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The two-body hadronic decays of B mesons into pseudoscalar and axial-vector mesons are studied
within the framework of QCD factorization. The light cone distribution amplitudes (LCDAs) for 3P1 and
1P1 axial-vector mesons have been evaluated using the QCD sum rule method. Owing to the G-parity, the
chiral-even two-parton light cone distribution amplitudes of the 3P1 (1P1) mesons are symmetric
(antisymmetric) under the exchange of quark and antiquark momentum fractions in the SU(3) limit.
For chiral-odd LCDAs, it is the other way around. The main results are the following: (i) The predicted
rates for a�1 �1260���, b�1 �1235���, b0

1�1235���, a�1 K
�, and b�1 K

� modes are in good agreement
with the data. However, the naively expected ratios B�B� ! a0

1�
��=B� �B0 ! a�1 �

�� & 1, B�B� !
a�1 �

0�=B� �B0 ! a�1 �
�� � 1

2 , and B�B� ! b0
1K
��=B� �B0 ! b�1 K

�� � 1
2 are not borne out by experiment.

This should be clarified by the improved measurements of these decays. (ii) Since the �B! b1K decays
receive sizable annihilation contributions, their rates are sensitive to the interference between penguin and
annihilation terms. The measurement of B� �B0 ! b�1 K

�� implies a destructive interference which in turn
indicates that the form factors for B! b1 and B! a1 transitions are of opposite signs. (iii) Sizable power
corrections such as weak annihilation are needed to account for the observed rates of the penguin-
dominated modes K�1 �1270��� and K�1 �1400���. (iv) The decays B! K1

�K with K1 � K1�1270�,
K1�1400� are in general quite suppressed, of order 10�7–10�8, except for �B0 ! �K0

1�1270�K0 which can
have a branching ratio of order 2:3	 10�6. The decay modes K�1 K

� and K�1 K
� are of particular interest

as they proceed only through weak annihilation. (v) The mixing-induced parameter S is predicted to be
negative in the decays B0 ! a�1 �

�, while it is positive experimentally. This may call for a larger unitarity
angle � * 80
. (vi) Branching ratios for the decays B! f1�, f1K, h1� and h1K with f1 � f1�1285�,
f1�1420� and h1 � h1�1170�, h1�1380� are generally of order 10�6 except for the color-suppressed modes
f1�

0 and h1�
0 which are suppressed by 1 to 2 orders of magnitude. Measurements of the ratios B�B� !

h1�1380����=B�B� ! h1�1170���� and B� �B! f1�1420� �K�=B� �B! f1�1285� �K� will help determine
the mixing angles �1P1

and �3P1
, respectively.
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I. INTRODUCTION

In the quark model, two nonets of JP � 1� axial-vector
mesons are expected as the orbital excitation of the q �q
system. In terms of the spectroscopic notation 2S�1LJ,
there are two types of p-wave mesons, namely, 3P1
and 1P1. These two nonets have distinctive C quantum
numbers, C � � and C � �, respectively. Experi-
mentally, the JPC � 1�� nonet consists of a1�1260�,
f1�1285�, f1�1420�, and K1A, while the 1�� nonet has
b1�1235�, h1�1170�, h1�1380�, and K1B. The physical
mass eigenstates K1�1270� and K1�1400� are a mixture of
K1A and K1B states owing to the mass difference of the
strange and nonstrange light quarks.

The production of the axial-vector mesons has been seen
in the two-body hadronic D decays: D! Ka1�1260�,
D0 ! K�1 �1270�� andD� ! K0

1�1400��, and in charmful
B decays: B! J= K1�1270� and B! Da1�1260� [1]. As
for charmless hadronic B decays, B0 ! a�1 �1260��� are
the first modes measured by both B factories, BABAR and
Belle. The BABAR result is [2]

 B �B0 ! a�1 �1260���� � �33:2� 3:8� 3:0� 	 10�6;

(1.1)

where the assumption of B�a�1 ! ������� � 1=2 has
been made. The Belle measurement gives [3]

 B �B0 ! a�1 �1260���� � �29:8� 3:2� 4:6� 	 10�6:

(1.2)

The average of the two experiments is

 B �B0 ! a�1 �1260���� � �31:7� 3:7� 	 10�6: (1.3)

Moreover, BABAR has also measured the time-dependent
CP asymmetries in B0 ! a�1 �1260��� decays [4]. From
the measured CP parameters, one can determine the decay
rates of a�1 �

� and a�1 �
� separately [4]. Recently, BABAR

has reported the observation of the decays �B0 ! b�1 �
�,

b�1 K
� and B� ! b0

1�
�, b0

1K
�, a0

1�
�, a�1 �

0 [5,6]. The
preliminary BABAR results for �B0 ! K�1 �1270���,
K�1 �1400���, a�1 K

�, B� ! a�1 �K0, f1�1285�K�,
f1�1420�K� are also available recently [7–10].

In the present work we will focus on the B decays
involving an axial-vector meson A and a pseudoscalar
meson P in the final state. Since the 3P1 meson behaves
similarly to the vector meson, it is naively expected that AP
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modes have similar rates as VP ones, for example, B�B0 !
a�1 �1260���� �B�B0 ! �����. However, this will not
be the case for the 1P1 meson. First of all, its decay
constant vanishes in the SU(3) limit. For example, the
decay constant vanishes for the neutral b0

1�1235� and is
very small for the charged b1�1235� states. This feature can
be checked experimentally by measuring B0 ! b�1 �

�,
b�1 �

� decays and seeing if the former is suppressed rela-
tive to the latter. Second, its chiral-even two-parton light
cone distribution amplitude (LCDA) is antisymmetric
under the exchange of quark and antiquark momentum
fractions in the SU(3) limit due to the G parity, contrary
to the symmetric behavior for the 3P1 meson.

Charmless B! AP and B! AV decays have been
studied in the literature [11–16]. Except for [11,16], most
of the existing calculations were carried out in the frame-
work of either naive factorization or generalized factoriza-
tion in which the nonfactorizable effects are described by
the parameter Neff

c , the effective number of colors. In the
approach of QCD factorization, nonfactorizable effects
such as vertex corrections, hard spectator interactions and
annihilation contributions are calculable and have been
considered in [11,16] for the decays B! a1�1260��,
a1�1260�K, B! h1�1235�K�, b1�1235�K�, and
b1�1235��.

One crucial ingredient in QCDF calculations is the
LCDAs for 3P1 and 1P1 axial-vector mesons. In general,
the LCDAs are expressed in terms of the expansion of
Gegenbauer moments which have been systematically
studied by one of us (K.C.Y.) using the light cone sum
rule method [17,18]. Armed with the LCDAs, one is able to
explore the nonfactorizable corrections to the naive
factorization.

The present paper is organized as follows. In Sec. II we
summarize all the input parameters relevant to the present
work, such as the mixing angles, decay constants, form
factors, and light cone distribution amplitudes for 3P1 and
1P1 axial-vector mesons. We then apply QCD factorization
in Sec. III to study B! AP decays. Results and discus-
sions are presented in Sec. IV. Sec. V contains our con-

clusions. The factorizable amplitudes of various B! AV
decays are summarized in the appendix.

II. INPUT PARAMETERS

A. Mixing angles

In the quark model, there are two different types of light
axial-vector mesons: 3P1 and 1P1, which carry the quan-
tum numbers JPC � 1�� and 1��, respectively. The 1��

nonet consists of a1�1260�, f1�1285�, f1�1420�, and K1A,
while the 1�� nonet has b1�1235�, h1�1170�, h1�1380�, and
K1B. The nonstrange axial-vector mesons, for example, the
neutral a1�1260� and b1�1235� cannot have mixing because
of the opposite C-parities. On the contrary, the strange
partners of a1�1260� and b1�1235�, namely, K1A and K1B,
respectively, are not mass eigenstates and they are mixed
together due to the strange and nonstrange light quark mass
difference. We write

 K1�1270� � K1A sin�K1
� K1B cos�K1

;

K1�1400� � K1A cos�K1
� K1B sin�K1

:
(2.1)

If the mixing angle is 45
 and hK�jK1Bi � hK�jK1Ai, one
can show thatK1�1270� is allowed to decay intoK� but not
K��, and vice versa for K1�1400� [19].

From the experimental information on masses and the
partial rates of K1�1270� and K1�1400�, Suzuki found two
possible solutions with a twofold ambiguity, j�K1

j � 33


and 57
 [20]. A similar constraint 35
 & j�K1
j & 55
 is

obtained in [21] based solely on two parameters: the mass
difference of the a1 and b1 mesons and the ratio of the
constituent quark masses. From the data of �!
K1�1270��� and K1�1400��� decays, the mixing angle is
extracted to be �37
 and �58
 in [22]. As for the sign of
the mixing angle, there is an argument favoring a negative
�K1

. It has been pointed out in [23] that the experimental
measurement of the ratio of K1� production in B decays
can be used to fix the sign of the mixing angle. Based on
the covariant light-front quark model [24], it is found [23]1

 

B�B! K1�1270���
B�B! K1�1400���

�

�
10:1� 6:2 �280� 200�; for �K1

� �58
��37
�;
0:02� 0:02 �0:05� 0:04�; for �K1

� �58
��37
�:
(2.2)

The Belle measurements B�B� ! K�1 �1270��� � �4:3� 0:9� 0:9� 	 10�5 and B�B� ! K�1 �1400���< 1:5	 10�5

[25] clearly favor �K1
� �58
 over �K1

� 58
 and �K1
� �37
 over �K1

� 37
. In the ensuing discussions we will
fix the sign of �K1

to be negative.

1The sign of �K1
is intimately related to the relative sign of the K1A and K1B states. In the light-front quark model used in [23,24], the

decay constants of K1A and K1B are of opposite sign, while the B! K1A and B! K1B form factors are of the same sign. It is the other
way around in the present work: the decay constants of K1A and K1B have the same signs, while the B! K1A and B! K1B form
factors are opposite in sign. The two schemes are related via a redefinition of the K1A or K1B state, i.e. K1A ! �K1A or K1B ! �K1B.
To write down Eq. (2.2) we have used our convention for K1A and K1B states.
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Likewise, the 3P1 states f1�1285� and f1�1420� have
mixing due to SU(3) breaking effects

 jf1�1285�i � jf1i cos�3P1
� jf8i sin�3P1

;

jf1�1420�i � �jf1i sin�3P1
� jf8i cos�3P1

:
(2.3)

From the Gell-Mann-Okubo mass formula [1,26], it fol-
lows that

 cos 2�3P1
�

4m2
K1A
�m2

a1
� 3m2

f1�1285�

3�m2
f1�1420� �m

2
f1�1285��

; (2.4)

where

 m2
K1A
� m2

K1�1400�cos2�K1
�m2

K1�1270�sin2�K1
: (2.5)

Substituting this into Eq. (2.4) with �K1
� �37
��58
�,

we then obtain �quad
3P1
� 27:9
�53:2
� and �lin

3P1
�

26:0
�52:1�
 where the latter is obtained by replacing the
meson mass squared m2 by m throughout Eq. (2.4). The
sign of the mixing angle can be determined from the mass
relation [1]

 tan�3P1
�

4m2
K1A
�m2

a1
� 3m2

f1�1420�

2
���
2
p
�m2

a1
�m2

K1A
�

: (2.6)

The previous phenomenological analyses suggest that
�3P1

’ 50
 [27].2 Eliminating � from Eqs. (2.4) and (2.6)
leads to the sum rule
 

�m2
f1�1285� �m

2
f1�1400���4m

2
K1A
�m2

a1
� � 3m2

f1�1285�m
2
f1�1400�

� 8m4
K1A
� 8m2

K1A
m2
a1
� 3m4

a1
: (2.7)

This relation is satisfied for 3P1 octet mesons, but only
approximately for 1P1 states. Anyway, we shall use the
mass relation (2.4) to fix the magnitude of the mixing angle
and (2.6) to fix its sign.

Since K� �K and K �K� are the dominant modes of
f1�1420� whereas f0�1285� decays mainly to the 4� states,
this suggests that the quark content is primarily s�s for
f1�1420� and n �n for f1�1285�. This may indicate that
�3P1

� 28
 is slightly preferred. However, �3P1
� 53
 is

equally acceptable.
Similarly, for 11P1 states, h1�1170� and h1�1380�may be

mixed in terms of the pure octet h8 and singlet h1,

 jh1�1170�i � jh1i cos�1P1
� jh8i sin�1P1

;

jh1�1380�i � �jh1i sin�1P1
� jh8i cos�1P1

:
(2.8)

Again from the Gell-Mann-Okubo mass formula, we ob-
tain

 cos 2�1P1
�

4m2
K1B
�m2

b1
� 3m2

h1�1170�

3�m2
h1�1380� �m

2
h1�1170��

; (2.9)

where

 m2
K1B
� m2

K1�1400�sin2�K1
�m2

K1�1270�cos2�K1
: (2.10)

We obtain �quad
1P1

� �18:1
�25:2
� and �lin
1P1
�

23:8
��18:3
� for �K1
� �37
��58
�, where the sign of

the mixing angle is determined from the mass relation

 tan�1P1
�

4m2
K1B
�m2

b1
� 3m2

h1�1170�

2
���
2
p
�m2

b1
�m2

K1B
�

: (2.11)

B. Decay constants

Decay constants of pseudoscalar and axial-vector me-
sons are defined as
 

hP�p�j �q2���5q1j0i � �ifPq�;

h3�1�P1�p; ��j �q2���5q1j0i � if3P1�
1P1�

m3P1�
1P1�

	����� :

(2.12)

For axial-vector mesons, the transverse decay constant is
defined via the tensor current by

 h3�1�P1�p; ��j �q2
���5q1j0i � �f?3�1�P1

�	��
���p

� � 	��
���p

��;

(2.13)

or

 h3�1�P1�p; ��j �q2
��q1j0i � �if?3�1�P1

	����	�����p
�;

(2.14)

where we have applied the identity 
���5 �

� i
2 	����


�� with the sign convention 	0123 � 1. Since
the tensor current is not conserved, the transverse decay
constant f? is scale dependent. Because of charge con-
jugation invariance, the decay constant of the 1P1 non-
strange neutral meson b0

