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The two-body hadronic decays of B mesons into pseudoscalar and axial-vector mesons are studied
within the framework of QCD factorization. The light cone distribution amplitudes (LCDAs) for 3P1 and
! P, axial-vector mesons have been evaluated using the QCD sum rule method. Owing to the G-parity, the
chiral-even two-parton light cone distribution amplitudes of the 3P, ('P,) mesons are symmetric
(antisymmetric) under the exchange of quark and antiquark momentum fractions in the SU(3) limit.
For chiral-odd LCDAEs, it is the other way around. The main results are the following: (i) The predicted
rates for a7 (1260)7*, by (1235)7™, b9(1235)7~, ai K™, and b K~ modes are in good agreement
with the data. However, the naively expected ratios B(B~ — a7~ )/B(B° — af7") <1, B(B~ —
a; 7)/B(B° — a; w*) ~ %, and B(B~ — b{K~)/B(B* — b} K~) ~ § are not borne out by experiment.
This should be clarified by the improved measurements of these decays. (ii) Since the B — b K decays
receive sizable annihilation contributions, their rates are sensitive to the interference between penguin and
annihilation terms. The measurement of B(B? — b{ K~) implies a destructive interference which in turn
indicates that the form factors for B — b; and B — a, transitions are of opposite signs. (iii) Sizable power
corrections such as weak annihilation are needed to account for the observed rates of the penguin-
dominated modes K; (1270)7* and K| (1400)7*. (iv) The decays B — KK with K| = K,(1270),
K(1400) are in general quite suppressed, of order 1077-1073, except for B® — K9(1270)K° which can
have a branching ratio of order 2.3 X 107%. The decay modes K; K* and K;" K~ are of particular interest
as they proceed only through weak annihilation. (v) The mixing-induced parameter S is predicted to be
negative in the decays B® — ai 7™, while it is positive experimentally. This may call for a larger unitarity
angle y = 80°. (vi) Branching ratios for the decays B — f,7, f1K, h;7 and h K with f; = f,(1285),
£1(1420) and hy = h;(1170), h,(1380) are generally of order 10~ except for the color-suppressed modes
f1m° and h, 7% which are suppressed by 1 to 2 orders of magnitude. Measurements of the ratios B(B~ —
h,(1380)7~)/B(B~ — h(1170)7~) and B(B — f,(1420)K)/B(B — f,(1285)K) will help determine

the mixing angles 6: 3 and 65 P respectively.
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I. INTRODUCTION

In the quark model, two nonets of J* = 17 axial-vector
mesons are expected as the orbital excitation of the ¢g
system. In terms of the spectroscopic notation 2S*!L
there are two types of p-wave mesons, namely, 3P,
and 'P,. These two nonets have distinctive C quantum
numbers, C =+ and C = —, respectively. Experi-
mentally, the JP¢ = 1% nonet consists of a,(1260),
f1(1285), f,(1420), and K4, while the 1*~ nonet has
b,(1235), hy(1170), h;(1380), and K;3. The physical
mass eigenstates K;(1270) and K, (1400) are a mixture of
K4 and Kp states owing to the mass difference of the
strange and nonstrange light quarks.

The production of the axial-vector mesons has been seen
in the two-body hadronic D decays: D — Ka,(1260),
D° — K (1270)7 and D — K9(1400)7r, and in charmful
B decays: B — J/¢/K,(1270) and B — Da;(1260) [1]. As
for charmless hadronic B decays, B® — a; (1260)7™~ are
the first modes measured by both B factories, BABAR and
Belle. The BABAR result is [2]

B(B® — a; (1260)7~) = (33.2 + 3.8 + 3.0) X 1075,
(1.1)
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where the assumption of B(aj” — 7= 77 %) = 1/2 has
been made. The Belle measurement gives [3]

B (B — a; (1260)7™) = (29.8 £ 3.2 = 4.6) X 107°.
(1.2)

The average of the two experiments is

B(B°— a;(1260)7*) = (31.7 £3.7) X 107%. (1.3)
Moreover, BABAR has also measured the time-dependent
CP asymmetries in B® — a{"(1260)7* decays [4]. From
the measured CP parameters, one can determine the decay
rates of a; 7~ and a; 7" separately [4]. Recently, BABAR
has reported the observation of the decays B® — by 7+,
byK~ and B~ — b7, b9K~, a7, ay #° [5,6]. The
preliminary BABAR results for B’ — K (1270)7*,
Ky (1400)7™, afK~, B~ —a;K° f(1285)K",
f1(1420)K ™~ are also available recently [7-10].

In the present work we will focus on the B decays
involving an axial-vector meson A and a pseudoscalar
meson P in the final state. Since the 3P, meson behaves
similarly to the vector meson, it is naively expected that AP
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modes have similar rates as V P ones, for example, B(B? —
ay (1260)7*) ~ B(B® — p* ™). However, this will not
be the case for the !P, meson. First of all, its decay
constant vanishes in the SU(3) limit. For example, the
decay constant vanishes for the neutral b?(1235) and is
very small for the charged b,(1235) states. This feature can
be checked experimentally by measuring B® — b 7™,
by " decays and seeing if the former is suppressed rela-
tive to the latter. Second, its chiral-even two-parton light
cone distribution amplitude (LCDA) is antisymmetric
under the exchange of quark and antiquark momentum
fractions in the SU(3) limit due to the G parity, contrary
to the symmetric behavior for the P, meson.

Charmless B— AP and B — AV decays have been
studied in the literature [11-16]. Except for [11,16], most
of the existing calculations were carried out in the frame-
work of either naive factorization or generalized factoriza-
tion in which the nonfactorizable effects are described by
the parameter NS, the effective number of colors. In the
approach of QCD factorization, nonfactorizable effects
such as vertex corrections, hard spectator interactions and
annihilation contributions are calculable and have been
considered in [11,16] for the decays B — a;(1260),
a,(1260)K, B — h;(1235)K*,  b;(1235)K*,  and
b (1235)p.

One crucial ingredient in QCDF calculations is the
LCDAs for 3P, and ' P, axial-vector mesons. In general,
the LCDAs are expressed in terms of the expansion of
Gegenbauer moments which have been systematically
studied by one of us (K.C.Y.) using the light cone sum
rule method [17,18]. Armed with the LCDAs, one is able to
explore the nonfactorizable corrections to the naive
factorization.

The present paper is organized as follows. In Sec. II we
summarize all the input parameters relevant to the present
work, such as the mixing angles, decay constants, form
factors, and light cone distribution amplitudes for 3P, and
! P, axial-vector mesons. We then apply QCD factorization
in Sec. III to study B — AP decays. Results and discus-
sions are presented in Sec. IV. Sec. V contains our con-
|
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clusions. The factorizable amplitudes of various B — AV
decays are summarized in the appendix.

II. INPUT PARAMETERS
A. Mixing angles

In the quark model, there are two different types of light
axial-vector mesons: 3P, and ' P, which carry the quan-
tum numbers JP¢ = 1% and 17, respectively. The 177
nonet consists of a;(1260), f1(1285), f1(1420), and K4,
while the 17~ nonet has b,(1235), h,(1170), h,(1380), and
K. The nonstrange axial-vector mesons, for example, the
neutral a,(1260) and b,(1235) cannot have mixing because
of the opposite C-parities. On the contrary, the strange
partners of a;(1260) and b;(1235), namely, K;, and Kz,
respectively, are not mass eigenstates and they are mixed
together due to the strange and nonstrange light quark mass
difference. We write

K1(1270) = KIA Sin0K1 + KIB COSGKI,

2.1
K,(1400) = K4 cosfg, — Ky sinfy,. @D
If the mixing angle is 45° and (Kp|K,5) = (Kp|K,,), one
can show that K;(1270) is allowed to decay into K p but not
K*, and vice versa for K;(1400) [19].

From the experimental information on masses and the
partial rates of K;(1270) and K;(1400), Suzuki found two
possible solutions with a twofold ambiguity, |6, | = 33°
and 57° [20]. A similar constraint 35° < |6 | = 55° is
obtained in [21] based solely on two parameters: the mass
difference of the a; and b; mesons and the ratio of the
constituent quark masses. From the data of 7—
K,(1270)v, and K,;(1400)», decays, the mixing angle is
extracted to be =37° and *58° in [22]. As for the sign of
the mixing angle, there is an argument favoring a negative
Ok, It has been pointed out in [23] that the experimental
measurement of the ratio of K|y production in B decays
can be used to fix the sign of the mixing angle. Based on
the covariant light-front quark model [24], it is found 23]

—58°(—37°),
+58°(+37°).

for O,
for 01([

(2.2)

B(B — K,(1270)y) _ {10.1 * 6.2 (280 = 200);
B(B — K,(1400)7) {0.02 +0.02 (0.05 *= 0.04);

The Belle measurements B(B* — K[ (1270)y) = (4.3 = 0.9 £ 0.9) X 107> and B(B" — K; (1400)y) < 1.5 X 1073
[25] clearly favor 6x = —58° over 6 = 58° and 0g = —37° over 0k = 37°. In the ensuing discussions we will
fix the sign of g, to be negative.

"The sign of ¢ k, 18 intimately related to the relative sign of the K4 and K states. In the light-front quark model used in [23,24], the
decay constants of K;4 and Kz are of opposite sign, while the B — K, and B — K form factors are of the same sign. It is the other
way around in the present work: the decay constants of K|, and K,z have the same signs, while the B — K, and B — K, form
factors are opposite in sign. The two schemes are related via a redefinition of the K, or K state, i.e. Kj4 — — K4 or K3 — — K.
To write down Eq. (2.2) we have used our convention for K|, and K states.
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Likewise, the 3P, states f;(1285) and f;(1420) have
mixing due to SU(3) breaking effects

|£1(1285)) = Ifl)cost%P1 + |f8>sin93P1,
|f1(1420)) = —|f1>sin6’3p1 + |f8>00593P1.

From the Gell-Mann-Okubo mass formula [1,26], it fol-
lows that

(2.3)

2 .2 2,2
dmi, — mg, = 3my (5

cos26sp = 2.4)
' 3(m3, (1420) ~ M7, (1285))
where
m%(M = mil(moo)COSzeKl + mil(mo)sinzﬁm. (2.5)
Substituting this into Eq (2.4) with 9, = —37°(—58°),
we then obtain 0qua = 27.9°(53. 2° ) and 6 =

26.0°(52.1)° where the latter is obtained by replacmg 'the
meson mass squared m> by m throughout Eq. (2.4). The
sign of the mixing angle can be determined from the mass
relation [1]

4mK1A - ma1 3mf](1420)

2\/_(ma| - m%(]A)

The previous phenomenological analyses suggest that
0sp =50° [27].2 Eliminating 6 from Egs. (2.4) and (2.6)
leads to the sum rule

tan¢9sp1 = 2.6)

(mf (12s5) T mf (1400))(4ml<m - mg 3mf (1285) f|(14oo)

2.7)

= - 2
Sm,(]A SmKIAma] + 3my,.

This relation is satisfied for 3Pl octet mesons, but only
approximately for 'P, states. Anyway, we shall use the
mass relation (2.4) to fix the magnitude of the mixing angle
and (2.6) to fix its sign.

Since K*K and KK7 are the dominant modes of
f1(1420) whereas f(1285) decays mainly to the 477 states,
this suggests that the quark content is primarily s§ for
f1(1420) and na for f;(1285). This may indicate that
03,)1 = 28° is slightly preferred. However, Gspl =53°is

equally acceptable.
Similarly, for 1' P, states, 7;(1170) and /,(1380) may be

mixed in terms of the pure octet hg and singlet 4,
|h(1170)) = |h)cosBip + |hg)sinbip,
1 1
(2.8)
|h,(1380)) = —Ihl)sinﬁlpl + |h8>c0s01P1.

Again from the Gell-Mann-Okubo mass formula, we ob-
tain

2If a mixing angle 6s 3 of order 50° can be independently
inferred from other processes, this will imply a preference of
|60k, | = 58° over |6k, | = 37°. However, the phenomenological
analysis in [27] is not robust and the Gell-Mann-Okubo mass
formula employed there is not a correct one.
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2 .2 a2
cos26ip =4mK13 "y M) (2.9)
o .
: 3(mh (1380) — 111(1170))
where

2 .2 ) 2 2
My, = M (1400)51N Ok, + M (1270)C0S Ok, (2.10)
We obtain  ¢fy = —18.1°(25.2°) and 6l =

1

1
23.8°(—18.3°) for Oy, = —37°(—58°), where the sign of
the mixing angle is determined from the mass relation

2 _ .2 _ a2
dmy,, — my — 3my 15

2\/5(11’[%] - m%(m)

tanfp = (2.11)

B. Decay constants

Decay constants of pseudoscalar and axial-vector me-
sons are defined as

(P(P) @2y, v59110) = —ifpq,
GCOP,(p, MGy, vsq:10) =

For axial-vector mesons, the transverse decay constant is
defined via the tensor current by

GCOP(p, M|G0%" 59,10y =

2.12)

; (A)
lfspl(lpl)m,%Pl(lPl)E,u *.

