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We analyze the static QCD potential VQCD�r� in the distance region 0:1 fm & r & 1 fm using
perturbative QCD and operator-product expansion (OPE) as basic theoretical tools. We assemble
theoretical developments up to date and perform a solid and accurate analysis. The analysis consists of
three major steps: (I) We study large-order behavior of the perturbative series of VQCD�r� analytically.
Higher-order terms are estimated by large-�0 approximation or by renormalization group, and the
renormalization scale is varied around the minimal-sensitivity scale. A “Coulomb”� linear potential
can be identified with the scale-independent and renormalon-free part of the prediction and can be
separated from the renormalon-dominating part. (II) In the frame of OPE, we define two types of
renormalization schemes for the leading Wilson coefficient. One scheme belongs to the class of
conventional factorization schemes. The other scheme belongs to a new class, which is independent of
the factorization scale, derived from a generalization of the Coulomb� linear potential of (I). The Wilson
coefficient is free from IR renormalons and IR divergences in both schemes. We study properties of the
Wilson coefficient and of the corresponding nonperturbative contribution �EUS�r� in each scheme.
(III) We compare numerically perturbative predictions of the Wilson coefficient and lattice computations
of VQCD�r� when nl � 0. We confirm either correctness or consistency (within uncertainties) of the
theoretical predictions made in (II). Then we perform fits to simultaneously determine �EUS�r� and
r0�3-loop

MS
(relation between lattice scale and �MS). As for the former quantity, we improve bounds as

compared to the previous determination; as for the latter quantity, our analysis provides a new method for
its determination. We find that (a) �EUS�r� � 0 is disfavored, and (b) r0�3-loop

MS
� 0:574� 0:042. We

elucidate the mechanism for the sensitivities and examine sources of errors in detail.
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I. INTRODUCTION

In this article, we study the QCD potential for a static
quark-antiquark (Q �Q) pair, in the distance region
0:5 GeV�1�0:1 fm� & r & 5 GeV�1�1 fm�. This region
is known to be relevant to the spectroscopy of the heavy
quarkonium states. We use perturbative QCD and operator-
product expansion (OPE) as basic theoretical tools, taking
advantage of dramatic theoretical developments that took
place in the last decade. In addition, we use recent accurate
results of lattice computations of the QCD potential.

For 30 years, the static QCD potential VQCD�r� has been
studied extensively for the purpose of elucidating the na-
ture of the interaction between a heavy quark and anti-
quark. Generally, VQCD�r� at short distances can be
computed accurately by perturbative QCD. On the other
hand, the potential shape at long distances should be
determined by nonperturbative methods, such as lattice
simulations or phenomenological potential-model analy-
ses; in the latter approach phenomenological potentials are
extracted from experimental data for the heavy quark-
onium spectra.

Computations of VQCD�r� in perturbative QCD have a
long history. At tree level, VQCD�r� is merely a Coulomb
potential, ��4=3���S=r�, arising from the one-gluon-
exchange diagram. The 1-loop correction (with massless
internal quarks) was already computed in [1,2]. The 1-loop
correction due to massive internal quarks was computed in
[3]. It took a rather long time before the 2-loop correction

(with massless internal quarks) was computed in [4]; part
of this result was corrected soon in [5]. The 2-loop correc-
tion due to massive internal quarks was computed in [6–8];
misprints in [7,8] were corrected in [9]. The logarithmic
correction at 3-loop originating from the ultrasoft scale was
first pointed out in [1] and computed in [10,11]. A
renormalization-group (RG) improvement of VQCD�r� at
next-to-next-to-leading logarithmic order (NNLL), includ-
ing the ultrasoft logarithms, was performed in [12]. (There
exist estimates of higher-order corrections to the perturba-
tive QCD potential in various methods [13–15].)1

For a long time, the perturbative QCD predictions of
VQCD�r� were not successful in the distance region relevant
to the bottomonium and charmonium states, 0:5 GeV�1 &

r & 5 GeV�1. In fact, the perturbative series turned out to
be very poorly convergent at r * 0:5 GeV�1; uncertainty
of the series is so large that one could hardly obtain a
meaningful prediction in this distance region. Even if one
tries to improve the perturbation series by certain resum-
mation prescriptions (such as RG improvement), scheme
dependence of the results turns out to be very large; hence,
one can neither obtain accurate prediction of the potential
in this distance region. For instance, the QCD potential
bends downwards at large r as compared to the Coulomb
potential if the V-scheme running coupling constant is

1Recently a 2-loop correction to the octet QCD potential has
been computed [16].
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used, whereas the potential bends upwards at large r if the
F-scheme running coupling constant is used [17]. (See e.g.
Fig. 4 of [18].) It was later pointed out that the large
uncertainty of the perturbative QCD prediction can be
understood as caused by the O��QCD� infrared (IR) renor-
malon contained in VQCD�r� [19].

Empirically it has been known that phenomenological
potentials and lattice computations of VQCD�r� are both
approximated well by the sum of a Coulomb potential
and a linear potential in the above range 0:5 GeV�1 & r &

5 GeV�1 [20]. The linear behavior of VQCD�r� at large
distances r� ��1

QCD, verified numerically by lattice simu-
lations, is consistent with the quark confinement picture.
For this reason, and given the very poor predictability of
perturbative QCD, it was often said that, while the
‘‘Coulomb’’ part of VQCD�r� (with logarithmic corrections
at short distances) is contained in the perturbative QCD
prediction, the linear part is purely nonperturbative and
absent in the perturbative QCD prediction (even at r <
��1

QCD), and that the linear potential needs to be added to the
perturbative prediction to obtain the full QCD potential.
Nevertheless, to the best of our knowledge, there was no
firm theoretical basis for this argument.

Since the discovery [21–23] of the cancellation of
O��QCD� renormalons in the total energy of a static
quark-antiquark pair Etot�r� � VQCD�r� � 2mpole, conver-
gence of the perturbative series for Etot�r� improved dras-
tically and much more accurate perturbative predictions for
the potential shape became available. It was understood
that a large uncertainty originating from the O��QCD�

renormalon in VQCD�r� can be absorbed into twice that of
the quark pole mass 2mpole. Once this is achieved, pertur-
bative uncertainty of Etot�r� is estimated to be O��3

QCDr
2�

at r & ��1
QCD [19], based on the renormalon dominance

hypothesis.
On the other hand, OPE of VQCD�r� for r	 ��1

QCD was
developed [10,24] within an effective field theory ‘‘poten-
tial nonrelativistic QCD’’ (pNRQCD) [25]. In this frame-
work, VQCD�r� is expanded in r (multipole expansion). At
each order of this expansion, short-distance contributions
are factorized into Wilson coefficients (perturbatively
computable) and long-distance contributions into matrix
elements of operators (nonperturbative quantities). The
leading nonperturbative contribution to the potential is
contained in the O�r2� term of the multipole expansion.