1�1235�must be zero. In the isospin
limit, the decay constant of the charged b1 vanishes due
to the fact that the b1 has even G-parity and that the
relevant weak axial-vector current is odd under G trans-
formation. Hence, fb�1 is very small in reality. Note that the
matrix element of the pseudoscalar density vanishes,
h3�1�P1�p; "�j �q2�5q1j0i � 0, which can be seen by apply-
ing the equation of motion. As for the strange axial-vector
mesons, the 3P1 and 1P1 states transfer under charge con-
jugation as
 

Mb
a�

3P1� ! Ma
b�

3P1�; Mb
a�

1P1� ! �M
a
b�

1P1�;

�a; b � 1; 2; 3�: (2.15)

Since the weak axial-vector current transfers as �A��ba !
�A��

a
b under charge conjugation, it is clear that f1P1

� 0 in
the SU(3) limit [20]. By the same token, the decay constant

2If a mixing angle �3P1
of order 50
 can be independently

inferred from other processes, this will imply a preference of
j�K1
j � 58
 over j�K1

j � 37
. However, the phenomenological
analysis in [27] is not robust and the Gell-Mann-Okubo mass
formula employed there is not a correct one.
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f?3P1
vanishes in the SU(3) limit. Note for scalar mesons,

their decay constants also vanish in the same limit, which
can be easily seen by applying equations of motion to
obtain

 m2
SfS � i�m1 �m2�h0j �q1q2jSi; (2.16)

with mi being the mass of the quark qi.
The a1�1260� decay constant fa1

� 238� 10 MeV ob-
tained using the QCD sum rule method [18] is similar to
the � meson one, f� � 216 MeV. This means that the
a1�1260� can be regarded as the scalar partner of the �,
as it should be. To compute the decay constant fb1

for the
charged b1, one needs to specify the u and d quark mass
difference in the model calculation. In the covariant light-
front quark model [24], if we increase the constituent d
quark mass by an amount of 5� 2 MeV relative to the u
quark one, we find fb1

� 0:6� 0:2 MeV which is highly
suppressed. As we shall see below, the decay constant fb1

is related to the transverse one f?b1
by the relation [see

Eq. (2.65)]

 fb1
� f?b1

���ak;b1
0 ���; (2.17)

where ak;b1
0 is the zeroth Gegenbauer moment of �b1

k
to be

defined later. The quantities f?b1
and ak;b1

0 can be calculated
in the QCD sum rule approach with the results f?b1

�

�180� 8� MeV [18] (cf. Table I) and ak;b1
0 � 0:0028�

0:0026 for b�1 at � � 1 GeV. (Note that for b�1 , ak;b1
0 has

an opposite sign due to G-parity.) Again, fb1
is very small,

of order 0.5 MeV, in agreement with the estimation based
on the light-front quark model. In [14], the decay constants
of a1 and b1 are derived using the K1A � K1B mixing angle
�K1

and SU(3) symmetry: �fb1
; fa1
� � �74; 215� MeV for

�K1
� 32
 and ��28 223� MeV for �K1

� 58
. It seems to
us that the b1 decay constant derived in this manner is too
big.

Introducing the decay constants fqf1�1285� and fqf1�1420� by

 h0j �q���5qjf1�1285��P;��i � �imf1�1285�f
q
f1�1285�	

���
� ;

(2.18)

 h0j �q���5qjf1�1420��P; ��i � �imf1�1420�f
q
f1�1420�	

���
� ;

(2.19)

we obtain

 

fuf1�1285� �
ff1���

3
p

mf1

mf1�1285�
cos�3P1

�
ff8���

6
p

mf8

mf1�1285�
sin�3P1

� 172� 23 �178� 22� MeV; (2.20)

 

fsf1�1285� �
ff1���

3
p

mf1

mf1�1285�
cos�3P1

�
2ff8���

6
p

mf8

mf1�1285�
sin�3P1

� �72� 13 �29� 18� MeV; (2.21)

 

fuf1�1420� � �
ff1���

3
p

mf1

mf1�1420�
sin�3P1

�
ff8���

6
p

mf8

mf1�1420�
cos�3P1

� �55� 10 �23� 11� MeV; (2.22)

 

fsf1�1420� � �
ff1���

3
p

mf1

mf1�1420�
sin�3P1

�
2ff8���

6
p

mf8

mf1�1420�
cos�3P1

� �219� 27 ��230� 26� MeV; (2.23)

corresponding to �3P1
� 53:2
�27:9
�, where we have used

the QCD sum rule results for ff1
and ff8

[18] (see Table I).
The decay constants for K1�1270� and K1�1400� defined

by (with �q � �u or �d)

 h0j �q���5sjK1�1270��P; ��i � �ifK1�1270�mK1�1270�	
���
� ;

(2.24)

and

 h0j �q���5sjK1�1400��P; ��i � �ifK1�1400�mK1�1400�	
���
�

(2.25)

are related to fK1A
and fK1B

by

 fK1�1270� �
1

mK1�1270�
�fK1A

mK1A
sin�K1

� fK1B
mK1B

cos�K1
�;

fK1�1400� �
1

mK1�1400�
�fK1A

mK1A
cos�K1

� fK1B
mK1B

sin�K1
�:

(2.26)

Just as the previous b1 case, the decay constant fK1B
is

related to the transverse one f?K1B
by the relation fK1B

�

f?K1B
���ak;K1B

0 ���. If we apply the QCD sum rule results for

fK1A
, f?K1B

(see Table I) and ak;K1B
0 (cf. Table V), we will

obtain

TABLE I. Summary of the decay constants f3P1
and

f?1P1
�1 GeV� in units of MeV obtained from QCD sum rule

methods [18].

3P1 a1�1260� f1 f8 K1A

f3P1
238� 10 245� 13 239� 13 250� 13

1P1 b1�1235� h1 h8 K1B

f?1P1
180� 8 180� 12 190� 10 190� 10
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 fK1�1270� � �137� 15 MeV;

fK1�1400� � 199� 10 MeV; for �K1
� �37
;

fK1�1270� � �207� 7 MeV;

fK1�1400� � 141� 14 MeV; for �K1
� �58
:

(2.27)

However, we would like to make two remarks. First, we do
have the experimental information on the decay constant of
K1�1270�.3 From the measured branching ratio of �!
K�1 �1270��� by ALEPH [28], B��� ! K�1 �1270���� �
�4:7� 1:1� 	 10�3, the decay constant of K1�1270� is
extracted to be [22]

 jfK1�1270�j � 175� 19 MeV; (2.28)

where use has been made of the formula

 ���! K1��� �
G2
F

16�
jVusj

2f2
K1

�m2
� � 2m2

K1
��m2

� �m
2
K1
�2

m3
�

:

(2.29)

Second, as pointed out in [24], the decay constants of 3P1
have opposite signs to that of 1P1 in the covariant light-
front quark model. The large error with the QCD sum rule
result of ak;K1B

0 � 0:14� 0:15 is already an indication of
possible large sum rule uncertainties in this quantity.

In order to reduce the theoretical uncertainties with the
K1 decay constant, we shall use the experimental value of
fK1�1270� to fix the input parameters �K1A

and �K1B
appear-

ing in the Gaussian-type wave function in the covariant
quark model [24]. We obtain

 �K1A
� �K1B

�

�
0:375 GeV; for �K1

� �37
;
0:313 GeV; for �K1

� �58
;
(2.30)

and

 fK1A
� 293 MeV;

fK1B
� 15 MeV; for �K1

� �37
;

fK1A
� 207 MeV;

fK1B
� 12 MeV; for �K1

� �58
:

(2.31)

Therefore, we have

 fK1�1270� � �175� 11 MeV;

fK1�1400� � 235� 12 MeV; for �K1
� �37
;

fK1�1270� � �175� 15 MeV;

fK1�1400� � 112� 12 MeV; for �K1
� �58
:

(2.32)

In complete analogy to the discussion for 13P1 states, we
introduce the tensor couplings for 11P1 states

 h0j �q
��qjh1�1170��P; ��i � if?;qh1�1170�	����	
�
���P

�;

(2.33)

 h0j �q
��qjh1�1380��P; ��i � if?;qh1�1380�	����	
�
���P

�;

(2.34)

and then obtain

 f?;uh1�1170� �
f?h1���

3
p cos�1P1

�
f?h8���

6
p sin�1P1

� 75� 8 �127� 7� MeV; (2.35)

 f?;sh1�1170� �
f?h1���

3
p cos�1P1

�
2f?h8���

6
p sin�1P1

� 147� 8 �28� 10� MeV; (2.36)

 f?;uh1�1380� � �
f?h1���

3
p sin�1P1

�
f?h8���

6
p cos�1P1

� 106� 5 �26� 7� MeV; (2.37)

 f?;sh1�1380� � �
f?h1���

3
p sin�1P1

�
2f?h8���

6
p cos�1P1

� �115� 9 ��185� 10� MeV; (2.38)

corresponding to �1P1
� �18:1
�25:2
� where we have

used the QCD sum rule results for f?h1
and f?h8

given in
Table I [18].

As for strange axial-vector mesons, we have (with �q 
�u, �d)

 h0j �q
��sjK1�1270��p; ��i � if?K1�1270�	����	
�
���p

� � i�f?K1A
sin�K1

� f?K1B
cos�K1

�	����	����p
� (2.39)

and

 h0j �q
��sjK1�1400��p; ��i � if?K1�1400�	����	
�
���p

� � i�f?K1A
cos�K1

� f?K1B
sin�K1

�	����	
�
���p

�: (2.40)

3The large experimental error with the K1�1400� production in the � decay, namely, B��� ! K�1 �1400���� � �1:7� 2:6� 	 10�3

[1], does not provide sensible information for the K1�1400� decay constant.
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As will be shown in Sec. II D below, the decay constants
fK1A

and f?K1A
are related via

 f?K1A
��� � fK1A

a?;K1A
0 ���: (2.41)

From Tables I and V, we obtain (at the scale � � 1 GeV)

 f?K1�1270� � 140� 22 MeV;

f?K1�1400� � 130� 25 MeV; for �K1
� �37
;

f?K1�1270� � 84� 25 MeV;

f?K1�1400� � 172� 21 MeV; for �K1
� �58
:

(2.42)

C. Form factors

The form factors for the �B! A and �B! P transitions
are defined as

 

hA�p; ��jA�j �B�pB�i � i
2

mB �mA
	����	�����p

�
Bp

�ABA�q2�;

hA�p; ��jV�j �B�pB�i � �
�
�mB �mA�	

����
� VBA1 �q

2�

� �	���� � pB��pB � p��
VBA2 �q

2�

mB �mA

� 2mA

	�
���pB
q2 q��VBA3 �q

2�

� VBA0 �q
2��

�
;

hP�p�jV�j �B�pB�i �
�
�pB � p�� �

m2
B �m

2
P

q2 q�

�

	 FBP1 �q
2� �

m2
B �m

2
P

q2 q�FBP0 �q
2�;

(2.43)

where q � pB � p, VBA3 �0� � VBA0 �0�, F
BP
1 �0� � FBP0 �0�

and

 VBA3 �q
2� �

mB �mA

2mA
VBA1 �q

2� �
mB �mA

2mA
VBA2 �q

2�:

(2.44)

In the literature the decay constant and the form factors
of the axial-vector mesons are often defined in different
manner. For example, in [24] they are defined as4

 hA�p; ��jA�j0i � fAmA	
����
� ; (2.45)

 

hA�p;��jA�j �B�pB�i ��
2

mB�mA
	����	�����p

�
Bp

�ABA�q2�;

hA�p;��jV�j �B�pB�i ��i
�
�mB�mA�	

����
� VBA1 �q

2�

� �	�
���pB��pB�p��

VBA2 �q
2�

mB�mA

� 2mA

	�
���pB
q2 q�

	�VBA3 �q
2��VBA0 �q

2��

�
: (2.46)

It has been checked in the covariant light-front quark

model that the form factors V
B3P1
0;1;2 �q

2� and AB
3P1�q2� de-

fined in Eq. (2.46) are indeed positively defined. We would
like to ask if the �B! 3P1 transition form factors defined in
Eq. (2.43) are also positively defined. This can be checked
by considering the factorizable amplitudes for the decay
�B! AP

 X� �BA;P� � hP�q�j�V � A��j0ihA�p�j�V � A�
�j �B�pB�i;

X� �BP;A� � hA�q�j�V � A��j0ihP�p�j�V � A��j �B�pB�i:

(2.47)

We obtain

 X� �BA;P� � �2ifPmAVBA0 �q
2��	�

���pB�;

X� �BP;A� � �2ifAmAF
BP
1 �q

2��	�
���pB�;

(2.48)

from Eqs. (2.12) and (2.43) and

 X� �BA;P� � 2fPmAVBA0 �q
2��	�

���pB�;

X� �BP;A� � �2fAmAF
BP
1 �q

2��	����pB�;
(2.49)

from Eqs. (2.45) and (2.46). Since fA for the 3P1 meson is
negative in the light-front model calculation (see Eq. (2.23)
and Table III in [24]), the relative sign between X� �BA;P� and
X� �BP;A� is positive. This means that the relative sign in
Eq. (2.48) is also positive provided that the decay constant
fA and the form factor VBA0 defined in Eqs. (2.12) and
(2.43), respectively, are of the same sign. Indeed, it is found
in [16] that if fA is chosen to be positive for the a1�1260�
meson, the form factor VBa1

0 is indeed positive according to
the sum rule calculation.

The form factors for B! �, K, a1�1260�, b1�1235�,
K1A, K1B transitions have been calculated in the relativistic
covariant light-front (CLF) quark model [24] (Table II)5

and in the framework of the light cone sum rule (LCSR)
approach [29]. In the CLF model, the momentum depen-

4Since the convention 	1234 � �1 is adopted in [24] while
	1234 � �1 is used in the present work, we have put an addi-
tional minus sign for the matrix element hA�p; ��jA�j �B�pB�i.

5As explained in the footnote before Eq. (2.2), we need to put
additional minus signs to the B! 1P1 form factors in Table II
since in the convention of the present work, the form factors
V
B!1P1
i and V

B!3P1
i have different signs.
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dence of the physical form factors is determined by first
fitting the form factors obtained in the spacelike region to a
3-parameter function in q2 and then analytically continu-
ing them to the timelike region. Some of the V2�q

2� form
factors in P! A transitions are fitted to a different 3-
parameter form so that the fit parameters are stable within
the chosen q2 range.

