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The shear viscosity � of QCD in the hadronic phase is computed by the coupled Boltzmann equations
of pions and nucleons in low temperatures and low baryon-number densities. The � to entropy density
ratio �=s maps out the nuclear gas-liquid phase transition by forming a valley tracing the phase transition
line in the temperature-chemical potential plane. When the phase transition turns into a crossover, the �=s
valley gradually disappears. We suspect the general feature for a first-order phase transition is that �=s has
a discontinuity in the bottom of the �=s valley. The discontinuity coincides with the phase transition line
and ends at the critical point. Beyond the critical point, a smooth �=s valley is seen. However, the valley
could disappear further away from the critical point. The �=s measurements might provide an alternative
to identify the critical points.
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I. INTRODUCTION

Shear viscosity � is a transport coefficient which has
recently been attracting lots of attention. It characterizes
how strongly particles interact and move collectively in a
many-body system. In general, the stronger the interpar-
ticle interaction, the smaller the shear viscosity. It is con-
jectured [1] that, no matter how strong the interparticle
interaction is, the shear viscosity to entropy density s ratio
has a minimum bound 1=4�, i.e., �=s � 1=4� in any
system. The bound was motivated by the uncertainty prin-
ciple and the observation that �=s � 1=4� for a large class
of strongly interacting quantum field theories whose dual
descriptions in string theory involve black holes in anti–
de Sitter space [2–5]. In Ref. [1], supporting evidence of
the conjecture was given for matters like H2O, He, and N.
Their �=s curves reach their minima near the gas-liquid
phase transitions with the bound well satisfied. Recently,
�=s close to the minimum bound was found in relativistic
heavy ion collisions [6–8] (and in lattice simulations of a
gluon plasma [9]) just above the deconfinement tempera-
ture Tc (� 170 MeV at zero baryon density [10]). This
suggests the quark gluon plasma (QGP) is strongly inter-
acting at this temperature, which is quite different from the
traditional picture of weakly interacting QGP.1 (However,
see Ref. [19] for a different interpretation.) Also, �=s close
to the minimum bound was found in cold fermionic atoms
in the infinite scattering length limit [20]. A relation be-
tween �=s and the jet quenching parameter in QGP was
proposed in Ref. [21].

In Refs. [22,23], it was found that �=s of QCD in the
confinement and deconfinement phases is qualitatively
different. When T < Tc (the confinement phase), �=s is
monotonically decreasing in T because the system is domi-
nated by Goldstone bosons which interact more weakly at
lower T. When T > Tc (the deconfinement phase), �=s is

monotonically increasing in T because the interaction
between quarks and gluons is weaker at higher T due to
asymptotic freedom. It makes perfect sense to have the
phase transition from the point of view of preserving the
�=s minimum bound. This is because if the qualitative
behavior of �=s is not changed by a phase transition (or
crossover), then the bound could be violated. One con-
cludes that the minimum or valley of the �=s curve lies in
the vicinity of Tc [the extrapolation of the low (high)
temperature �=s curve sets a upper (lower) bound on Tc]
[23]. This behavior is also seen in the H2O, He, and N
systems. It was further noticed that below the critical
pressure, a cusp appears at the minimum of �=s, which
coincides with the critical temperatures [22].

In Ref. [24], it is argued that a universal minimum bound
on �=s should not exist. The counterexample given is a
system of mesons made by heavy quarks and light anti-
quarks. Since s scales linearly with the number of heavy
quark flavorNf and� is insensitive toNf, the�=s � 1=4�
bound could be violated in some special large Nf limit.
However, this system is metastable. As far as the qualita-
tive relation between Tc and the valley of�=s is concerned,
it does not matter if the minimum bound of �=s is 1=4� or
0. As long as there is a lower bound, the monotonic
behavior of �=s will be affected by the bound.