Subsequently, several studies [9,18,26,27] showed that
perturbative predictions for VQCD�r� agree well with phe-
nomenological potentials and lattice calculations of
VQCD�r�, once the O��QCD� renormalon contained in
VQCD�r� is cancelled. In particular, in the context of OPE,
the leading Wilson coefficient was shown to be in agree-
ment with lattice computations of VQCD�r�, after the sub-
traction of the O��QCD� renormalon [26]. Reference [28]
showed that a Borel resummation of the perturbative series

gives a potential shape which agrees with lattice results, if
the O��QCD� renormalon is properly taken into account. In
fact, these agreements hold within uncertainties of
O��3

QCDr
2� estimated from the residual renormalon. That

is, a linear potential of O��2
QCDr� at r & ��1

QCD was ruled
out numerically in the differences between the perturbative
predictions and phenomenological potentials/lattice re-
sults. These observations support the validity of the renor-
malon dominance hypothesis.

A crucial point is that, once the O��QCD� renormalon is
cancelled and the perturbative prediction is made accurate,
the perturbative potential becomes steeper than the
Coulomb potential as r increases. This feature is under-
stood, within perturbative QCD, as an effect of the running
of the strong coupling constant [18,29].

Soon after, it was shown analytically [30] that the per-
turbative QCD potential approaches a Coulomb� linear
form at large orders, up to an O��3

QCDr
2� uncertainty.

(Here and hereafter, the Coulomb potential represents a
Coulombic potential with logarithmic corrections at short
distances.) Higher-order terms were estimated by the
large-�0 approximation or by the RG equation, and a
scale-fixing prescription based on the renormalon domi-
nance hypothesis was used. The Coulomb� linear poten-
tial can be computed systematically via RG; up to NNLL,
it shows a convergence towards lattice computations of
VQCD�r�. Furthermore, the Coulomb� linear potential was
shown to coincide with the leading Wilson coefficient in
the framework of OPE, up to an O�r2� difference [31].

In this paper, we perform a precise and solid analysis, on
the basis of our previous works [30,31]. This work extends
our previous works in the following respects:

(i) We incorporate a degree of freedom for varying
renormalization scale into the analysis of [30]. In
this way, the Coulomb� linear potential is identified
with the scale-independent part of the prediction.
Details of the derivation and formulas not delivered
so far are also presented.

(ii) We promote the Coulomb� linear potential to the
leading Wilson coefficient in the framework of
OPE, taking advantage of the result of [31]. We
study properties of the Wilson coefficient and the
corresponding nonperturbative correction �EUS�r�.

In addition, we present the following analysis:
(i) We determine the nonperturbative correction

�EUS�r� using perturbative computations of the
Wilson coefficients and recent lattice data.

(ii) As a byproduct, we determine the relation between
lattice scale (Sommer scale) and �MS. This provides
a new method to determine this relation.

In this analysis, we assemble all the developments of
perturbative computations and of OPE up to date.

The organization of the paper is as follows: Sec. II is
devoted to a review: we review the current status of the
perturbative QCD computations of VQCD�r� (Sec. II A),
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convergence property of Etot�r� up to O��3
S� (Sec. II B),

large-order behavior of the perturbative series based on the
renormalon argument (Sec. II C), and the predictions of
OPE for VQCD�r� (Sec. II D). In Sec. III, we analyze the
large-order behavior of the perturbative prediction of
VQCD�r� analytically: After explaining the strategy in
Sec. III A, we present the results when the higher-order
terms are estimated by the large-�0 approximation and by
RG in Secs. III B and III C, respectively. Details of the
derivation are given through Secs. III D and III E. (The
readers may as well skip these details in the first reading.)
Section IV defines two types of renormalization schemes
for the leading Wilson coefficient in the context of OPE
(Secs. IVA and IV B) and discusses properties of the
Wilson coefficient and of the corresponding nonperturba-
tive contributions (Sec. IV C). In Sec. V we compare the
perturbative computations of the Wilson coefficient with
lattice computations of VQCD�r�. We first check consis-
tency of theoretical predictions based on OPE (Sec. VA).
Then we determine the nonperturbative contribution in
each scheme as well as the relation between lattice scale
and �MS (Secs. V B and V C). A summary and conclusions
are given in Sec. VI.

Appendix A collects the formulas necessary for the
computation of the perturbative series of the QCD poten-
tial. In Appendix B, we give a derivation of the one-
parameter integral representation of 
�PT

V �q��1. In
Appendix C, we present the analytic formula for the linear
potential up to NNLL. Methods for numerical evaluation of
the Wilson coefficient are given in Appendix D.

II. PERTURBATION SERIES AND OPE OF VQCD�r�
(REVIEW)

A. Definitions and conventions

Throughout this paper, color factors of QCD are denoted
as

 CF �
4
3; CA � NC � 3; TF �

1
2; (1)

where NC is the number of color, CF is the second Casimir
operator of the fundamental representation, CA is the sec-
ond Casimir operator of the adjoint representation, and TF
is the trace normalization of the fundamental representa-
tion of the color SU�3� group. Furthermore, we denote the
number of light quark flavors by nl. We assume that all
light quarks are massless (except in Sec. II B).

The static QCD potential is defined from an expectation
value of the Wilson loop as2

 VQCD�r� � � lim
T!1

1

iT
log
h0jTrP exp
igS

H
P dx

�A��x��j0i

h0jTr1j0i
(2)

 �
Z dd ~q

�2��d
ei ~q�~r

�
�4�CF

�V�q�

q2

�
; q � j ~qj; (3)

where P is a rectangular loop of spatial extent r and time
extent T. The second line defines the V-scheme coupling
constant, �V�q�, in momentum space. In dimensional regu-
larization, there is one temporal dimension and d � D�
1 � 3� 2� spatial dimensions.

In perturbative QCD, �V�q� is calculable in series ex-
pansion of the strong coupling constant. We denote the
perturbative evaluation of �V�q� as

 �PT
V �q� � �S���

X1
n�0

Pn�log��=q��
�
�S���

4�

�
n

(4)

 � �S�q�
X1
n�0

Pn�0�
�
�S�q�

4�

�
n
: (5)

Here, �S��� denotes the strong coupling constant renor-
malized at the renormalization scale �, defined in the
modified minimal subtraction (MS) scheme; Pn�‘� denotes
an nth-degree polynomial of ‘. In the second equality, we
set � � q using �-independence of �PT

V �q�. Equation (5)
is reduced to Eq. (4), if we insert the series expansion of
�S�q� in terms of �S���. This expansion is determined by
the RG equation

 q2 d

dq2 �S�q� � ���S�q�� � ��S�q�
X1
n��1

�n

�
�S�q�

4�

�
n�1

;

(6)

where �n represents the �n� 1�-loop coefficient of the
beta function.3 Equations (4) and (5) show that, at each
order of the expansion of �PT

V �q� in �S���, the only part of
the polynomial Pn�log��=q�� that is not determined by the
RG equation is Pn�0�.

