
Stability of multiquarks in a simple string model

J. Vijande,1,2,* A. Valcarce,2,† and J.-M. Richard3,‡
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A simple string model inspired by the strong-coupling regime of quantum chromodynamics is used as a
potential for studying the spectrum of multiquark systems with two quarks and two antiquarks, with a
careful treatment of the four-body problem. It is found that the ground state is stable, lying below the
threshold for dissociation into two isolated mesons.
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The question of the existence of multiquark systems is
almost as old as the concept of quarks, see, e.g., [1], in
particular, the paper by R. H. Dalitz therein. Since the early
days of hadron spectroscopy within the quark approach,
many studies have been devoted to multiquark states. Of
particular interest are hadrons with exotic quantum num-
bers that cannot be matched by any quark-antiquark (q �q) or
three-quark (qqq) configuration, and among them, the
states, if any, which are bound below the threshold for
dissociation into two ordinary hadrons and thus are narrow
and should show up clearly in the experimental spectrum.

The present contribution belongs to the class of con-
stituent quark models: an explicit set of rules is adopted to
mimic the interaction of quarks in quantum chromodynam-
ics (QCD) and, within this framework, the 2-body, 3-body,
and higher few-body problems are solved as accurately as
possible to examine whether quarks tend to split into small
(q �q) and (qqq) clusters or sometimes find it energetically
more favorable to form multiquark clusters. After a series
of estimates within the bag model (see, e.g., [2]), there
have been several attempts with potential models, using the
powerful few-body techniques developed in atomic and
nuclear physics.

Several dynamical ingredients have been identified
along the years as possible sources of multiquark binding.
The best known is probably chromomagnetism [3]: the
spin-color operator �i � �j ~�i � ~�j, which is encountered
in the spin-dependent part of one-gluon exchange gives
rise to remarkable coherence effects, and gives in some
multiquark clusters some attraction that is larger than in its
decay products. This mechanism was proposed, in particu-
lar, for the H dibaryon (uuddss) [4], tentatively below the
�� threshold, and for the 1987 version of the heavy
pentaquark (Q �q �q �q �q ) [5]. The chromomagnetic scenario
has, however, difficulties: the first optimistic predictions
carried out in the limit of exact flavor SU(3) symmetry, and

using short-range correlation coefficients borrowed from
ordinary hadrons, do not survive a more careful dynamical
treatment [6].

Another binding mechanism is based on the flavor in-
dependence of the confining interaction. In a given static
potential V�r1; . . .�, the asymmetric mass configurations
(QQ �q �q ) tend to be lower than the threshold 2�Q �q� if the
mass ratio is large enough [7]. This is the same favorable
breaking of symmetry which makes the hydrogen molecule
much more stable than the positronium molecule, in the
case where the potential is taken as the Coulomb interac-
tion (see, e.g., [8] for references).

Now, the determination of the critical mass ratioM=m at
which (QQ �q �q ) becomes stable, and the existence of other
multiquark systems depend crucially on questionable as-
sumptions on the multiquark potential. However successful
is a potential v�r� for the spectrum of quarkonium, its
extrapolation to baryons and multiquarks remains, indeed,
somewhat risky.

There are interesting attempts [9] to describe mesons
and baryons simultaneously with the potential energy of
the latter systems taken as

 V�r1; r2; r3� �
1

2
�v�r12� � v�r23� � v�r31��; (1)

where rij is the relative distance between particles i and j.
It is tempting to extrapolate this potential as

 V�r1; . . .� � �
3

16

X
i<j

~�i:~�jv�rij�; (2)

to higher multiquark systems, and benefit from the few-
body techniques with pairwise potentials. This was the
basis of most multiquark calculations, so far. However,
the success of the ansatz (1) is probably accidental, since
there are many indications that if the quark-antiquark
confinement is linear, v�r� � �r, the true confining inter-
action for three quarks in a baryon is more likely the so-
called Y-shape potential [10,11]

 Y�r1; r2; r3� � �min
k
�rk1 � rk2 � rk3�; (3)
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where the sum of distances from a junction k to the three
quarks is minimized, as in the well-known problem of
Fermat and Torricelli, also reported to as the Steiner prob-
lem [12]. It is schematically represented in Fig. 1. From
this point of view, the success of the empirical model (1)
comes from the perimeter in a triangle being nearly equal
to twice the minimal sum of distances Y.