Except for the form factor V2 to be discussed below, it is
found in [24] that the momentum dependence of form
factors in the spacelike region can be well parametrized
and reproduced in the three-parameter form:

 F�q2� �
F�0�

1� a�q2=m2
B� � b�q

2=m2
B�

2 ; (2.50)

for B! M transitions. The parameters a, b and F�0� are
first determined in the spacelike region. We then employ
this parametrization to determine the physical form factors
at q2 � 0. In practice, these parameters are generally in-
sensitive to the q2 range to be fitted except for the form

factor V2�q2� in B! 1P1 transitions. The corresponding
parameters a and b are rather sensitive to the chosen range
for q2. This sensitivity is attributed to the fact that the form
factor V2�q

2� approaches to zero at very large�jq2jwhere
the three-parameter parametrization (2.50) becomes ques-
tionable. To overcome this difficulty, we will fit this form
factor to the form

 F�q2� �
F�0�

�1� q2=m2
B��1� a�q

2=m2
B� � b�q

2=m2
B�

2�

(2.51)

and achieve a substantial improvement [24].
Momentum dependence of the form factors calculated

using the LCSR method is not shown in Table III. Since the
pseudoscalar mesons considered in the present work are
the light pion and the kaon, the form-factor q2 dependence
can be neglected for our purposes.

In principle, the experimental measurements of �B0 !
a�1 �

� and �B0 ! b�1 �
� will enable us to test the form

factors VBa1
0 and VBb1

0 respectively. There are several ex-
isting model calculations for B! a1 form factors: one in a
quark-meson model (CQM) [30], one in the ISGW2 model
[31], one in the light-front quark model [24] and two based
on the QCD sum rule (QSR) [29,32]. Predictions in various
models are summarized in Table IV and in general they are
quite different. For example, VBa1

0 �0� obtained in the quark-
meson model, 1.20, is larger than the value of the sum-rule
prediction in [32], 0:23� 0:05. If a1�1260� behaves as the
scalar partner of the � meson, VBa1

0 is expected to be

TABLE II. Form factors for B! �, K, a1�1260�, b1�1235�, K1A, K1B transitions obtained in
the covariant light-front model [24] are fitted to the 3-parameter form Eq. (2.50) except for the
form factor V2 denoted by � for which the fit formula Eq. (2.51) is used.

F F�0� F�q2
max� a b F F�0� F�q2

max� a b

FB�1 0.25 1.16 1.73 0.95 FB�0 0.25 0.86 0.84 0.10
FBK1 0.35 2.17 1.58 0.68 FBK0 0.35 0.80 0.71 0.04
ABa1 0.25 0.76 1.51 0.64 VBa1

0 0.13 0.32 1.71 1.23
VBa1

1 0.37 0.42 0.29 0.14 VBa1
2 0.18 0.36 1.14 0.49

ABb1 �0:10 �0:23 1.92 1.62 VBb1
0 �0:39 �0:98 1.41 0.66

VBb1
1 0.18 0.36 1.03 0.32 VBb1

2 0:03� �0:15� 2:13� 2:39�

ABK1A 0.26 0.69 1.47 0.59 VBK1A
0 0.14 0.31 1.62 1.14

VBK1A
1 0.39 0.42 0.21 0.16 VBK1A

2 0.17 0.30 1.02 0.45
ABK1B �0:11 �0:25 1.88 1.53 VBK1B

0 �0:41 �0:99 1.40 0.64
VBK1B

1 �0:19 �0:35 0.96 0.30 VBK1B
2 0:05� 0:16� 1:78� 2:12�

TABLE III. Form factors for B! a1�1260�, b1�1235�, K1A,
K1B, f1, f8, h1, h8 transitions at q2 � 0 obtained in the frame-
work of the light cone sum rule approach [29]. Uncertainties
arise from the Borel window and the input parameters.

VBa1
0 �0� 0:303�0:022

�0:035 VBb1
0 �0� �0:356�0:039

�0:033

VBK1A
0 �0� 0:316�0:048

�0:042 VBK1B
0 �0� �0:360�0:030

�0:028

VBf1
0 �0� 0:181�0:018

�0:021 VBh1
0 �0� �0:214�0:021

�0:012

VBf8
0 �0� 0:124�0:015

�0:004 VBh8
0 �0� �0:158�0:016

�0:018

TABLE IV. B! a1�1260� transition form factor VBa1
0 at q2 � 0 in various models, where the

QSR1 is the traditional QCD sum rule approach and the QSR2 is the light cone sum rule
approach.

CLF [24] ISGW2 [31] CQM [30] QSR1 [32] QSR2 [29]

VBa1
0 �0� 0.13 1.01 1.20 0:23� 0:05 0:303�0:022

�0:035
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similar to AB�0 , which is of order 0.28 at q2 � 0 [24].
Indeed, the sum rule calculation by one of us (K.C.Y.)
yields VBa1

0 � 0:303�0:022
�0:035. Therefore, it appears to us that

a magnitude of order unity for VBa1
0 �0� as predicted by the

ISGW2 model and CQM is very unlikely. The BABAR
measurement of �B0 ! a�1 �

� [4] favors a value of
VBa1

0 �0� � 0:30, which is very close the LCSR result
shown in Table III.

Various B! A form factors also have been calculated in
the Isgur-Scora-Grinstein-Wise (ISGW) model [31,33]
based on the nonrelativistic constituent quark picture. As
pointed out in [24], in general, the form factors at small q2

in CLF and ISGW models agree within 40%. However,

F
BD�0
0 �q2� and V

BD1=2
1

1 �q2� have a very different q2 behavior
in these two models as q2 increases. Relativistic effects are
mild in B! D�� transitions but can manifest in heavy-to-
light transitions at maximum recoil. For example, VBa1

0 �0�
is found to be 0.13 in the CLF model, while it is as big as
1.01 in the ISGW2 model.

D. Light cone distribution amplitudes

For an axial-vector meson, the chiral-even LCDAs are
given by

 hA�P; ��j �q1�y����5q2�x�j0i � imA

Z 1

0
duei�upy� �upx�

�
p�

	����z
pz

�k�u� � 	
����
?�g

�a�
? �u�

�
; (2.52)

 hA�P;��j �q1�y���q2�x�j0i � �imA	���
	
��
���p

�z

Z 1

0
duei�upy� �upx� g

�v�
? �u�

4
; (2.53)

with u� �u � 1� u� being the momentum fraction carried by q1� �q2�, and the chiral-odd LCDAs read

 hA�P; ��j �q1�y�
���5q2�x�j0i �
Z 1

0
duei�upy� �upx�

�
�	����?�p� � 	

����
?� p���?�u� �

m2
A	
����z

�pz�2
�p�z� � p�z��h

�t�
k
�u�

�
; (2.54)

 hA�P; ��j �q1�y��5q2�x�j0i � m2
A	
����z

Z 1

0
duei�upy� �upx�

h�p�
k
�u�

2
: (2.55)

Here, throughout the present discussion, we define z 
y� x with z2 � 0 and introduce the lightlike vector p� �
P� �m

2
Az�=�2Pz�with the meson’s momentum P2 � m2

A.
Moreover, the meson polarization vector 	� has been
decomposed into longitudinal (	����

k� ) and transverse
(	����?� ) projections defined as

 	����
k� 

	�
���z

Pz

�
P� �

m2
A

Pz
z�

�
; 	����?� � 	����� � 	����

k� ;

(2.56)

respectively. The LCDAs �k, �? are of twist-2, and g�v�? ,
g�a�? , h�t�? , h�p�

k
of twist-3. Because of G-parity, �k, g

�v�
? and

g�a�? are symmetric (antisymmetric) with the replacement
of u! 1� u for 3P1 (1P1) states, whereas �?, h�t�

k
and

h�p�
k

are antisymmetric (symmetric) in the SU(3) limit [18].
We restrict ourselves to two-parton LCDAs with twist-3
accuracy.

Assuming that the axial-vector meson moves along the
z-axis, the derivation for the light cone projection operator
of an axial-vector meson in the momentum space is in
complete analogy to the case of the vector meson. We
separate the longitudinal and transverse parts for the pro-
jection operator:

 MA
� � MA

�k �M
A
�?; (2.57)

where only the longitudinal part is relevant in the present

study and is given by

 MA
k
� �i

1

4

mA�	����n��

2
n6 ��5�k�u� �

imA

4

mA�	����n��

2E

	

�
i
2

���5n

�
�n

�
�h
�t�
k
�u� � iE

Z u

0
dv��?�v�

� h�t�
k
�v��
���5n��

@
@k?�

� �5

h0�p�
k
�u�

2

���������k�up
;

(2.58)

with the momentum of the quark q1 in the A meson being

 k�1 � uEn�� � k
�
? �

k2
?

4uE
n��; (2.59)

for which E is the energy of the axial-vector meson and the
term proportional to k2

? is negligible. Here, for simplicity,
we introduce two lightlike vectors n��  �1; 0; 0;�1� and
n��  �1; 0; 0; 1�. In general, the QCD factorization ampli-
tudes can be recast to the form

R
1
0 duTr�MA

k
� � ��.

The LCDAs �A
k;?�u� can be expanded in terms of

Gegenbauer polynomials of the form:

 �A
k�?�
�u� � 6u �uf�?�A

�
ak�?�;A0 �

X1
i�1

ak�?�;Ai C3=2
i �2u� 1�

�
:

(2.60)
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where the relevant decay constants in the above equation
will be specified later. In the following we will discuss the
LCDAs of 1P1 and 3P1 states separately:

1. 1P1 mesons

For the �
1P1

?�k�
�u�, due to the G-parity, only terms with

odd (even) Gegenbauer moments survive in the SU(3)
limit. Hence, the normalization condition for the twist-2

LCDA �
1P1

? can be chosen as

 

Z 1

0
du�

1P1

? �u� � f?1P1
: (2.61)

In the present work, we consider the approximation
 

�
1P1

? �u� � f?1P1
6u �u

�
1� 3a

?;1P1
1 �2u� 1�

� a
?;1P1
2

3
2�5�2u� 1�2 � 1�

�
: (2.62)

Likewise, we take

 �
1P1

k
�u� � f?1P1

6u �u
�
a
k;1P1
0 � 3a

k;1P1
1 �2u� 1�

� a
k;1P1
2

3
2�5�2u� 1�2 � 1�

�
; (2.63)

with the normalization condition

 

Z 1

0
du�

1P1

k
�u� � f1P1

: (2.64)

This normalization together with Eq. (2.52) leads to
Eq. (2.12) for the definition of the 1P1 meson decay con-
stant. Equations (2.63) and (2.64) lead to the relation

 f1P1
� f?1P1

���a
k;1P1
0 ���: (2.65)

The scale dependence of f?1P1
must be compensated by that

of the Gegenbauer moment a
k;1P1
0 to ensure the scale inde-

pendence of f1P1
. In principle, we can also use the decay

constant f1P1
to construct the LCDA �

1P1

k
. However, f1P1

vanishes for the neutral b1�1235� and is very small for the
charged b1�1235�. This implies a vanishing or very small

�
1P1

k
unless the Gegenbauer moments a

k;1P1
i are very large.

Hence, it is more convenient to employ the nonvanishing

decay constant f?1P1
to construct �

1P1

k
. This is very similar

to the scalar meson case where the twist-2 light cone
distribution amplitude �S is expressed in the form [34]
 

�S�x;�� � �fS���6x�1� x�

	

�
B0��� �

X1
m�1

Bm���C
3=2
m �2x� 1�

�
; (2.66)

with �fS being defined as hSj �q2q1j0i � mS
�fS. Now �

1P1

k

can be recast to the form

 �
1P1

k
�u� � f1P1

6u �u
�
1��1P1

X2

i�1

ak;
1P1

i C3=2
i �2u� 1�

�
;

(2.67)

with �1P1
� 1=a

k;1P1
0 . For the neutral b1�1235�, fb1

van-
ishes and �b1

becomes divergent, but the combination
fb1
�b1

is finite [35]. Recall that for the scalar meson
case, its LCDA also can be expressed in the form
 

�S�x;�� � fS6x�1� x�
�

1��S

X1
m�1

Bm���C
3=2
m �2x� 1�

�
;

(2.68)

where �fS � �SfS and the equation of motion leads to
�S � mS=�m2��� �m1����. However, unlike the case
for scalar mesons, the decay constants f?1P1

and f1P1
cannot

be related by equations of motion.
When the three-parton distributions and terms propor-

tional to the light quark masses are neglected, the twist-3
distribution amplitudes can be related to the twist-2 �?�u�
for the transversely polarized axial-vector meson by
Wandzura-Wilczek relations [18]:

 

h�t�
k
�v� � �2v� 1�

�Z v

0

�?�u�
�u

du�
Z 1

v

�?�u�
u

du
�
 �2v� 1��a�v�;

h0�p�
k
�v� � �2

�Z v

0

�?�u�
�u

du�
Z 1

v

�?�u�
u

du
�
� �2�a�v�;

Z v

0
du��?�u� � h

�t�
k
�u�� � v �v

�Z v

0

�?�u�
�u

du�
Z 1

v

�?�u�
u

du
�
� v �v�a�v�:

(2.69)

The twist-3 LCDA �a�u;�� satisfies the normalization

 

Z 1

0
�a�u�du � 0; (2.70)

and has the general expression
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�
1P1
a �u� � 3f?1P1

�
�2u� 1��

X1
n�1

a
?;1P1
n ���Pn�1�2u� 1�

�
;

(2.71)

where Pn�u� are the Legendre polynomials.