It is known [1] that Pn�0� for n 
 3 contains IR diver-
gences. Namely, the perturbative QCD potential is IR
divergent and not well defined at and beyond O��4

S�.
There are two ways to deal with this problem. One way
is to use OPE, in which the QCD potential is factorized into
Wilson coefficients and matrix elements. The Wilson co-
efficients include only ultraviolet (UV) contributions,
hence they are computable in the perturbative expansion
in �S free from IR divergences. IR contributions are con-

2It may be less ambiguous to call this quantity the ‘‘energy
between static color sources.’’ It would make it clearer that this is
a physical quantity without renormalon ambiguities or IR diver-
gences; it also includes nonperturbative and ultrasoft
contributions.

3In dimensional regularization and the MS scheme, ��1 � 0
when the space-time dimension is different from 4; see
Appendix A, Eq. (A17).
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tained in the matrix elements which are nonperturbative
quantities. Another way is to expand the QCD potential as
a double series in �S and log�S. This is achieved by the
resummation of a certain class of diagrams (Fig. 1) as
indicated by [1]. More systematically, this can be achieved
within the pNRQCD framework [10,11,24]. We will use
both methods for regularization of IR divergences through
Secs. III, IV, and V.4

Let us explain our terminology for the order counting.
When we state ‘‘�PT

V �q� up to O��NS �,’’ we mean that we
truncate the series on the right-hand side of Eq. (4) and take
the sum for 0 � n � N � 1. We also improve the pertur-
bation series using the RG evolution of the MS coupling.5

By �PT
V �q� up to LL, NLL, NNLL, and NNNLL, we mean

that we define �PT
V �q� by Eqs. (5) and (6) and take the

sums for 0 � n � 1, 2, 3, and 4, respectively, in both
equations (i.e. 1-, 2-, 3-, and 4-loop running coupling
constants are used for �S�q�, respectively). This pro-
cedure resums logarithms of the forms �S���
�S����
log��=q��n; � � � ; �S���4
�S��� log��=q��n, respectively.

On the other hand, the IR divergences at O��4
S� and

beyond induce additional powers of log��=q� in �V�q� at
NNLL and beyond, which are not resummed by the evo-
lution of �S�q� via Eq. (6). Hence, at these orders, it is
more consistent (with respect to naive power counting) to
resum these IR logarithms (referred to usually as ultrasoft
logarithms) as well, although physical origins of the loga-
rithms are quite different. The ultrasoft (US) logarithms at
NNLL can be resummed by replacing the V-scheme cou-
pling constant as [12]

 �PT
V �q� ! �PT

V �q� �
C3
A

6�0
�S�q�3 log

�
�S�q�
�S��f�

�
; (7)

where �f denotes the factorization scale. We will examine
the resummation of US logs separately.

For n � 2, we define an � Pn�0�. For n 
 3, we include
US logs into an in addition. Explicit expressions for Pn�‘�,
an, �n up to n � 3 (except for the unknown part of a3) are
listed in Appendix A. Furthermore, for convenience, we
will denote

 � � �1=�2
0 (8)

in the following. Other formulas, useful for the evaluation
of �PT

V �q�, are collected in Appendix A as well.

B. Convergence and scale dependences of Etot�r�
up to O��3

S�

Let us demonstrate the improvement of accuracy of the
perturbative prediction for the total energy Etot�r� �
2mpole � VQCD�r� up to O��3

S�, when the cancellation of
O��QCD� renormalons is incorporated. This is achieved
(even without any knowledge of renormalons) if one reex-
presses the quark pole massmpole by the MS mass in series
expansion in �S���. Presently the perturbation series of
VQCD�r� [4,5] and mpole [33] are both known up to O��3

S�.
As an example, we take the bottomonium case:6 We

choose the MS mass of the b quark, renormalized at the
b-quark MS mass, as �mb � mMS

b �m
MS
b � � 4:190 GeV; in

internal loops, four flavors of light quarks are included with
�mu � �md � �ms � 0 and �mc � 1:243 GeV. (See the for-

mula for Eb �b
tot�r� in [9].) In Fig. 2, we fix r � 2:5 GeV�1 �

0:5 fm (in midst of the distance range of our interest) and
examine the renormalization scale (�) dependence of
Etot�r�. We see that Etot�r� is much less scale dependent
when we use the MS mass (after the cancellation of re-
normalons) than when we use the pole mass (before the
cancellation of renormalons). This shows clearly that the
perturbative prediction of Etot�r� is much more stable in the
former scheme.

We also compare the convergence behaviors of the
perturbative series of Etot�r� for the same r and when �
is fixed to the minimal-sensitivity scale [35] (the scale at
which Etot becomes least sensitive to variation of �) in the
MS-mass scheme. At r � 2:5 GeV�1, the minimal-
sensitivity scale is � � 0:90 GeV. Convergence of the
perturbation series turns out to be close to optimal for
this scale choice:7

FIG. 1. Class of diagrams contributing to the QCD potential at
O��4

S log�S�. Dashed lines represent Coulomb gluons; the curly
line represents transverse gluon.

4In our analysis in Sec. III, the regularization of IR divergen-
ces is rather a conceptual matter; there, our practical analysis
concerns only up to the orders where IR finite terms are involved.
On the other hand, in Secs. IV and V, we include the O��4

S� term
in our analysis, hence the regularization becomes practically
relevant.

5It is known that, up to NNLL, the RG-improved MS running
coupling is more convergent than the RG-improved running
coupling in the V scheme or F scheme, hence the RG improve-
ment in the MS scheme leads to a more stable prediction of the
potential shape; see [32] and Sec. 4 of [18]. For this reason, we
adopt the RG improvement in the MS scheme in this paper.

6Eb �b
tot�r� � 2mb;pole � VQCD�r� has been applied to computa-

tions of the bottomonium spectrum [34].
7In the pole-mass scheme, there exists no minimal-sensitivity

scale within a wide range of �, and the convergence behavior of
the series is qualitatively similar to Eq. (9) within this range.

Y. SUMINO PHYSICAL REVIEW D 76, 114009 (2007)

114009-4



 

Eb �b
tot�r� � 10:408� 0:275� 0:362� 0:784 GeV

�Pole-mass scheme� (9)

 

� 8:380� 1:560� 0:116� 0:022 GeV

�MS-mass scheme�: (10)

The four numbers represent the O��0
S�, O��

1
S�, O��

2
S�, and

O��3
S� terms of the series expansion in each scheme. The

O��0
S� terms represent twice the pole mass and the MS

mass, respectively. As can be seen, if we use the pole mass,
the series is not converging beyond O��1

S�, whereas in the
MS-mass scheme, the series is converging. One may fur-
ther verify that, when the series is converging (MS-mass
scheme), � dependence of Etot�r� decreases as we include
more terms of the perturbative series, whereas when the
series is diverging (pole-mass scheme),� dependence does
not decrease with increasing order. (See e.g. [36].)

We observe qualitatively the same features at different r
and for a different number of light quark flavors nl, or even
if we change values of the masses �mb, �mc. Generally, at
smaller r, Etot�r� becomes less �-dependent and more
convergent, due to the asymptotic freedom of QCD [9].