In this manuscript, we extend the discussion of the �=s
of QCD in the confinement phase at zero baryon chemical
potential � [23] to finite � and study its relation to the
QCD phase diagram. String theory methods give �=s �
1=4� for N � 4 supersymmetric theories with finite R-
charge density, suggesting the minimum bound is indepen-
dent of�. For QCD, the fermion sign problem (the fermion
determinant is not positive definite) makes the current
lattice QCD methods inapplicable in the low T and finite
� regime. An alternative is to use effective field theory
(EFT). Reliable results using EFT in hadronic degrees of
freedom can be obtained when both T and � are small. At
higher � (with jkFaj � 1, where kF denotes the Fermi
momentum and a is the nucleon-nucleon scattering length)

1See also [11–13]. For discussions of the possible microscopic
structure of such a state, see [14–18]

PHYSICAL REVIEW D 76, 114011 (2007)

1550-7998=2007=76(11)=114011(8) 114011-1 © 2007 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.76.114011


the problem becomes nonperturbative in coupling and
mean-field treatments are not sufficient. (It is essentially
the same type of problem as in cold fermionic atoms near
the infinite scattering length limit.) Nonperturbative com-
putations of the EFTon the lattice are free from the fermion
sign problem at the leading order (LO) with only non-
derivative contact interactions [25]. But this theory is
suitable only in low T and low density systems. For the
nuclear matter problem, the inclusion of one pion exchange
will reintroduce the sign problem. However, the sign prob-
lem is claimed to be mild and lattice simulations are still
possible [26]. The computation of � using lattice nuclear
EFT has not been carried out before. Although � is asso-
ciated with real time response to perturbations, it can be
reconstructed through the spectral function computed on
the Euclidean lattice [9,27].

As an exploratory work, we compute � using coupled
Boltzmann equations for a system of a pion � and nucleon
N while the entropy s is computed in equilibrium with
particle interactions neglected. Higher resonances such as
kaons and delta resonances are neglected because their
masses are much larger than the range of T and� explored
here. The delta resonances, however, could couple to �N
strongly. But putting delta in the intermediate states in �N
scattering only changes �=s by less than 8%. Thus,
although this approach will not give accurate �=s in the
regime dominated by near threshold NN interaction, for
most of the regime we are exploring, our result should be
robust.

II. LINEARIZED BOLTZMANN EQUATION FOR
LOW ENERGY QCD

We are interested in the hadronic phase of QCD with
nonzero baryon-number chemical potential �. For refer-
ence, a schematic QCD phase diagram from a recent
review [28] is shown in Fig. 1. The detailed structures of
the quark matter phases are still unclear. When �� mN
( � 938 MeV, the nucleon mass) the nucleon population is
exponentially suppressed. The dominant degrees of free-
dom are the lightest hadrons—the pions. The pion mass
m��� 139 MeV� is much lighter than the mass of the next

lightest hadron—the kaon whose mass is 495 MeV. Given
that Tc is only & 170 MeV, it is sufficient to just consider
the pions in the calculation of thermodynamical quantities
and transport coefficients for T � Tc. When mN ��<
m�, the nucleon population is no longer suppressed com-
pared with the pion. We will limit ourselves to the low T
and low � region where only � and N are important
degrees of freedom.

The shear viscosity of a system is defined by the Kubo
formula

 � � �
1

5

Z 0

�1
dt0

Z t0

�1
dt
Z

dx3h	Tij�0�; Tij�x; t�
i; (1)

with Tij the spatial part of the off-diagonal energy momen-
tum tensor. The Kubo formula involves an infinite number
of diagrams at the LO even in the weak coupling �4 theory
[29]. However, it is proven that the summation of LO
diagrams in a weak coupling �4 theory is equivalent to
solving the linearized Boltzmann equation with tempera-
ture dependent particle masses and scattering amplitudes
[29]. We will assume the equivalence between the Kubo
formula and the Boltzmann equation still hold in our �N
system. Later we will check whether the mean free path is
still much larger than the range of interaction. This is a
requirement to apply the Boltzmann equation which makes
use of semiclassical descriptions of particles with definite
position, energy, and momentum except during brief
collisions.