2. 3P1 mesons

In analogue to the 1P1 case, we consider the approxi-
mations:
 

�
3P1

k
�u� � f3P1

6u �u
�
1� 3a

k;3P1
1 �2u� 1�

� a
k;3P1
2

3
2�5�2u� 1�2 � 1�

�
; (2.72)

 �
3P1

? �u� � f3P1
6u �u

�
a
?;3P1
0 � 3a

?;3P1
1 �2u� 1�

� a
?;3P1
2

3
2�5�2u� 1�2 � 1�

�
: (2.73)

In the SU(3) limit, only terms with even (odd) Gegenbauer

moments for �
3P1

k�?�
survive due to the G-parity. Hence,

a
k;3P1
1 and a

?;3P1
0;2 vanish in the SU(3) limit. The LCDAs

respect the normalization conditions

 

Z 1

0
du�

3P1

k
�u� � f3P1

;
Z 1

0
du�

3P1

? �u� � f?3P1
;

(2.74)

and

 

Z 1

0
duh�t�

k
�u� �

Z 1

0
duh�p�

k
�u� � 0: (2.75)

The latter is valid in the SU(3) limit. Therefore, we obtain

 f?3P1
��� � f3P1

a
?;3P1
0 ���; (2.76)

and

 �
3P1

? �u� � f?3P1
6u �u

�
1��3P1

X2

i�1

a
?;3P1
i C3=2

i �2u� 1�
�
;

(2.77)

with �3P1
� 1=a

?;3P1
0 . The twist-3 LCDA �a has the ex-

pression

 �
3P1
a �u;�� � 3f3P1

�
a
?;3P1
0 �2u� 1�

�
X1
n�1

a
?;3P1
n ���Pn�1�2u� 1�

�
: (2.78)

Most of the relevant Gegenbauer moments ak�?�;Ai have
been evaluated using the QCD sum rule method [18]. The
results are summarized in Table V.

For the pseudoscalar meson LCDAs we use

 

�P�u� � fP6u �u
�
1� 3aP1 �2u� 1�� aP2

3

2
�5�2u� 1�2� 1�

�
;

�p�u� � fP;
�
�u�

6
� fPu�1�u�; (2.79)

where �p and �
 are twist-3 LCDAs. We shall employ the
sum rule results for the Gegenbauer moments of pseudo-
scalar mesons [36]

TABLE V. Gegenbauer moments of �? and �k for 13P1 and 11P1 mesons, respectively, taken from [18].

� ak;a1�1260�
2 a

k;f
3P

1
1

2 a
k;f

3P
1

8
2 ak;K1A

2 ak;K1A
1

1 GeV �0:02� 0:02 �0:04� 0:03 �0:07� 0:04 �0:05� 0:03 0:00� 0:26
2.2 GeV �0:01� 0:01 �0:03� 0:02 �0:05� 0:03 �0:04� 0:02 0:00� 0:22

� a?;a1�1260�
1 a

?;f
3P

1
1

1 a
?;f

3P
1

8
1 a?;K1A

1 a?;K1A
0 a?;K1A

2

1 GeV �1:04� 0:34 �1:06� 0:36 �1:11� 0:31 �1:08� 0:48 0:08� 0:09 0:02� 0:20
2.2 GeV �0:83� 0:27 �0:84� 0:29 �0:90� 0:25 �0:88� 0:39 0:07� 0:08 0:01� 0:15

� ak;b1�1235�
1 a

k;h
1P

1
1

1 a
k;h

3P
1

8
1 ak;K1B

1 ak;K1B
0 ak;K1B

2

1 GeV �1:95� 0:35 �2:00� 0:35 �1:95� 0:35 �1:95� 0:45 0:14� 0:15 0:02� 0:10
2.2 GeV �1:61� 0:29 �1:65� 0:29 �1:61� 0:29 �1:57� 0:37 0:14� 0:15 0:01� 0:07

� a?;b1�1235�
2 a

?;h
1P

1
1

2 a
?;h

1P
1

8
2 a?;K1B

2 ak;K1B
1

1 GeV 0:03� 0:19 0:18� 0:22 0:14� 0:22 �0:02� 0:22 0:17� 0:22
2.2 GeV 0:02� 0:15 0:14� 0:17 0:11� 0:17 �0:02� 0:17 0:14� 0:18

HAI-YANG CHENG AND KWEI-CHOU YANG PHYSICAL REVIEW D 76, 114020 (2007)

114020-10



 � � 1:0 GeV: aK1 � 0:06� 0:03; aK2 � 0:25� 0:15; a�1 � 0; a�2 � 0:25� 0:15;

� � 2:1 GeV: aK1 � 0:05� 0:02; aK2 � 0:17� 0:10; a�1 � 0; a�2 � 0:17� 0:10:
(2.80)

Note that in this paper the G-parity violating parameters
(aK1 , ak;K1A

1 , a?;K1A
0;2 , a?;K1B

1 and ak;K1B
0;2 � are for mesons con-

taining a strange quark. For mesons involving an anti-
strange quark, the signs of G-parity violating parameters
have to be flipped due to theG-parity. The integral of the B
meson wave function is parametrized as [37]

 

Z 1

0

d�
1� �

�B
1 ��� 

mB

�B
; (2.81)

where 1� � is the momentum fraction carried by the light

spectator quark in the Bmeson. Here we use �B�1 GeV� �
�350� 100� MeV.

E. Other input parameters

For the CKM matrix elements, we use the Wolfenstein
parameters A � 0:818, � � 0:22568, �� � 0:141, and �� �
0:348 [38]. The corresponding three unitarity angles are
� � 90:0
, � � 22:1
 and � � 68:0
.

For the running quark masses we shall use

 

mb�mb� � 4:2 GeV; mb�2:1 GeV� � 4:95 GeV; mb�1 GeV� � 6:89 GeV;

mc�mb� � 1:3 GeV; mc�2:1 GeV� � 1:51 GeV; ms�2:1 GeV� � 90 MeV;

ms�1 GeV� � 119 MeV; md�1 GeV� � 6:3 MeV; mu�1 GeV� � 3:5 MeV:

(2.82)

The uncertainty of the strange quark mass is assigned to be
ms�2:1 GeV� � 90� 20 MeV.

III. B! AP DECAYS IN QCD FACTORIZATION

We shall use the QCD factorization approach [37,39] to
study the short-distance contributions to the B! AP de-
cays with A � a1�1260�, f1�1285�, f1�1420�, K1�1270�,
b1�1235�, h1�1170�, h1�1380�, K1�1400�, and P � �, K.
It should be stressed that in order to define the LCDAs of
axial-vector mesons properly, it is necessary to include the
decay constants. However, for practical calculations, it is
more convenient to factor out the decay constants in the
LCDAs and put them back in the appropriate places. Recall

that �
1P1

k
has two equivalent expressions, namely,

Eqs. (2.63) and (2.67). However, we found out that it is

most convenient to use Eq. (2.63) for the LCDA �
1P1

k

which amounts to treating the axial-vector decay constant
of 1P1 as f?1P1

. (Of course, this does not mean that f1P1
is

equal to f?1P1
.) Likewise, we shall use Eq. (2.77) rather than

Eq. (2.73) for the LCDA �
3P1

? .
In QCD factorization, the factorizable amplitudes of

above-mentioned decays are collected in the appendix.
They are expressed in terms of the flavor operators api
and the annihilation operators bpi with p � u, c which
can be calculated in the QCD factorization approach
[37]. The flavor operators api are basically the Wilson
coefficients in conjunction with short-distance nonfactor-
izable corrections such as vertex corrections and hard
spectator interactions. In general, they have the expressions
[37,39]

 

api �M1M2� �

�
ci �

ci�1

Nc

�
Ni�M2�

Z 1

0
�M2

k
�x�dx

�
ci�1

Nc

CF�s
4�

�
Vi�M2� �

4�2

Nc
Hi�M1M2�

�

� Ppi �M2�; (3.1)

where i � 1; � � � ; 10, the upper (lower) signs apply when i
is odd (even), ci are the Wilson coefficients, CF � �N2

c �
1�=�2Nc� with Nc � 3, M2 is the emitted meson and M1

shares the same spectator quark with the B meson. The
quantities Vi�M2� account for vertex corrections,
Hi�M1M2� for hard spectator interactions with a hard gluon
exchange between the emitted meson and the spectator
quark of the Bmeson and Pi�M2� for penguin contractions.
The expression of the quantities Ni�M2� reads

 Ni�M2� �

�
0 i � 6; 8 and M2 � A;
1 else:

(3.2)

Note that Ni�M2� vanishes for i � 6, 8 and M2 � A as a
consequence of Eq. (2.70). The subscript k of � in the first
term of Eq. (3.1) reminds us of the fact that it is the
longitudinal component of the axial-vector meson’s
LCDA that contributes to the B! AP decay amplitude.
Specifically, we have

 

Z 1

0
du�

1P1

k
�u� � a

k;1P1
0 ;

Z 1

0
du�

3P1

k
�u� � 1; (3.3)

where we have factored out the decay constant f?1P1
(f3P1

)

of �
1P1

k
(�

3P1

k
).

The vertex corrections in Eq. (3.1) are given by
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 Vi�M2� �

8><
>:
R

1
0 dx�M2

�x��12 lnmb
� � 18� g�x��; �i � 1� 4; 9; 10�;R

1
0 dx�M2

��12 lnmb
� � 6� g�1� x��; �i � 5; 7�;R

1
0 dx�m2

�x���6� h�x��; �i � 6; 8�;

(3.4)

with

 g�x� � 3
�
1� 2x
1� x

lnx� i�
�
�

�
2Li2�x� � ln2x�

2 lnx
1� x

� �3� 2i�� lnx� �x$ 1� x�
�
;

h�x� � 2Li2�x� � ln2x� �1� 2i�� lnx� �x$ 1� x�;

(3.5)

where �M (�m) is the twist-2 (twist-3) light cone distri-
bution amplitude of the meson M. More specifically,
�M � �P, �m � �p for M � P and �M � �A

k
, �m �

�a for M � A. For the general LCDAs
 

�M�x� � 6x�1� x�
�
�0 �

X1
n�1

�n���C
3=2
n �2x� 1�

�
;

�m�x� � �0 �
X1
n�1

�n���Pn�2x� 1�;
(3.6)

the vertex corrections read
 

Vi�M� �
�
12 ln

mb

�
� 18�

1

2
� 3i�

�
�0 �

�
11

2
� 3i�

�
�1

�
21

20
�2 �

�
79

36
�

2i�
3

�
�3 � � � � ; (3.7)

for i � 1� 4, 9, 10,
 

Vi�M� �
�
�12 ln

mb

�
� 6�

1

2
� 3i�

�
�0 �

�
11

2
� 3i�

�
�1

�
21

20
�2 �

�
79

36
�

2i�
3

�
�3 � � � � ; (3.8)

for i � 5, 7,

 Vi�M� � �6�0 � �3� i2���1 �

�
19

18
�
i�
3

�
�3 � � � � ;

(3.9)

for i � 6, 8.
As for the hard spectator function H, it has the expres-

sion

 Hi�M1M2� �
�ifBfM1

fM2

X�BM1;M2�

Z 1

0

d�
�

�B���
Z 1

0

d�
��

�M2
���

	
Z 1

0

d�
��

�
�M1
��� � rM1

�

��
�

�m1
���

�
;

(3.10)

for i � 1� 4, 9, 10, where the upper sign is for M1 � P

and the lower sign for M1 � A,

 Hi�M1M2� �
ifBfM1

fM2

X� �BM1;M2�

Z 1

0

d�
�

�B���
Z 1

0

d�
�

�M2
���

	
Z 1

0

d�
��

�
�M1
��� � rM1

�
�
��

�m1
���

�
;

(3.11)

for i � 5, 7 and Hi � 0 for i � 6, 8, ��  1� � and �� 
1� �. In the above equations,

 rP� �
2m2

P

mb����m2 �m1����
; rA� �

2mA

mb���
; (3.12)

and X� �BM1;M2� is the factorizable amplitude defined in
Eq. (2.47).

Weak annihilation contributions are described by the
terms bi, and bi;EW in Eq. (A1) which have the expressions

 

b1 �
CF
N2
c
c1A

i
1;

b3 �
CF
N2
c
�c3A

i
1 � c5�A

i
3 � A

f
3� � Ncc6A

f
3�;

b2 �
CF
N2
c
c2A

i
1;

b4 �
CF
N2
c
�c4A

i
1 � c6A

f
2�;

b3;EW �
CF
N2
c
�c9Ai1 � c7�Ai3 � A

f
3� � Ncc8Ai3�;

b4;EW �
CF
N2
c
�c10Ai1 � c8Ai2�;

(3.13)

where the subscripts 1, 2, 3 of Ai;fn denote the annihilation
amplitudes induced from �V � A��V � A�, �V � A��V �
A�, and �S� P��S� P� operators, respectively, and the
superscripts i and f refer to gluon emission from the initial
and final-state quarks, respectively. Their explicit expres-
sions are:
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Ai1 �
Z
� � �

8<
:
��P�x��A�y��

1
y�1�x �y� �

1
�x2y
� � rA�r

P
��p�x��a�y�

2
�xy�; for M1M2 � AP;

��A�x��P�y��
1

y�1�x �y� �
1

�x2y� � r
A
�r

P
��a�x��p�y�

2
�xy�; for M1M2 � PA;

Ai2 �
Z
� � �

8<
:
��P�x��A�y��

1
�x�1�x �y� �

1
�xy2� � rA�rP��p�x��a�y�

2
�xy�; for M1M2 � AP;

��A�x��P�y��
1

�x�1�x �y� �
1

�xy2� � rA�rP��a�x��p�y�
2
�xy�; for M1M2 � PA;

Ai3 �
Z
� � �

8<
:
��rA��P�x��a�y�

2 �y
�xy�1�x �y� � r

P
��p�x��A�y�

2x
�xy�1�x �y��; for M1M2 � AP;

�rP��A�x��p�y�
2 �y

�xy�1�x �y� � r
A
��a�x��P�y�

2x
�xy�1�x �y��; for M1M2 � PA;

Af3 �
Z
� � �

8<
:
��rA��P�x��a�y�

2�1� �x�
�x2y � r

P
��p�x��A�y�

2�1�y�
�xy2 �; for M1M2 � AP;

�rP��A�x��p�y�
2�1� �x�

�x2y
� rA��a�x��P�y�

2�1�y�
�xy2 �; for M1M2 � PA;

Af1 � Af2 � 0;

(3.14)

where
R
� � � � ��s

R
1
0 dxdy, �x � 1� x, and �y � 1� y. Note that we have adopted the same convention as in [39] thatM1

contains an antiquark from the weak vertex with longitudinal fraction �y, while M2 contains a quark from the weak vertex
with momentum fraction x.