~ o (€ = €

(2.13)
or
COP,(p, Vg0t 1|0y = _l'fsﬁ),)l €pvap€is)P”,
(2.14)
where we have applied the identity o,gys5 =
— 3 €apuyo™” with the sign convention €53 = 1. Since

the tensor current is not conserved, the transverse decay
constant f* is scale dependent. Because of charge con-
jugation invariance, the decay constant of the 'P; non-
strange neutral meson »9(1235) must be zero. In the isospin
limit, the decay constant of the charged b, vanishes due
to the fact that the b, has even G-parity and that the
relevant weak axial-vector current is odd under G trans-
formation. Hence, f b is very small in reality. Note that the
matrix element of the pseudoscalar density vanishes,
COP (p, £)G2759110) = 0, which can be seen by apply-
ing the equation of motion. As for the strange axial-vector
mesons, the P, and ! P, states transfer under charge con-
jugation as

MZ(SPI) - MZ(3P1),
(a,b =

MZ(IPI) - _MZ(1P1):

1,2 3). (2.15)

Since the weak axial-vector current transfers as (A M)’a’ —
(A,,)3 under charge conjugation, it is clear that f p, = 0in
the SU(3) limit [20]. By the same token, the decay constant
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ff;, vanishes in the SU(3) limit. Note for scalar mesons,
1

their decay constants also vanish in the same limit, which
can be easily seen by applying equations of motion to
obtain

mgfs = i(my — my){017,4,1S), (2.16)
with m; being the mass of the quark g¢;.

The a,(1260) decay constant f, = 238 = 10 MeV ob-
tained using the QCD sum rule method [18] is similar to
the p meson one, f, =216 MeV. This means that the
a;(1260) can be regarded as the scalar partner of the p,
as it should be. To compute the decay constant f;, for the
charged b, one needs to specify the u and d quark mass
difference in the model calculation. In the covariant light-
front quark model [24], if we increase the constituent d
quark mass by an amount of 5 = 2 MeV relative to the u
quark one, we find f;, = 0.6 = 0.2 MeV which is highly
suppressed. As we shall see below, the decay constant f7,
is related to the transverse one f bll by the relation [see
Eq. (2.65)]

For = FE(wal™ (w), @.17)

Iy

where ay"" is the zeroth Gegenbauer moment of @ﬁ‘ to be

.5,

defined later. The quantities f;- », and a;”" can be calculated

in the QCD sum rule approach with the results f,f-] =

(180 + 8) MeV [18] (cf. Table T) and al® = 0.0028 =

0.0026 for b at u = 1 GeV. (Note that for b, ag’b' has
an opposite sign due to G-parity.) Again, f3, is very small,
of order 0.5 MeV, in agreement with the estimation based
on the light-front quark model. In [14], the decay constants
of a; and b are derived using the K;4, — K;p mixing angle
Ok, and SU(3) symmetry: (f} , f,,) = (74,215) MeV for
Ok, = 32° and (—28223) MeV for O, = 58°. It seems to
us that the b; decay constant derived in this manner is too
big.

Introducing the decay constants f7 g5 and f7 ;0 by

_; q )]
imy,1285) f, (1285) €1 »

(2.18)

©1gy . vsqlfi(1285)(P, A)) =

TABLE I. Summary of the decay constants f3p and
fl (1 GeV) in units of MeV obtained from QCD sum rule

methods [18].

P, a,(1260) fi f3 Kia
f.xp1 238 £ 10 245 + 13 239 + 13 250 £ 13
lp b,(1235) h h K

| i 1 8 1B
flJ}, 180 = 8 180 = 12 190 £ 10 190 = 10

PHYSICAL REVIEW D 76, 114020 (2007)

0lgy,ysqlf1(1420)(P, A)) = _imf,(1420)f?l(1420)65:\)’

(2.19)
we obtain
_Jfn my Fre My
fu L cosfsp + =2 <8 sind;
11285 \/— 3 my (1285) P \/_ 6 My (1285) P
=172 =23 (178 = 22) MeV, (2.20)
_Jfp my 2fy Mg
f3 ! costsp — —= ——=—sinbsp
fi(12839) = \/— 3 my (1285) i \/— My (1285) i
= —72*13 (29 = 18) MeV, 2.21)
_ S my, Fre  my,
I = ‘ sinfzp + =2 ——5  cos6s
£1(1420) \/— 3 my (1420) P \/— 6 My (1420) P
= —55*10 (23 £ 11) MeV, (2.22)
_ S my, 2y my,
f3 ‘ sinfsp — —= ——%— cos6:
fi(1420) \/_ 3 my (1420) i NG My (1420) P
= —219 = 27 (=230 * 26) MeV, (2.23)

corresponding to 6sp = 53.2° (27.9°), where we have used
the QCD sum rule results for f; and f, [18] (see Table I).

The decay constants for K;(1270) and K, (1400) defined
by (with g = i or d)

01g7y,vssIK,(1270)(P, X)) = _ifK1(1270)mK1(1270)6%)r
(2.24)

and

(01, y5s1 K, (1400)(P, A)) = —ifx. (14007, (1400) €
(2.25)

are related to fx, and fg by

1 .
Sfk (2700 = (fk,,mk,, sinfg, + fg, mg,, cosbg ),
Mg (1270)
1 .
fK](1400) i — (leAmKM COS@KI - leBmKIB SlneKl)-
Mg, (1400)

(2.26)

Just as the previous b, case, the decay constant fg —is
related to the transverse one f ,%]B by the relation fg =
f IJ<‘IB(,LL)61” Kis (). 1f we apply the QCD sum rule results for
N fK] (see Table I) and a” Kis (cf. Table V), we will

obtain
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fK1(1270) = —137 = 15 MeV,

fK](1400) =199 + 10 MCV, for 0K1 = —37°,

(2.27)
Sx,a2100 = =207 =7 MeV,
Sk, (1a00) = 141 = 14 MeV,  for 6y = —58°.

However, we would like to make two remarks. First, we do
have the experimental information on the decay constant of
K,(1270).> From the measured branching ratio of 7—
K (1270)v, by ALEPH [28], B(r~ — K, (1270)v,) =
(4.7 £ 1.1) X 1073, the decay constant of K;(1270) is
extracted to be [22]

|fK](1270)| =175+ 19 MCV, (228)

where use has been made of the formula

G> (m2 + 2m% )(m2 — m% )?
P(r— Kyvp) = 1 Vi Py —
T

(2.29)

Second, as pointed out in [24], the decay constants of 3p h
have opposite signs to that of 'P; in the covariant light-
front quark model. The large error with the QCD sum rule
result of ag’K‘” = 0.14 £ 0.15 is already an indication of
possible large sum rule uncertainties in this quantity.

In order to reduce the theoretical uncertainties with the
K, decay constant, we shall use the experimental value of
Sk, (270) to fix the input parameters B, and By, , appear-
ing in the Gaussian-type wave function in the covariant
quark model [24]. We obtain

. _ [0.375 GeV;  for 6, = —37°,
Brin = Pr = {0.313 GeV: for 6, = —58°, 30
and
fk,, =293 MeV,
Sk, =15 MeV, for g = —37°,
(2.31)
fk,, = 207 MeV,
fk, =12 MeV, for g = —58°.

Therefore, we have

0lgo,,s1K(1270)(p, A)) = iflt(mo)ewaﬁe(%pﬁ = i(f,%m sinfg, + f,%m cosﬁKl)ew,aﬁe&)p'B

and

<O|q0-,u,VS|Kl(14OO)(p’ /\)> = ifﬁl(m()())e,uvaﬁea)pﬁ = i(f]J(_IA COSGKI - fIJ(_IB SinHK])e/Lvaﬁe(oj\)p'B'
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fK1(1270) = —175 £ 11 MeV,

Fx (400 = 235 £ 12 MeV,  for 0, = —37°, .
Sr,a2100 = —175 £ 15 MeV,
le(14()()) =112*x12 MCV, for HK] = —58°.

In complete analogy to the discussion for 13 P, states, we
introduce the tensor couplings for 1! P states

(01Go ., qlhi (1170)(P, A)) = if;i’gno)éwaﬁefmpﬁ’
(2.33)

(010 .,qlh (1380)(P, V) = if i o €uvap€lyy PP,

(2.34)
and then obtain
« _Ii Tin
fff.'(nm) = ﬁ costrp + \/_6E sinfip
=75+8 (127 = 7) MeV, (2.35)
1 2fJ.
J. S fh] hg .
’ = —=cosfip ——= sinf
Filair0) NG 'P, J6 'P,
= 147 = 8 (28 = 10) MeV, (2.36)
L i fin
fhl’(“BgO) = - 731 sinfhp + Tg costip
=106 = 5 (26 = 7) MeV, (2.37)
1 2 1
hl,'(swso) = - {/]% sinfip — \J;g‘ costip
= —115+9 (—185 = 10) MeV, (2.38)
corresponding to 61p = —18.1°(25.2°) where we have

used the QCD sum rule results for fj- and f;. given in

Table I [18].
As for strange axial-vector mesons, we have (with g =
i, d)

(2.39)

(2.40)

’The large experimental error with the K, (1400) production in the 7 decay, namely, B(r~ — K; (1400)v,) = (1.7 = 2.6) X 1073
[1], does not provide sensible information for the K;(1400) decay constant.
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As will be shown in Sec. IID below, the decay constants
Sk, and f ,J(-M are related via

I, () = fr,ay ™ (w). (2.41)
From Tables I and V, we obtain (at the scale © = 1 GeV)

1 —
% (1270) = 140 £ 22 MeV,

f/%](moo) =130 = 25 MeV, for O, = —37°,

(2.42)
f%,(1270) =84 £ 25 MeV,
fl%,(1400) =172 = 21 MeV, for g, = —58°.

C. Form factors

The form factors for the B— A and B — P transitions
are defined as

(A(p, MIALIB(pp)) = im%mA

€uvap€nPiPPAP (@),
B

(A(p, VIV, 1B(pg)) = —{<m3 — my) VB ()

VEA(g?)

— (€W pp)(pp + p)y—2—
mp — My

€ PB
= 2my —(22 q*[V§4(q*)
- ng(qzn},

2 _ 2
PPV, B(py) = [<p3 P %q}

2 2
mp —m
X FPP(q?) + %%F{)}P(gz),

(2.43)

where g = pg — p, VF4(0) = V§4(0), F$*(0) = F§"(0)
and

mpg + my

M Bag, 2
V —
1 (q ) 2m,

e —
Vi g?) = 732%

Vit (g®).
(2.44)

In the literature the decay constant and the form factors
of the axial-vector mesons are often defined in different
manner. For example, in [24] they are defined as*

(A(p, DIALN0) = framyeld, (2.45)

“Since the convention €'234 = +1 is adopted in [24] while
€123¢ = +1 is used in the present work, we have put an addi-
tional minus sign for the matrix element (A(p, A)|A,,|B(pp)).
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2

A DABP) = =g PEPP A ),

(Ap, NIV, B(py)) = —i{(:nB — )N VA ()

Vit(a®)
—(€!,,pp)(pp + p),—2——
@ a B T My
E*,\ PB
_2mA (q)2 q,u,

X [VBA(g?) — v{fA(qz)]}. (2.46)

It has been checked in the covariant light-front quark

model that the form factors Vg 3121 (¢?) and AB'Pi(g%) de-
fined in Eq. (2.46) are indeed positively defined. We would
like to ask if the B — 3P, transition form factors defined in
Eq. (2.43) are also positively defined. This can be checked
by considering the factorizable amplitudes for the decay

B— AP
XEBAP) = (P(g)|(V — A) ,IOXA(P)I(V — A)*|B(pp)),
XBPA = (A(QI(V = A) ,IOXP(DI(V — A)#|B(pp)).