In the Boltzmann equation of our �N system, the evo-
lution of the isospin averaged � and N distribution func-
tions f�;N � f�;N�x;p; t� � f�;Np �x� (functions of space,
time, and momentum) are caused by interparticle ��,
�N, and NN) collisions,
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where F��N�i � 1 f��N�i , E��N�p �
������������������������
p2 �m2

��N�

q
, and the

spin and isospin degeneracy factors g� � 3 and gN � 4.
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FIG. 1 (color online). A semiquantitative sketch of the QCD
phase diagram [28] courtesy of M. Stephanov.
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 d��N12;3p � jT �Nj
2 �2��

4�4�k1 � k2 � k3 � p�

24EN1 E
�
2 E

N
3 E

�
p

Y3

i�1

d3ki

�2��3
;

(4)

where T �N is the �N scattering amplitude with momenta
1, 2! 3, p. The �� and NN weighted integration
measures are given analogously. We use the LO chiral
perturbation theory (�PT) [30–33] result for the isospin
averaged �� scattering amplitude in terms of Mandelstam
variables (s, t, and u)

 jT ��j
2 �

1

9f4
�
	21m4

� � 9s2 � 24m2
�s� 3�t� u�2
; (5)

where f� � 93 MeV. The isospin averaged NN scattering
amplitudes are described by effective range expansion
[34]. In the center of mass (CM) frame
 

jT NNj
2 � 3�4�mN�

2

���������� 1

a1
�

1

2
r1p2 � ip

���������2

�

��������� 1

a3
�

1

2
r3p2 � ip

���������2
�
; (6)

where p is the magnitude of the nucleon momentum in the
CM frame and a1�3� and r1�3� are the spin singlet (triplet)
scattering length and effective range, respectively.
a1 � �17:9,2 a3 � 5:42, r1 � 2:77, and r3 � 1:76, all in
units of fm. Note that near the threshold (p � 0), jT NNj

2 is
proportional to a2

1 � a
2
3 which is greatly enhanced by the

large scattering lengths. The interaction is smaller away
from the threshold.

The �N scattering [��q1�N�p1� ! ��q2�N�p2�] ampli-
tude is also given by �PT [35]. It is known that the delta
resonance is heavier than the nucleon by � � 294 MeV,
so its density is negligible compared with the nucleon in
the range of T and � that we are considering. However, it
could contribute to the �N scattering intermediate states
through the tails of thermal distributions. Thus, we also
include it to study the effects of baryon resonances. In the
CM frame
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(7)

where g�N� � 1:05 is the �� N �� coupling, gA �
1:26 is the �N coupling constant, � � 120 MeV is the
delta width, EN is the nucleon energy, q is the magnitude of
pion momentum, � is the angle between q1 and q2, and! is
the pion energy. Formally the delta width � is a higher-
order effect in �PT. This power counting works fine in the
region below the delta resonance threshold. However, in
our case, ! can be greater than � in the thermal distribu-
tions. Thus, we have included � in the LO expression as a
regulator. The thermal corrections for ��, �N scattering
amplitudes and particle masses are higher order in �PT.
The T dependence inNN scattering amplitude is also small
at low T. Because the thermal correction for the inverse
scattering length scales as T which is much smaller than
the thermal momentum �

�����������
mNT
p

, it can be neglected.

In local thermal equilibrium, the distribution functions
are �f�p �x� � �e

��x�V��x�p� � 1��1, where ��x� is the inverse
temperature, V��x� is the four velocity of the fluid at the
space-time point x, and ~p� � �ENp ��;p� in the V�x� � 0
frame. A small deviation of fp from local equilibrium can
be parametrized as

 flp�x� � �flp�x�	1� �Flp�x��lp�x�
; l � �;N; (8)

with �F��N�i � 1 �f��N�i . The energy momentum tensor is

 T�	�x� �
Z d3p
�2��3

p�p	

�g�f�p �x�
E�p

�
gNf

N
p �x�

ENp

�
: (9)

We will choose the frame with zero fluid velocity V�x� � 0
at the point x. This implies @	V0 � 0 after taking a deriva-
tive on V��x�V

��x� � 1. Furthermore, the conservation
law at equilibrium @�T�	j�p�0 � 0 allows us to replace

2We have used the isospin averaged scattering length defined
as a2

1 � �a
2
nn � a

2
np � a

2
pp�=3.
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@t��x� and @tV�x� by terms proportional to r � V�x� and
r��x�. Thus, to the first order in a derivative expansion,
�lp�x� can be parametrized as

 

�lp�x�

��x�
� Al�p�r � V�x� � Blij�p�

�

�
riVj�x� � rjVi�x�

2
�
�ij
3
r � V�x�

�
;

Blij�p� � Bl�p�
�
p̂ip̂j �

1

3
�ij

�
;

(10)

where i and j are spatial indices. A and B are functions of x
and p. However, we have suppressed the x dependence.