Using the asymptotic distribution amplitudes for �P, �p, �
3P1

k
, �

1P1
a and the leading contributions to �

1P1

k
, �

3P1
a :

 �P�u� � 6u �u; �
3P1

k
�u� � 6u �u; �

1P1

k
�u� � 18a

k;1P1
1 u �u�2u� 1�; �p�u� � 1;

�
3P1
a �u� � 3a

?;3P1
1 �6u2 � 6u� 1�; �

1P1
a �u� � 3�2u� 1�;

(3.15)

we obtain from Eq. (3.14) that

 Ai1�
3P1P� � 6��s

�
3
�
XA � 4�

�2

3

�
� a

?;3P1
1 r

3P1
� rP�XA�XA � 3�

�
;

Ai1�
1P1P� � 6��s

�
�3a

k;1P1
1 �XA � 29� 3�2� � r

1P1
� rP�XA�XA � 2�

�
;

Ai2�
3P1P� � 6��s

�
3
�
XA � 4�

�2

3

�
� a

?;3P1
1 r

1P1
� rP�XA�XA � 3�

�
;

Ai2�
1P1P� � 6��s

�
�3a

k;1P1
1 �3XA � 4� �2� � r

1P1
� rP�XA�XA � 2�

�
;

Ai3�
3P1P� � 6��s

�
�rP�

�
X2
A � 2XA �

�2

3

�
� 3a

?;3P1
1 r

3P1
�

�
X2
A � 2XA � 6�

�2

3

��
;

Ai3�
1P1P� � 6��s�3a

k;1P1
1 rP��X2

A � 4XA � 4�
�2

3
� � 3r

1P1
�

�
X2
A � 2XA � 4�

�2

3

��
;

Af3�
3P1P� � 6��s�2XA � 1��rP�XA � 3a

?;3P1
1 r

3P1
� �XA � 3��;

Af3�
1P1P� � 6��s��a

k;1P1
1 rP�XA�6XA � 11� � 3r

1P1
� �2XA � 1��XA � 2��;

(3.16)

and

 Ai1�P
3P1� � Ai1�

3P1P�; Ai1�P
1P1� � �A

i
2�

1P1P�; Ai2�P
3P1� � Ai2�

3P1P�; Ai2�P
1P1� � �A

i
1�

1P1P�;

Ai3�P
3P1� � �A

i
3�

3P1P�; Ai3�P
1P1� � Ai3�

1P1P�; Af3�P
3P1� � Af3�

3P1P�; Af3�P
1P1� � �A

f
3�

1P1P�;

(3.17)

where the logarithmic divergences occurred in weak anni-
hilation are described by the variable XA

 

Z 1

0

du
u
! XA;

Z 1

0

lnu
u
! �

1

2
XA: (3.18)

Following [37], these variables are parametrized as

 XA � ln
�
mB

�h

�
�1� �Ae

i�A�; (3.19)

with the unknown real parameters �A and �A. Likewise,
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the endpoint divergence XH in the hard spectator contribu-
tions can be parameterized in a similar manner. Following
[34,40], we adopt �A;H � 0:5 and arbitrary strong phases
�A;H with �A;H � 0 by default.

Besides the penguin and annihilation contributions for-
mally of order 1=mb, there may exist other power correc-
tions which unfortunately cannot be studied in a
systematical way as they are nonperturbative in nature.
The so-called ‘‘charming penguin’’ contribution is one of
the long-distance effects that have been widely discussed.
The importance of this nonperturbative effect has also been
conjectured to be justified in the context of soft-collinear
effective theory [41]. More recently, it has been shown that
such an effect can be incorporated in final-state interac-
tions [42]. However, in order to see the relevance of the
charming penguin effect to B decays into scalar reso-
nances, we need to await more data with better accuracy.

IV. NUMERICAL RESULTS

A. Branching ratios

The calculated branching ratios for the decays B! A�,
AK with A � a1�1260�, b1�1235�, K1�1270�, K1�1400�,
f1�1285�, f1�1420�, h1�1170�, h1�1380� are collected in

Tables VI, VII, and VIII. For B! A transition form factors
we use those obtained by the sum rule approach, Table III.
The theoretical errors correspond to the uncertainties due
to variation of (i) the Gegenbauer moments (Table V), the
axial-vector meson decay constants, (ii) the heavy-to-light
form factors and the strange quark mass, and (iii) the wave
function of the Bmeson characterized by the parameter �B,
the power corrections due to weak annihilation and hard
spectator interactions described by the parameters �A;H,
�A;H, respectively. To obtain the errors shown in Tables VI,
VII, and VIII, we first scan randomly the points in the
allowed ranges of the above seven parameters in three
separated groups: the first two, the second two and the
last three, and then add errors in each group in quadrature.

1. �B! a1�, a1
�K decays

From Table VI we see that the predictions for �B0 !
a�1 �

� are in excellent agreement with the average of the
BABAR and Belle measurements [2,3]. BABAR has also
measured time-dependent CP asymmetries in the decays
�B0 ! a�1 �

� [4]. Using the measured parameter �C (see
Sec. IV B), BABAR is able to determine the rates of �B0 !
a�1 �

� and �B0 ! a�1 �
� separately, as shown in Table VI. It

is expected that the latter governed by the decay constant of

TABLE VI. Branching ratios (in units of 10�6) for the decays B! a1�1260��, a1�1260�K, b1�1235�� and b1�1235�K. The
theoretical errors correspond to the uncertainties due to variation of (i) Gegenbauer moments, decay constants, (ii) quark masses,
form factors, and (iii) �B, �A;H,�A;H, respectively. Other model predictions are also presented here for comparison. In [14], predictions
are obtained for two different sets of form factors, denoted by I and II, respectively, corresponding to the mixing angles �K1

� 32
 and
58
 (see the text for more details).

Mode CMV [15] LNP(I)[14] LNP(II) This work Expt. [2–7,10]

�B0 ! a�1 �
� 74.3 4.7 11.8 9:1�0:2�2:2�1:7

�0:2�1:8�1:1 12:2� 4:5 a

�B0 ! a�1 �
� 36.7 11.1 12.3 23:4�2:3�6:2�1:9

�2:2�5:5�1:3 21:0� 5:4 a

�B0 ! a�1 �
� 111.0 15.8 24.1 32:5�2:5�8:4�3:6

�2:4�7:3�2:4 31:7� 3:7 b

B� ! a0
1�
� 43.2 3.9 8.8 7:6�0:3�1:7�1:4

�0:3�1:3�1:0 20:4� 4:7� 3:4
�B0 ! a0

1�
0 0.27 1.1 1.7 0:9�0:1�0:3�0:7

�0:1�0:2�0:3

B� ! a�1 �
0 13.6 4.8 10.6 14:4�1:4�3:5�2:1

�1:3�3:2�1:9 26:4� 5:4� 4:1
�B0 ! a�1 K

� 72.2 1.6 4.1 18:3�1:0�14:2�21:1
�1:0�7:2�7:5 16:3� 2:9� 2:3

�B0 ! a0
1

�K0 42.3 0.5 2.5 6:9�0:3�6:1�9:5
�0:3�2:9�3:2

B� ! a�1 �K0 84.1 2.0 5.2 21:6�1:2�16:5�23:6
�1:1�8:5�11:9 34:9� 5:0� 4:4

B� ! a0
1K
� 43.4 1.4 2.8 13:9�0:9�9:5�12:9

�0:9�5:1�4:9
�B0 ! b�1 �

� 36.2 6.9 0.7 11:2�0:3�2:8�2:2
�0:3�2:4�1:9

�B0 ! b�1 �
� 4.4 � 0 � 0 0:3�0:1�0:1�0:3

�0:0�0:1�0:1
�B0 ! b�1 �

� 40.6 6.9 0.7 11:4�0:4�2:9�2:5
�0:3�2:5�2:0 10:9� 1:2� 0:9

�B0 ! b0
1�

0 0.15 0.5 0.01 1:1�0:2�0:1�0:2
�0:2�0:1�0:2

B� ! b�1 �
0 4.2 4.8 0.5 0:4�0:0�0:2�0:4

�0:0�0:1�0:2

B� ! b0
1�
� 18.6 4.5 0.4 9:6�0:3�1:6�2:5

�0:3�1:6�1:5 6:7� 1:7� 1:0
�B0 ! b�1 K

� 35.7 2.4 0.2 12:1�1:0�9:7�12:3
�0:9�4:9�30:2 7:4� 1:0� 1:0

�B0 ! b0
1

�K0 19.3 4.1 0.4 7:3�0:5�5:4�6:7
�0:5�2:8�6:5

B� ! b�1 �K0 41.5 3.0 0.3 14:0�1:3�11:5�13:9
�1:2�5:9�8:3

B� ! b0
1K
� 18.1 2.6 0.07 6:2�0:5�5:0�6:4

�0:5�2:5�5:2 9:1� 1:7� 1:0

aBABAR data only [4]. bThe average of BABAR [2] and Belle [3] data.
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TABLE VII. Same as Table VI except for the decays B! K1�1270��, K1�1270�K, K1�1400��, and K1�1400�K for two different
mixing angles �K1

� �37
 and �58
 (in parentheses). In the framework of [14], only the K�1 �1400��0 and �K0
1�1400��0 modes

depend on the mixing angle �K1
. Note that the results of [14,15] shown in the table are obtained for �K1

� 32
 and 58
 (in
parentheses).

Mode [15] [14] This work Expt. [8]

�B0 ! K�1 �1270��� 4.3 (4.3) 7.6 3:0�0:8�1:5�4:2
�0:6�0:9�1:4 �2:7

�0:6�1:3�4:4
�0:5�0:8�1:5� 12:0� 3:1�9:3

�4:5 < 25:2
�B0 ! �K0

1�1270��0 2.3 (2.1) 0.4 1:0�0:0�0:6�1:7
�0:0�0:3�0:6 �0:8

�0:1�0:5�1:7
�0:1�0:3�0:6�

B� ! �K0
1�1270��� 4.7 (4.7) 5.8 3:5�0:1�1:8�5:1

�0:1�1:1�1:9 �3:0
�0:2�0:1�2:7
�0:2�0:2�2:2�

B� ! K�1 �1270��0 2.5 (1.6) 4.9 2:7�0:1�1:1�3:1
�0:1�0:7�1:0 �2:5

�0:1�1:0�3:2
�0:1�0:7�1:0�

�B0 ! K�1 �1400��� 2.3 (2.3) 4.0 5:4�1:1�1:7�9:9
�1:0�1:3�2:8 �2:2

�1:1�0:7�2:6
�0:8�0:6�1:3� 16:7� 2:6�3:5

�5:0 < 21:8
�B0 ! �K0

1�1400��0 1.7 (1.6) 3.0 (1.7) 2:9�0:3�0:7�5:5
�0:3�0:6�1:7 �1:5

�0:4�0:3�1:7
�0:3�0:3�0:9�

B� ! �K0
1�1400��� 2.5 (2.5) 3.0 6:5�1:0�2:0�11:6

�0:9�1:6�3:6 �2:8
�1:0�0:9�3:0
�0:8�0:9�1:7�

B� ! K�1 �1400��0 0.7 (0.6) 1.0 (1.4) 3:0�0:4�1:1�5:2
�0:4�0:7�1:3 �1:0

�0:4�0:4�1:2
�0:3�0:4�0:5�

�B0 ! K�1 �1270�K� 0:01�0:01�0:00�0:02
�0:00�0:00�0:01 �0:01�0:00�0:00�0:02

�0:00�0:00�0:01�
�B0 ! K�1 �1270�K� 0:06�0:01�0:00�0:46

�0:01�0:00�0:06 �0:04�0:01�0:00�0:27
�0:01�0:00�0:04�

B� ! K0
1�1270�K� 0.22 (0.22) 0:25�0:01�0:15�0:39

�0:01�0:08�0:09 �0:22�0:01�0:12�0:39
�0:01�0:07�0:12�

B� ! K�1 �1270�K0 0.02 (0.75) 0:05�0:02�0:07�0:10
�0:02�0:03�0:04 �0:05�0:02�0:09�0:10

�0:01�0:03�0:04�
�B0 ! �K0

1�1270�K0 0.02 (0.70) 2:30�0:16�1:13�1:43
�0:15�0:61�0:61 �2:10�0:13�1:23�1:31

�0:13�0:65�0:57�
�B0 ! K0

1�1270� �K0 0.20 (0.20) 0:24�0:01�0:11�0:33
�0:01�0:07�0:13 �0:26�0:10�0:12�0:47

�0:01�0:08�0:17�
�B0 ! K�1 �1400�K� 0:09�0:01�0:00�0:23

�0:01�0:00�0:09 �0:07�0:02�0:00�0:16
�0:02�0:00�0:06�

�B0 ! K�1 �1400�K� 0:02�0:00�0:00�0:04
�0:00�0:00�0:00 �0:01�0:00�0:00�0:16

�0:00�0:00�0:00�

B� ! K0
1�1400�K� 0.12 (0.12) 0:48�0:08�0:15�0:81

�0:08�0:12�0:26 �0:22�0:07�0:07�0:24
�0:07�0:07�0:13�

B� ! K�1 �1400�K0 4.4 (3.9) 0:01�0:00�0:01�0:14
�0:00�0:00�0:01 �0:01�0�0:02�0:04

�0�0:00�0:00�
�B0 ! �K0

1�1400�K0 4.1 (3.6) 0:08�0:01�0:17�0:59
�0:01�0:06�0:08 �0:10�0:02�0:21�0:15

�0:02�0:08�0:10�
�B0 ! K0

1�1400� �K0 0.11 (0.11) 0:50�0:08�0:13�0:92
�0:07�0:11�0:32 �0:25�0:07�0:08�0:31

�0:07�0:07�0:15�

TABLE VIII. Same as Table VI except for the decays B! f1�, f1K, h1�, and h1K with f1 � f1�1285�, f1�1420� and h1 �
h1�1170�, h1�1380�. We use two different sets of mixing angles, namely, �3P1

� 27:9
 and �1P1
� 25:2
 (top), corresponding to

�K1
� �37
, and �3P1

� 53:2
, �1P1
� �18:1
 (bottom), corresponding to �K1

� �58
.