(2.47)
We obtain
XBAP) = —2ifpm, VEA(g?) (€], PB), (2.48)
XBPA = —2jf, m,FBP (qz)(efA)pB), |
from Eqgs. (2.12) and (2.43) and
XOAP) =2 fom, Vi G?) (€] Po),
(2.49)

XBPA) = _ZfAmAFfP(qz)(Ea)PB):

from Eqgs. (2.45) and (2.46). Since f, for the 3P1 meson is
negative in the light-front model calculation (see Eq. (2.23)
and Table III in [24]), the relative sign between X#4?) and
XBPA) s positive. This means that the relative sign in
Eq. (2.48) is also positive provided that the decay constant
f4 and the form factor VZ4 defined in Eqs. (2.12) and
(2.43), respectively, are of the same sign. Indeed, it is found
in [16] that if f, is chosen to be positive for the a;(1260)
meson, the form factor fo “ is indeed positive according to
the sum rule calculation.

The form factors for B — , K, a;(1260), b,(1235),
K4, K, p transitions have been calculated in the relativistic
covariant light-front (CLF) quark model [24] (Table >
and in the framework of the light cone sum rule (LCSR)
approach [29]. In the CLF model, the momentum depen-

>As explained in the footnote before Eq. (2.2), we need to put
additional minus signs to the B — P, form factors in Table II

since in the convention of the present work, the form factors
B—!P, B—P, . .
V; and V; have different signs.

1
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TABLE II. Form factors for B — 1, K, a,(1260), b,(1235), K4, K, transitions obtained in
the covariant light-front model [24] are fitted to the 3-parameter form Eq. (2.50) except for the
form factor V, denoted by * for which the fit formula Eq. (2.51) is used.

F F0)  Flgha) @ b F F0)  Flgha) @ b
FB7 0.25 116 173 095  FB7 0.25 086 084  0.10
FBK 035 217 158 068  FBK 035 080 071 0.04
ABa 0.25 076 151 064 V§© 0.13 032 171 1.23
v 0.37 042 029 014 Vv 0.18 036  1.14 049
ABPC—010  —023 192 162 VP —039  -098 141 066
vEh 0.18 036 103 032 vE» 0.03*  —0.15° 213" 239
ABKa 0.26 069 147 059 vHKe 0.14 031  1.62 1.14
viK 039 042 021 016 VvyK» 0.17 030 1.2 045
ABKs  —011  —025 1.88 1.53 v M —041 —099 140  0.64
viKe—019  -035 096 030 vyt 0.05* 0.16° 1.78*  2.12*

PHYSICAL REVIEW D 76, 114020 (2007)

dence of the physical form factors is determined by first
fitting the form factors obtained in the spacelike region to a
3-parameter function in g> and then analytically continu-
ing them to the timelike region. Some of the V,(g?) form
factors in P — A transitions are fitted to a different 3-
parameter form so that the fit parameters are stable within
the chosen g2 range.

Except for the form factor V, to be discussed below, it is
found in [24] that the momentum dependence of form
factors in the spacelike region can be well parametrized
and reproduced in the three-parameter form:

F(0)
1= alg?/m3) + b(g/m3)?’

for B — M transitions. The parameters a, b and F(0) are
first determined in the spacelike region. We then employ
this parametrization to determine the physical form factors
at g> = 0. In practice, these parameters are generally in-
sensitive to the g® range to be fitted except for the form

F(q?) =

(2.50)

TABLE III. Form factors for B — a;(1260), b,(1235), K4,
Kig, f1. fs. hy, hg transitions at g = 0 obtained in the frame-
work of the light cone sum rule approach [29]. Uncertainties
arise from the Borel window and the input parameters.

factor V,(¢?) in B — 'P, transitions. The corresponding
parameters a and b are rather sensitive to the chosen range
for 2. This sensitivity is attributed to the fact that the form
factor V,(g?) approaches to zero at very large —|g?| where
the three-parameter parametrization (2.50) becomes ques-
tionable. To overcome this difficulty, we will fit this form
factor to the form

F(0)
(1 — ¢*/m3)[1 — a(g*/m3) + b(g*/m3)?]
(2.51)

F(q*) =

and achieve a substantial improvement [24].

Momentum dependence of the form factors calculated
using the LCSR method is not shown in Table III. Since the
pseudoscalar mesons considered in the present work are
the light pion and the kaon, the form-factor ¢> dependence
can be neglected for our purposes.

In principle, the experimental measurements of B’ —
af 7 and B° — b7~ will enable us to test the form
factors V(lf “"and Vg b respectively. There are several ex-
isting model calculations for B — a, form factors: one in a
quark-meson model (CQM) [30], one in the ISGW2 model
[31], one in the light-front quark model [24] and two based
on the QCD sum rule (QSR) [29,32]. Predictions in various

48 (0) 0.30379:922 Vs''(0) ~0356%50%  models are summarized in Table IV and in general they are
Vo K14(0) 0.316200:3 Vg Ki(0) —0.360003%  quite different. For example, Vg “1(0) obtained in the quark-
vel(0) 0.181+2018 vEh(0) —0.214*302) meson model, 1.20, is larger than the value of the sum-rule
v 0) 0.124+0015 V™ (0) —0.1587991¢  prediction in [32], 0.23 = 0.05. If a;(1260) behaves as the

TABLE IV. B — a(1260) transition form factor V

scalar partner of the p meson, Vg ‘" is expected to be

B . )
“ at g> = 0 in various models, where the

QSRI is the traditional QCD sum rule approach and the QSR2 is the light cone sum rule

approach.

CLF [24] ISGW2 [31]

CQM [30] QSR1 [32] QSR2 [29]

14l (0) 0.13 1.01

1.20 0.23 *+ 0.05 0.30319:022
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similar to AJ”, which is of order 0.28 at ¢*> =0 [24].
Indeed, the sum rule calculation by one of us (K.C.Y.)
yields Vo“' = 0.30370922. Therefore, it appears to us that
a magnitude of order unity for Vg “1(0) as predicted by the
ISGW2 model and CQM is very unlikely. The BABAR
measurement of B’ — a7~ [4] favors a value of
Vg“'(O) =~ (.30, which is very close the LCSR result
shown in Table III.

Various B — A form factors also have been calculated in
the Isgur-Scora-Grinstein-Wise (ISGW) model [31,33]
based on the nonrelativistic constituent quark picture. As

pointed out in [24], in general, the form factors at small ¢>
|

1 . _
(AP, Vg1 ()Y, ysg2(0I0) = imy fo due“w*“m{p#

(AP, M| g1 ()Y ug2(x)10) =

with u(ii =

1 ) _ .
(AP, |31 ()7, 7542(010) = jo due“"w*“’*){(e(fm

(AP, MG () ys5a2(0)10) = m2 W [0 duciters+ivn ")

Here, throughout the present discussion, we define z =
y—Xx w1th 72 = 0 and introduce the lightlike vector p “

P, — m3z,/(2Pz) with the meson’s momentum P* = mi
Moreover, the meson polarization vector €, has been
decomposed into longitudinal (E(A) ) and transverse

(e(l ") projections defined as

2
W fwz _my Wx _ (Wx _ ()
€l Pz (PM Pz ZM) €lp ~ €n €l
(2.56)

resg)ectlvel?f The LCDAs @, ® are of twist-2, and g(”)
(L hl, h P) of twist-3. Because of G- -parity, @y, gl) and
9 are symmetrlc (antisymmetric) with the replacement

of u—1—u for 3P (lP ) states, whereas @ |, fl) and

h(” ) are antlsymmetrlc (symmetric) in the SU(3) limit [18].

We restrict ourselves to two-parton LCDAs with twist-3

accuracy.

Assuming that the axial-vector meson moves along the
z-axis, the derivation for the light cone projection operator
of an axial-vector meson in the momentum space is in
complete analogy to the case of the vector meson. We
separate the longitudinal and transverse parts for the pro-
jection operator:

Mga M4

A
Sal| + Mﬁal’

(2.57)

where only the longitudinal part is relevant in the present

5 *V PO ld z(upy-%—upx)gJ_
iMA€Lupa €0 P 2 . ue

PHYSICAL REVIEW D 76, 114020 (2007)
in CLF and ISGW models agree within 40%. However,

" 1/2

F g D"(qz) and VfD]/ (¢?) have a very different g> behavior
in these two models as ¢ increases. Relativistic effects are
mild in B — D** transitions but can manifest in heavy-to-
light transitions at maximum recoil. For example, Vg “1(0)
is found to be 0.13 in the CLF model, while it is as big as
1.01 in the ISGW2 model.

D. Light cone distribution amplitudes

For an axial-vector meson, the chiral-even LCDAs are
given by

eW

dyu) + e(”*g(f)(u)} (2.52)

)
W (2.53)

1 — u) being the momentum fraction carried by ¢,(g,), and the chiral-odd LCDAs read

m2 W7

eV p D (u) + A== o

(Puzy = pyzﬂ)hﬁ’)(u)}, (2.54)

(17)
(M) (2.55)

{

study and is given by

'm mA(e(,\)n+)
2E

;] my(€n+)
MA —-
I "% 2

{2 Ty Ysnt n+h(|t)(u) + iE/ dv(® | (v)

hoysDy(u) —

/(p)
® 9 (1)
= hy'(W)oy,,ysnt PG

k=up’
(2.58)

with the momentum of the quark ¢, in the A meson being

2
k{‘ = uEn* + k’i“ + L—LEnﬁ
for which F is the energy of the axial-vector meson and the
term proportional to kﬁ_ is negligible. Here, for simplicity,
we introduce two lightlike vectors n# = (1,0,0, —1) and
'=1(1,0,0, 1). In general, the QCD factorization ampli-
tudes can be recast to the form [{ du Tr(Mﬁ S,
The LCDAs @ﬁ L (u) can be expanded in terms of

Gegenbauer polynomials of the form:

() = 6uﬁf£‘u[agu>¢x £ 3 al DA oy 1)}
i=1

(2.59)

(2.60)

114020-8
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where the relevant decay constants in the above equation
will be specified later. In the following we will discuss the
LCDAs of ' P, and 3P, states separately:

1. 'P, mesons

1
For the ® LP(III)(”)’ due to the G-parity, only terms with

odd (even) Gegenbauer moments survive in the SU(3)
limit. Hence, the normalization condition for the twist-2

1
LCDA & f‘ can be chosen as

1 1
ﬁ duq)f'(u) = f'LPI'

In the present work, we consider the approximation

(2.61)

(Plf‘ (u) = i, 6uﬁ{1 +3a7 "1 (Qu - 1)

+ay DY50u— 1) - 1]} (2.62)
Likewise, we take
CI)lllp'(u) flP 6uu{ag L+ 3a|1| P'(2u - 1)
b "5 u — 1)? - 1]}, (2.63)
with the normalization condition
ﬁ )1 dud () = fip. (2.64)

This normalization together with Eq. (2.52) leads to
Eq. (2.12) for the definition of the ' P, meson decay con-
stant. Equations (2.63) and (2.64) lead to the relation

fir, = fy (Wag " ().

The scale dependence of fi » must be compensated by that
1

(2.65)

'p .
of the Gegenbauer moment ag’ ' to ensure the scale inde-
pendence of fi p-In principle, we can also use the decay

'p
constant f1 p, to construct the LCDA (I)” '. However, fi 3

|

) =
/(p)( ) =

v ¢ _ v P (u)
'[) du(® | (u) — hl(l)(u)) = vv['[) J'Tdu

The twist-3 LCDA ®,(u, u) satisfies the normalization

and has the general expression

2o -] [ 2L,
e
_ﬁ‘qMT(“)

[l d,(u)du =0,
0

PHYSICAL REVIEW D 76, 114020 (2007)

vanishes for the neutral b,(1235) and is very small for the
charged b(1235). This implies a vanishing or very small

are very large.
Hence, it is more convenient to employ the nonvanishing

'p I'P
@, ' unless the Gegenbauer moments a;" "'

P . .
decay constant f ,lP to construct @ '. This is very similar
1

to the scalar meson case where the twist-2 light cone
distribution amplitude @y is expressed in the form [34]

Ds(x, w) = fs(uw)6x(1 — x)
x [BO(M) £ B, (WC 0k 1)} (2.66)
m=1
with f¢ being defined as (S|7,¢,|0) = mgfs. Now <I>|1|P'
can be recast to the form
'P, = 2 IL'Py ~3/2
®," ) =f1P]6uu{1 o, S P u - 1)},
=
2.67)

= l/ag’]P‘. For the neutral b,(1235), f}, van-
ishes and u, becomes divergent, but the combination
Sb, mp, is finite [35]. Recall that for the scalar meson
case, its LCDA also can be expressed in the form

with /‘L]Pl

D 0) = fs6x(1 =] 1+ a5 3 B, (wC 2x=1) |

m=1

(2.68)

where fg = usfs and the equation of motion leads to

s = mg/(my(u) — m;(w)). However, unlike the case

for scalar mesons, the decay constants f IJ;, and f p, cannot
1

be related by equations of motion.