The stability against scale variation and convergence of
the perturbative series are closely connected with each
other. Formally, scale dependence vanishes at all orders
of perturbation series. This means that, for a truncated
perturbative series up to O��NS �, scale dependence is of

O��N�1
S �. Hence, the scale dependence decreases for larger

N as long as the series is converging. Thus, the truncated
perturbative series is expected to become less� dependent
with increasing order when the series is converging. It also
follows that the series is expected to be most convergent
when � is close to the minimal-sensitivity scale. This
observation, supported by the above numerical verification
up to O��3

S�, forms a basis of our analysis in Sec. III.
As already mentioned in the introduction, once Etot�r� is

expressed in terms of the MS mass and an accurate pre-
diction is obtained, it agrees well with phenomenological
potentials and lattice computations of the QCD potential in
the range of r of our interest. As more terms of the series
expansion are included, Etot�r� becomes steeper in this
range. This behavior originates from an increase of
the interquark force due to the running of the strong
coupling constant [18].8 Etot�r� up to a finite order in
perturbative expansion has a functional form 1=r�
�Polynomial of logr�, apart from an r-independent con-
stant; cf. Appendix A, Eq. (A20). On the other hand, we
see a tendency that, as we increase the order, Etot�r�
approaches phenomenological potentials/lattice results,
which are typically represented by a Coulomb� linear
potential. This observation motivates us to examine the
perturbative prediction for Etot�r� at large orders, which
will be given in Sec. III. For that analysis, we need to know
large-order behaviors of the perturbative series of Etot�r�.

C. Large-order behaviors and IR renormalons

The nature of the perturbative series of VQCD�r� and
Etot�r� at large orders, including their uncertainties, can
be understood within the argument based on renormalons.
The argument gives certain estimates of higher-order
terms, and empirically it gives good estimates even at
relatively low orders of perturbative series.

Before starting any argument on large-order behaviors,
one may be perplexed because the perturbative expansion
of VQCD�r� contains IR divergences beyond O��3

S�. For
definiteness, let us assume (conceptually) that we regular-
ize the IR divergences by expanding VQCD�r� in double
series in �S and log�S; then we identify the O��nS� term
with the sum of O��nSlogk�S� terms for all k.9

Let us denote the O��n�1
S � term as V�n�QCD�r�. According

to the renormalon argument, the leading behavior of
V�n�QCD�r� at large orders n� 1 is given by

 V�n�QCD�r� � const:� n!
�
�0�S���

2�

�
n
n�=2; (11)

up to a relative correction of O�1=n� [38]. It follows

FIG. 2 (color online). Scale dependences of Eb �b
tot�r� up to

O��3
S� at r � 2:5 GeV�1 � 0:5 fm, in the pole-mass and

MS-mass schemes. A horizontal line at 8 GeV is shown for a
guide.

8See [29,37] for a more microscopic explanation of this
feature.

9There exists evidence that renormalon dominance may be
valid in such an expansion [36].
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that jV�n�QCD�r�j becomes minimal at order n � N0 �

2�=��0�S����, while jV�n�QCD�r�j scarcely changes in the
range N0 �

������
N0

p
	 n	 N0 �

������
N0

p
. For n� N0 �

������
N0

p
,

the series diverges rapidly. (See Fig. 3, pole-mass scheme.)
Because of the divergence (the series is an asymptotic
series), there is a limitation to the achievable accuracy of
the perturbative prediction for VQCD�r�. An uncertainty of
the asymptotic series may be estimated by the size of the
terms around the minimum,

������
N0

p
� jV�N0�

QCD�r�j, which gives
an uncertainty of O��QCD� [19].

The perturbative series of Etot�r� in the pole-mass
scheme is the same as that of VQCD�r� except for the
O��0

S� term. If we reexpress Etot�r� in terms of the MS

mass, the leading behavior of V�n�QCD�r� is cancelled against
that of the perturbative series of 2mpole.10 Then the large-
order behavior of Etot�r� becomes

 E�n�tot �r� � const:� r2n!
�
�0�S���

6�

�
n
n3�=2: (12)

jE�n�tot �r�j becomes minimal at n � N1 � 6�=��0�S����
and its size scarcely changes for N1 �

������
N1

p
	 n	 N1 �������

N1

p
. As compared to Etot�r� in the pole-mass scheme, the

series converges faster and up to a larger order, but beyond
order �N1

S again the series diverges. (See Fig. 3, MS-mass
scheme.) An uncertainty of the perturbative prediction for
Etot�r� can be estimated similarly as

������
N1

p
� jE�N1�

tot �r�j �
O��3

QCDr
2� [19].

We note that each term of the perturbation series (V�n�QCD,

E�n�tot ) is dependent on the scale �. Hence, its large-order
behavior, including the order at which its size becomes
minimal [N0, N1 / 1=�S���], is also dependent on �.
The estimated uncertainty (

������
N0

p
� jV�N0�

QCD�r�j,
������
N1

p
�

jE�N1�
tot �r�j), however, is independent of �.
These estimates of large-order behaviors, according to

renormalons, follow primarily from analyses of IR sensi-
tivities of certain classes of Feynman diagrams; then the
estimates are improved and reinforced via consistency with
the RG equation [38]. The O��2k

QCD� IR renormalon, cor-
responding to the perturbative series

 cren
n �k� � const:� n!

�
�0�S���

4k�

�
n
nk�; (13)

originates typically from an integral of the form

 

Z �f

0
dq q2k�1�S�q� �

X
n

cren
n �k�; (14)

where�f � �QCD is a UV cutoff. Nevertheless, in general
contributions originate also from more complicated loop
integrals.

D. OPE of VQCD�r�

A most solid way to separate perturbative and nonper-
turbative contributions to the QCD potential is to use OPE.
OPE of the QCD potential was developed [10,24] within
pNRQCD [25], which is an effective field theory (EFT)
tailored to describe dynamics of ultrasoft gluons coupled to
a quark-antiquark (Q �Q) system, when the distance r be-
tween Q and �Q is small, and when the motions of Q and �Q
are nonrelativistic. (In the case of the QCD potential, they
are static.) Within this EFT, the QCD potential is expanded
in r (multipole expansion), when the following hierarchy
of scales exists:

 �QCD 	 �f 	
1

r
: (15)

Here, �f denotes the factorization scale. Nonperturbative
contributions to the QCD potential are factorized into
matrix elements of operators, while short-distance contri-
butions are factorized into potentials, which are in fact
Wilson coefficients. Conceptually, physics from the IR
region q < �f is contained in the former, while physics
from the UV region q >�f is contained in the latter.

Explicitly, the QCD potential is given by [24]

 VQCD�r� � VS�r� � �EUS�r�; (16)

 

�EUS�r� � �ig2
S
TF
NC

Z 1
0
dt e�i�V�r�t

� h0j ~r � ~Ea�t�’adj�t; 0�
ab ~r � ~Eb�0�j0i �O�r3�:

(17)

FIG. 3 (color online). Diagram showing the n-dependence of
jV�n�QCD�r�j (or jE�n�tot �r�j in the pole-mass scheme) [black squares]

and that of jE�n�tot �r�j in the MS-mass scheme [red squares], based
on renormalon estimates.

