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Mixings of four-quark components in the nonsinglet scalar mesons are studied in the QCD sum rules.
We propose a formulation to evaluate the cross correlators of q �q and qq �q �q operators and to define the
mixings of different Fock states in the sum rule. It is applied to the nonsinglet scalar mesons, a0 and K�0 . It
is found that the four-quark operators predict lower masses than the q �q operators and that the four-quark
states occupy about 70%–90% of the lowest mass states.
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I. INTRODUCTION

Hadrons which are not represented by minimal q �q (me-
son) or qqq (baryon) configurations are called exotics, and
�� with baryon number B � 1 and strangeness S � �1 is
the most prominent example. Recent developments in
hadron spectroscopy are largely enhanced by the discovery
of the pentaquark �� [1]. The LEPS group, who first
observed a peak in the NK spectrum produced by the
SPring-8 photon beam, has confirmed the resonance in
their succeeding experiment [2], while many others have
been unsuccessful in producing the resonance in various
types of experiments [3]. While experimental efforts are
obviously needed now, a large number of theoretical stud-
ies have been carried out to explain the mass and the width
of ��, as well as its structure and reactions. At the same
time, various new types of exotic hadrons have been pro-
posed and examined. In fact, the spectroscopy of old
(ordinary) hadrons has been reexamined, and various pos-
sibilities of multiquark components of hadrons have been
pointed out. Among them, the possible four-quark struc-
tures of the scalar mesons are not new, but rather an old
idea [4,5]. The (nonrelativistic) quark model based on
SU�6� �O�3� symmetry does not easily account for the
mass pattern of the lowest-lying scalar-meson nonet,
[��600�; a0�980�; f0�980�; K�0�800�]. (K�0 has been indi-
cated in K� final states in J= and D-meson decays, but
has not yet been established [6].) The expected mass order-
ing as q �q states would be m��� �m�a0�<m�f0�, if we
assume ideal mixing, i.e., �� u �u�d �d��

2
p , a0 �

u �u�d �d��
2
p , and

f0 � s�s. This pattern does not agree with the one from
experiment. Furthermore, while the scalar mesons are
classified as 3P0 states, their spin-orbit partners J � 1
and 2 states are not observed in their vicinity.

A possible solution to this puzzle is to consider four-
quark exotic states for the scalar mesons [4]. Suppose that
diquarks with flavor 3, color 3, and spin 0, i.e.,

 U � � �d �s�S�0;C�3;f�3; D � � �s �u�S�0;C�3;f�3;

S � � �u �d�S�0;C�3;f�3;
(1)

are the building blocks of the scalar mesons. Then the
scalar nonet in the ideal mixing may appear as
 

�� S �S� �ud�� �u �d�;

a0 �
1���
2
p �U �U �D �D� �

1���
2
p 	�ds�� �d �s� � �su���s �u�
;

f0 �
1���
2
p �U �U �D �D� �

1���
2
p 	�ds�� �d �s� � �su���s �u�
:

Then one sees that the strange-quark counting successfully
predicts the observed mass pattern: m���<m�a0� �
m�f0�. It also explains why the J � 0 state is isolated
from J � 1 and 2 partners and thus helps to explain
anomalies in the scalar-meson nonets. There are other
hadrons which are pointed out to have possible exotic
multiquark components, such as D�s , X�3872�, and
��1405�, where the last one may be a baryon resonance
composed of 5 quarks [7–11].

Does the QCD dynamics allow such states? We actually
have a simple reasoning why the scalar mesons have
significant four-quark components. As q �q states, the scalar
mesons, which have positive parity, must contain orbital
excitation L � 1 (P-wave mesons). It is generally accepted
that the orbital excitation in the quark model requires
additional 500 MeV, for instance, as is seen from the
mass differences between the positive- and the negative-
parity baryons; N�1535� � N�940�. On the other hand, the
four-quark components, qq �q �q , may be realized in L � 0
without orbital excitation and thus have an advantage over
the P-wave excited states. In fact, the cost of having an
extra q �q pair may be about 500 MeV; the average mass of
� and � mesons. In terms of the diquarks, the combination
of two scalar diquarks in L � 0 is quite preferable in the
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standard quark model and may easily reproduce the ob-
served spectrum of the scalar mesons. Therefore it is quite
interesting and important to answer the question whether
QCD indeed gives multiquark states a lower energy and
induces mixings of the different Fock components.