When the three-parton distributions and terms propor-
tional to the light quark masses are neglected, the twist-3
distribution amplitudes can be related to the twist-2 & (u)
for the transversely polarized axial-vector meson by
Wandzura-Wilczek relations [18]:

]U“DLT(”‘)W} — (v — 1)D,(v),

f 1Dy (u) (2.69)
v u

du} — 2, (v),

du} — v D, (v)

(2.70)

114020-9
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) = 3f4, [(2u —1)+ Y @ (P 2u - 1)}
n=1
@.71)

where P, (u) are the Legendre polynomials.

2. 3P, mesons

In analogue to the 'P, case, we consider the approxi-
mations:

P, _ P,
D, (u) = fspl6uu{1 +3a; 'Qu-—1)

3
+ab 3520 — 1) - 1]}, 2.72)
CIDZ_P‘ (u) = fzpl6uﬁ{aé’3pl + 3a1i'3P‘ Qu-—1)
+ay P5u - 1) - 1]}. (2.73)

In the SU(3) limit, only terms with even (odd) Gegenbauer

3p . .
moments for (D”(i) survive due to the G-parity. Hence,

3P L3P S o
""" and @y, vanish in the SU(3) limit. The LCDAs
respect the normalization conditions

1 3 1 3
[ dud," (W) = fip, f dud [ () = f1,
0 ! 0 !

PHYSICAL REVIEW D 76, 114020 (2007)
The latter is valid in the SU(3) limit. Therefore, we obtain

13p,
i () = fip ay” " (w) (2.76)
and
P > 1o 3/2
D (u) =f3lp 6uﬁ{l + pap Zal- G (2u — 1)},
' =
2.77)

3
with pip = 1/ay”"". The twist-3 LCDA ®, has the ex-
pression

@) =3, @y 2= )
= L°P,
+3 a -] @)
n=1

Most of the relevant Gegenbauer moments al.l(l)’A have

been evaluated using the QCD sum rule method [18]. The
results are summarized in Table V.
For the pseudoscalar meson LCDAs we use

®p(u) = fpéuﬁ{l +3aPQu— 1)+ a§%[5(2u - 1]},

O (u)
274 P, =fp 06 = fru(l — u), (2.79)
and .
where ®, and @, are twist-3 LCDAs. We shall employ the
[ : duhl(lt)(u) = f ! du hl(lp)(u) -0 (2.75) sum rule results for the Gegenbauer moments of pseudo-
0 0 scalar mesons [36]
TABLE V. Gegenbauer moments of ®,; and &) for 13P, and 1' P, mesons, respectively, taken from [18].
3 3

P ag,a|(1260) ag,_flpl a!.fgp' ag,K,A a|1|,K|A
1 GeV —0.02 £0.02 —0.04 £0.03 —0.07 £ 0.04 —0.05 = 0.03 0.00 £ 0.26
2.2 GeV —0.01 =£0.01 —0.03 £0.02 —0.05 = 0.03 —0.04 = 0.02 0.00 = 0.22

L L

w all,a1(1260) a S a S af—vKIA a(J)-vKIA a;-vKlA
1 GeV —1.04 = 0.34 —1.06 = 0.36 —1.11 = 0.31 —1.08 = 0.48 0.08 = 0.09 0.02 = 0.20
2.2 GeV —0.83 = 0.27 —0.84 = 0.29 —0.90 + 0.25 —0.88 = 0.39 0.07 = 0.08 0.01 =0.15

Tp 3p

P alhh (1239 alllvhl ‘ alllvhg : altKn ag.Km al ks
1 GeV —1.95 = 0.35 —2.00 = 0.35 —1.95 £ 0.35 —1.95 = 0.45 0.14 £ 0.15 0.02 £ 0.10
2.2 GeV —1.61 = 0.29 —1.65 = 0.29 —1.61 £0.29 —1.57 +£0.37 0.14 £ 0.15 0.01 = 0.07

u 410259 azi-hip‘ azivh;P‘ o F aKos
1 GeV 0.03 = 0.19 0.18 = 0.22 0.14 £ 0.22 —0.02 = 0.22 0.17 £ 0.22
2.2 GeV 0.02 £ 0.15 0.14 £ 0.17 0.11 £ 0.17 —-0.02 +0.17 0.14 £ 0.18
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= 1.0 GeV: aX = 0.06 + 0.03,
u=2.1GeV: ak =0.05 +0.02,

Note that in this paper the G-parity violating parameters
Kk IKa LKy LK LK 3

(a7, a;™", apy ™, a and ay, ") are for mesons con-
taining a strange quark. For mesons involving an anti-
strange quark, the signs of G-parity violating parameters
have to be flipped due to the G-parity. The integral of the B

meson wave function is parametrized as [37]
1 dp mpg
4P pBp) ="
s T=p (p) y
where 1 — p is the momentum fraction carried by the light
|

(2.81)

mb(mb) =42 GeV,
m.(mp) = 1.3 GeV,
my(1 GeV) = 119 MeV,

The uncertainty of the strange quark mass is assigned to be
mgy(2.1 GeV) = 90 *+ 20 MeV.

III. B— AP DECAYS IN QCD FACTORIZATION

We shall use the QCD factorization approach [37,39] to
study the short-distance contributions to the B — AP de-
cays with A = a,(1260), f,(1285), f,(1420), K,(1270),
b(1235), h(1170), h;(1380), K,(1400), and P = 7, K.
It should be stressed that in order to define the LCDAs of
axial-vector mesons properly, it is necessary to include the
decay constants. However, for practical calculations, it is
more convenient to factor out the decay constants in the
LCDAs and put them back in the appropriate places. Recall

1
that (IDHP‘ has two equivalent expressions, namely,
Egs. (2.63) and (2.67). However, we found out that it is

most convenient to use Eq. (2.63) for the LCDA <I>|1|P‘

which amounts to treating the axial-vector decay constant
of 1P, as f]iP . (Of course, this does not mean that fip is
1

equal to f ,J}, .) Likewise, we shall use Eq. (2.77) rather than
1

Eq. (2.73) for the LCDA @ .

In QCD factorization, the factorizable amplitudes of
above-mentioned decays are collected in the appendix.
They are expressed in terms of the flavor operators af
and the annihilation operators b? with p = u, ¢ which
can be calculated in the QCD factorization approach
[37]. The flavor operators a? are basically the Wilson
coefficients in conjunction with short-distance nonfactor-
izable corrections such as vertex corrections and hard
spectator interactions. In general, they have the expressions

[37,39]

ak =025+ 0.15,
ak =0.17 + 0.10,

my(2.1 GeV) = 4.95 GeV,
m.(2.1 GeV) = 1.51 GeV,
my(1 GeV) = 6.3 MeV,

PHYSICAL REVIEW D 76, 114020 (2007)
ai =0,

af =025+ 0.15,
a? = 0.17 = 0.10.

(2.80)

al =0,

[
spectator quark in the B meson. Here we use Az(1 GeV) =
(350 = 100) MeV.

E. Other input parameters

For the CKM matrix elements, we use the Wolfenstein
parameters A = 0.818, A = 0.22568, p = 0.141, and 1 =
0.348 [38]. The corresponding three unitarity angles are
a =90.0°, B =22.1° and y = 68.0°.

For the running quark masses we shall use

m(1 GeV) = 6.89 GeV,

my(2.1 GeV) = 90 MeV, (2.82)
m,(1 GeV) = 3.5 MeV.
[
i+ 1
a?0a,) = (e + o) [ @
c 0
¢ix1 Cray 47
+ (M,) + — H,(MM
N, 4w [V’( 2) N. (M, 2)}
+ Pl (M), (3.1)

where i = 1, - - -, 10, the upper (lower) signs apply when i
is odd (even), c; are the Wilson coefficients, Cr = (N2 —
1)/(2N,) with N, = 3, M, is the emitted meson and M,
shares the same spectator quark with the B meson. The
quantities V;(M,) account for vertex corrections,
H;(M M) for hard spectator interactions with a hard gluon
exchange between the emitted meson and the spectator
quark of the B meson and P;(M,) for penguin contractions.
The expression of the quantities N;(M,) reads

0 i=68

and M, = A,
Ni(M3) = { 1 else. ’

(3.2)

Note that N;(M,) vanishes for i = 6, 8 and M, = A as a
consequence of Eq. (2.70). The subscript || of ® in the first
term of Eq. (3.1) reminds us of the fact that it is the
longitudinal component of the axial-vector meson’s
LCDA that contributes to the B — AP decay amplitude.
Specifically, we have

1 1
f du(I)lllp‘(u) = al)l’lp', / duCI)ilp‘(u) =1, (3.3)
0 0

where we have factored out the decay constant f ,J;J (fs Pl)
1
1 3
of &, (@,").
The vertex corrections in Eq. (3.1) are given by
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I a’xCDMZ(x)[IZIn’%" —18 + g(x)];

PHYSICAL REVIEW D 76, 114020 (2007)
(i=1-40910),

ViMy) =1 [} dxCI)MZ[—121n'"7" +6—g(1—x)]; (i=57), (3.4)
Jodx®,,,(x)[—6 + h(x)]; (i=6,8),
with
glx) = 3(1 — Inx — i77> + [ZLiz(x) — In%x + 2Inx B+2im)nx —(x—1-— x)}
1 —x 1 —x (3.5)

h(x) = 2Liy(x) — In?>x — (1 + 2im)Inx — (x = 1 — x),

where ®,; (®,,) is the twist-2 (twist-3) light cone distri-
bution amplitude of the meson M. More specifically,
Dy = ®p, @, = @, for M = P and Oy = O}, @, =
@, for M = A. For the general LCDAs

Py = 6301~ ) a0 + Y @, (wC -1 |
n=1

d (3.6)
q)m(x) = EO + Z Bn(lu‘)Pn(Q'x - 1))
n=1

the vertex corrections read

1 11
ViM) = (121n% — 18 — 3~ 3i77>a0 + <7 - 3i77>a1

21 79  2iw
2 (B Mg

20 36 3 S

fori=1-4,9, 10,

1 1
V(M) = (—mn@ +6+-+ 3i77'>a0 + <— - 3i7r>a1
M 2 2

21 79  2imT
+ (= + g + - ,
20 %2 <36 3 >a3 ’ (38)
fori =5,7,
19 ]
V(M) = =68, + (3 — 2B, + (E—%>Bs T,
(3.9)

fori = 6, 8.
As for the hard spectator function H, it has the expres-
sion

H(M M) = — L8 Ty [0 ! %”%(p) fo | d—§<1>M2<§>

X(EMIvMZ)

Ldn u, €
X — P *ry' =90, I
fo : [ ) = 70 1<n>}
(3.10)
fori =1—4,9, 10, where the upper sign is for M; = P

[

and the lower sign for M| = A,

H(MyMy) = 8T o, [ %"%(p) [ d—§®M2(§)

X(BMlsz)
1d
x ﬁ ;[CPMI(n)i rfécbm,(n)}
(3.11)

fori=57and H;=0fori=6,8é=1—¢and ) =
1 — 7. In the above equations,

2m3
my,(p)(my + my)(w)’

P_
"

and XBMiuM) s the factorizable amplitude defined in
Eq. (2.47).

Weak annihilation contributions are described by the
terms b;, and b; gy in Eq. (A1) which have the expressions

C .
b] - N_gClAll)
Cr i i f f
b3 = F[C3Al + CS(A3 + A3) + NCCGAj]r
c
bz FCZAI,

by = —5[ciAl + csAT), (3.13)

= —LlcoAl + c4(AL + AL) + N,cgAl],

C . .
bypw = N—g[cloAﬁ + CsAlz],
c

where the subscripts 1, 2, 3 of Aﬁ;f denote the annihilation
amplitudes induced from (V — A)(V — A), (V — A)(V +
A), and (S — P)(S + P) operators, respectively, and the
superscripts i and f refer to gluon emission from the initial
and final-state quarks, respectively. Their explicit expres-
sions are:
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A _f {(CDP(X)(DA()’)[}(II—X)) 2] = i@, ()P, () 2):  for MM, = AP,

(<I)A()c)<13p(y)[y(1 =) = i ®, ()P, (y) 2 +); for MM, = PA,

4 [ {(‘bp(x)‘bA()’)[m ——z] — i ®, ()@, () 3);  for MM, = AP,
P= -
((I)A(x)q)P(y)[x(l ) x)l] - ”A”P(I) (x)CI) ()7) ), for M\M, = PA, (3.14)
A f (— ”ACDP(X)CI’ O =15 x»(l xy) (x)CDA(y) m), for M\M, = AP,
P= -
(qu)A(X)(I) (y) xy(l =7 + rAq) (X)‘DP(J’) - xv)) for M\M, = PA,
y f (—rA®p(x) D, (y) 2<1+X> + P D, (x)D 4 (y) 2<1+>>) for M|M, = AP,
’ w%@@@wwrwu@mmw) for M, M, = PA,
Al =A] =0
where [+ = 7a; [ ydxdy,x =1—x,andy = 1 — y. Note that we have adopted the same convention as in [39] that M,

contains an antiquark from the weak vertex with longitudinal fraction y, while M, contains a quark from the weak vertex
with momentum fraction x.