10In order to realize the cancellation of the leading behavior of
the perturbative series at each order of the expansion, one needs
to expand VQCD�r� and mpole in the same coupling constant
�S���. This is somewhat involved technically, since usually
VQCD�r� and mpole are expressed in terms of different coupling
constants; see [9,18,27].
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The leading short-distance contribution to VQCD�r� is given
by the singlet potential VS�r�. It is a Wilson coefficient,
which represents the potential between the static Q �Q pair
in the color-singlet state. The leading long-distance con-
tribution is contained in the matrix element in Eq. (17). It is
O�r2� in the multipole expansion. �V�r� � VO�r� � VS�r�
denotes the difference between the octet and singlet poten-
tials; ~Ea denotes the color electric field at the center of
gravity of the Q �Q system. See [24] for details.

Intuitively we may understand why the leading non-
perturbative matrix element is O�r2� as follows. As is
well known, the leading interaction (in expansion in r)
between soft gluons and a color-singlet Q �Q state of size
r is given by the dipole interaction ~r � ~Ea. It turns the color
singlet Q �Q state into a color octet Q �Q state by emission of
soft gluon(s). To return to the color singlet Q �Q state, the
color octet state needs to reabsorb the soft gluon(s), which
requires an additional dipole interaction. Thus, the leading
contribution of soft gluons to the total energy is O�r2�. See
Fig. 4.

Although �EUS�r� is O�r2� in terms of the expansion of
operators, it has an additional dependence on r through the
Wilson coefficient �V�r�. After all, we would like to know
how �EUS�r� depends on r in the region of our interest. The
leading power of r can be determined in some cases. Since,
however, the argument depends on the renormalization of
the singlet potential within pNRQCD, let us discuss this
issue first.

The Wilson coefficient VS�r� can be computed in per-
turbative expansion in �S by matching pNRQCD to QCD.
It turns out that VS�r� thus computed coincides with the
perturbative expansion of VQCD�r� (in dimensional regu-
larization); in particular, this means that VS�r� includes IR
divergences beyond O��3

S�. This result follows from a
simple argument: Formally, �EUS�r� can be computed
also in series expansion in �S. This expansion, in dimen-

sional regularization, vanishes to all orders, since all dia-
grams are given by scaleless integrals.11

On the other hand, �EUS�r� is expected to be nonzero
beyond naive perturbation theory. For instance, this can be
verified by computing �EUS�r� in pNRQCD when
�S�1=r� 	 1. According to the concept of the EFT,
VS�r� and �V�r� should be expanded in �S only after all
loop integrations are carried out. Since this theory is as-
sumed to correctly describe physics at energy scales much
below 1=r, �V�r� (	 1=r) should be kept in the denomi-
nator of the propagator 
E��V�r���1.12 Thus, if we ex-
pand all factors except �V�r� in �S in Eq. (17), �EUS�r�
becomes nonzero since �V�r� acts as an IR regulator. (One
may expand �V�r� in �S only after all the integrations are
performed. Then log�S appears, in contrast to the formal
expansion in �S, where everything is expanded before
integrations.) In this case, �EUS�r� contains UV divergen-
ces. In dimensional regularization (D � 4� 2�), they are
given as poles in �, which exactly cancel the poles corre-
sponding to the IR divergences in VS�r�. Consequently, in
the sum Eq. (16), VQCD�r� becomes finite as �! 0.

These divergences in VS�r� and �EUS�r�, respectively,
can be regarded as artefacts of dimensional regularization,
where the integral regions of virtual momenta extend from
0 to 1. If we introduce a hard cutoff to each momentum
integration, corresponding to the factorization scale �f,
VS�r� (q >�f), and �EUS�r� (q < �f), respectively,
would become finite and dependent on �f. This observa-
tion calls for renormalization of VS�r� and �EUS�r� within
pNRQCD also in dimensional regularization. For example,
VS�r� can be made finite by multiplicative renormalization,
i.e. by adding a counterterm �ZS � 1�VS�r�.

With respect to the spirit of factorization in OPE, it is
natural to subtract IR renormalons from VS�r� in a similar
manner. In [14,26], this was advocated and in practice
subtraction of (only) the O��QCD� renormalon was carried
out explicitly. The known IR renormalons of the bare VS�r�
are contained in the integral [38]13

 Z �f

0
dq

sin�qr�
qr

�PT
V �q� �

Z �f

0
dq
�
1�

q2r2

6
� � � �

�

�

�
�S�q� � a1

�
�S�q�

4�

�
2
� � � �

�
:

(18)

[Note that the perturbative expansion of the bare VS�r�

FIG. 4. Leading contribution of US gluon to �EUS�r� in
pNRQCD.

11We neglect the masses of quarks in internal loops.
12This situation is similar to the case, where one should not

expand the electron propagator by the electron mass if one wants
to describe the physics of collinear photon emission in the region
E�	 me.

13Here, we neglect the contributions of the instanton-anti-
instanton-induced singularities [38] on the positive real axis in
the Borel plane. These contributions are known to be rather
small.
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coincides with that of VQCD�r�.] As for the O��3
QCDr

2�

renormalon, it was shown that the IR renormalon contained
in the bare VS�r� and the UV renormalon contained in the
bare �EUS�r� cancel in dimensional regularization [31]. In
a hard cutoff renormalization scheme, contributions of
gluons to �EUS�r� close to the UV cutoff region q��f

can be analyzed using perturbative expansion in �S within
pNRQCD, due to the hierarchy (15). It has exactly the
structure suitable to absorb the O��3

QCDr
2� renormalon

contained in Eq. (18). Namely, in a hard cutoff scheme,
the O��3

QCDr
2� renormalon is subtracted from VS�r� and

absorbed into �EUS�r�. The �f dependences that enter as a
consequence cancel between the renormalized VS�r� and
�EUS�r� [24]. Hence, everything holds in parallel with the
case of IR divergences discussed above. Therefore, it is
appropriate to subtract from VS�r� the IR renormalons, e.g.
in the form of Eq. (18), in addition to subtracting IR
divergences, and to define a renormalized singlet potential.
(We will give explicit renormalization prescriptions in
Sec. IV.)

More generally, it is known that, in a wide class of
physical observables (whenever OPE is available), IR re-
normalons in perturbation series are deeply connected with
OPE of the corresponding physical observables. As we
have seen, renormalon uncertainties have powerlike be-
haviors in the ratio of a large scale and �QCD [in our case
�r�QCD�

k ��QCD]. In OPE, nonperturbative contributions
(matrix elements of operators) have the same powerlike
structures. Therefore, in an appropriate renormalization
prescription, IR renormalons contained in perturbative se-
ries can be subtracted from Wilson coefficients and ab-
sorbed into matrix elements in OPE, thereby leaving
Wilson coefficients free from IR renormalons. It means
that (in principle) Wilson coefficients can be computed to
arbitrary accuracy by perturbative expansion. At the same
time, renormalon ambiguities are replaced by matrix ele-
ments of operators (condensates), the values of which can
be determined by comparing to various experimental data
or results of lattice simulations.