Our purpose in this paper is to study the possible mixing
of different Fock components in the QCD-sum-rule ap-
proach. It is important to establish a well-controlled for-
mulation of the mixings of two (or more) types of operators
in producing hadrons from the vacuum. We also examine
the definition of the Fock-state-mixing parameters so that
we can compare the results with the predictions of the
quark models. In this paper, we focus on the four-quark
components of the flavor nonsinglet scalar mesons, a0 and
K�0 , and demonstrate how our formulation works in this
case.

In Sec. II, we present the basic ideas of the QCD-sum-
rule approach [12,13] and give the interpolating field op-
erators corresponding to the q �q and qq �q �q components of
the scalar mesons. In Sec. III, we consider the definition of
the mixing parameters of the two Fock components. Two
distinct methods of defining the mixing parameters are
presented. In Sec. IV, we give the results of the sum rules
and study their significances. The conclusion is given in
Sec. V.

II. THE QCD SUM RULES

The sum rule is obtained by expressing the two-point
function,

 ��p2� � i
Z
d4xeipxh0jT	J�x�Jy�0�
j0i; (2)

in two ways. One of them is based on the operator product
expansion (OPE), where Eq. (2) is calculated in deep
Euclidean region (� p2 ! 1) and is described in terms
of the QCD parameters, such as the quark condensate h �qqi,
the gluon condensate h�s�

�1G2i, the current-quark
masses mq, and so on. The other one is based on a phe-
nomenological parametrization of the spectral function.
The spectral function at the physical region (p2 > 0) is
assumed to have a sharp-peak resonance at p2 � m2 and
continuum at p2 > sth:

 �phen�p
2� � j�j2��p2 �m2� � ��p2 � sth��OPE�p

2�: (3)

The sum rule is obtained by matching the two expressions
so that the mass of the resonance, m, and the other phe-
nomenological parameters can be determined from the
QCD parameters. The two expressions of the correlators
are connected by a dispersion relation. To simplify the sum
rule, we approximate the continuum spectrum as the same
form of the spectral function on the OPE side.

We further apply the Borel transformation, which is

 B � lim
�p2;n!1

��p2�n�1

n!

�
d

dp2

�
n
; (4)

where the limit is taken with M2 � �p2

n fixed. It suppresses
large-p2 region by the factor of e�p

2=M2
, and thus the pole

contribution is enhanced. Because of the p2 derivatives, the
subtraction terms vanish. The Borel transformation also
suppresses the effects of the higher-dimensional terms in
the OPE.

We employ the following local operators for a�0 :

 J2�x� � � �ua�x�da�x��;

J4�x� � �abc�dec�dTa �x�C	5sb�x��� �sd�x�	5C �uTe �x��;
(5)

where a; b; . . . represent the color and C � i	2	0. The
two-quark operator, J2, is uniquely determined, while a
specific four-quark operator, J4, is taken so as to consist of
two 0�-diquark operators. The flavor structure of J4 is
arranged to be �UD, and thus identical to J2. Similarly,
the two-quark and the four-quark operators for K�0 are
given by the SUf�3� rotation from the fields for a0, i.e.,
u! d, d! s, s! u in Eq. (5).

The number of independent four-quark operators is dis-
cussed in a previous paper [14]. There are two kinds of
flavor-octet four-quark operators: i.e., �3c � 3c and 6c � �6c.
Each kind allows five independent operators; thus alto-
gether there are ten possible operators.

It is, however, difficult to find the most suitable operator
for the QCD sum rule of the scalar mesons. In Ref. [14], the
authors attempt to find the best combination. It is interest-
ing to employ such an operator for the present method,
while the computation may be much more complicated.