. C e . ’p 'p . o 'p ’p
Using the asymptotic distribution amplitudes for ®p, @, CD” ', @, ' and the leading contributions to (D” Lo,!

_ P _ 'p e,
Dp(u) = 6uil, <I)” "(u) = 6ui, (I)” "(u) = 18a; 'uuu — 1), D,(u) =1,

y L ., 3.15)
D, (u) =3a;” " (6u — 6u + 1), D, "(u) =3Qu—1),
we obtain from Eq. (3.14) that
— 2 3
AiCP,P) = 6mra, 3<XA —4+ 7; ) —a XX 3)}
A(P,P) = 6ma,| —3a) "X, + 29 — 352) + VX, (X, — 2)}
- 2
ALCP,P) ~ 6ma, 3<XA — 4+ %) —a (X - 3)}
AL(P,P) = 6mar,| —3a" 13X, + 4 — 1) + 1 XA (X, — 2)}
(3.16)
- 2
AP P) = 6ma; —rP(X2 —2X, + ?> —3a l Py <X2 —2X,—6+ % }

2
ALOP,P) = 6ma[3a" " (X3 — dx, + 4 + D 3y (X}, — 02X, +4-— %)}

. 3 3
A£(3P]P) ~ 6ma,(2X, — DX, — 3af" P‘r/\,Pl (X4 —3)]
1 1
AL(P,P) = 6ma[—al "X (6X, — 11) + 35, (2%, — DX, — 2))
and
A{(PPP)) = AiCP,P),  A{(P'P)) = —A}('P,P),  AL(P’P))=ACPP),  AL(P'P) = —Ai('PP)
AYP3P) = —ALCPP),  ALP'P) = AL('PP),  ALPP) =ALCPP),  A(P'P) = —Ai('P,P)

(3.17)
{
where the logarithmic divergences occurred in weak anni-  Following [37], these variables are parametrized as
hilation are described by the variable X,
X, = ln< >(1 + paeitn), (3.19)
1d 1] 1
[ T S I .
0 Uu 0o u 2 with the unknown real parameters p, and ¢,. Likewise,
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the endpoint divergence X in the hard spectator contribu-
tions can be parameterized in a similar manner. Following
[34,40], we adopt p, iy = 0.5 and arbitrary strong phases
¢ A with p, y = 0 by default.

Besides the penguin and annihilation contributions for-
mally of order 1/m,, there may exist other power correc-
tions which unfortunately cannot be studied in a
systematical way as they are nonperturbative in nature.
The so-called ““‘charming penguin’ contribution is one of
the long-distance effects that have been widely discussed.
The importance of this nonperturbative effect has also been
conjectured to be justified in the context of soft-collinear
effective theory [41]. More recently, it has been shown that
such an effect can be incorporated in final-state interac-
tions [42]. However, in order to see the relevance of the
charming penguin effect to B decays into scalar reso-
nances, we need to await more data with better accuracy.

IV. NUMERICAL RESULTS

A. Branching ratios

The calculated branching ratios for the decays B — A,
AK with A = a,(1260), b,(1235), K,(1270), K,(1400),
f1(1285), f,(1420), h,(1170), h;(1380) are collected in

PHYSICAL REVIEW D 76, 114020 (2007)

Tables VI, VII, and VIII. For B — A transition form factors
we use those obtained by the sum rule approach, Table III.
The theoretical errors correspond to the uncertainties due
to variation of (i) the Gegenbauer moments (Table V), the
axial-vector meson decay constants, (ii) the heavy-to-light
form factors and the strange quark mass, and (iii) the wave
function of the B meson characterized by the parameter Ag,
the power corrections due to weak annihilation and hard
spectator interactions described by the parameters p, p,
¢ 4.1, respectively. To obtain the errors shown in Tables VI,
VII, and VIII, we first scan randomly the points in the
allowed ranges of the above seven parameters in three
separated groups: the first two, the second two and the
last three, and then add errors in each group in quadrature.

1. B— a7, a,K decays

From Table VI we see that the predictions for B? —
aj 7 are in excellent agreement with the average of the
BABAR and Belle measurements [2,3]. BABAR has also
measured time-dependent CP asymmetries in the decays
BY — ai ™ [4]. Using the measured parameter AC (see
Sec. IVB), BABAR is able to determine the rates of B® —
aj m~ and B® — a; 7" separately, as shown in Table VI. It
is expected that the latter governed by the decay constant of

TABLE VI. Branching ratios (in units of 107°) for the decays B — a,(1260)a, a,(1260)K, b,(1235)7 and b,(1235)K. The
theoretical errors correspond to the uncertainties due to variation of (i) Gegenbauer moments, decay constants, (ii) quark masses,
form factors, and (iii) Ag, pa g, P4 n, respectively. Other model predictions are also presented here for comparison. In [14], predictions
are obtained for two different sets of form factors, denoted by I and II, respectively, corresponding to the mixing angles 6, = 32° and

58° (see the text for more details).

Mode CMV [15] LNP(D)[14] LNP(II) This work Expt. [2-7,10]
B — afm 74.3 4.7 11.8 9.1793%33+17 122+45°
B'—aymt 36.7 11.1 12.3 23.4133%82+19 21.0£54°
B> aim* 111.0 15.8 24.1 32.5723184130 31.7£3.7°
B~ — a7 432 3.9 8.8 7.6 031111 20.4 4.7 = 3.4
B’ — &) 7" 0.27 1.1 1.7 0.9*01763%07
B~ —a;n’ 13.6 4.8 10.6 144714733438 26.4 54 =41
B'—afK~ 722 1.6 4.1 18.3F 01422 1632923
B° — k" 42.3 0.5 25 6.970378533
B~ —a;K° 84.1 2.0 52 21,6737 1651236 34.9 5.0 + 4.4
B~ — a)K~ 434 1.4 2.8 13.90972370%°
B — bfm 36.2 6.9 0.7 11.2403+28+22
B — by ot 4.4 ~0 ~0 0.3 00 01704
B — by o™ 40.6 6.9 0.7 11.4704722423 10.9 = 1.2 +0.9
B — p9n° 0.15 0.5 0.01 L1934 01102
B~ — by n° 4.2 4.8 0.5 0.4+90+02+04
B~ — b0m 18.6 4.5 0.4 9.67037 16133 6.7=1.7*1.0
B"—biK~ 35.7 24 0.2 12.155045:04183 74=1.0% 1.0
B® — bIK° 19.3 4.1 0.4 7.3403134781
B~ — b K° 41.5 3.0 0.3 14.0713F 1259
B~ — bk~ 18.1 2.6 0.07 6.21031397¢3 9.1+ 17+ 10

BABAR data only [4]. "The average of BABAR [2] and Belle [3] data.
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TABLE VII.  Same as Table VI except for the decays B — K (1270)7, K;(1270)K, K,(1400)7, and K;(1400)K for two different
mixing angles fx = —37° and —58° (in parentheses). In the framework of [14], only the K (1400)7° and K{(1400)7° modes
depend on the mixing angle 6y, . Note that the results of [14,15] shown in the table are obtained for #g, = 32° and 58° (in

PHYSICAL REVIEW D 76, 114020 (2007)

parentheses).
Mode [15] [14] This work Expt. [8]
B’ — K, (1270)7* 4.3 (4.3) 7.6 3.0008% 3442 (27300 L34 120 £3.1753 <252
B — K)(1270)7° 23 (2.1) 0.4 LOZ00E05564 (0.8X01 0376
B~ — KY(1270) 7~ 47 (4.7) 5.8 355015 s (3.0205504757
B~ — K (1270)7° 2.5 (1.6) 49 275155500 (25181509135
B — Ky (1400) 7+ 23(23) 4.0 54510713058 2255500438 16.7 + 26735 <21.8
B° — K9(1400)7° 1.7 (1.6) 3.0 (1.7) 29103506537 (1L5503503563
B~ — K9(1400) 7~ 2.5 (2.5) 3.0 6.57 50 o 16 (2.8X58709779
B~ — K; (1400)7° 0.7 (0.6) 1.0 (1.4) 30704751432 (1.02941 04+ 12
B~ Ki (1270K* 0013478 (0.01 062
B — Ki (1270K~ 006341800748 (0.04-801 08037
B~ — K)(1270)K~ 0.22 (0.22) 0.25 001 00030 (0.227 0010437039
B~ — K (1270)K° 0.02 (0.75) 0.05 003 005043 (0.057 003003009
B° — K%(1270)K° 0.02 (0.70) 2,301 048 L4 (2,100 323
B° — K9(1270)K° 0.20 (0.20) 0.24 001000033 (0.267 040 00307
B — K (1400)K * 0.095:01 26000 (0-07063-5.00- 06
B — K/ (1400)K - 0023+ 8 (0.01 B0
B~ — K)(1400)K~ 0.12 (0.12) 0.48 008 0137084 (0.22 007007034
B~ — K (1400)K° 44 (3.9) 0.01 700070067041 (0.015*0-02+0.08
B = KI(400K" 416 008381 1 6% (0.10* 8 631013
B — K9(1400)K° 0.11 (0.11) 0.50 0080137092 (0.25 507008031

TABLE VIII. Same as Table VI except for the decays B — f,, f1K, hym, and h K with f; = f,(1285), f,(1420) and h, =
h(1170), h,(1380). We use two different sets of mixing angles, namely, 6:p, = 27.9° and 6:p = 25.2° (top), corresponding to

Ok, = —37°, and Ospl = 53.2°, «91P1 = —18.1° (bottom), corresponding to f, = —58°.

Mode Theory Mode Theory
B~ — f,(1285)7 52503515503 B~ — fi(1420)7~ 0.06750070:00-0.00
B® — f,(1285)7° 0.260.03* 0070 B® — f,(1420)7° 0.003 3003 6001 *6.002
B~ — f,(1285)K~ 14.873:0+7.5+124 B~ — f1(1420)K~ 6.0 11719739
B° — f,(1285)K° 14.6727173+19 B — f£,(1420)K° 55018 884
B~ — m(1170)7" 4.8704102+0.8 B~ — hy(1380)7" 0.17+303+0.00+0.04
B® — hy(1170)7° 0197008 0.03 0,01 B® — hy(1380)7° 0.00678 000003 ~0:005
B~ — h(1170)K "~ 10.1747+21473 B~ — h(1380)K ™ 12711153420
B® — h,(1170)K° 10.1142+22+472 B® — h,(1380)K° 11.3763+83+ 1885
B~ — fi(1285)7" 467031 1+06 B~ — f1(1420)7~ 0.59+006+0.18+0.19
B® — £,(1285)7° 0.2010.02+0.12+024 B’ — f,(1420)7° 0.05+202+0.03+0.04
B~ — f1(1285)K" 525095310 B~ — [1(1420)K~ 13.8749735+ 171
B® — f,(1285)K° 5.2108+3.2+3.9 B° — £,(1420)K° 13,143 74511162
B~ — h,(1170)7~ 1.8703+03+03 B~ — hy(1380)7~ 295071406504
BY — h,(1170)7° 0.1675:98+0.01+0.00 B® — h,(1380)7° 0.04+000+0.03+0.04
B~ — by (1170)K~ D RCAEL Al aE s B~ — h(1380)K 5655755518
B® — hy(1170)K° 10,9133 934! B® — hy(1380)K° 5500751345
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a;(1260) has a rate larger than the former as f, > f,.
Again, theory is consistent the data within errors. However,
there are some discrepancies between theory and experi-
ment for al7~ and a; #° modes. It appears that the
relations BB - a7 )= BB —a7) and
B(B~ — a; 7°) = B(B* — a;y w*) observed by BABAR
are opposite to the naive expectation that B(B~ —

R, = M — (.83+0.02+0.06+0.12
B(B° — afm)
B(B~ — a; ")

Rn=— "~ = 0.62t0'01+0'01+0'08
2 B(BO N a1_77'+)
BB —a k)

Ri=—~ "1/
> BB —afk)

In the above ratios the hadronic uncertainties are mainly
governed by weak annihilation and spectator scattering in
R, R, and largely canceled out in R;. It is evident that
while the predicted R, is barely consistent with the data
within errors, theory does not agree with experiment for R,
and R;. This should be clarified by the improved measure-
ments of these modes in the future.