Now we return to the discussion on the r dependence of
�EUS�r� when r	 ��1

QCD [24]. We assume that VS�r� and
�EUS�r� are renormalized in a hard cutoff scheme, accord-
ing to the above discussion. One can derive the r depen-
dence of �EUS�r� clearly when �V�r� � CA�S=r� �f

(� �QCD). Since, in this case, the exponential factor in
Eq. (17) is rapidly oscillating, we can expand the matrix
element in t. Then the matrix element reduces to a local
gluon condensate, and from purely dimensional analysis,
�EUS�r� becomes O��4

fr
3�.14 The condition �V�r� �

�f � �QCD is satisfied at sufficiently short distances.

Another case, in which the r dependence of �EUS�r� is
known, is when�f � �V�r� is satisfied, in addition to the
hierarchy (15). This condition is expected to hold at r	
��1

QCD but not for too small of r. Under this condition,
�EUS�r� is dominated by contributions of gluons from
the region �QCD, �V�r� 	 q & �f, which can be com-
puted in perturbative expansion in �S. This leads to
�EUS�r� �O��3

fr
2�.

Let us discuss the case where �f is reduced and taken
close to �QCD. This case violates the conventional hier-
archy condition (15). If �V�r� � �QCD, the matrix ele-
ment can still be reduced to the local gluon condensate, and
�EUS�r� �O��4

QCDr
3�. On the other hand, if �V�r� �

�QCD, there is no way to predict the r dependence of
�EUS�r� in a model-independent way. If �V�r� 	 �QCD,
we can expand the exponential factor in �V�r� in Eq. (17)
and find �EUS�r� �O��3

QCDr
2�.15

In the distance range of our interest, 0:1 fm & r & 1 fm,
the relation between �QCD and �V�r� is not very clear. A
rough estimate shows that, at small r within this range
(perhaps r < 0:3 fm), �V�r� � �QCD, whereas at larger r
(perhaps r > 0:3 fm), �V�r� ��QCD. However, of course,
this depends on a precise definition of �QCD and accurate
knowledge of �V�r�. It is quite probable that there exists
no �f within the above range of r such that �V�r� �
�f � �QCD can be satisfied. Therefore, if we choose
�f � �QCD, we would expect �EUS�r� �O��3

fr
2� in

the entire range 0:1 fm & r & 1 fm. On the other hand,
if we choose �f ��QCD, we conjecture that at small
distances (perhaps 0:1 fm & r & 0:3 fm), �EUS�r� �
O��4

QCDr
3�, whereas at larger distances, we cannot predict

the r dependence of �EUS�r� in a model-independent way.
To end this subsection, let us discuss what is indicated

by OPE of the QCD potential as given above. Suppose we
consider an expansion of VQCD�r� at r & ��1

QCD (in the
distance range of our interest):

 VQCD�r� �
c�1

r
� c0 � c1r� c2r

2 � � � � (19)

This is (at best) only a qualitative argument, since we know
that there are logarithmic corrections to the Coulomb
potential at short distances, and for this reason, VQCD�r�
cannot be expanded in the Laurent series. Nevertheless,
empirically the above expansion is a good one, since many
phenomenological potentials have been successfully deter-
mined, by fitting them to the experimental data of heavy
quarkonium spectra, assuming Coulomb� linear forms.
So, suppose that one may decompose VQCD�r� as above
qualitatively. Then, since the nonperturbative contribution
�EUS�r� is expected to be O�r2� (assuming �f � �V,

14Note that we may ignore �QCD in comparison to �f, since
�f � �QCD. An alternative derivation is to compute contribu-
tions of gluons from the region �QCD 	 q & �f using pertur-
bative expansion in �S.

15In this paper, we do not consider the possibility �V�r� 	
�QCD henceforth, since such large r seem to lie beyond the
applicable range of our analysis.
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�QCD), the c2r
2 term (and beyond) would come from both

VS�r� and �EUS�r�, and their relative contributions change
as we vary the factorization scale �f. On the other hand,
the Coulomb, constant, and linear terms, c�1=r� c0 �
c1r, should originate only from the perturbative prediction
of VS�r�, that is, from the perturbative prediction of
VQCD�r�. (The constant term becomes predictable pertur-
batively only when the pole masses are added to VQCD�r�
and rewritten in terms of a short-distance mass such as the
MS mass.) In particular, they should be predictable inde-
pendently of �f.

III. PERTURBATIVE QCD POTENTIAL AT LARGE
ORDERS

In this section, we present an analysis of the QCD
potential at large orders of perturbative expansion. We
separate the perturbative prediction of the QCD potential
at large orders into a scale-independent (prescription-
independent) part and scale-dependent (prescription-
dependent) part, when higher-order terms are estimated
via large-�0 approximation or via RG, and when the
renormalization scale � is varied around the minimal-
sensitivity scale.

A. Strategy and general assumptions of the analysis

We consider the perturbative QCD potential up to
O��NS �:

 VN�r� � 
VQCD�r��N � �4�CF
Z d3 ~q

�2��3
ei ~q�~r

q2 
�
PT
V �q��N:

(20)

Here and hereafter, 
X�N denotes the series expansion of X
in �S��� truncated at O��S���N�. We examine VN�r� for
N � 1. For this analysis, we need (a) an estimate for the
all-order terms of VN�r�, and (b) a scale-fixing prescription.

In the following subsections, we estimate the higher-
order terms of VN�r� using the large-�0 approximation
(Sec. III B) and using RG (Sec. III C). There is a caveat:
The former estimate does not contain IR divergences at all,
and in the latter estimate, IR divergences appear only
beyond NNLL; hence, in most of our argument, we will
discard IR divergences. Since the true higher-order terms
contain IR divergences beyond O��3

S�, we have to clarify
what we mean by our estimates of higher-order terms.
Conceptually, we assume that we have removed ambigu-
ities related to IR divergences, while keeping IR renorma-
lons in the perturbative expansion of the potential. This
seems to be possible, since, up to our current best knowl-
edge, IR divergences [1] and IR renormalons [19] con-
tained in the perturbative QCD potential stem from quite
different physical origins. As an explicit example to realize
such a situation, we may assume that we analyze the singlet
potential VS�r� instead of VQCD�r�, after subtracting IR
divergences (but not IR renormalons) via renormalization.

Alternatively, we may assume that we have regularized IR
divergences by expanding VQCD�r� in double series in �S
and log�S.