Mode Theory Mode Theory

B� ! f1�1285��� 5:2�0:3�1:3�0:7
�0:2�1:0�0:2 B� ! f1�1420��� 0:06�0:01�0:01�0:00

�0:00�0:00�0:00
�B0 ! f1�1285��0 0:26�0:03�0:14�0:29

�0:03�0:07�0:08
�B0 ! f1�1420��0 0:003�0:003�0:002�0:003

�0:002�0:001�0:002

B� ! f1�1285�K� 14:8�3:0�7:5�12:4
�2:6�3:9�5:2 B� ! f1�1420�K� 6:0�1:7�1:9�9:0

�1:5�1:3�3:1
�B0 ! f1�1285� �K0 14:6�2:7�7:5�11:9

�2:3�3:9�5:0
�B0 ! f1�1420� �K0 5:5�1:6�1:8�8:4

�1:3�1:2�2:8

B� ! h1�1170��� 4:8�0:4�0:9�0:8
�0:3�0:8�0:7 B� ! h1�1380��� 0:17�0:03�0:06�0:04

�0:02�0:06�0:03
�B0 ! h1�1170��0 0:19�0:06�0:05�0:07

�0:04�0:03�0:01
�B0 ! h1�1380��0 0:006�0:009�0:005�0:007

�0:004�0:004�0:002

B� ! h1�1170�K� 10:1�4:7�2:1�7:3
�3:1�1:4�8:1 B� ! h1�1380�K� 12:7�7:1�9:2�211:4

�5:1�4:7�10:8
�B0 ! h1�1170� �K0 10:1�4:2�2:2�7:2

�2:8�1:5�8:1
�B0 ! h1�1380� �K0 11:3�6:4�8:5�188:5

�4:6�4:3�9:6

B� ! f1�1285��� 4:6�0:2�1:1�0:6
�0:2�0:9�0:2 B� ! f1�1420��� 0:59�0:06�0:18�0:10

�0:05�0:13�0:05
�B0 ! f1�1285��0 0:20�0:02�0:12�0:24

�0:02�0:06�0:06
�B0 ! f1�1420��0 0:05�0:02�0:03�0:04

�0:01�0:02�0:02

B� ! f1�1285�K� 5:2�0:9�3:1�9:1
�0:8�1:5�10:0 B� ! f1�1420�K� 13:8�4:0�5:6�17:1

�3:3�3:2�6:3
�B0 ! f1�1285� �K0 5:2�0:8�3:2�3:0

�0:7�1:5�1:4
�B0 ! f1�1420� �K0 13:1�3:7�5:4�16:2

�3:0�3:1�5:9

B� ! h1�1170��� 1:8�0:3�0:3�0:3
�0:2�0:3�0:3 B� ! h1�1380��� 2:9�0:2�0:6�0:4

�0:1�0:6�0:4
�B0 ! h1�1170��0 0:16�0:08�0:01�0:06

�0:05�0:01�0:04
�B0 ! h1�1380��0 0:04�0:00�0:03�0:04

�0:00�0:02�0:01

B� ! h1�1170�K� 11:3�5:8�1:9�23:0
�3:7�1:1�8:2 B� ! h1�1380�K� 5:6�0:9�2:3�1:4

�0:7�1:2�1:9
�B0 ! h1�1170� �K0 10:9�5:3�1:9�21:1

�3:4�1:2�7:7
�B0 ! h1�1380� �K0 5:5�0:7�2:4�1:5

�0:7�1:2�2:0
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a1�1260� has a rate larger than the former as fa1
� f�.

Again, theory is consistent the data within errors. However,
there are some discrepancies between theory and experi-
ment for a0

1�
� and a�1 �

0 modes. It appears that the
relations B�B� ! a0

1�
�� * B� �B0 ! a�1 �

�� and
B�B� ! a�1 �

0� * B� �B0 ! a�1 �
�� observed by BABAR

are opposite to the naive expectation that B�B� !

a0
1�
��<B� �B0 ! a�1 �

�� and B�B� ! a�1 �
0�<

B� �B0 ! a�1 �
��. As for B! a1K decays, although the

agreement with the data for �B0 ! a�1 K
� is excellent, the

expectation of B�B� ! a�1 �K0� �B� �B0 ! a�1 K
�� is not

consistent with experiment. More specifically, in QCDF we
obtain the ratios

 

R1 
B�B� ! a0

1�
��

B�B0 ! a�1 �
��
� 0:83�0:02�0:06�0:12

�0:02�0:05�0:17 �expt: 1:67� 0:78�;

R2 
B�B� ! a�1 �

0�

B�B0 ! a�1 �
��
� 0:62�0:01�0:01�0:08

�0:01�0:01�0:10 �expt: 1:26� 0:46�;

R3 
B�B� ! a�1 �K0�

B� �B0 ! a�1 K
��
� 1:18�0:01�0:02�0:04

�0:01�0:02�0:04 �expt: 2:14� 0:63�:

(4.1)

In the above ratios the hadronic uncertainties are mainly
governed by weak annihilation and spectator scattering in
R1, R2 and largely canceled out in R3. It is evident that
while the predicted R1 is barely consistent with the data
within errors, theory does not agree with experiment for R2

and R3. This should be clarified by the improved measure-
ments of these modes in the future.

While the tree-dominated a1� modes have similar rates
as �� ones, the penguin-dominated a1K modes resemble
much more to�K than �K, as first pointed out in [16]. One
can see from Eqs. (A3) and (A7) that the dominant penguin
coefficients �p4 �a1K� and �p4 ��K� are constructive in ap4
and ap6 penguin coefficients:
 

�p4 �a1K� � ap4 �a1K� � rK�a
p
6 �a1K�;

�p4 ��K� � ap4 ��K� � r
K
�a

p
6 ��K�;

(4.2)

whereas �p4 ��K� � ap4 ��K� � r
K
�a

p
6 ��K� [39]. Con-

sequently, when the weak annihilation contribution is
small, B! a1K and B! �K decays should have similar
rates. However, if weak annihilation is important, then it
will contribute more to the a1K mode than the �K one due
to the fact that fa1

� f�, recalling that the weak annihi-
lation amplitude is proportional to fBfM1

fM2
bi. By com-

paring Table VI of the present work with Table 2 of [39],
we see that the default results for the branching ratios of
B! a1K and B! �K decays are indeed similar, while
the hadronic uncertainties arising from weak annihilation
are bigger in the former.

2. �B! b1�, b1
�K decays

As for �B! b1�1235�� decays, there is a good agree-
ment between theory and experiment. Notice that it is
naively expected that the b�1 �

� mode is highly suppressed
relative to the b�1 �

� one as the decay amplitude of the
former has the form a1F

B�
1 � fb1

�b1

k
(a1 being the effective

Wilson coefficient for the color-allowed tree amplitude)

and the decay constant fb1
vanishes in the isospin limit. As

noted in passing, the LCDA �b1

k
�u� given by (2.67) is finite

even if fb1
� 0. This is because the coefficient �b1

�

1=ak;b1
0 in the wave function of b1 will become divergent

if fb1
� 0, but the combination fb1

�b1
is finite. More

precisely, fb1
�b1

is equal to f?b1
, the transverse decay

constant of the b1 [cf. Eq. (2.65)]. Therefore, �b1

k
�u� can

be recast to the form of Eq. (2.63) which amounts to
replacing fb1

by f?b1
in the calculation. Now, one may

wonder how to see the suppression of b�1 �
� relative to

b�1 �
�? The key point is the term

R
�M
k
�x�dx appearing in

the expression for the effective parameter ai [see Eq. (3.1)].
This term vanishes for the b1 meson in the isospin limit. As
a result, the parameter a1 for the decay �B0 ! b�1 �

� van-
ishes in the absence of vertex, penguin, and spectator
corrections. On the contrary, a1 � c1 �

c2

3 � � � � for the
channel �B0 ! b�1 �

�. This explains the suppression of
�B0 ! b�1 �

� relative to b�1 �
�. After all, the b�1 �

� mode
does not evade the decay constant suppression. It does
receive contributions from vertex and hard spectator cor-
rections and weak annihilation, but they are all suppressed.
The BABAR measurement of charge-flavor asymmetry �C
implies the ratio �� �B0 ! b�1 �

��=�� �B0 ! b�1 �
�� �

�0:01� 0:12 [5]. This confirms the expected suppression.
Since �B! b1

�K decays receive sizable annihilation con-
tributions, their rates are sensitive to the interference be-
tween penguin and annihilation terms. As a consequence,
the measured branching ratios of �B! b1

�K would provide
useful information on the sign of the B! b1�1235� tran-
sition form factors. We found that if the form factor VBb1

0 is
of the same sign as VBa1

0 , B� �B! b1
�K�will be enhanced by

a factor of 2� 3, for example, B� �B0 ! b�1 K
�� � 21	

10�6 which is too large compared to the experimental
value of �7:4� 1:4� 	 10�6 [5]. This means that the inter-
ference between penguin and annihilation contributions
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should be destructive and the form factors VBb1
0 and VBa1

0
must be of opposite signs.

We also found that the naive relation B�B� ! b0
1K
�� �

1
2 B�

�B0 ! b�1 K
�� holds in QCDF. More precisely, QCDF

predicts
 

R4 
B�B� ! b0

1K
��

B� �B0 ! b�1 K
��
� 0:51�0:01�0:01�0:20

�0:01�0:00�0:02

�expt: 1:23� 0:36�; (4.3)

where the hadronic uncertainty in R4 arises almost entirely
from weak annihilation (contribution from spectator scat-
tering is negligible). This indicates that the data of b0

1K
�

and b�1 K
� can be simultaneously explained only if the

weak annihilation mechanism plays a dominant role in
these decays.

3. B! K1�1270���;K�, K1�1400���;K� decays

It is evident from Table VII that the central values of the
calculated branching ratios in QCDF for K�1 �1270��� and
K�1 �1400��� are too small compared to experiment. This
is not surprising as the same phenomenon also occurs in the
penguin-dominated B! PV and B! VV decays. For
example, the default results for the branching fractions of
B! K�� obtained in QCDF are in general too small by a
factor of 2–3 compared to the data [39]. This suggests the
importance of power corrections due to the nonvanishing
�A and �H parameters or due to possible final-state rescat-
tering effects from charm intermediate states [42]. It has
been demonstrated in [39] that in the so-called ‘‘S4’’
scenario with �A � 1 and nonvanishing �A, the global
results for the VP modes agree better with the data. It
has also been shown in [43] that the choice of �Aei�A �
0:6e�i40
 will allow one to explain the polarization effects
observed in various B! VV decays. While large power
corrections from weak annihilation seem to be inevitable
for explaining the K1� rates, one issue is that large weak
annihilation may destroy the existing good agreement for
a�1 K

� and b�1 K
� modes.

We notice that while K1�1270�� rates are insensitive to
the mixing angle �K1

, the branching fractions of
K1�1400�� are smaller for �K1

� �58
 than that for
�K1
� �37
 by a factor of 2–3 due to the dependence of

the K1�1400� decay constant on �K1
, recalling that

fK1�1400� � 112 �235� MeV for �K1
� �58
 (� 37
)

[cf. Eq. (2.32)]. The current measurement of �B0 !
K�1 �1400��� favors a mixing angle of �37
 over �58
.

Just as the case of B! KK� decays, we find that the
branching ratios of B! K1�1270�K and K1�1400�K
modes are of order 10�7 � 10�8 except for the decay �B0 !
�K0

1�1270�K0 which can have a branching ratio of order
2:3	 10�6. The decay modes K�1 K

� and K�1 K
� are of

particular interest as they are the only AP modes which
receive contributions solely from weak annihilation.

4. B! f1��;K�, h1��;K� decays

Branching ratios for the decays B! f1�, f1K, h1�, and
h1K with f1 � f1�1285�, f1�1420� and h1 � h1�1170�,
h1�1380� are shown in Table VIII for two different sets
of mixing angles: (i) �3P1

� 53:2
 and �1P1
� �18:1
,

corresponding to �K1
� �37
, and (ii) �3P1

� 27:9
 and
�1P1

� 25:2
, corresponding to �K1
� �58
 (see

Sec. II A).6 Their branching ratios are naively expected to
be of order 10�6 � 10�5 except for the color-suppressed
f1�

0 and h1�
0 modes which are suppressed relative to the

color-allowed one such as f1�1285��� by a factor of
ja2=a1j

2=2�O�0:03� 0:08�. However, an inspection of
Table VIII shows some exceptions, for example, B�B� !
f1�1420���� � B�B� ! f1�1285���� for both sets
of �3P1

and B�B� ! h1�1380���� � B�B� !

h1�1170���� for �1P1
� 25:2
. These can be understood

as a consequence of interference. The decay amplitudes for
the tree-dominated channels h1�� are given by

 A�B� ! h1�1380���� / �VBh1
0 sin�1P1

� VBh8
0 cos�1P1

;

A�B� ! h1�1170���� / VBh1
0 cos�1P1

� VBh8
0 sin�1P1

:

(4.4)

Since the form factors VBh1
0 and VBh8

0 are of the same
signs (cf. Table III), it is clear that the interference is
constructive (destructive) in the h1�1170��� mode, but
destructive (constructive) in h1�1380��� for �1P1

�

25:2
 (� 18:1
). This explains why B�B� !
h1�1380���� � B�B� ! h1�1170���� for �1P1

� 25:2


and B�B� ! h1�1380����>B�B� ! h1�1170���� for
�1P1

� �18:1
. Therefore, a measurement of the ratio
R5  B�B� ! h1�1380����=B�B� ! h1�1170���� will
help determine the mixing angle �1P1

. Likewise, informa-
tion on the angle �3P1

can be inferred from the ratio R6 

B� �B! f1�1420� �K�=B� �B! f1�1285� �K�: R6 > 1 for
�3P1

� 53:2
 and R6 < 1 for �3P1
� 27:9
.

The preliminary BABAR results are [9]
 

B�B� ! f1�1285�K��B�f1�1285� ! ����

< 0:8	 10�6;

B�B� ! f1�1420�K��B�f1�1420� ! ����

< 2:9	 10�6;

B�B� ! f1�1420�K��B�f1�1420� ! KSK����

< 4:1	 10�6:

(4.5)

Since B�f1�1285� ! ���� � 0:52� 0:16 [1], the upper
limit on B�B� ! f1�1285�K�� is inferred to be of order

6There are predictions for the decay rates of B! f1�, f1K,
h1�, and h1K in [15]. Since the f1 and h1 states are not specified
there, we will not include them in Table VIII for comparison.
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2:0	 10�6. However, we cannot extract the upper bound
for the f1�1420�K� mode due to the lack of information on
B�f1�1420� ! ���� and B�f1�1420� ! KSK

����. In
Fig. 1 we plot the branching ratios of B� ! f1�1285�K�

and B� ! f1�1420�K� as a function of �3P1
. We see that

the branching fraction of the former at �3P1
� 53
 is barely

consistent with the experimental limit when the theoretical
errors are taken into account. Note that the mixing angle
dependence of the f1�1420�K� mode is opposite to that of
f1�1285�K�. At this moment, it is too early to draw any
conclusions from the data. Certainly, we have to await
more measurements to test our predictions.