Instead, as the first attempt, we employ the simplest
operator composed of the �3f scalar diquarks, JP � 0�

and C � �3. The scalar diquark is the one that is favored
by both perturbative and nonperturbative interactions of
quarks in QCD. Perturbative one-gluon exchange gives an
attraction to the scalar diquark comparable to that in the
color-singlet �qq system. On the other hand, as a nonper-
turbative interaction, the instanton induced interaction,
which is conjectured to be responsible for spontaneous
breaking of chiral symmetry in the QCD vacuum, is
strongly attractive in the scalar diquark channel as well.
Thus, the operator in Eq. (5) is a suitable choice for the
lowest four-quark states.

Our results of the OPE side are listed in the Appendix.
The OPE is truncated after the dimension-6 terms for
�22�p2� [see Eq. (A1)]. In order to deal with the same
order of power corrections, we expand �24�p2� [Eq. (A2)]
up to dim-9 and �44�p2� [Eq. (A3)] up to dim-12. High
dimensional operators, such as h �q �q qqi and h �q �q qqGi, are
evaluated by the vacuum-saturation approximation.

We consider the diagrams containing the q �q annihilation
in order to take into account the mixing of different Fock
states. The quark-pair annihilations are substituted by h �qqi
or h �qgs� �Gqi (see Fig. 1). Because the interpolating
fields (5) have the normal ordering, the perturbative part
of the q �q annihilation must disappear. Because the OPE is
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represented as a polynomial in x, only the zeroth order term
survives in the x! 0 limit.

III. MIXING OF FOCK STATES

The main goals of this study are to determine whether
the scalar mesons are dominated by q �q or qq �q �q , and if
they are mixed, to calculate their probabilities. It turns out
that such a mixing is not easily quantified. It would be
natural to consider the strengths of the couplings of the
two-quark and four-quark operators to the physical state
and then evaluate the mixing angle. However, such a
procedure is strongly dependent on the definition and
normalization of the local operators. Indeed, a numerical
factor can be easily hidden in the local operators and thus
the magnitudes of the coupling strengths are ambiguous.

This problem happens to be more fundamental than just
the definition of the operators. In quantum mechanics,
mixings of Fock states may occur if the Hamiltonian con-
tains terms which change the number of particles. Then the
wave function of an eigenstate can be written uniquely as a
linear combination of the Fock components, each of which
is normalized properly. In the field theory, however, the
Fock-space separation may not be unique as the number of
quarks, which is defined by the number of quarks�
number of antiquarks, is not a conserved quantum number.
One may not be able to ‘‘measure’’ the number of quarks
without ambiguity because no conserved charge corre-
sponding to the number of quarks is available. Thus we
have to consider the concept of the ‘‘number of quarks’’ in
the context of the quantum-mechanical interpretation of
the field-theoretical state.

Here, we propose two ways to define the ratio of the
Fock-space probability by taking the mixing of q �q and
qq �q �q in the scalar (a0) meson as an example.

In the first approach, we define local operators ‘‘normal-
ized’’ in the context of a full four-quark operator J4 in
Eq. (5). In fact, the four-quark operator J4 contains a q �q
component, which is obtained by contracting the �qq pair

by the quark condensate:

 J4�x� � J04�x� �
1
6h �ssiJ2�x�|�����{z�����}

J02

: (6)

We regard J02 and J04 as normalized two-quark and four-
quark fields, respectively. The quark condensate gives the
dimension of normalization. Using J02�x� and J04�x�, we
define the mixing parameter, �, by

 h0jJ02�x�ja0i � � cos�
�x�;

h0jJ04�x�ja0i � � sin�
�x�:
(7)

This definition happens to be equal to defining � so that
Ja�x� � cos�J02�x� � sin�J04�x� couples to the physical
state most strongly:

 h0jJa�x�ja0i � �
�x�; (8)

where 
�x� denotes the wave function of the center-of-
mass motion of a0 (i.e., a plane wave for a momentum
eigenstate).