Let us explain our scale-fixing prescription (b). Since
within our estimates the perturbative series turns out to be
an asymptotic series, there exists a certain arbitrariness in
making a prediction from the large-order analysis of the
series. We will give a prediction by choosing a reasonable
scale � for each given N and then taking the limit N ! 1.
(Later we will justify our prescription by comparing the
prediction with that in OPE.) Perturbative QCD in itself
does not provide any scale-fixing procedure. In practice,
whenever a perturbative expansion up to some finite order
is given, one chooses a reasonable (range of) scale �, as
we have seen in Sec. II B. We would like to fix the scale in a
similar manner in our large-order analysis. According to
the argument given in Secs. II B and II C, if we choose a
scale � such that �S��� � 6�=��0N� is satisfied, around
this scale, VN�r� (after cancelling the leading-order renor-
malon) would become least � dependent and the perturba-
tive series would become most convergent; cf. Fig. 3. In
view of this property, we fix � such that16

 N �
6�

�0�S���
� � N1� ��� 1�: (21)

� � 1 corresponds to an optimal choice; by varying the
parameter �, we may change the scale � for a given N.
Then we consider VN�r� for N � 1 while keeping �MS
finite. (Here, we relate our scale-fixing prescription to that
of principle of minimal sensitivity [35] only weakly, as
argued above. A close examination of the relation can be
found in [39].)

An alternative way to regard this prescription is as
follows. Suppose we know the perturbative expansion of
VQCD�r� up to all orders, according to a certain estimate.
When the expansion is asymptotic for any choice of�S���,
we cannot sum all the terms. Instead, following a standard
prescription to deal with the asymptotic series, we may
truncate the series around the order where the term is close
to minimal. This gives the truncated series VN�r� with N
given by the relation equation (21).

The motivation for considering the largeN limit is that it
corresponds to the limits where the perturbative expansion
becomes well behaved (small expansion parameter) and
where the estimate of V�n�QCD�r� by renormalon contribution
becomes a better approximation around n� N. Note that
large N corresponds to small �S��� and large � due to the
above relation.

Let us further comment on some details concerning the
relation (21). (i) The relation (21) follows from the asymp-
totic form, Eq. (12), of the series independently of its
overall coefficient. Although the overall coefficient is not

16Here, we generalize the prescription of [30] by introducing an
additional parameter �, cf. [39].
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known exactly,17 other parts of Eq. (12) or (13) are con-
sidered to be solid, based on consistency with the RG
equation. Hence, the relation (21) is based on a solid part
of the renormalon estimate. (ii) The scale � fixed by the
relation (21) is independent of r. Usually it is considered
that a natural choice of the scale is related to a physical
scale, typically �� 1=r, at low orders of perturbative
expansion. Moreover, the minimal-sensitivity scales corre-
sponding to low orders of perturbative expansion, as in the
cases of Sec. II B, are known to be strongly dependent on r
[9,18]. This is, however, not expected to be the case at
large orders. It is because, in Eq. (18), contributions from
q < 1=r are dominant on the left-hand side at low orders,
whereas at large orders, the term proportional to �q2r2=6
dominates on the right-hand side of Eq. (18), hence, r2

factors out as an overall coefficient; cf. Eq. (12). (iii) Based
on the argument in Sec. II C, we may consider that an
optimal choice of � or � corresponds to the range N1 �������
N1

p
& N � N1� & N1 �

������
N1

p
in the relation (21). Then,

�! 1 as N ! 1.

B. VN�r� at large orders: large-�0 approximation

The large-�0 approximation [41] is an empirically suc-
cessful method for estimating higher-order corrections in
perturbative QCD calculations; see e.g. [33,38,42,43]. In
general, the large-�0 approximation of a physical quantity,
at a given order of perturbative expansion in �S, is defined
in the following way. We first compute the leading-order
contribution in an expansion in 1=nl, which comes
from so-called bubble chain diagrams. Then we transform
this large nl result by a simplistic replacement nl ! nl �
33=2 � ��3=2��0.

For the QCD potential, the large-�0 approximation cor-
responds to setting an � �5�0=3�n in Eq. (5) and all �n �
0 except �0 in Eq. (6). Hence, it includes only the one-loop
running of �S�q�. In this subsection, with these estimates
of the all-order terms of�PT

V �q�, we examine VN�r�, defined
above, for N � 1. The reasons for examining the large-�0

approximation are as follows. First, because this approxi-
mation leads to the renormalon dominance picture; in fact,
the renormalon dominance picture has often been dis-
cussed in this approximation. Second, the running of the
strong coupling constant makes the potential steeper at
large distances as compared to the Coulomb potential;
hence, we would like to see if the potential can be written
in a Coulomb� linear form when only the one-loop run-
ning is incorporated as a simplest case.

We define ~� � e5=6�1-loop

MS
, where

 �1-loop

MS
� � exp

�
�

2�
�0�S���

�
: (22)

In the following, we assume

 

~��1 exp
�
�
N
3�

�
	 r	 ~��1 exp

�
N
3�

�
; (23)

when we consider the double limits r! 0, N ! 1 or r!
1, N ! 1. Note that, as N ! 1, the lower bound
( ~��1e�N=�3��) and the upper bound ( ~��1eN=�3��) of r go
to 0 and 1, respectively.

First we present the result and discuss some properties
when � � 1, which corresponds to an optimal choice of
scale �. (Derivation will be given in Sec. III D.)

1. Result for � � 1

VN�r� for � � 1 and N � 1 within the large-�0 ap-
proximation can be decomposed into four parts corre-
sponding to fr�1; r0; r1; r2g terms (with logarithmic
corrections in the r�1 and r2 terms):

 V��0�
N �r�j��1 �

4CF
�0

~�v�~�r; N�; (24)

 

v�	;N� � vC�	� � B�N� � C	�D�	;N�

� �terms that vanish asN ! 1�: (25)

(i) Coulomb part:

 vC�	� � �
�
	
�

1

	

Z 1
0
dx e�x arctan

�
�=2

log�	=x�

�
;

(26)

where arctanx 2 
0; ��. The asymptotic forms are
given by

 

8<:vC�	� � �
�

2	 log�1=	� ; 	! 0

vC�	� � �
�
	 ; 	! 1

(27)

and both asymptotic forms are smoothly interpolated
in the intermediate region. The short-distance behav-
ior is consistent with the one-loop RG equation for
the QCD potential.

(ii) Constant part18:
 

B�N� � �
Z 1

0
dt
e�t

t

��
1�

3

N
t
�
N
� 1

�
� log2

�
9

8N
�

99

64N2 : (28)

The first term (integral) diverges rapidly for N ! 1

as � 3
2

�����
2�
N

q
� 3
e2=3�

N
1�O�1=N��.19

17See [40] for a method for systematically estimating the
overall coefficient.

18The O�1=N� and O�1=N2� terms in Eq. (28) are irrelevant for
N ! 1. We keep these terms in B�N� for convenience in
examining V��0�

N �r� at finite N; see Fig. 6 below.
19The integral can be expressed in terms of confluent hyper-

geometric function.