Substituting Eq. (10) into the Boltzmann equation
Eq. (2), one obtains a linearized equation for B�:
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N
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The analogous equation for BN is obtained by replacing
�$ N on the right-hand side of the above equation. There
are two other integral equations involving Al�p�r � V�x�
which are related to the bulk viscosity 
 . They will not be
treated in this work.

In fluid dynamics the energy-momentum tensor at equi-
librium depends on pressure P�x� and energy density ��x�
as T�0��	�x� � fP�x� � ��x�gV��x�V	�x� � P�x���	. A small
deviation away from equilibrium gives an additional con-
tribution to T�	 � T�0��	 � �T�	, whose spatial components
define the shear and bulk viscosity,
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3
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�
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Comparing the above definition with Eqs. (9) and (10), we
obtain

 � � g�L
�	B�
 � gNL

N	BN
; Ll	Bl


�
�
15

Z d3pp2

�2��3Ekp
�flp �FlpB
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Now one sees immediately that if all the ��, �N, and NN
scattering cross sections are reduced by a factor �, then
Eq. (11) implies the Bl functions will be � times larger.
Then by Eq. (13), � will be � times larger as well. This is
the nonperturbative feature of the Boltzmann equation. It
gives a divergent � for a noninteracting theory.

Contracting both sides of Eq. (11) by �p̂ip̂j � �ij=3� and
applying it to Eq. (13) yields
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ig � 	�$ N
: (14)

To compute �, one can just solve B��N��p� from
Eq. (11). But here we follow the approach outlined in
Ref. [36,37] to assume that B��N��p� is a smooth function
which can be expanded using a specific set of orthogonal
polynomials:
 

Bl�p� � jpjy
X1
r�0

blrB
�r�
l �z�p��

�
X1
r�0

blr ~B�r�l �z�p��; l � �;N; (15)

where B�r�l �z� is a polynomial up to zr and blr is its coeffi-
cient. The overall factor jpjy will be chosen by trial and
error to get the fastest convergence. We find that using
y � 1:89 and z�p� � jpj, the series converges rather rap-
idly. The orthogonality condition

 

�
15

Z d3p
�2��3

jpj2�y

Elp
�flp �FlpB

�r�
l �z�B

�s�
l �z� � L�r�l �r;s (16)

can be used to construct the B�r�l �z� polynomials up to
normalization constants. For simplicity, we will choose

 B�0�l �z� � 1: (17)
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With this setup, Eqs. (13) and (17) yield

 � �
X
r

	g�b�r L
�r�
� � gNbNr L

�r�
N 
�0;r; (18)

while Eq. (14) yields
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The b�r ’s and bNr ’s are functions of � and T. In general
they are independent of each other. Thus the above two
equations yield

 �r;0
L�0��
L�0�N

 !
�
X
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� �
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N
s
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where the matrix elements are given by

 ��rs � h ~B�r�� jG��	 ~B�s�� 
i �
gN
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~B�s�� 
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�Nrs � h ~B�r�� jG�N
2 	

~B�s�N 
i;

NNrs � h ~B�r�N jG
NN	 ~B�s�N 
i �

g�
gN
h ~B�r�N jG

N�
1 	

~B�s�N 
i;

N�rs � h ~B�r�N jG
N�
2 	

~B�s�� 
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(21)

The matrix equation in Eq. (20) allows us to solve for bs
and obtain the shear viscosity. Since the expansion in
Eq. (15) converges rapidly, one does not need to keep
many terms to solve for �. If only the s � 0 term is kept,
then

 � ’ L�0��
L�0�N

 !
T ��00 �N00

N�00 NN00

� �
�1 L�0��

L�0�N

 !
: (22)

The computation of the entropy density s is more
straightforward since s, unlike �, does not diverge when
particle interactions are neglected. The contributions from
�� and �N scattering are perturbative and are higher-
order effects in �PT. The NN contribution is also pertur-
bative at low�, but it becomes nonperturbative at� � mN
and low T. In this regime, the system is governed by near
threshold NN interaction. With that limitation in mind, we
compute s in equilibrium with particle interactions ne-
glected:

 s � ��2 @
@�

g� logZ� � gN logZN
�

; (23)

where the partition function Z��N� for pions (nucleons) is

 

logZ��N�
�

� �
1

�

Z d3p
�2��3

logf1� e�� ~E��N�p g; (24)

with ~E�p � E�p and ~ENp � ENp ��, up to temperature in-
dependent terms.