While the tree-dominated a7 modes have similar rates
as pr ones, the penguin-dominated a; K modes resemble
much more to 7K than pK, as first pointed out in [16]. One
can see from Egs. (A3) and (A7) that the dominant penguin
coefficients af(a;K) and af(7wK) are constructive in af
and af penguin coefficients:

ay(a,K) = al(a,K) + rfaf(a,K),
ol (mK) = a}(7K) + rfag(WK),

whereas  af(pK) = a}(pK) — rXal(pK) [39]. Con-
sequently, when the weak annihilation contribution is
small, B — a;K and B — 7K decays should have similar
rates. However, if weak annihilation is important, then it
will contribute more to the @; K mode than the 7K one due
to the fact that f, > f,, recalling that the weak annihi-
lation amplitude is proportional to fgfa, fu,b;- By com-
paring Table VI of the present work with Table 2 of [39],
we see that the default results for the branching ratios of
B — a,K and B — @K decays are indeed similar, while
the hadronic uncertainties arising from weak annihilation
are bigger in the former.

4.2)

2. B— b,m, b\K decays

As for B — b(1235)7 decays, there is a good agree-
ment between theory and experiment. Notice that it is
naively expected that the b 77 mode is highly suppressed
relative to the b 77~ one as the decay amplitude of the
former has the form a; F{™ = f, (Dﬁ‘ (a; being the effective
Wilson coefficient for the color-allowed tree amplitude)

—0.02—0.05—-0.17

0.01-0.01—-0.10

— +0.01+0.02+0.04
=11 8—0.01—0.02—0.04
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A7) < BB — af77) and BB~ —a; 7)<
B(B® — a; 7). As for B— a;K decays, although the
agreement with the data for B — a K~ is excellent, the
expectation of B(B~ — a; K°) ~ B(B® — af K~) is not
consistent with experiment. More specifically, in QCDF we
obtain the ratios

(expt: 1.67 * 0.78),
(expt: 1.26 * 0.46), 4.1)

(expt: 2.14 * 0.63).

{
and the decay constant f;, vanishes in the isospin limit. As

noted in passing, the LCDA CI)ﬁ‘ (u) given by (2.67) is finite
even if f, = 0. This is because the coefficient wu;, =

1/ ag’b‘ in the wave function of b; will become divergent
if f; =0, but the combination f) u, 1is finite. More
precisely, fj mp, is equal to fbll, the transverse decay

constant of the b, [cf. Eq. (2.65)]. Therefore, Cl)ﬁ](u) can

be recast to the form of Eq. (2.63) which amounts to
replacing f;, by f bLl in the calculation. Now, one may
wonder how to see the suppression of by 7" relative to
by 7~ ? The key point is the term [ (I)ﬁ” (x)dx appearing in
the expression for the effective parameter «; [see Eq. (3.1)].
This term vanishes for the »; meson in the isospin limit. As
a result, the parameter a, for the decay B® — by 7™ van-
ishes in the absence of vertex, penguin, and spectator
corrections. On the contrary, a; = ¢; + % + - - - for the
channel B — b 7r~. This explains the suppression of
B® — by 7" relative to by . After all, the b; 7" mode
does not evade the decay constant suppression. It does
receive contributions from vertex and hard spectator cor-
rections and weak annihilation, but they are all suppressed.
The BABAR measurement of charge-flavor asymmetry AC
implies the ratio I'(B®— by #")/T(B*— biw™) =
—0.01 = 0.12 [5]. This confirms the expected suppression.

Since B — b, K decays receive sizable annihilation con-
tributions, their rates are sensitive to the interference be-
tween penguin and annihilation terms. As a consequence,
the measured branching ratios of B — b; K would provide
useful information on the sign of the B — b,(1235) tran-
sition form factors. We found that if the form factor V(lf Pris
of the same sign as V; *', B(B — b, K) will be enhanced by
a factor of 2 ~ 3, for example, B(B* — b{ K™) = 21 X
107% which is too large compared to the experimental
value of (7.4 = 1.4) X 107 [5]. This means that the inter-
ference between penguin and annihilation contributions
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should be destructive and the form factors Vg "' and Vg “
must be of opposite signs.

We also found that the naive relation B(B~ — b{K~) ~
1B(B" — b{ K~) holds in QCDF. More precisely, QCDF
predicts

R = B(B~ — bIK )
Y BB —biK)
(expt: 1.23 * 0.36),

— +0.014+0.01+0.20
=0.51 —0.01-0.00—-0.02

4.3)

where the hadronic uncertainty in R, arises almost entirely
from weak annihilation (contribution from spectator scat-
tering is negligible). This indicates that the data of HK~
and b K~ can be simultaneously explained only if the
weak annihilation mechanism plays a dominant role in
these decays.

3. B— K,(1270)(m, K), K,(1400)(7, K) decays

It is evident from Table VII that the central values of the
calculated branching ratios in QCDF for K; (1270)7 " and
K (1400)7™ are too small compared to experiment. This
is not surprising as the same phenomenon also occurs in the
penguin-dominated B — PV and B — VV decays. For
example, the default results for the branching fractions of
B — K" obtained in QCDF are in general too small by a
factor of 2-3 compared to the data [39]. This suggests the
importance of power corrections due to the nonvanishing
pa and py parameters or due to possible final-state rescat-
tering effects from charm intermediate states [42]. It has
been demonstrated in [39] that in the so-called “S4”
scenario with p, = 1 and nonvanishing ¢,, the global
results for the VP modes agree better with the data. It
has also been shown in [43] that the choice of p qeith =
0.6¢ ™" will allow one to explain the polarization effects
observed in various B — V'V decays. While large power
corrections from weak annihilation seem to be inevitable
for explaining the K rates, one issue is that large weak
annihilation may destroy the existing good agreement for
af K~ and b K~ modes.

We notice that while K;(1270) rates are insensitive to
the mixing angle 6k , the branching fractions of
K,(1400)7r are smaller for 6x = —58° than that for
Ok, = —37° by a factor of 2-3 due to the dependence of
the K;(1400) decay constant on 6 , recalling that
fK1(1400) ~ 112 (235) MeV for 91{1 = —58° ( - 370)
[cf. Eq. (2.32)]. The current measurement of B® —
K (1400)7™" favors a mixing angle of —37° over —58°.

Just as the case of B— KK* decays, we find that the
branching ratios of B — K;(1270)K and K,(1400)K
modes are of order 1077 — 108 except for the decay B® —
K9(1270)K° which can have a branching ratio of order
2.3 X 107°. The decay modes K; K* and K K~ are of
particular interest as they are the only AP modes which
receive contributions solely from weak annihilation.

PHYSICAL REVIEW D 76, 114020 (2007)
4. B— f(m, K), hy(m, K) decays

Branching ratios for the decays B — fm, f| K, h;, and
h K with f; = f,(1285), f,(1420) and h, = h,(1170),
h(1380) are shown in Table VIII for two different sets
of mixing angles: (i) Osp, = 53.2° and Oip = —18.1°,
corresponding to g, = —37°, and (ii) Hapl = 27.9° and
bip, = 25.2°, Ok, = —58° (see
Sec. ITA).® Their branching ratios are naively expected to
be of order 107% ~ 107 except for the color-suppressed
f17° and h, 7° modes which are suppressed relative to the
color-allowed one such as f;(1285)7~ by a factor of
lay/a,|>/2 ~ ©(0.03 — 0.08). However, an inspection of
Table VIII shows some exceptions, for example, B(B~ —
f1(1420)7m7) < B(B~ — f,(1285)7r~) for both sets
of O:p and BB — h(1380)7") < B(B~ —
h,(1170)7~) for 61p = 25.2°. These can be understood

as a consequence of interference. The decay amplitudes for
the tree-dominated channels 4,77~ are given by

corresponding  to

AB™ — hy(1380)77) = = V" sinbi,, + Vg™ cosfp

A(B™ — hy(1170)77) o Vg™ cosfip + Vg sindi .
(4.4)

Since the form factors V(lf M and Vg " are of the same
signs (cf. Table III), it is clear that the interference is
constructive (destructive) in the h;(1170)7~ mode, but
destructive (constructive) in h;(1380)7~ for 6. P =
25.2° (—18.1°). This explains why BB —
h,(1380)7~) < B(B~ — h(1170)7r~) for 01P1 = 25.2°
and B(B~ — h;(1380)7~ ) > B(B~™ — h{(1170)7~) for
Oip, = —18.1°. Therefore, a measurement of the ratio
Rs = BB~ — h(1380)7~)/B(B~ — h(1170)7~) will
help determine the mixing angle 6: P Likewise, informa-
tion on the angle 6: p, can be inferred from the ratio Rg =
B(B — f,(1420)K)/B(B — f,(1285)K): Rs>1 for
03,)1 = 53.2° and Rgz < 1 for 03,)] = 27.9°.
The preliminary BABAR results are [9]

BB~ — f,(1285)K~)B(f(1285) — nmm)
< 0.8 X 107°,

B(B~ — f,(1420)K~)B(f,(1420) — nar)
<2.9X%X107°,

B(B~ — f1(1420)K " )B(f,(1420) — KgK=7")
<4.1x10°°.

4.5)

Since B(f(1285) — naw) = 0.52 = 0.16 [1], the upper
limit on B(B~ — f,(1285)K ") is inferred to be of order

There are predictions for the decay rates of B — f 7, f K,
hyar, and kK in [15]. Since the f and h; states are not specified
there, we will not include them in Table VIII for comparison.
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FIG. 1 (color online). Branching ratios of B~ — f(1285)K~
(solid line) and B~ — f(1420)K~ (dashed line) versus the
mixing angle 6sp . The physical mixing angle is either 28° or
53°. For simplicity, only the central values are shown here. The
horizontal line is the experimental limit on B~ — f(1285)K .

2.0 X 107°. However, we cannot extract the upper bound
for the f,(1420)K~ mode due to the lack of information on
B(f,(1420) — nara) and B(f;(1420) » KgK*77). In
Fig. 1 we plot the branching ratios of B~ — f;(1285)K~
and B~ — f;(1420)K~ as a function of 6:p . We see that
the branching fraction of the former at 6:p = 53° is barely
consistent with the experimental limit when the theoretical
errors are taken into account. Note that the mixing angle
dependence of the f(1420)K~ mode is opposite to that of
f1(1285)K~. At this moment, it is too early to draw any
conclusions from the data. Certainly, we have to await
more measurements to test our predictions.

B. CP asymmetries

Direct CP asymmetries for various B — AP decays are
summarized in Tables IX, X, and XI. Because of the large

PHYSICAL REVIEW D 76, 114020 (2007)

suppression of B — by 7" relative to B — b 7™, direct
CP violation in the latter should be close to the charge
asymmetry A, , defined below in Eq. (4.11) which has
been measured by BABAR to be —0.05 = 0.10 = 0.02 [5].
The default results for direct CP violation vanishes in the
decays B — KK~ and B — K; K™ (see Table X) as
they proceed only through weak annihilation. The major
uncertainty with direct CP violation comes from the strong
phases which are needed to induce partial rate CP asym-
metries. For penguin-dominated decays, one of the main
sources of strong phases comes from ¢, defined in
Eq. (3.19) which is originated from soft gluon interactions.
It is nonperturbative in nature and hence not calculable.

The experimental determination of direct CP asymme-
tries for af 7~ and a; 7" is more complicated as B —
a7 is not a CP eigenstate. The time-dependent CP
asymmetries are given by

L(B%(1) = ay ™) = T'(B°(t) — ai 7™)
L(B°(t) = ay ™) + T(B°(t) — ai =)

= (S = AS)sin(Amt) — (C = AC) cos(Amt),
4.6)

At =

where Am is the mass difference of the two neutral B
eigenstates, § is referred to as mixing-induced CP asym-
metry and C is the direct CP asymmetry, while AS and AC
are CP-conserving quantities. Defining

A, =AB’—>ajm),
A_y =AB—ay7t),

A, =AB—>a;7"),
A =AB’—af7m),
4.7

and

A, A_
_ 494+ A qA—+

A=~ , _
+ DAL +

where ¢/p = e %P for a,m modes, we have

TABLE IX. Direct CP asymmetries (in %) in the decays B — a,(1260)7, a;(1260)K, b,(1235)7 and b,(1235)K. See Table VI for
the explanation of theoretical errors. Experiments results are taken from [4,5,10,44].