The analog of (3) for four-quark systems is rather com-
plicated. Some diagrams generalizing the Y-shape string
have been drawn in the time of baryonium (see, e.g., [13]),
but they were not followed by any thorough four-body
calculation. The dynamics of systems made of two quarks
and two antiquarks has been discussed by several authors,
for instance [14–16], where we found guidance. The model
we use for an exploratory study is restricted to the sole
confinement. The short-range Coulomblike interaction, as
well as the spin-dependent terms are neglected altogether.
We also take the nonrelativistic limit. The interaction
which is adopted here for a careful estimate of the four-
body energy is a combination of the string limit used for
mesons and for baryons, and will be referred to as the
‘‘string potential.’’ It is schematically pictured in Fig. 1
and it reads,

 Vs � min�Vf; Vb�: (4)

Vf stands for the so-called ‘‘flip-flop’’ model

 Vf � �min�r13 � r24; r23 � r14�; (5)

where each of the quarks 1 or 2 links to either antiquarks 3
or 4, to minimize the sum of the two terms. It is understood
here that the gluon field readjusts immediately to its mini-
mal configuration. This is a kind of ideal Born-
Oppenheimer limit. Vb is the butterflylike configuration,
where two quarks form a color �3 diquark, two antiquarks a
color 3 antidiquark, which are linked by a flux tube,

 Vb � �min
k;‘
�r1k � r2k � rk‘ � r‘3 � r‘4�: (6)

For the Y-shape potential of baryons, the junction
achieving the minimal energy is either one of the quarks,
if the triangle linking the three quarks is flat (an angle
larger than 120	) or the point from which all sides are seen
under 120	. This gives an explicit expression in terms of
the interquark distances [11]. In the case of the butterfly
potential, some rigorous geometrical properties remain,
but one cannot avoid some numerical minimization over
some of the junction coordinates, and this slows down the
four-body variational computation.

Our numerical results have been obtained using corre-
lated Gaussians, namely, if

 x 1 � r2 � r1; x2 � r4 � r3;

x3 �
1

2
�r3 � r4 � r1 � r2�;

(7)

are the Jacobi variables, suitably generalized in the case of
unequal masses, the trial wave function is sought as

 ��x1; x2; x3� � exp
�
�

X3

i
j�1

aijxi � xj

�
� � � � ; (8)

where the ellipses are meant for terms deduced from the
first Gaussian to restore the proper symmetry of the whole
wave function. This method is widely used in nuclear
physics and ab initio quantum chemistry [17]. The range
parameters aij are optimized numerically.

For cross-check, we also use an exponential function
borrowed from the famous paper in which the stability of
the positronium molecule was demonstrated [18], namely

 � � exp��a�r13 � r24� � b�r14 � r23�� � � � � ; (9)

but the calculation has been restricted to the case of the
flip-flop interaction.

Note that since the potential is proportional to the dis-
tance, the virial theorem states that the kinetic, hKi, and
potential, hVi, contributions to the energy E � hKi � hVi
are in ratio hVi � 2hKi. This also holds for the variational
energy if the space of trial functions is globally invariant
under rescaling, see, e.g., [8]. Hence instead of minimizing
hKi � hVi with, say, n parameters, it is sufficient to mini-
mize �4hKihVi2=27�1=3 with n� 1 parameters.