III. �=s AND THE QCD PHASE DIAGRAM

In Fig. 2, �=s as a function of T and� is shown as a 3-D
plot and a contour plot. Note that at the corner of large �
and large T, the system is no longer in the hadronic phase.
Thus, the result should be discarded there. In general �=s
is decreasing in T except when � ’ mN and T < 30 MeV.
(This regime is blown up in Fig. 3 and will be studied later.)
There are some interesting structures at larger�, but�=s is
� independent when �< 500 MeV. This is because when
�� mN the nucleons only exist through particle-
antiparticle pair creations, thus they are highly suppressed.
The �=s is determined by the pion gas which is � inde-
pendent. Our result just reproduces the � � 0 result of
Ref. [23] (see [36–39] for earlier results) in this regime.

When �>mN �m� � 800 MeV, the nucleon popula-
tion is no longer suppressed compared with the pion popu-
lation and when � * mN , the nucleons become the
dominant degrees of freedom. Numerically �=s is domi-
nated by the nucleon contributions when �> 800 MeV. It
is decreasing in both T and � until � ’ mN . This is

FIG. 2 (color online). �=s of QCD as a function of T and �
shown as a 3-D plot (a) and a contour plot (b). Note that the
corner of large � and large T should be discarded since it is not
in the hadronic phase.
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because s is increasing in both T and � while � is getting
smaller at higher � (larger nucleon population) and lower
T (stronger interaction, closer to the interaction threshold).
500–800 MeV in � is the transition between the � and N
dominant regimes. The largest effect of the delta resonance
is a 48% increase of � at T ’ 50 MeV and � ’ 600 MeV.
The effect is reduced to be less than 10% outside the 300–
800 MeV window in �.

Now let us focus on the � ’ mN and T < 30 MeV
region in the �=s plot. Two 3-D plots viewed from differ-
ent angles are shown in Fig. 3(a) and 3(b)and a contour plot
is shown in Fig. 3(c). One clearly sees that �=s maps out
the nuclear gas-liquid phase transition shown in Fig. 1 by
forming a valley tracing the nuclear gas-liquid phase tran-
sition line in the T �� plane. When the phase transition
turns into a crossover at larger T, the valley also gradually
disappears at around 30 MeV. This result is encouraging.

However, even though the gross features of the phase
transition are mapped out by the �=s valley nicely, some
details are not correct. First, since the density is discon-
tinuous across the first-order phase transition, �, s, and
�=s are likely to be discontinuous across the phase tran-
sition as observed in H2O, He, and N systems in Ref. [22].
This discontinuity, which defines the critical chemical
potential �c, should lie at the bottom of the �=s valley.
Second, the position of �c suggested by our result is
not correct. Near T � 0, one expects �c ’ mN � hBi,
where hBi is the binding energy per nucleon, but we have
�c >mN .

It is quite obvious that our treatment of s is very poor
near the phase transition. However, we have not pursued
other treatments like the mean-field approximation in this
work because it is known that the approximation is insuf-
ficient when jkFaj � 1. For the same reason, the compu-

s

(MeV)

T (MeV)

(a) (b)

(MeV)

T (MeV)

(c)

(MeV)
T(MeV)

s

s

FIG. 3 (color online). �=s of QCD near the nuclear gas-liquid phase transition shown as 3-D plots (a) and (b), viewed from different
angles, and a contour plot (c). The �=s maps out the nuclear gas-liquid phase transition shown in Fig. 1 by forming a valley tracing the
nuclear gas-liquid phase transition line in the T �� plane. When the phase transition turns into a crossover at larger T, the valley also
gradually disappears at around 30 MeV. There should be a discontinuity that looks like a fault in the bottom of the �=s valley that is not
seen in our approximation. The fault would lie on top of the phase transition line and end at the critical point (T � 10–15 MeV in our
result). Beyond the critical point, �=s turns into a smooth valley. The valley could disappear far away from the critical point. Similar
behavior is also seen in water shown in Fig. 4. We suspect these are general features for first-order phase transitions.
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tation of � using the Boltzmann equation might not be
justified near the bottom the valley even though the
mean free path is still bigger than the range of potential
(� 1 fm). However, the valley of � is located at �<mN

