to the ratio R2�t� beyond the ones asso-
ciated with the mass shift of the neutron in the external
field. Indeed, a substantial difference in slope can be seen12

comparing Fig. 6 (a) and (b), or also Fig. 6 (c) and (d). To
isolate the slope due to the mass shift itself, one should
evaluate Figs. 6–8 (c); this comes at the expense of fore-
going a form of the neutron sink (and source) which is
manifestly invariant under gauge transformations of the
external field. Of course, it is not imperative to use a
manifestly invariant form; all that is implied by not doing
so is that the neutron mass shift, a gauge-invariant quantity,
has been evaluated in a specific gauge for the external
electromagnetic field. Note, moreover, that this point is
largely moot at any rate, since the final result for the
neutron electric polarizability will be seen to not be af-
fected significantly by the differences in intermediate data
introduced by the aforementioned sink smearing effects.

Returning to the main objective, extracting the neutron
mass shift from the slope of the ratio R2�t�, Table I lists the
slopes extracted from the data displayed in Figs. 6–10.
These slopes were obtained by performing least-square fits
of linear functions in t to the R2�t� data for a range of t; the
uncertainties were obtained by jackknife analysis. The
time range used was 4a 
 t 
 10a; this choice minimizes
statistical uncertainty (by using as large a time range as
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FIG. 11. Contributions by diagrams I02 and I03, as well as
their sum, to the ratio R2, as a function of temporal source–sink
separation t. All measurements are taken at integer times; data
are slightly displaced from those times in the figure for better
readability. These results were obtained using an external field of
the form (42), i.e., A3 � E�t� t0�, with t0 � �10a, where t � 0
corresponds to the neutron source location. The electric field E
providing the scale is cast in Gaussian units.

TABLE I. Slope S2, cf. (45), for different external electromagnetic fields, in the appropriate
external field units and units of the lattice spacing a. Cases (a)–(d) correspond to the different
subsets of diagrams included in the corresponding Figs. 6–10 (a)–(d), cf. main text. In the case
of the background field (53), as well as for (42) with E � 0, the slope S2 can be directly
identified with the negative mass shift, ��m; hence the labeling of the last two lines. By
contrast, the data in the first three lines must be processed further to locate the stationary point as
a function of t0, at which then S2 � ��m can be identified, cf. main text and Table II.

(a) (b) (c) (d)

S2=�a
3E2�; (42), t0 � �10a 0.46(18) 0.83(24) 0.26(26) 0.63(30)

S2=�a
3E2�; (42), t0 � 0 0.000(16) 0.096(38) �0:033�43� 0.063(54)

S2=�a
3E2�; (42), t0 � 6a �0:017�3� �0:047�7� �0:037�25� �0:067�27�

��m=�a3E2�; (53) �0:027�4� �0:027�4� �0:019�41� �0:019�41�
��m=�aA2�; (42), E � 0 0.0025(8) 0.0028(8) 0.0017(9) 0.0020(10)

12By considering the diagrams individually, one can indeed
verify that, as expected, the difference arises specifically due to
sink smearing contributions, and not source smearing
contributions.

M. ENGELHARDT PHYSICAL REVIEW D 76, 114502 (2007)

114502-16



possible) while still allowing for a good least-square fit by
a linear form as well as a jackknife bias estimate small
compared to the statistical uncertainty.13

According to the discussion in Sec. III A, to extract the
electric polarizability from the data in the first three lines of
Table I, these data should be viewed as defining a parabola
in t0, and the extremum in t0 should be sought out (note
that this is equivalent to viewing the data as defining a
parabola in A, since A � �Et0 and E is constant). At the
extremum, one can then identify the slope S2 with the
(negative) neutron mass shift, ��m. Fitting the form [cf.
(44)–(46)]

 S2=E
2 � ��mAA

2 A2 �mAE
2 AE�mEE

2 E2�=E2

� ��mAA
2 t20 �m

AE
2 t0 �mEE

2 � (57)

to the data in Table I yields parabolas with the extrema and
curvatures listed in Table II. The uncertainties quoted in
Table II were again obtained using the jackknife method.
The quadratic coefficient mAA

2 extracted in this way agrees
well with the E � 0 values14 listed in the last line of
Table I, providing an independent measurement corrobo-
rating the interpretation of the data advanced in Sec. III A.

The central result of this work, however, is the value of
the electric polarizability of the neutron, the full value of
which is obtained by multiplying the mass shift quoted in
column (c) of Table II by a factor of 2, cf. (44) and (52). In
physical units, obtained by inserting a � 0:124 fm, one
has

 � � �2�m=E2 � ��2:0� 0:9� 
 10�4 fm3: (58)

Note that the additional smearing contributions entering
the result in column (d) indeed do not significantly alter
this result. The result (58) is corroborated by the measure-
ment using the external field (53), quoted in the fourth line
of Table I; translated into physical units, that measurement
would imply a polarizability of

 � � ��0:7� 1:6� 
 10�4 fm3: (59)

As discussed in Sec. III B, the result (59) contains system-
atic uncertainties (not included in the quoted statistical
error) stemming from the fact that the mass shift measured
in this case is contaminated by the quantum mechanical
zero-point motion of the neutron and distortions of its
internal wave function due to superfluous spikes in the
external electric field. Thus, the result (58) is expected to
be more trustworthy than the result (59). Nevertheless, the
difference between the two measurements does not turn out
to be significant; the aforementioned contaminations do
not appear to represent appreciable effects.