By scaling, the string constant can be set to � � 1
without loss of generality, and one of the masses also taken
as the unit of mass, m � 1. In these units, the ground-state
energy of a meson with both quark and antiquark of mass
m � 1 is E2�1; 1� � 2:338 (the opposite of the first zero of
the Airy function), and for a meson of massesm1 andm2, it
is

 E2�m1; m2� � E2�1; 1�
�

2m1m2

m1 �m2

�
�1=3

: (10)

We first consider the case of equal masses, in the
simple flip-flop model with exponential functions. The

FIG. 1 (color online). String model for three-quark confine-
ment (top), and for four quarks (bottom): flip-flop (left) and
‘‘butterfly’’ (right), an alternative configuration that is favored
when the quarks (closed circles) are well separated from the
antiquarks (open circles).
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meson energy, if calculated variationally from ��r� �
exp���r�, � being adjusted, is E2 � 2:476. This is not
very good, since the cusp in this wave function is absent
from the exact wave function. With a combination of two
such exponentials, the meson energy is improved to E02 �
2:353. Now with the wave function (9), and the flip-flop
potential, the minimal energy for the (qq �q �q ) system is
found at E4 � 4:872. The observation that E4 < 2E2, cor-
responding to stability within the simplest approximation
in each sector, is an indication that the flip-flop potential
tends to bind the system.

If this computation is now carried out with the Gaussian
wave function (8), one obtains a variational energy E4 �
4:644, which is below the threshold for spontaneous dis-
sociation. The string model slightly lowers this energy, to
E4 � 4:639.

If the calculation is done with the trial wave function (8),
but with the restriction i � j which implies that only x2

i
terms are allowed, the minimum of the energy is found
appreciably larger, E4 � 4:797 for M=m � 1 and E4 �
4:342 for M=m � 2. Comparing these results with
Table I, the four-quark states would be above the dissocia-
tion threshold. This approximation, which consists of ne-
glecting the relative angles between the different Jacobi
coordinates and therefore internal relative orbital angular
momentum, was used in Ref. [16] with a similar ‘‘string
potential,’’ leading the authors to conclude that no bound
exotic states exist (even for the sole confinement potential,
see Table I of Ref. [16]).

We now introduce some symmetry breaking in the ki-
netic energy, and consider the configurations (QQ �q �q ) and
(Q �Qq �q) with two different masses, M and m. The results
are shown in Table I. Clearly, as M=m increases, a deeper
binding is obtained for the flavor-exotic (QQ �q �q ) system.
For the hidden-flavor (Q �Qq �q), however, the stability dete-
riorates, and with our variational approximation, for
M=m * 1:2, the system becomes unbound with respect
to its lowest threshold �Q �Q� � �q �q�.1 The amount of bind-
ing, independent of any scale factor, is well measured by
the dimensionless coefficient defined by

 E4 � �1� u�T4; (11)

linking two-body and four-body energies. A plot of u is
given in Fig. 2, as a function of the mass ratio M=m.

Our main conclusions and comments are in order:
(i) With a string model including four-body forces,

inspired by the strong-coupling regime of QCD,
the ground-state energy of the system made of two
quarks and two antiquarks of equal masses is found
below the dissociation threshold.

(ii) For the flavor-exotic (QQ �q �q ), binding becomes
better when the mass ratio increases.

(iii) For the cryptoexotic (Q �Qq �q), the effect of sym-
metric breaking is opposite. In atomic physics,
while �p; p; e�; e�� is more stable than the positro-
nium molecule, the configuration �M�;M�; m�;
m�� becomes unstable (besides internal annihila-
tion) for M=m> 2:2 [8].