near T � 0; thus, it is possible that after reliable s is used,
�c for �=s will be in the correct position. Furthermore, the
regime in Fig. 3 is completely dominated by the nucleon
degree of freedom (�=s hardly changes with the thermal
pions completely ignored). This simplifies the problem
significantly and makes the system exhibit universal prop-
erties shared by dilute fermionic systems with large scat-
tering lengths such as cold atoms tuned to be near a
Feshbach resonance.

As mentioned above, it was observed that below the
critical pressure, �=s has a discontinuity at the critical
temperature for H2O, He, and N, and above the critical
pressure, �=s has a smooth minimum near the crossover
temperature (defined as the temperature where the density
changes rapidly) [22]. For QCD at � � 0, �=s also has a
valley near the crossover temperature [22,23]. But there is
no evidence yet to show the valley is smooth or has a
discontinuity.

We suspect �=s should be smooth in a crossover and
should have a discontinuity across a first-order phase tran-
sition. If this is correct, then in a nuclear gas-liquid tran-
sition, there should be a discontinuity looking like a fault in
the bottom of the �=s valley. The fault would lie on top of
the phase transition line and end at the critical point where
the first-order phase transition turns into a crossover. If we
look at Fig. 3(c), we would conclude that the critical point
is at T � 10–15 MeV, agreeing with 7–16 MeV from
experimental extractions [40–42]. Near the critical point,
a smooth �=s valley is seen in the crossover (like the
confinement-deconfinement crossover of QCD at � � 0);
however, the valley could disappear far away from the
critical point. We suspect these are general features of
first-order phase transitions. Indeed, this behavior is seen
in all the materials with data available in the NIST and
CODATA websites [43,44], including Ar, CO, CO2, H, He,
H2O, H2S, Kr, N, NH3, Ne, O, and Xe. As an example, �=s
of water vs. temperature in different pressures is plotted in
Fig. 4. Below the critical pressure 22.06 MPa, �=s has a
discontinuity at the minimum. Above the critical pressure,
�=s becomes smooth. Its minimum moves toward the large
T and large P direction and eventually moves out of the
plotted range, such that �=s looks like a monotonic func-
tion in T. Thus, one might use �=s measurements to
identify the first-order phase transition and the critical
point (see Refs. [22,45] for a similar point of view).

Also, for all the materials listed above except CO, the
�=s has a positive jump across the phase transition line
from the gas to the liquid phase as shown in Fig. 4. For CO,
the jump is positive at smaller pressure but becomes small
and negative at higher pressure. It is interesting to recheck
whether CO really is an anomaly. However, even without

considering CO, the sign of the �=s jump for first-order
phase transitions might not be universal, either. For QCD in
the limit of a large number of colors, the jump is negative
from the low to high temperature phases [22].

IV. CONCLUSION

We have computed the shear viscosity of QCD in the
hadronic phase by the coupled Boltzmann equations of
pions and nucleons in low temperatures and low baryon-
number densities. The ratio �=s maps out the nuclear gas-
liquid phase transition by forming a valley tracing the
phase transition line in the temperature-chemical potential
plane. When the phase transition turns into a crossover, the
�=s valley also gradually disappears. We suspect the gen-
eral feature for a first-order phase transition is that �=s has
a discontinuity in the bottom of the �=s valley. The dis-
continuity coincides with the phase transition line and ends
at the critical point. Beyond the critical point, a smooth
�=s valley is seen on the crossover side. However, the
valley could disappear far away from the critical point. The
�=s measurements might provide an alternative to identify
the critical points.
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FIG. 4. �=s of water vs temperature in different pressures.
Below the critical pressure 22.06 MPa, �=s has a discontinuity
at the minimum. Above the critical pressure, �=s becomes
smooth. Its minimum moves toward the large T and large P
direction and eventually moves out of the plotted range, such that
�=s looks like a monotonic function in T. Similar behaviors are
seen in all the materials with data available in [43,44], including
Ar, CO, CO2, H, He, H2S, Kr, N, NH3, Ne, O, and Xe.
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