B. CP asymmetries

Direct CP asymmetries for various B! AP decays are
summarized in Tables IX, X, and XI. Because of the large

suppression of �B0 ! b�1 �
� relative to �B0 ! b�1 �

�, direct
CP violation in the latter should be close to the charge
asymmetry Ab1� defined below in Eq. (4.11) which has
been measured by BABAR to be �0:05� 0:10� 0:02 [5].
The default results for direct CP violation vanishes in the
decays B0 ! K�1 K

� and B0 ! K�1 K
� (see Table X) as

they proceed only through weak annihilation. The major
uncertainty with direct CP violation comes from the strong
phases which are needed to induce partial rate CP asym-
metries. For penguin-dominated decays, one of the main
sources of strong phases comes from �A defined in
Eq. (3.19) which is originated from soft gluon interactions.
It is nonperturbative in nature and hence not calculable.

The experimental determination of direct CP asymme-
tries for a�1 �

� and a�1 �
� is more complicated as B0 !

a�1 �
� is not a CP eigenstate. The time-dependent CP

asymmetries are given by

 A �t� 
�� �B0�t� ! a�1 �

�� � ��B0�t� ! a�1 �
��

�� �B0�t� ! a�1 �
�� � ��B0�t� ! a�1 �

��

� �S� �S� sin��mt� � �C��C� cos��mt�;

(4.6)

where �m is the mass difference of the two neutral B
eigenstates, S is referred to as mixing-induced CP asym-
metry and C is the direct CP asymmetry, while �S and �C
are CP-conserving quantities. Defining

 A��  A�B0 ! a�1 �
��; A��  A�B0 ! a�1 �

��;

�A��  A� �B0 ! a�1 �
��; �A��  A� �B0 ! a�1 �

��;

(4.7)

and

 ��� �
q
p

�A��
A��

; ��� �
q
p

�A��
A��

; (4.8)

where q=p � e�2i� for a1� modes, we have

TABLE IX. Direct CP asymmetries (in %) in the decays B! a1�1260��, a1�1260�K, b1�1235�� and b1�1235�K. See Table VI for
the explanation of theoretical errors. Experiments results are taken from [4,5,10,44].

Mode Theory Expt. Mode Theory Expt.

�B0 ! a�1 �
� �3:6�0:1�0:3�20:8

�0:1�0:5�20:2 7� 21� 15 a �B0 ! a�1 K
� 2:6�0:0�0:7�10:1

�0:1�0:7�11:0 �16� 12� 1
�B0 ! a�1 �

� �1:9�0:0�0:0�14:6
�0:0�0:0�14:3 15� 15� 7 a �B0 ! a0

1
�K0 �7:7�0:6�2:1�6:8

�0:6�2:2�7:0
�B0 ! a0

1�
0 60:1�4:6�6:8�37:6

�4:9�8:3�60:7 B� ! a�1 �K0 0:8�0:0�0:1�0:6
�0:0�0:1�0:0 12� 11� 2

B� ! a�1 �
0 0:5�0:3�0:6�12:0

�0:2�0:3�11:0 B� ! a0
1K
� 8:4�0:3�1:4�10:3

�0:3�1:6�12:0

B� ! a0
1�
� �4:3�0:3�1:4�14:1

�0:3�2:2�14:5

�B0 ! b�1 �
� �4:0�0:2�0:4�26:2

�0:0�0:6�25:5
�B0 ! b�1 K

� 5:5�0:2�1:2�47:2
�0:3�1:2�30:2 �7� 12� 2

�B0 ! b�1 �
� 66:1�1:2�7:4�30:3

�1:4�4:8�96:6
�B0 ! b0

1
�K0 �8:6�0:8�3:3�8:3

�0:8�4:2�25:4
�B0 ! b0

1�
0 53:4�6:4�9:0�5:2

�6:3�7:3�4:7 B� ! b�1 �K0 1:4�0:1�0:1�5:6
�0:1�0:1�0:1

B� ! b�1 �
0 �36:5�4:4�18:4�82:2

�4:3�17:7�59:6 B� ! b0
1K
� 18:7�1:6�7:8�57:7

�1:7�6:1�44:9 �46� 20� 2

B� ! b0
1�
� 0:9�0:6�2:3�18:0

�0:4�2:7�20:5 5� 16� 2

aTaken from [44].

FIG. 1 (color online). Branching ratios of B� ! f1�1285�K�

(solid line) and B� ! f1�1420�K� (dashed line) versus the
mixing angle �3P1

. The physical mixing angle is either 28
 or
53
. For simplicity, only the central values are shown here. The
horizontal line is the experimental limit on B� ! f1�1285�K�.
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TABLE XI. Direct CP asymmetries (in %) in the decays B! f1�, f1K, h1� and h1K with f1 � f1�1285�, f1�1420� and h1 �
h1�1170�, h1�1380�. We use two different sets of mixing angles, namely, �3P1

� 27:9
 and �1P1
� 25:2
 (top), corresponding to

�K1
� �37
, and �3P1

� 53:2
 and �1P1
� �18:1
 (bottom), corresponding to �K1

� �58
.

Mode Theory Mode Theory

B� ! f1�1285��� �7:3�0:4�0:5�28:0
�0:5�0:6�27:5 B� ! f1�1420��� �4:1�0:9�0:6�44:6

�1:1�0:7�44:2
�B0 ! f1�1285��0 13:8�1:7�3:2�52:6

�1:7�3:8�58:7
�B0 ! f1�1420��0 �34:0�10:3�8:0�112:2

�8:1�3:3�66:4

B� ! f1�1285�K� 2:5�0:3�0:8�6:7
�0:2�0:7�8:0 B� ! f1�1420�K� 0:8�0:1�0:1�1:6

�0:1�0:1�1:7
�B0 ! f1�1285� �K0 1:9�0:1�0:4�2:0

�0:1�0:4�2:6
�B0 ! f1�1420� �K0 1:0�0:1�0:2�0:9

�0:2�0:2�0:8

B� ! h1�1170��� �11:1�1:1�1:8�3:4
�1:1�2:3�3:7 B� ! h1�1380��� �18:2�2:1�3:6�23:3

�2:3�5:4�23:3
�B0 ! h1�1170��0 31:6�7:5�6:5�58:8

�6:8�7:5�76:7
�B0 ! h1�1380��0 �38:7�13:9�13:9�124:1

�18:7�9:7�72:4

B� ! h1�1170�K� 3:5�0:8�0:3�14:1
�0:7�0:2�16:5 B� ! h1�1380�K� 1:3�0:2�0:8�12:8

�0:5�0:6�18:2
�B0 ! h1�1170� �K0 1:7�0:2�0:2�2:9

�0:1�0:1�2:7
�B0 ! h1�1380� �K0 1:8�0:3�0:4�0:4

�0:3�0:5�3:7

B� ! f1�1285��� �7:1�0:4�0:5�28:6
�0:4�0:6�28:0 B� ! f1�1420��� �3:8�0:3�0:4�26:4

�0:4�0:4�26:0
�B0 ! f1�1285��0 14:7�1:7�3:0�57:0

�1:9�3:8�64:0
�B0 ! f1�1420��0 21:0�3:2�7:0�40:2

�2:7�6:5�45:0

B� ! f1�1285�K� 2:5�0:3�0:9�3:1
�0:3�0:7�1:4 B� ! f1�1420�K� 1:3�0:3�0:3�3:4

�0:2�0:3�3:5
�B0 ! f1�1285� �K0 2:1�0:2�0:6�2:5

�0:1�0:5�3:1
�B0 ! f1�1420� �K0 1:1�0:2�0:2�1:1

�0:1�0:2�1:2

B� ! h1�1170��� �8:4�0:7�1:3�7:2
�0:8�1:7�7:9 B� ! h1�1380��� �13:8�1:4�2:3�1:4

�1:3�2:9�1:4
�B0 ! h1�1170��0 24:9�7:2�2:8�46:5

�5:6�3:2�52:1
�B0 ! h1�1380��0 56:0�3:7�11:2�53:5

�4:1�13:6�116:3

B� ! h1�1170�K� 5:0�2:2�0:8�13:7
�1:4�0:9�12:4 B� ! h1�1380�K� �8:1�0:4�3:6�4:4

�0:2�3:5�4:0
�B0 ! h1�1170� �K0 0:7�0:2�0:2�2:1

�0:2�0:2�2:1
�B0 ! h1�1380� �K0 1:5�0:5�0:3�1:6

�0:6�0:5�1:5

TABLE X. Direct CP asymmetries (in %) the decays B! K1�1270��, K1�1270�K, K1�1400�� and K1�1400�K for two different
mixing angles �K1

� �37
 (top) and �58
 (bottom).

Mode Theory Mode Theory

�B0 ! K�1 �1270��� 38:6�2:8�10:0�26:0
�3:3�13:0�42:9

�B0 ! K�1 �1400��� �14:3�9:0�1:7�45:3
�9:5�1:0�48:8

�B0 ! �K0
1�1270��0 �32:5�1:6�7:4�18:7

�1:8�7:6�14:8
�B0 ! �K0

1�1400��0 1:5�0:2�0:9�2:3
�1:2�0:8�2:2

B� ! �K0
1�1270��� �0:8�0:3�0:1�3:3

�0:3�0:2�4:2 B� ! �K0
1�1400��� 2:2�0:4�0:1�1:5

�0:3�0:1�1:2
�B0 ! K�1 �1270��0 38:8�1:9�7:1�24:5

�1:8�9:1�2:5
�B0 ! K�1 �1400��0 �12:9�7:3�2:2�40:4

�6:5�2:7�9:1
�B0 ! K�1 �1270�K� 0�0�0�7:3

�0�0�7:3
�B0 ! K�1 �1400�K� 0�0�0�13:5

�0�0�13:5
�B0 ! K�1 �1270�K� 0�0�0�40:9

�0�0�40:9
�B0 ! K�1 �1400�K� 0�0�0�88:9

�0�0�88:9
�B0 ! �K0

1�1270�K0 �31:0�3:5�4:4�10:8
�3:1�3:5�11:2

�B0 ! �K0
1�1400�K0 �7:1�0:7�14:9�51:1

�0:7�5:1�14:0
�B0 ! K0

1�1270� �K0 �17:9�6:0�0:9�3:9
�6:4�0:8�3:0

�B0 ! K0
1�1400� �K0 �65:5�4:0�1:4�12:9

�4:0�1:4�18:0

B� ! K0
1�1270�K� 17:2�5:8�4:2�65:0

�5:4�2:9�7:6 B� ! K0
1�1420�K� �45:0�7:7�1:5�23:7

�7:5�1:0�10:8

B� ! K�1 �1270�K0 �40:2�6:7�2:1�131:3
�8:3�5:0�11:7 B� ! K�1 �1420�K0 �17:3�22:1�26:4�101:8

�22:1�36:2�31:2

�B0 ! K�1 �1270��� 33:6�2:6�8:5�31:2
�2:3�10:1�50:7

�B0 ! K�1 �1400��� �39:2�8:0�1:5�40:7
�2:9�2:9�35:4

�B0 ! �K0
1�1270��0 �29:6�1:4�6:8�19:7

�1:4�7:9�23:5
�B0 ! �K0

1�1400��0 0:1�4:3�1:3�6:0
�5:0�1:2�5:6

B� ! �K0
1�1270��� �0:5�0:2�0:0�2:7

�0:2�0:2�2:2 B� ! �K0
1�1400��� 3:1�0:2�0:9�3:0

�0:1�0:9�1:7
�B0 ! K�1 �1270��0 32:3�0:5�5:1�26:5

�0:5�6:7�0:7
�B0 ! K�1 �1400��0 �42:2�7:2�5:6�33:9

�8:5�8:7�12:1
�B0 ! K�1 �1270�K� 0�0�0�27:0

�0�0�27:0
�B0 ! K�1 �1400�K� 0�0�0�19:7

�0�0�19:7
�B0 ! K�1 �1270�K� 0�0�0�40:1

�0�0�40:1
�B0 ! K�1 �1400�K� 0�0�0�48:1

�0�0�48:1
�B0 ! �K0

1�1270�K0 �18:0�0:5�1:2�1:3
�0:6�0:7�0:1

�B0 ! �K0
1�1400�K0 �24:3�2:2�2:4�10:1

�2:0�5:2�56:3
�B0 ! K0

1�1270� �K0 11:0�1:0�2:4�13:0
�1:2�2:1�11:0

�B0 ! K0
1�1400� �K0 �63:0�4:3�1:7�19:3

�3:0�2:4�23:8

B� ! K0
1�1270�K� 9:4�3:1�3:5�41:7

�3:3�2:5�3:3 B� ! K0
1�1420�K� �59:8�2:4�1:2�43:3

�2:8�1:4�3:9

B� ! K�1 �1270�K0 �39:4�6:7�4:3�127:7
�6:9�7:8�9:7 B� ! K�1 �1420�K0 61:1�21:6�23:2�36:3

�18:0�41:8�25:5
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 C��C �
1� j���j2

1� j���j2
�
jA��j2 � j �A��j2

jA��j2 � j �A��j2
;

C��C �
1� j���j2

1� j���j2
�
jA��j2 � j �A��j2

jA��j2 � j �A��j2
;

(4.9)

and

 S��S 
2 Im���

1� j���j2
�

2 Im�e�2i� �A��A����

jA��j2 � j �A��j2
;

S��S 
2 Im���

1� j���j
2 �

2 Im�e�2i� �A��A����

jA��j2 � j �A��j2
:

(4.10)

Hence we see that �S describes the strong phase difference
between the amplitudes contributing to B0 ! a�1 �

� and
�C measures the asymmetry between ��B0 ! a�1 �

�� �
�� �B0 ! a�1 �

�� and ��B0 ! a�1 �
�� � �� �B0 ! a�1 �

��.
Next consider the time- and flavor-integrated charge

asymmetry

 A a1� 
jA��j

2 � j �A��j
2 � jA��j

2 � j �A��j
2

jA��j
2 � j �A��j

2 � jA��j
2 � j �A��j

2
: (4.11)

Then, following [38] one can transform the experimentally
motivated CP parameters Aa1� and Ca1� into the physi-
cally motivated choices

 Aa�1 �� 
j���j2 � 1

j���j2 � 1
; Aa�1 �� 

j���j2 � 1

j���j2 � 1
; (4.12)

with

 ��� �
q
p

�A��
A��

; ��� �
q
p

�A��
A��

: (4.13)

Hence,

 Aa�1 �� �
�� �B0 ! a�1 �

�� � ��B0 ! a�1 �
��

�� �B0 ! a�1 �
�� � ��B0 ! a�1 �

��

�
Aa1� � Ca1� �Aa1��Ca1�

1� �Ca1� �Aa1�Ca1�
;

Aa�1 �� �
�� �B0 ! a�1 �

�� � ��B0 ! a�1 �
��

�� �B0 ! a�1 �
�� � ��B0 ! a�1 �

��

� �
Aa1� � Ca1� �Aa1��Ca1�

1��Ca1� �Aa1�Ca1�
:

(4.14)

Note that the quantities Aa�1 �� here correspond to Aa�1 ��
defined in [38]. Therefore, direct CP asymmetries Aa�1 ��
and Aa�1 �� are determined from the above two equations.