(iv) For �1; 2; 3; 4� � �QQ �q �q� configurations, we con-
sidered quarks (or antiquarks) of equal mass, for the
ease of computation. We neglected the effect of
statistics, i.e., our results directly apply to quarks
(or antiquarks) having different flavor and about the
same mass. Then the interquark interaction is really
an effective potential with the gluon degrees of
freedom integrated out, the analog of the nucleus-
nucleus effective interaction for diatomic mole-

TABLE I. Four-quark variational energy E4 of (QQ �q �q ) for
the different confinement models described in Eq. (4), compared
to its threshold, T4 � 2E2�1;M�, and variational energy E04 of
(Q �Qq �q) with the flip-flop model Vf, compared to its threshold
T04 � E2�M;M� � E2�1; 1�, as a function of the mass ratio.

E4 T4 E04 T04
M=m Vf Vb Vs Vf

1 4.644 5.886 4.639 4.676 4.644 4.676
2 4.211 5.300 4.206 4.248 4.313 4.194
3 4.037 5.031 4.032 4.086 4.193 3.959
4 3.941 4.868 3.936 3.998 4.117 3.811
5 3.880 4.754 3.873 3.942 4.060 3.705

FIG. 2. Dimensionless excess of binding with respect to the
threshold, u, as a function of the mass ratio M=m.

1An energy above the threshold simply means that the system
is unbound within our variational approximation, suggesting that
the minimum of the Hamiltonian is at the two-meson threshold.
It would be more difficult to find an approximate mass for a
possible meson-meson resonance.
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cules in atomic physics. For genuinely identical
quarks, another approach is possible, where each
component of the interaction is associated to a
specific color wave function, for instance �1; 2��3�
�3; 4�3 for the ‘‘butterfly potential,’’ �1; 3�1�2; 4�1 or
�1; 4�1�2; 3�1 for each component of the ‘‘flip-flop,’’
in an obvious notation. A formalism has been de-
veloped in Ref. [15], but it was associated to a
quadratic interaction, and hence the results are not
directly comparable to ours.

(v) The stability of four-quark states is demonstrated
using a rather simple wave function. However, the
dependence upon the angle between the Jacobi var-
iables is crucial. Its neglect explains why stability
was missed in earlier investigations.

(vi) It is delicate to compute the connected-string con-
tribution (butterfly) to the potential, but this is not
rewarding, as the dynamics of binding is dominated
by the simple flip-flop term.

(vii) It would be interesting to analyze the results of
lattice QCD in terms of the strength parameters
associated to our string potential, and also in terms
of departures from this simple ansatz. For a dis-
cussion on the multiquark interaction on lattice,
see, e.g., [19].

In brief, the question of saturation raised in the early
days of the quark model looks even more open today.
Chromoelectric models based on simple pairwise forces
(2) do not bind tetraquarks, except in the limit of high mass
ratios for (QQ �q �q ). Our result indicates that with a more
plausible scenario for the spin-independent potential, the
starting point is stability.

The present study is focused on the role of confining
forces alone, to demonstrate that a string model of con-
finement leads to results which differ qualitatively from
these obtained from additive pairwise potentials. It remains
to examine whether the necessary refinements will spoil or
improve this binding. Among them, let us mention: rela-
tivistic effects, spin-dependent terms, Fermi statistics for
identical quarks, long-range Yukawa forces between clus-
ters (by itself this mechanism might produce binding, as
shown in the ‘‘molecular’’ models of the X(3872) [20]).
Although the many-body confinement forces discussed in
this paper play a role for any four-quark system, their
contribution to generate binding should be more evident
for quarks of the second generation. For light quarks or
antiquarks, chromomagnetic effects or their analogs in
chiral dynamics are important and presumably dominate
the issue of stability; if the threshold includes a pion, it is
obviously difficult to imagine a four-quark state below that
threshold. For very heavy quarks, the Coulomb term domi-
nates the spin-independent interaction: the problem of
stability belongs then to a well-studied class of models
with additive pairwise forces [7]. It is hoped that the
encouraging results obtained with the string model for
confinement will stimulate intensive investigations of mul-
tiquark systems in more refined constituent quark models
with phenomenological applications to hadron spectros-
copy. It is our intent to participate to this enterprise.
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