Then the mixing parameter can be evaluated from the
following three correlation functions with an assumption
that the poles are at the same position:

 

1

�
Imi

Z
d4xeipxh0jT	J02�x��J

0
2�
y�0�
j0i

� ��p2 �m2�j�j2cos2�� cont;

1

�
Imi

Z
d4xeipxh0jT	J04�x��J

0
4�
y�0�
j0i

� ��p2 �m2�j�j2sin2�� cont;

1

�
Imi

Z
d4xeipxh0jT	J02�x��J

0
4�
y�0�
j0i

� ��p2 �m2�j�j2
sin2�

2
� cont:

(9)

This definition of the mixings is model independent, but it
depends on the choice of the local operators. Therefore, it
does not necessarily have a direct relation to the mixing
parameters employed in the quark models.

In order to define a mixing angle more appropriately to
the quark models, one may determine the normalization of
the operators using quark-model wave functions. For in-
stance, the local operators in Eq. (5), can be normalized to
the wave functions of q �q or qq �q �q states in the MIT bag
model:

 

j� �qq�P0
i �

i���
2
p �jPSi � jSPi� 


1���
2
p �j"#i � j#"i� 
 j �udi 


1���
3
p �abj �abi;

j�qq �q �q�S0
i � jSSSSi 


1

2
�j"#"#i � j"##"i � j#""#i � j#"#"i� 


1

2
���u���dj�� �� ��i 


1

2
���
3
p �abc�decjab �d �ei;

(10)

x

x

x

x
x

FIG. 1. The annihilation diagrams.
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where �;�; . . . represent the flavor and a; b; . . . represent
the color. Then we compute the matrix elements,
 

h0jJ2�0�j� �qq�P0
i � �2
�0�;

h0jJ4�0�j�qq �q �q�S0
i � �4
�0�;

(11)

where 
�0� denotes the center-of-mass wave function of
the bag-model state. Now, assuming the bag-model states
(with definite number of quarks) are normalized properly,
one can use �2 and �4 for the normalizations of the
operators J2 and J4, respectively.

In calculating the mixing parameter, one needs only the
ratio of �2 and �4, which is given by
 

�4

�2
� �

i
4�

fN 4�s1=2�g
4

N 2�s1=2�N 2�p1=2�
� �0:24i

R3
2

R6
4

;

N n�S1=2� �
ERn

R3=2
n jj0�ERn�j

1�������������������������������������
2ERn��1� ERn�

p ;

N n�P1=2� �
ERn

R3=2
n jj1�ERn�j

1���������������������������������
2ERn�1� ERn�

p ;

and ERn �
� 2:04 for S1=2

3:81 for P1=2;

(12)

where R is the bag radius and gives the dimensional scale
of the normalizations of the two operators that have differ-
ent dimensions. We here assume that the bag radius of the
q �q state is the same as that of the qq �q �q state. This
assumption may be necessary to consider their mixing in
the physical state. It is, in fact, not a bad assumption

because the bag radius of the q �q state must be larger,
because of the relative P-wave motion, while that of the
four-quark state is large, because it has more quarks.

Thus, the physical state for a0 is given by the mixings of
the two states:

 ja0i � i cos�j� �qq�P0
i � sin�j�qq �q �q�S0

i

� cos�ja0�2q�i � sin�ja0�4q�i: (13)

Note that here the factor i is necessary to keep the phases of
the two- and four-quark states in accord so that the mixing
parameter can be defined as a real parameter.

In the QCD sum rules, the mixing parameter with the
bag-model normalization can be calculated as

 

Im
R
d4xeipxh0jJ04�x��J

0
4�
y�0�j0i

Im
R
d4xeipxh0jJ2�x�J

y
2 �0�j0i

�

���������4

�2

��������
2
tan2�: (14)

This definition is model dependent, but it gives a direct
interpretation associated with the quark model.