Compared to the experimental value reported by the
Particle Data Group [25]

 � � �11:6� 1:5� 
 10�4 fm3 (60)

the result (58) suggests a strong variation of the electric
polarizability of the neutron with the pion mass. Indeed,
chiral effective theory calls for such a variation [10,26–
29], dominated by a 1=m� dependence at low pion masses.
In the ‘‘small scale expansion’’ approach [27,28], which
systematically extends leading-one-loop heavy baryon chi-
ral perturbation theory by including explicit � degrees of
freedom, the electric polarizability of the neutron de-
creases by an order of magnitude as one varies the pion
mass from the physical point up to around 400 MeV.
Qualitatively, a change of sign of the polarizability at
even higher pion masses, as implied by (58), does not
seem implausible,15 although it should be stressed that a
pion mass of 759 MeV, corresponding to the dynamical
quark ensemble used in the present work, is certainly far
beyond the regime in which chiral effective theory can be
applied reliably. Lattice calculations at lower pion masses
are needed in order to achieve a quantitative connection
with chiral effective theory.

On the other hand, the result obtained in the present
work at first sight appears to be at odds with previous
lattice measurements [5,7]. Those studies yield a neutron
electric polarizability which is consistent with (60) over a
wide range of (valence) quark masses,16 including the

TABLE II. (Negative) mass shifts at the extrema of the parabolas defined by the data in Table I
through the form (57), as well as the coefficient mAA

2 characterizing the curvatures of the
parabolas.

(a) (b) (c) (d)

��m=�a3E2� (extremum) �0:034�6� �0:049�10� �0:052�24� �0:076�63�
�mAA

2 =a 0.0027(9) 0.0031(9) 0.0018(16) 0.0022(16)

13In the case of the external field (42) with t0 � 0 and t0 � 6a,
a more restricted time range improves the linear fit, as is
apparent, e.g., from Fig. 8; however, as already noted above,
these two instances are determined with very little uncertainty
(regardless of the time range used) compared to t0 � �10a. As a
result, it is the latter case which dictates the choice of time range,
which then was adopted for all cases for consistency.

14The last lines of Tables I and II can be directly compared,
since for E � 0, one has �m=A2 � mAA

2 , cf. (44).

15Of course, for very large masses, i.e., in the nonrelativistic
limit, the polarizability cannot be negative due to the general
properties of second-order perturbation theory.

16The studies reported in [5,7] employ the quenched
approximation.
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quark mass used in the present work. The question arises
how such a weak variation with the quark mass can be
reconciled with the result obtained in the present work (and
also with the expectation coming from chiral effective
theory).

Apart from the use of the quenched approximation, the
main differences between [5,7] and the present treatment
are that, on the one hand, [5,7] work with an external field
corresponding to a particular value of t0 in (42); on the
other hand, this external field is introduced into the lattice
link variables in linearized form, i.e., the vertex insertion
M2, cf. (25), is not included. As discussed further above,
the insertion M2 provides contact terms which renormalize
propagators with two M1 insertions, leading to substantial
cancellations; however, most importantly, the measured
mass shift depends sensitively on the parameter t0 charac-
terizing the external field. It is instructive to reevaluate the
data gathered in the present work such that diagrams
generated by M2 insertions are excluded, and at a value
of t0 corresponding to the one used in [5,7]. Two measure-
ments are provided by [5,7]. One uses Wilson fermions
with a distance of 1.7 fm between t0 and the mass shift
measurement, yielding a polarizability17 of � �
�9:8� 1:2� 
 10�4 fm3 for pion masses comparable to
the one at which the present work was performed; the other
uses clover fermions with a distance of 1.53 fm between t0
and the mass shift measurement, yielding a polarizability
of � � �13:9� 0:8� 
 10�4 fm3 at comparable pion
masses. Taking into account that the mass shift measure-
ment in the present work is centered around t � 7a �
0:87 fm, the values of t0 corresponding to the two afore-
mentioned cases are t0 � �6:7a and t0 � �5:3a, respec-
tively. Constructing the parabola (57) defined by excluding
diagrams generated by M2 insertions from the set of dia-
grams comprising case (c) above, and evaluating it at those
values of t0 yields

 ��t0 � �6:7a� � �20� 11� 
 10�4 fm3 (61)

 ��t0 � �5:3a� � �15� 8� 
 10�4 fm3 (62)

which, particularly in the latter case, is in quite good
agreement18 with the results of [5,7]. Thus, at the level of
the raw numerical measurement, the present work in fact
corroborates the results obtained in [5,7]; at the same time,
it is now clear that such a measurement at a single fixed t0
in general contains two separate effects, i.e., the electric
polarizability itself and the effect of subjecting the neutron
to a constant external field. To disentangle the former from
the latter using such measurements, it is necessary to
combine the data obtained using a variety of t0. This

suggests that it would be worthwhile to supplement the
measurements already performed in [5,7] by further analo-
gous measurements at other values of t0 in order to obtain a
more comprehensive picture of the physical effects engen-
dered by the introduction of the external field and thus be
able to isolate the different effects from one another.