Defining the effective phases

 ��eff 
1
2 arg��� � 1

2 arg�e�2i� �A��A����;

��eff 
1
2 arg��� � 1

2 arg�e�2i� �A��A
�
���;

(4.15)

which reduce to the unitarity angle � in the absence of
penguin contributions, we have

 �eff 
1

2
���eff � �

�
eff�

�
1

4

�
arcsin

�
S� �S��������������������������������

1� �C� �C�2
p

�

� arcsin
�

S� �S��������������������������������
1� �C� �C�2

p
��
: (4.16)

This is a measurable quantity which is equal to the weak
phase � in the limit of vanishing penguin amplitudes.

Parameters of the time-dependent decay rate asymme-
tries of B0 ! a�1 �

� are shown in Table XII. It appears that
the calculated mixing-induced parameter S is negative and
the effective unitarity angle �eff deviates from experiment
by around 2
. As pointed out by one of us (K.C.Y.), this
discrepancy may be resolved by having a larger � * 80


(see Fig. 1 of [16]). Further precise measurements are
needed to clarify the discrepancy. For B0 ! b�1 �

� decays,
the predicted �C agrees with experiment. The fact that this
quantity is very close to�1 indicates that the �B0 ! b�1 �

�

mode is highly suppressed relative to the �B0 ! b�1 �
� one,

recalling that �C here measures the asymmetry between
��B0 ! b�1 �

�� � �� �B0 ! b�1 �
�� and ��B0 ! b�1 �

�� �
�� �B0 ! b�1 �

��.

C. Comparison with other works

There are several papers studying charmless B! AP
decays: Laporta, Nardulli, and Pham (LNP) [14] (see also

TABLE XII. Various CP parameters for the decays B0 !
a�1 �

� (top) and B0 ! b�1 �
� (bottom). The parameters S and

�S are computed for � � 22:1
 and � � 68:0
. Experimental
results are taken from [4,5].

Parameter Theory Experiment

Aa1� 0:003�0:001�0:002�0:043
�0:002�0:003�0:045 �0:07� 0:07� 0:02

C 0:02�0:00�0:00�0:14
�0:00�0:00�0:14 �0:10� 0:15� 0:09

S �0:37�0:01�0:05�0:09
�0:01�0:08�0:16 0:37� 0:21� 0:07

�C 0:44�0:03�0:03�0:03
�0:04�0:05�0:04 0:26� 0:15� 0:07

�S 0:01�0:00�0:00�0:02
�0:00�0:00�0:02 �0:14� 0:21� 0:06

��eff �97:2�0:3�1:0�4:7
�0:3�0:6�2:5�




��eff �107:0�0:5�3:6�6:6
�0:5�2:3�3:7�




�eff �102:0�0:4�2:3�5:7
�0:4�1:5�3:1�


 �78:6� 7:3�


Ab1� �0:06�0:01�0:01�0:23
�0:01�0:01�0:23 �0:05� 0:10� 0:02

C �0:03�0:01�0:01�0:06
�0:02�0:02�0:01 0:22� 0:23� 0:05 a

S 0:05�0:03�0:02�0:15
�0:03�0:02�0:26

�C �0:96�0:03�0:02�0:08
�0:03�0:03�0:01 �1:04� 0:23� 0:08

�S 0:12�0:04�0:04�0:08
�0:03�0:04�0:09

��eff �107:6�0:7�3:5�155:4
�0:2�4:9�17:8 �




��eff �101:3�0:4�2:1�4:9
�0:4�1:4�8:6�




�eff �104:4�0:6�2:6�80:4
�0:3�2:1�1:6 �




aOur definition of C in Eq. (4.9) has an opposite sign to that
defined in [5] for B! b1� decays.
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Nardulli and Pham [13]), and Calderón, Muñoz, and Vera
(CMV) [15]. Their predictions are shown in Tables VI and
VII. Both are based on naive factorization. While form
factors are obtained by CMV using the ISGW2 model,
LNP use ratios of branching ratios to deduce ratios of
form factors. Hence, the relevant form factors are deter-
mined by factorization and experimental data. Specifically,
LNP found

 

VBa1
0 �0�

AB�0 �0�
�
VBK1A

0 �0�

ABK
�

0 �0�
� h sin�K1

� k cos�K1
;

VBb1
0 �0�

AB�0 �0�
�
VBK1B

0 �0�

ABK
�

0 �0�
� h cos�K1

� k sin�K1
;

(4.17)

where the kinematic factors h, k are defined in [14].
Therefore, LNP used two different sets of form factors
corresponding to different mixing angle values �K1

�

32
 and 58
.7 Since LNP only considered factorizable
contributions to B! AP decays, it turns out that in B!
K1� decays, only the K�1 �1400��0 and �K0

1�1400��0 modes
depend on the mixing angle �K1

. The other K1� rates
obtained by LNP (see Table VII) are mixing angle
independent.

The predicted rates for a1�, b1� and b1K modes by
CMV are generally too large compared to the data, pre-
sumably due to too big form factors for B! a1�b1� tran-
sition predicted by the ISGW2 model. The relation
B� �B0 ! a�1 �

��>B� �B0 ! a�1 �
�� is in conflict with ex-

periment. A noticeable result found by CMV is that
B�B� ! K�1 �1400�K0� and B� �B0 ! �K0

1�1400�K0� are of
order 10�6, while in QCDF they are highly suppressed, of
order 10�7 � 10�8.

It is clear from Table VI that in the LNP model, the form
factors (4.17) derived using �K1

� 32
 give a better agree-
ment for a1� modes, whereas �K1

� 58
 is preferred by
b1� and b1K data. This indicates that the data of a1��;K�
and b1��;K� cannot be simultaneously accounted for by a
single mixing angle �K1

in this model.
Branching ratios of B! f1P and B! h1P are found to

be of order 10�5 for P � ��, �, �0, K and O�10�7� for
P � �0 by CMV. In general, the CMV’s predictions are
larger than ours by 1 order of magnitude.

V. CONCLUSIONS

In this work we have studied the two-body hadronic
decays of B mesons into pseudoscalar and axial-vector
mesons within the framework of QCD factorization. The
light cone distribution amplitudes for 3P1 and 1P1 axial-
vector mesons have been evaluated using the QCD sum

rule method. Owing to the G-parity, the chiral-even two-
parton light cone distribution amplitudes of the 3P1 (1P1)
mesons are symmetric (antisymmetric) under the exchange
of quark and antiquark momentum fractions in the SU(3)
limit. For chiral-odd light cone distribution amplitudes, it
is other way around. Our main conclusions are as follows:

(i) Using the Gell-Mann-Okubo mass formula and the
K1�1270� and K1�1400� mixing angle �K1

�

�37
��58
�, the mixing angles for 3P1 and 1P1

states are found to be �3P1
� 28
�53
� for the

f1�1420� and f1�1285� and �1P1
� 25
��18
� for

h1�1170� and the h1�1380�, respectively.
(ii) The predicted rates for a�1 �1260���, b�1 �1235���,

b0
1�1235���, a�1 K

� and b�1 K
� modes are in good

agreement with the data. However, the expected
ratios B�B� ! a0

1�
��=B� �B0 ! a�1 �

�� & 1,
B�B� ! a�1 �

0�=B� �B0 ! a�1 �
�� � 1

2 and
B�B� ! b0

1K
��=B� �B0 ! b�1 K

�� � 1
2 are not borne

out by experiment. This should be clarified by the
improved measurements of these decays in the
future.

(iii) One of the salient features of the 1P1 axial-vector
meson is that its axial-vector decay constant is
small, vanishing in the SU(3) limit. This feature
is confirmed by the observation that �� �B0 !
b�1 �

�� � �� �B0 ! b�1 �
��. By contrast, it is ex-

pected that �� �B0 ! a�1 �
�� � �� �B0 ! a�1 �

��
due to the fact that fa1

� f�.
(iv) While B! a1� decays have similar rates as that

of B! ��, the penguin-dominated decays B!
a1K resemble much more to the �K modes than
�K ones. However, the naively expected ratio
B�B�!a�1 �K0�=B� �B0!a�1 K

���B�B�!�� �K0�=
B� �B0!��K���1:2 is not consistent with the cur-
rent experimental value of 2:14� 0:63.

(v) Since the �B! b1K decays receive sizable annihila-
tion contributions, their rates are sensitive to the
interference between penguin and annihilation
terms. The measurement of B� �B0 ! b�1 K

�� implies
a destructive interference which in turn indicates
that the form factors for B! b1 and B! a1 tran-
sitions must be of opposite signs.

(vi) The central values of the branching ratios for the
penguin-dominated modes K�1 �1270��� and
K�1 �1400��� predicted by QCD factorization are
too small compared to experiment. Just as the case
of B! K�� decays, sizable power corrections
such as weak annihilation are needed to account
for the observed K1� rates. The current measure-
ment of �B0 ! K�1 �1400��� seems to favor a
K1A � K1B mixing angle of �37
 over �58
.

(vii) The decays B! K1
�K with K1 � K1�1270� and

K1�1400� are in general quite suppressed, of order
10�7 � 10�8, except for �B0 ! �K0

1�1270�K0 which

7Since the B! K1A and B! K1B form factors obtained in the
ISGW2 model are opposite in sign, the preferred mixing angle
�K1

should be negative, as discussed in Sec. II A.
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can have a branching ratio of order 2:3	 10�6.
The decay modes K�1 K

� and K�1 K
� are of par-

ticular interest as they are the only AP modes that
proceed only through weak annihilation.

(viii) Time-dependent CP asymmetries in the decays
B0 ! a�1 �

� and b�1 �
� are studied. For the for-

mer, the mixing-induced parameter S is found to
be negative and the effective unitarity angle �eff

deviates from experiment by around 2
. The dis-
crepancy between theory and experiment may be
resolved by having a larger � * 80
. Further
precise measurements are needed to clarify the
discrepancy.

(ix) Branching ratios for the decays B! f1�, f1K,
h1� and h1K with f1 � f1�1285�, f1�1420� and
h1 � h1�1170�, h1�1380� are generally of order
10�6 except for the color-suppressed f1�0 and
h1�0 modes which are suppressed by one to 2
orders of magnitude. Measurements of the ratios
B�B� ! h1�1380����=B�B� ! h1�1170���� and
B� �B! f1�1420� �K�=B� �B! f1�1285� �K� will help
determine the mixing angles �1P1

and �3P1
, respec-

tively.
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APPENDIX: DECAY AMPLITUDES

For simplicity, here we do not explicitly show the argu-
ments, M1 and M2, of �pi and �pi coefficients. The order of
the arguments of the �pi �M1M2� and �pi �M1M2� is consis-
tent with the order of the arguments of the X� �BM1;M2�, where

 �pi �M1M2� �
�ifBfM1

fM2

X� �BM1;M2�
bpi : (A1)

Within the framework of QCD factorization [37], the B!
AP decay amplitudes read

 ���
2
p

AB�!a0
1�
� �

GF���
2
p

X
p�u;c

��d�p

��
pu��2 � �2� � �

p
4 �

3

2
�p3;EW �

1

2
�p4;EW � �

p
3 � �

p
3;EW

�
X� �B�;a1�

� �pu��1 � �2� � �
p
4 � �

p
4;EW � �

p
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p
3;EW�X

� �Ba1;��
�
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p
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0 �

GF���
2
p

X
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��d�p

��
pu��2 � �2� � �

p
4 �

3

2
�p3;EW �

1

2
�p4;EW � �

p
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p
3;EW

�
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� �pu��1 � �2� � �
p
4 � �

p
4;EW � �

p
3 � �

p
3;EW�X
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�
;
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� �

GF���
2
p

X
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��d�p
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p
4 � �

p
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p
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p
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1

2
�p3;EW �

1

2
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p
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p
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GF���
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X
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p
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p
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(A2)

for �B! a1�,
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(A3)

for �B! a1
�K,
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(A4)

for �B! f0
1� and �B! f0

1
�K,
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(A5)

for �B! �K1�, and
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(A6)

for �B! �K1K and �B! K1
�K, where ��d�p  VpbV�pd, ��s�p  VpbV�ps, and the factorizable amplitudes X� �BA;P� and X� �BP;A� are

defined in Eq. (2.48). The decay amplitudes for �B! b1� and b1
�K are obtained from �B! a1� and a1

�K respectively by
replacing a1 ! b1. Likewise, the expressions for �B! h1�, h1

�K decay amplitudes are obtained by setting (f1�! h1�)
and (f1

�K ! h1
�K).

The coefficients of the flavor operators �pi read
 

�1�M1;M2� � a1�M1;M2�; �2�M1M2� � a2�M1M2�;

�p3 �M1M2� � ap3 �M1M2� � a
p
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8 �M1M2�; for M1M2 � AP;
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p
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(A7)

where rP� and rA� are defined before in Eq. (3.12).
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