IV. RESULTS

The mass formula is given by

 m �

�����������������������������������������������������������������������������
@

@��1=M2�
B	�OPE�p

2���sth � p
2�
�M2�

B	�OPE�p2���sth � p2�
�M2�

vuut : (15)

We plot the mass of a0 in the case of pure two-quark and
pure four-quark in Fig. 2. We use the values of the QCD
parameters given in Table I, where h �uui � h �ddi � h �qqi.
We neglect the masses of the u- and the d-quarks. We see
that the Borel stability is fairly good. The positions of the
poles of the two-quark and the four-quark are close to each
other. The four-quark state is slightly lighter.

The mixing parameters from the first-normalization
method and the normalized operators according to the
bag-model wave functions are plotted for various bag radii
in Fig. 3. We observe that the mixing parameter is almost
independent of the Borel mass, M. We find that it is
independent of threshold parameter, sth, too. The weak
M-dependence of the mixing parameter, which is dimen-
sionless, is attributed to the cancellation of the
p-dependences (M-dependences) of the two-quark and
four-quark correlators. The mixing parameter from the
first-normalization method is about 70 degrees; in other
words, the four-quark component occupies 90% of a0. In
the bag model, we take the central value as R �
4:8 GeV�1, which is the bag radius determined for the
�qq component of a0 [15]. The mixing parameter for R �
5:2 GeV�1 is almost the same as the one in the first-
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M
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s 
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4quark(√sth=1.4GeV)
2quark(√sth=1.4GeV)

FIG. 2. The masses of a0 for the pure two-quark and pure four-
quark operators as functions of the Borel mass, M. The threshold
parameter,

������
sth
p

, is fixed to 1.4 GeV.

TABLE I. Standard values of the QCD parameters.

ms h �qqi h�ssi m2
0 � h �qgs� �Gqi=h �qqi h�s�

�1G2i �s

0.12 GeV ��0:23 GeV�3 0:8� h �qqi 0:8 GeV2 �0:33 GeV�4 0.4
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normalization method. We see that the dominant compo-
nent of a0 (about more than 70%) is the four-quark state for
R> 4:4 GeV�1 and for the first-normalization method.

We plot the mass of the mixed a0 for various threshold
parameter values, sth, in Fig. 4. The predicted mass ex-
tracted from the mixed operator, Ja�x�, is about
0:9–1:1 GeV, which is similar to the result from the
pure-four-quark operator given in Fig. 2.

We examine how well these sum rules work. We plot the
pole contribution defined by

 

B	�OPE�p
2���sth � p

2�


B	�OPE�p
2�


; (16)

in Fig. 5. The valid Borel window is taken as the region
where the pole contribution is more than 30%. This con-
straint is weaker than the one usually adopted [13], but we

observe that the results are not sensitive to the choice of
this value. In Fig. 5, it is seen that the pole contribution for
the pure four-quark correlator is less than the one for the
pure two-quark correlator. The reason is that the OPE of
the four-quark correlator contains higher powers of p2 and
grows rapidly for large p2. The sum rule for the mixed
operator shows similar results. We set the Borel window
M< 1:1 GeV. We observe from Fig. 2 that the positions of
the poles of the two-quark and four-quark correlators begin
to separate in this region. Such Borel mass dependence is
considered as a signature of the differences in the cou-
plings of the pole state and the continuum to the two-quark
and four-quark operators. The separation at the lower Borel
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FIG. 4. Masses of a0 for three choices of the threshold pa-
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������
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p
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quark operators are mixed by the first normalization method.

FIG. 5. The pole contribution defined by Eq. (16) for a0 is
plotted as a function of the Borel mass, M, in the cases of pure
two-quark components, pure four-quark components and a mix-
ing between them. The threshold parameter,

������
sth
p

, is fixed to
1.4 GeV.
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mass indicates that the mixing of the two-quark and four-
quark states at the pole position is weak so that the two-
quark operator is occupied mainly by higher resonance/
continuum states.