V. SUMMARY AND OUTLOOK

The investigation reported here represents a first explo-
ration of the neutron electric polarizability in the context of
lattice QCD with dynamical quarks. Its main thrust lay in
clarifying conceptual questions within the framework of
the background field method and assessing the feasibility
of numerical computations on that basis, using a SU�3�
flavor-symmetric ensemble as a test case.

Two central issues needed to be addressed to arrive at a
cogent calculational scheme. On the one hand, the pres-
ence of dynamical quarks dictates the use of four-point
function methods, introducing, in particular, the need to
evaluate disconnected diagrams. These contributions,
which were included in the numerical calculations carried
out in this work via stochastic estimation, significantly
increase the computational expense of the measurement.
Nevertheless, the feasibility of carrying out such measure-
ments was demonstrated for the SU�3� flavor-symmetric
case; the cost of progress towards lighter quark masses
does not seem prohibitive, but such an endeavor will
require a, by current standards, significant commitment
of computational resources.

On the other hand, a strong emphasis was placed within
the present work on the physical consequences of shifting
the external electromagnetic field by a constant on a finite
lattice. While such shifts merely correspond to gauge trans-
formations in infinite space, on a finite lattice, they influ-
ence the physical spectrum and thus mask the mass shift
due to the electric polarizability itself. On lattices of a
practical size, this effect has a dominating influence on
the neutron mass shift, from which one aims to extract the
electrical polarizability. To disentangle the two effects,
measurements using a variety of external fields which are
shifted with respect to one another are necessary (further
impacting computational cost). It should be noted that this
issue also affects investigations carried out in the quenched
approximation, such as reported in [5,7]. The present in-
vestigation, complementing that effort, suggests additional
measurements to supplement the ones already carried out,
in order to gain a comprehensive picture of the effects
playing a role. It is hoped that the results obtained here
will provide motivation and useful input for an expanded
measurement program in this direction.

Looking forward, besides the obvious need to progress
towards lighter quark masses, it would be interesting to
study other hadrons, especially with a view towards mea-
suring polarizability combinations in which disconnected
diagrams at least partially cancel. Such combinations could

17These estimates were obtained by linearly interpolating re-
sults quoted in [7] in m�.

18It should be noted that these comparisons depend sensitively
on the determinations of the lattice spacings in the different
calculations.
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be calculated with higher accuracy at lower cost. However,
a potential obstacle to this which should be kept in mind is
the following: typically, hadrons of differing electric
charge would be involved, and, a priori, it is not clear
that measurements using the same external electromag-
netic field are appropriate in each case for the purpose of
isolating the electric polarizability. On the other hand,
results obtained in different external fields cannot be com-
bined straightforwardly to cancel disconnected con-
tributions.

One possibility of avoiding such difficulties lies in using
alternate methods of accessing polarizabilities, e.g., via
density-density correlation functions [30]. That approach
would circumvent the necessity of explicitly introducing
an external electromagnetic field. Density-density correla-
tion functions at unequal times can be used to extract
hadron polarizabilities, specifically by measuring the sec-
ond moment (with respect to spatial separation) of the
correlation function for a range of relative times and in-
tegrating over the latter. When calculating polarizabilities
of hadrons in this manner, at least partial cancellations of
disconnected diagrams can be achieved straightforwardly
by forming the proper isovector combinations. Care must
be taken to restrict the hadron momentum to the nonrela-
tivistic regime, in order to exclude relativistic effects which
complicate the interpretation of the density-density corre-
lation function and the extraction of the polarizability.
Also, density-density correlation functions generally fall
off less rapidly than standard hadron wave functions (a
doubling of the extent being typical); this has motivated the
development of periodic image correction methods [30]
which are expected to prove helpful in this context.
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Note added in proof.—The author is grateful to D.
Toussaint for pointing out Ref. [31], which in an appendix
also discusses the electric polarizability of the neutron, and
for further exchanges thereon. One particular point empha-
sized in [31] is that, to properly represent the effect of a
classical external electric field, the electric field as intro-
duced in this work and also in [2,5,7] should be analyti-
cally continued to imaginary values. This further step,
which was not carried out in [2,5,7] and in the present
treatment, implies that the results (58) and (59) receive an
additional overall minus sign. In view of the small magni-
tude of (58) and (59), this does not decisively impact the
further conclusions drawn in the present work. However, it
will need to be taken into account, and revisited in more
detail, in work going forward aiming at progress towards
lighter pion masses.
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