Mode Theory Expt. Mode Theory Expt.
B> afm —3.670110.3+208 7x21+15° B'—afK- 2.6709107H100 -l6+x12=1
B0 R _1 9+0.0+0.0+14.6 415 +72 B0 070 _ 7 7+0.6+2.1+638
B"—aym L9260 0.0 143 I5+15+7 B"— a)K 1.7206-22-70
B0 0,0 +4.6+6.8+37.6 - - 20 +0.0+0.1+0.6 + 11 +
B" — ajm 601236783 607 B —a K 0-8Z00-01-00 12x11x2

- -0 +0.340.6+12.0 - 07— +0.3+1.4+10.3
B™—aym 0.5262=03 110 B” —ajk 84203 16— 120

- 0~ 4 3H03+14+14.1
B” —aym 43203500 145
R0 +o - 4 (0+02+0.4+26.2 R0 + - +0.2+1.2+47.2 I
B — b7 4.026:0206-255 B — b7 K 5.55555 125302 TE12x2
R0 -+ +1.24+7.4+303 R0 0 20 _Q (+0.8+3.3+83
B"—bym 66.17137 15 0656 B” — biK 8.6 08 12-254
B0 0.0 +6.4+9.0+5.2 - - 20 +0.14+0.1+5.6
BY — bl 53.4%637573507 B™ — b/ K L4261 20120

- -0 3G §H44+18.4+82.2 - 0p— +1.6+7.8+57.7 _46 + 20 +
B™—bym 3657435177 506 B" —biK 18.7217 617240 46 =20 =2
B~ — b7 0.9%051235569 5+16*2

“Taken from [44].

114020-18



HADRONIC CHARMLESS B DECAYS B — AP
TABLE X. Direct CP asymmetries (in %) the decays B — K(1270)7, K;(1270)K, K;(1400)7 and K,(1400)K for two different

mixing angles 6,

= —37° (top) and —58° (bottom).

PHYSICAL REVIEW D 76, 114020 (2007)

Mode

Theory

Mode

Theory

B — K; (1270)7*

+2.84+10.0+26.0
38'6*3.3*13.0*42.9

BY — K (1400)7*

— +9.0+1.7+45.3
14"3*945*1.0*48.8

BY — K9(1270)7° —32.51 167747187 B® — K0(1400)7° L503708733
B~ — KY(1270)7~ —0.8%03101%33 B~ — K(1400) 7~ 22303501013
BY — Ky (1270)7° 388719171424 B° — K (1400)7° —12.97 0353
BY — Ky (1270)K* 070+0+73 B® — K (1400)K* 00705133
BY— K+ (1270)K~ 07r0+409 B° — K (1400)K - 00707880

BY — R(1270)K° —31.0+35 44108 B® — K9(1400)K° —T I
B° — KY(1270)K° —17.91804+02+3.2 B° — K9(1400)K° —65.5740¢14r128
B~ — KY(1270)K~ 17.2+58+42+650 B~ — K{(1420)K —45.07 75804
B~ — K; (1270)K° —40.2+67+21+13L3 B~ — K; (1420)K° — 17355511563 0%°
B — Ky (1270)7* 33.61357 8L, B® — K (1400)7+ —39.2759+33+32]
BY — R0(1270) 7" —29,6* L4+68+197 B® — K9(1400)7° 01743713788
B~ — KY(1270)7~ —0.5102+00+27 B~ — K{(1400)7~ R Tl A
B® — K (1270)7° 32.370.3+514265 B® — K7 (1400)7° —42.2553539558
B — Ky (1270)K* 07+0+27.0 B® — K (1400)K 0005107

BY — K; (1270)K~ 07rg+d0l B® — K (1400)K - 000 481

BY — K9(1270)K° —18.0+05+12+13 B® — K9(1400)K° —24.31551237 8]
B" — K9(1270)K° 1.0+ 247159 B® — K9(1400)K° —63.0233730 1033
B~ — KY(1270)K~ 9.4+3143.5+417 B~ — K9(1420)K~ —59.813¢11313%
B~ — K[ (1270)K° —39.4367 4311277 B~ — K; (1420)K° 61.17216+23.2+30.3

TABLE XI. Direct CP asymmetries (in %) in the decays B — f,m, f1K, h;7 and h K with f|; = f,(1285), f,(1420) and h, =
h(1170), h (1380). We use two different sets of mixing angles, namely, 6:p, = 27.9° and 6:p = 25.2° (top), corresponding to

Ok, = —37°, and Ospl = 53.2° and 01P1 = —18.1° (bottom), corresponding to O, = —58°.

Mode Theory Mode Theory

B~ — f1(1285)m —7.35081051353 B~ — fi(1420)7~ —4 1TSS
B° — £,(1285)7° 13.8717+32+326 BY — f,(1420)7° —34.0710378,0%112.2
B~ — f1(1285)K~ 251837087¢] B~ — f1(1420)K~ 08561761715
B° — £,(1285)K" 1.9+01+04+20 B® — f1(1420)K° L0XG320510%
B~ — h,(1170)7 —11.1711718434 B~ — hy(1380)7" —18.2733734 3%
B° — hy(1170) " 31.6+7:3+03+388 B® — h(1380)7° —38. 7 e !
B = I (1170)K 357075027 165 B~ — hi(1380)K~ 13402408128
B° — h,(1170)K° 1.7+02+02+29 B® — h,(1380)K° 1.8203705187
B~ — f,(1285)7~ —7.1¥04+05+286 B~ — f,(1420)7~ —3.8703703 260
B° — £,(1285)7° 14.7517430057.0 B° — £,(1420)7° 2101321791402
B~ — f1(1285)K" 2.5703+09+3.1 B~ — f1(1420)K~ 13103503133
BY — £,(1285)K° 2.1+02+06+25 B® — £,(1420)K° LI585 0
B~ — h,(1170) 7~ —8.4¥07+1.3+72 B~ — hy(1380)7~ —13.871373571%
B — h,(1170) 7" 24.9+72+28+465 B® — 1y (1380) 7" 56.073 17155 1o
B~ — iy (1170)K 5.07337080 13 B~ — h(1380)K —81505 738740
BY — h,(1170)K° 0.7+93+02+21 B — h,(1380)K° 1.5703+03+18
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L= AP AP - 1A, P

C+AC= = L
L+[A P AP+ AP
P A p-ta e Y
C—AC= =
L+[A_, ] JA_L P +]A_L]
and
2ImA,_  2Im(e ¥BA,_A*
s+ag= 2 _2imle BAAL)
- o i (4.10)

2ImA_,  2Im(e 2PA_LA* )

S—AS= = _
T+ P A P+IA P

Hence we see that AS describes the strong phase difference
between the amplitudes contributing to B® — ai 7~ and
AC measures the asymmetry between I'(B® — af 7~) +
I'B°—a;n")and T'(B® = a;7") + T(B* — af 77).

Next consider the time- and flavor-integrated charge
asymmetry

A PHIA P —A P — AP

A, = : i
AL P AL P AP AP

4.11)

Then, following [38] one can transform the experimentally
motivated CP parameters A, , and C, , into the physi-
cally motivated choices

k= *]> =1 kT2 —1
Ap = 1= A =TT 4
P e e ¢
with
A_ Ai_
k- =922+ e 240 4.13)
pPAL- pPA_4
Hence,
A _TB°—afm)—T(B°—a;n")
“7 TB—afm )+ T(B—a;n")
‘Aalﬂ' - Ca|7r - ‘Aal’iTACa]’iT
1__ Acalﬂ' - ‘/,lell’ﬂcal’ﬂ' , (4.14)
(B> a;n")—T(B—af7")
Aa’7r+ =

CTB —a;m) +T(B = af )
‘ﬂ{/ll’ﬂ + Calﬂ' + ‘ﬂ{/ll’lTAC{/l]’/’T
1+AC, »+ AunCon

Note that the quantities AQI:,T: here correspond to Aalzwi

defined in [38]. Therefore, direct CP asymmetries Aar,f

and Aaﬁﬁ are determined from the above two equations.
Defining the effective phases

aj =g —lagle A4
- = l -+ l ( _Zi'BA_ A* ) ( . )
Qg = jargK sargle +-ATL),

which reduce to the unitarity angle « in the absence of
penguin contributions, we have
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TABLE XII. Various CP parameters for the decays B® —
ai 7 (top) and B® — by 7™ (bottom). The parameters S and
AS are computed for 8 = 22.1° and y = 68.0°. Experimental
results are taken from [4,5].

Parameter Theory Experiment
Aun 0.003 000 0003 004 —0.07 = 0.07 = 0.02
c 0.02+ 300000014 —0.10 = 0.15 = 0.09
S —0.37+901 000 +0.09 0.37 = 0.21 = 0.07
AC 0.44+5:03+0.03+0.08 0.26 = 0.15 = 0.07
AS 0.01+5:90+0-00+0.02 —0.14 = 0.21 = 0.06
oy (97.2203%56°53)°

gy (107.025358789)°

Qe (102.0704723+37)° (78.6 = 7.3)°
Apn —0.06501 01023 —0.05 = 0.10 = 0.02
C —0.0370:01+0.01+0.06 0.22 = 0.23 +0.05
S 0.05%563 5005026

AcC —0.96 003 003008 —1.04 = 0.23 = 0.08
As 0.125505 004 009

iy (107.6257733713%)°

Oy (1013703 13 750)°

s (1044708730 10%9)°

*Our definition of C in Eq. (4.9) has an opposite sign to that
defined in [5] for B — b, 7 decays.

1 _
Qg = z(a:ff + agy)

S+ AS )

= %[arcsin(
J1—(C+ AC)?
. S—AS
+ arcsm( —c AC)ZH.

This is a measurable quantity which is equal to the weak
phase « in the limit of vanishing penguin amplitudes.

Parameters of the time-dependent decay rate asymme-
tries of B — aj" 7™ are shown in Table XIL. It appears that
the calculated mixing-induced parameter S is negative and
the effective unitarity angle a.¢ deviates from experiment
by around 2¢. As pointed out by one of us (K.C.Y.), this
discrepancy may be resolved by having a larger y = 80°
(see Fig. 1 of [16]). Further precise measurements are
needed to clarify the discrepancy. For B® — by 7™ decays,
the predicted A C agrees with experiment. The fact that this
quantity is very close to —1 indicates that the B* — by 7"
mode is highly suppressed relative to the B — b 7~ one,
recalling that AC here measures the asymmetry between
(B> bfm )+ T(B°— by 7m")and (B — by 7") +
(B — bfa).

(4.16)

C. Comparison with other works

There are several papers studying charmless B — AP
decays: Laporta, Nardulli, and Pham (LNP) [14] (see also
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Nardulli and Pham [13]), and Calderdn, Muiioz, and Vera
(CMV) [15]. Their predictions are shown in Tables VI and
VII. Both are based on naive factorization. While form
factors are obtained by CMV using the ISGW2 model,
LNP use ratios of branching ratios to deduce ratios of
form factors. Hence, the relevant form factors are deter-
mined by factorization and experimental data. Specifically,
LNP found

Vo“'(0) _ Vg*(0)
AgP(0)  AFK(0)
Vo '(0) _ Vgt (0)
Ag(0)  AFK(0)

= hsinfg, + kcosbg ,

4.17)

= hcostk, — ksinfg,,

where the kinematic factors A, k are defined in [14].
Therefore, LNP used two different sets of form factors
corresponding to different mixing angle values 6y, =
32° and 58°. Since LNP only considered factorizable
contributions to B — AP decays, it turns out that in B —
K, 7 decays, only the K| (1400)7° and K9(1400)7° modes
depend on the mixing angle 6 . The other K, rates
obtained by LNP (see Table VII) are mixing angle
independent.