The results of K�0 for pure two-quark and four-quark
components are presented in Fig. 6. As compared to the
Borel behavior of a0 in Fig. 2, the mass extracted from the
two-quark correlator for K�0 is heavier, while that of the
four-quark components lies at about the same mass as a0.
The experimental value of the K�0 mass has been reported
as about 0.84 GeV, and it seems to have a large width: about
600 MeV [6]. The scalar-nonet spectrum from our sum rule
with the four-quark component shows better agreement
with the observed values than that with the two-quark
operator. The position of the pole of K�0 for the two-quark
operators starts splitting at low M values from that of the

four-quark operators. We, however, attempt to evaluate the
mixing parameter by assuming that the positions of the
poles are at the same position. The results are shown in
Figs. 7 and 8, which correspond to Figs. 3 and 4 in the case
of a0, respectively. One sees that the four-quark component
is dominant, occupying about 70%–90% of K�0 . These
results for K�0 are similar to those for a0.

The pole contribution for K�0 is shown in Fig. 9. We
observe from Figs. 5 and 9 that the behavior is similar to
that for a0.

V. CONCLUSION

A formulation is proposed to take into account the
mixing between different Fock states in the QCD sum
rules. In order to quantify the mixing probability, one needs
the normalization of the operators. We suggest two ways:
One is to define the ‘‘normalization’’ using a multiquark
operator which couples to the ground state most strongly.
The other way is to adjust the operators to the normalized
wave functions from the MIT bag model.

We apply the formulation to a0 and K�0 which are
members of the scalar nonet. Our sum rules indicate that
70%–90% of these scalar mesons is composed of the four-
quark components. We find that K�0 is almost degenerate
with a0.

There exist several other studies of the four-quark scalar
nonet in the QCD sum rule. Two of them [14,16] are
consistent with our work in reproducing the lighter four-
quark mass than two-quark mass. In these analyses, the K�0
is predicted to have a smaller mass than a0. It should,
however, be noticed that the predicted masses depend on
the threshold parameter rather strongly. Therefore, one
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may choose the threshold so that K�0 is lighter than a0

reproducing experimental data. K�0 is a broad resonance
which is not completely established. Therefore we do not
further examine the mass difference of a0 and K�0 . Another
work [17] claims that no signal is obtained for the four-
quark scalar nonet. We note that their analysis differs from
ours in not considering the mixing diagrams, truncating
dimension in the OPE, interpolating field, and the defini-
tion of the coupling strength of ground state. An article
[18] concludes that there is no four-quark scalar nonet,
because OPE convergence and pole dominance are not
simultaneously fulfilled. We, however, confirm that the
OPE tends to converge at the dimension 12. We also note
that the pole signal significantly contributes to the spec-
trum function, although our criterion of the pole domi-
nance (i.e., larger than 30%) is less stringent than the one in
the reference (i.e., larger than 50%).

It is extremely interesting that some of the excited
hadrons are accounted for by considering exotic multi-
quark components. There are several other ‘‘anomalous’’
hadrons which may contain exotic multiquark components.
Among them, the P-wave baryons, in particular ��1405�,
are strong candidates to have five-quark components. In
another paper [19], we report the results of applying the
current method of the Fock-space mixing to the flavor-
singlet � state. Multiquark mesons may also be found in
heavy quark systems, where newly found states do not fit

well in the q �q spectrum and thus are suspected to have
four-quark components.

It is also important to examine the decay widths and the
branching ratios of those multiquark states. The mecha-
nism for the fall-apart decay in which the multiquark
hadrons dissociate into two color-singlet hadrons without
creating q �q pairs. The widths associated with the fall-apart
processes depend strongly on the quantum numbers as well
as on the configurations of the multiquarks. As QCD does
not forbid such multiquark states, the width is the key to
understand why we do not see many ‘‘exotic’’ hadrons in
nature. Their possibility should be further pursued both
experimentally and theoretically.
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APPENDIX: THE RESULT OF OPE

The results of the OPE are summarized as
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