The predicted rates for a;7, b;7 and b; K modes by
CMV are generally too large compared to the data, pre-
sumably due to too big form factors for B — a;(b;) tran-
sition predicted by the ISGW2 model. The relation
B(B® — af ™) > B(B" — a; mw") is in conflict with ex-
periment. A noticeable result found by CMYV is that
B(B~ — K; (1400)K°) and B(B® — K(1400)K") are of
order 107, while in QCDF they are highly suppressed, of
order 1077 — 1078,

It is clear from Table VI that in the LNP model, the form
factors (4.17) derived using 0, = 32° give a better agree-
ment for a; 7 modes, whereas 6, = 58° is preferred by
b, and b, K data. This indicates that the data of a,(, K)
and b (7, K) cannot be simultaneously accounted for by a
single mixing angle 6, in this model.

Branching ratios of B — f1P and B — h; P are found to
be of order 1073 for P = 7=, 5, ', K and O(1077) for
P = 7 by CMV. In general, the CMV’s predictions are
larger than ours by 1 order of magnitude.

V. CONCLUSIONS

In this work we have studied the two-body hadronic
decays of B mesons into pseudoscalar and axial-vector
mesons within the framework of QCD factorization. The
light cone distribution amplitudes for *P, and !P, axial-
vector mesons have been evaluated using the QCD sum

7Since the B— K4 and B — K form factors obtained in the
ISGW2 model are opposite in sign, the preferred mixing angle
0k, should be negative, as discussed in Sec. IT A.

PHYSICAL REVIEW D 76, 114020 (2007)

rule method. Owing to the G-parity, the chiral-even two-
parton light cone distribution amplitudes of the *P, (!P,)
mesons are symmetric (antisymmetric) under the exchange
of quark and antiquark momentum fractions in the SU(3)
limit. For chiral-odd light cone distribution amplitudes, it
is other way around. Our main conclusions are as follows:
(i) Using the Gell-Mann-Okubo mass formula and the
K,(1270) and K;(1400) mixing angle 6 =
—37°(—58°), the mixing angles for *P, and 'P,
states are found to be 0: P 28°(53°) for the
f1(1420) and f,(1285) and O1p, ~25°(—18°) for

h(1170) and the &, (1380), respectively.

(ii) The predicted rates for aj (1260)7~, by (1235)7+,
b9(1235)7~, af K~ and b{ K~ modes are in good
agreement with the data. However, the expected
ratios BB — a7 )/BB—afm) =1,
BB~ — a; 7°)/B(B° — a; 7)) ~1 and
B(B~ — b{K")/B(B* — b K~) ~ 3 are not borne
out by experiment. This should be clarified by the
improved measurements of these decays in the
future.

(iii) One of the salient features of the 1P1 axial-vector
meson is that its axial-vector decay constant is
small, vanishing in the SU(3) limit. This feature
is confirmed by the observation that I'(B® —
by ") < T'(B — b{ 7). By contrast, it is ex-
pected that T'(B®—a;an™)>» (B — af7")
due to the fact that f, > f.

(iv) While B — a;7 decays have similar rates as that
of B — pm, the penguin-dominated decays B —
a, K resemble much more to the 7K modes than
pK ones. However, the naively expected ratio
B(B~—a; K°)/B(B*—a K™ )=~B(B~—m K%/
B(BY— 7" K~)=1.2 is not consistent with the cur-
rent experimental value of 2.14 = 0.63.

(v) Since the B — b, K decays receive sizable annihila-
tion contributions, their rates are sensitive to the
interference between penguin and annihilation
terms. The measurement of B(B® — b K~) implies
a destructive interference which in turn indicates
that the form factors for B — b, and B — a, tran-
sitions must be of opposite signs.

(vi) The central values of the branching ratios for the
penguin-dominated modes K (1270)7" and
K (1400)7™" predicted by QCD factorization are
too small compared to experiment. Just as the case
of B— K*m decays, sizable power corrections
such as weak annihilation are needed to account
for the observed K rates. The current measure-
ment of B®— K; (1400)7" seems to favor a
K4 — K;p mixing angle of —37° over —58°.

(vii) The decays B — KK with K; = K,(1270) and
K,(1400) are in general quite suppressed, of order
1077 ~ 1078, except for B* — K9(1270)K° which
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can have a branching ratio of order 2.3 X 107°.
The decay modes K; K™ and K; K~ are of par-
ticular interest as they are the only AP modes that
proceed only through weak annihilation.

(viii) Time-dependent CP asymmetries in the decays
B — a7 and by w* are studied. For the for-
mer, the mixing-induced parameter S is found to
be negative and the effective unitarity angle g
deviates from experiment by around 2¢. The dis-
crepancy between theory and experiment may be
resolved by having a larger y = 80°. Further
precise measurements are needed to clarify the
discrepancy.

(ix) Branching ratios for the decays B — f 7, fK,
hy7 and h K with f; = f1(1285), f1(1420) and
h; = h(1170), h;(1380) are generally of order
1076 except for the color-suppressed f 7’ and
hy7° modes which are suppressed by one to 2
orders of magnitude. Measurements of the ratios
B(B~ — h(1380)7~)/B(B~ — h;(1170)7r~) and
B(B — £,(1420)K)/B(B — £,(1285)K) will help
determine the mixing angles 6: 3 and 6: p,» Tespec-
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APPENDIX: DECAY AMPLITUDES

For simplicity, here we do not explicitly show the argu-
ments, M and M, of @ and B? coefficients. The order of
the arguments of the o” (M M,) and BY(M M) is consis-
tent with the order of the arguments of the X(B¥1:M2) where

—ifpfm, S m,

p —

bP. (A1)

tively. Within the framework of QCD factorization [37], the B —
AP decay amplitudes read
VA, g =2E > A 8ua By —altial b aal gy — e Ix@ma
B —d7 \/§p=uc p pul\G2 2 4 THA3EW T 5 %EW 3 3EW
+[8,,(a) + By) + af + iy + BE + ﬁgEW]X(Bﬂlv">},
V2A - —U=QZ/\(‘1) 8 ,ula —B)—ap-i-éap +la” — B2 — Bl |XxBarm
B —a; 7 \/EP:M p pull2 2 4 THEW T 5 FEwW 3 3EW
+[8,u(a; + By) + aff + alpy + BE + EQEW]X<B”va1>},
A _Gr (d) S P p p p 1 P 1 p (Bm,ay)
B'—a;mt T TPZZM’\P @1 Tyt aypy T B3+ By — 5:33,Ew - 5184,EW XoT (A2)
+ [5pu31 + BZ + IBZEW]X(Ba"ﬁ)},
A _Gr (d) P P V4 P 1 P 1 P (Bay,m)
B'—aim T TPZZ“AP Spuay +ay +agpy + By + By — 5 P3EW 5,34,EW X
+ 8,81 + B + BZEW]X@W},
G 3 1 1 1 .
T2 A gy = T; > /\ﬁ,"){[ém(az —B) eyt iag,EW + EaZEW — By —2B) + EIBQEW B EIBZEW}X(B‘”’aI)
p=u,c

2 2

3 1 1 1 5
+ [51’”(6'2 — B~ ey toalpy toaggy — By~ 2B; + EBg,Ew - EBZEW}X(Ba]’W)};

for B — a,m,
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1 o
(s) Ba,,K
.7\3—_,a]—go = \/_. E ,\5|: byt all — 2a411),EW + Bh + IBQEW}X( k),

p=u,c

o 3 -
V2 Ay ok = Z /\“){[5,,”(011 + By) + af + alpy + BY + Blew }x“—‘?av’() + [6,ma2 + zang}x<Bvall>},
p u,c
(s) 14 (Bay,K) (A3)
Ap—aix- = Z Ap'| Spuany + e + ey + B — :83,Ew X,
p u,c
1 - 3 .
\/EJZ\BO—»a? k0 Z /\S){[ ay ‘s 0‘4Ew B + EﬂgEW}X(Ba"K) + |:8pua2 + EagEW}X(BK'a‘)}’
p u,c
for B— a,K,
G 1 1 5
\/—iﬂB‘—vf?w‘ = *; Z /\(d){[5 ulay + By) +2af + af + 2“3 EW 2“£Ew + B85+ Bg,Ew}X(BW’f?)
p=u,c
1 I :
! 2[0‘? 2 a3 W}X(Bw’fl) 18yl + Bo) + al + afpy + B5 + Bg,EW]X(Bf?ﬁ)}’
—2A; _Gr 5 y@lfs L 2al tal Ll Lar wpr—Lgr XBmf)
B—f070 = NG Z pu(a2 B1) a; a4 2“3 EW 2“4,Ew B3 3 3EW :3415 !
p=u.c
1

+ ﬁ[ag’ - Eang}X<3“»ff)

3 1 1 3 5
+ [51”‘(_“2 — Bt ey - EO‘QEW - §a£Ew + By - EBg,EW - EIBZEW}X(BJC?'W)},

G Y 1 i (A)
’\/iﬂB*_,f?K* = T; Z )\E;)H:spuaz + 2CY§ + 2a§EW:|X(BK’f‘l])
p=u,c
1 1 5 s
+ \/5[81”“82 +af +ag — Eag,Ew - gaZEw + B85+ BQEW}X(BKJI)
+ [Bpu(al + 182) + af + af:,EW + Bg + lgg,EW]X(Bf{('K)}:
G 1 I
\/Eﬂgo_,f(l)ko = TS Z /\E,s)ﬂiﬁpuaz + 2ag + EQQEW}X(BKJ?)
p=u,c
1 1 1 N
+ ﬁ[ag’ +al — Eag’,EW - EaiEw + 85— EﬁQEw}X(B’(’f')
p_ L p p_Lop (Bf*.K)
T ay T 5 %Ew + B3 _§ﬂ3,Ew XA
for B— fVr and B — fUK,
Cr 3 p_ Lo Ty (B R)
Ap g = NG DN 8yt af - 7 @apw T B3 T Bypw (XTTRY,
p=u,c
G - 3 _
VEAy i =Tk 5 A IBpulen + )+ af + g + B+ Bl IO + ]84 Sl [ 0607,
p=u,c
G | - (A5)
ﬂgo_.Kl‘77+ = 7; Z Ag)[élmal +af +alpy + B - Bg,Ew]X(BW’K'),
p=u,c
1 1 - 3 _
V2 A oo = M —al + —al oy — BL+ = Bl oy [XE™K) +| 6 ar + = aly, [XERDL
B— RO 4 T 5 %Ew 3 T3 P3EW P 5 Y3EW
p u,c

for B — K, and
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(d) 1 -
Ap k0 = T > Ay [6,”4/32 ol — Salpy + Y+ ﬁé’,Ew}X(B’("m,

p=u,c
1 _
d
ﬂB’—»K?K’ z )\( )|: ])1,452 + a4 - EaZEW + IB:]; =+ BQEW}X(BK’KI);
p u,c
2 5 1
./’41_30_.](]7](+ Z AE; {|: puﬂl + Bllt + BZ,EW}X(BKI’K) + foKlfK|:b4[l] - Ebf;’ij| },
p u,c KK, (A6)
1
ﬂgo_”(rlf z A(d)[ [8,uB1 + B + IB4EW]X(BK KD + fpfk fK|: EbZEW}K K},
p u,c 1
1 1 1 o 1
Ap—kix = Z 43 [[af{ - EQZEW + By B - Eﬁg,Ew B EIBZEW}X(BK]'K) + foKIfK{bf B EbiEW}KIZ }
p u,c ]
1 1 1 . 1
d
ﬂgn_.[(?[zo Z A( ) [aff - EaZEW + Bé) + Bf - E'BQEW - EBZEW}X(BK‘KI) + foI(,fK|:b4[: - EbeW}K K},
1

p u,c

for B— KK and B — KK, where \\¥) = Voo Vs A = V,V}ps» and the factorizable amplitudes X(BAP) and XBPA) are

defined in Eq. (2.48). The decay amphtudes for B — b 7 and b, K are obtained from B — a7 and a, K respectively by
replacing a; — b. Likewise, the expressions for B — hym, h K decay amplitudes are obtained by setting (f; 7 — h, )
and (f, K — hK).
The coefficients of the flavor operators a! read
a (M, M) = a,(M,, M), ar (M M) = a)(M,M,),
af (M\M,) = af (M M,) — af (M M,), af pw(M\My) = af (M\M,) — a5 (M M,),
ay(M\M,) + rbal(MM,); for M;M, = AP, (A7)
le:(Mle) - rAag(Mle) for M1M2 = PA,
afO(Mle) + rP p(M M2) for M1M2 = AP,
a]pO(Mle) - rﬁ‘(ag(Mle), for M1M2 = PA,

ol (M, M,) = {

aZEw(M1M2) = {

where % and r4 are defined before in Eq. (3.12).
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