Y. SUMINO PHYSICAL REVIEW D 76, 114009 (2007)

114009-10



(iii) Linear part:

 C �
�
2
: (29)

(iv) Quadratic part:

 D�	;N� � 	2
 1
12 logN � d�	��; (30)

 

d�	� ��
Z 1

0
dx
e�x�
1� x� 1

2x
2� 1

6x
3��1� x��

x4

�
log�	=x�

log2�	=x���2=4

�
1

12

�
log

�
log2	�

�2

4

�
� log

9

2
�
E

�
;

(31)

where ��x� is the unit step function and 
E �
0:5772 . . . is the Euler constant. The asymptotic
forms of d�	� are given by

 

(
d�	� �� 1

12
2 loglog�1=	� � log9
2�
E�; 	! 0

d�	� �� 1
12
2 loglog	� log9

2�
E�; 	!1

(32)

and in the intermediate region both asymptotic
forms are smoothly interpolated.

The Coulomb [vC�	�], linear [C	], and quadratic
[D�	;N�] parts are shown in Fig. 5. The truncated potential
v�	;N� is compared with the Coulomb� linear potential
vC�	� � C	 after the constant B�N� is subtracted, for N �
10, 30, 100, in Fig. 6.20 In order to show how quickly
v�	;N� approaches vC�	� � B�N� � C	�D�	;N� as N
increases, we show their differences for several values ofN

in Fig. 7. One sees that convergence is quite good at 	 & 1
(r & ~��1) for N 
 10. (For the purpose of separating
different lines visibly, we plot potentials up to fairly large
distances in this section. Nevertheless, we stress that, in
most cases, our interests are in the region r & ~��1.21)

Although the constant part of V��0�
N �r�j��1 diverges rap-

idly as N ! 1, the divergence can be absorbed into the
quark masses in the computation of the total energy Etot�r�
(or the heavy quarkonium spectrum). Therefore, in our
analysis, we will not be concerned with the constant part
of the potential but only with the r-dependent terms.

The quadratic part of V��0�
N �r�j��1 diverges slowly as

~�3r2 logN � ~�3r2 loglog��=~��. The dependence of

FIG. 5 (color online). vC�	�, C	, and D�	;N� (N � 10, 30,
100) vs 	 for � � 1.

FIG. 7 (color online). Plots for v�	;N� � 
vC�	� � B�N� �
C	�D�	;N�� vs 	, showing convergence as N increases (� �
1). Note that the vertical scale is magnified widely as compared
to Figs. 5 and 6 for display purposes.

FIG. 6 (color online). Truncated potential after the constant
term is subtracted, v�	;N� � B�N�, (dashed line) vs 	 for N �
10, 30, 100 and � � 1. Coulomb� linear potential, vC�	� �
C	, (solid black line) is also plotted, which is hardly distinguish-
able from the N � 30 curve.

20One can find formulas convenient for computing VN�r� for a
finite but large N in Appendix A. 21Roughly speaking, one may regard ~��1 � 1 fm.
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V��0�
N �r� on N is mild (after the constant part is subtracted);

for instance, as shown in Fig. 6, the variation of v�	;N� �
B�N� is small in the range r & ~��1 as we vary N from 10
to 100; it corresponds to a variation of�=�1-loop

MS
from 30 to

3� 1014.
The Coulomb part and the linear part are finite as N !

1. In Fig. 6, we see that V��0�
N �r� is approximated fairly

well by the sum of the Coulomb part and the linear part (up
to an r-independent constant) in the region r & ~��1 when
we vary N between 10 and 100. Moreover, as long as 1

12 �

logN & O�1�, the difference between V��0�
N �r�j��1 and the

Coulomb� linear potential remains at or below O�~�3r2�
in the entire range of r. Note that v�	;N� in this figure
have the form of 1=r� �Polynomial of logr�, and a priori
it is not obvious at all that they approximate a Coulomb�
linear potential.

2. Results for � � 1

We vary � in the scale-fixing prescription equation (21)
and decompose V��0�

N �r� as in Eqs. (24) and (25). As a
salient feature, we obtain the same Coulomb� linear po-
tential, vC�	� � C	, as in the � � 1 case. On the other
hand, the constant B�N� and D�	;N� change. The latter no
longer takes a quadratic form. Let us list how D�	;N�
change with �. (See Fig. 8.)

(i) 2=3< �< 1,
D�	;N� is finite as N ! 1:

 

D�	;1� � �	3��1
Z 1

0
dx
e�x � �1� x� 1

2 x
2�

x1�3�

� Im
�

e�3�i�=2

log�	=x� � i�=2

�
: (33)

Its asymptotic forms are given by

 

D�	;1� � 	3��1 1

log	
� ���3�� sin

�
3

2
��

�
;

	! 0 or 	! 1: (34)

The asymptotic forms at 	! 0 and 	! 1 have
opposite signs. In the intermediate region D�	;1�
changes sign once. D�	;1� for � � 0:85, 0.9, 0.95
are plotted in Fig. 9.

(ii) � > 1
Even powers of 	, corresponding to IR renorma-
lons, become more divergent as we increase �:
 

D�	;N� � d2�N�	
2 � d4�N�	

4 � � � � � d��N�	
�

� �finite term asN ! 1�; (35)

where � is the largest even integer satisfying � �
3�� 1. di�N� diverges at least logarithmically
(typically exponentially) as N ! 1. It diverges
more rapidly for larger � and smaller i. The asymp-
totic form of the finite (N-independent) term as 	!
0 or 	! 1 is 	3��1 � �log correction�.

(iii) � < 2=3
D�	;N� becomes more dominant than the linear
potential C	 at short distances. We do not consider
this possibility henceforth. (� � 2=3 is marginal;
the asymptotic form Eq. (34) is valid at 	! 0 but
not at 	! 1.)

Dependence of B�N� on � is similar: It diverges more
rapidly as N ! 1 for larger �, while it becomes finite
when � < 1=3.

Thus, B�N� and D�	;N� are dependent on �, i.e. on the
choice of scale via Eq. (21); they are also divergent asN !
1 for a sufficiently large �. Namely, B�N� and D�	;N� are
dependent on the prescription we adopted to define our
prediction. It is natural to consider the prescription depen-
dence as indicating uncertainties of our prediction. In fact,
B�N� and D�	;N� are associated, respectively, with the
O��QCD� IR renormalon and O��3

QCDr
2� IR renormalon

FIG. 8 (color online). v�	;N� for different values of � and N.
(Dashed lines for � � 0:9 and dot-dashed line for � � 1:1.) For
comparison, the Coulomb� linear potential vC�	� � C	 is also
shown (solid line). Constants have been added to v�	;N� to
make them coincide with vC�	� � C	 at 	 � 0:5. FIG. 9 (color online). D�	;1� for different values of ��<1�.
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(and beyond) in VQCD�r�. We have already seen that these
renormalons induce uncertainties. On the other hand, the
Coulomb� linear part [vC�	� � C	] are independent of �
and N. Hence, vC�	� � C	 can be regarded as a genuine
part of the prediction. In this regard, we remind the reader
that there are no IR renormalons associated with the 1=r
and r terms in the QCD potential [19].

One may associate the O��3
QCDr

2� renormalon with
D�	;N� through the following observations. (1) When � �
1, the quadratic part of V��0�

N �r� diverges as ~�3r2 logN. If
the series expansion of mpole�mMS; �S� or VQCD�r� is trun-
cated at the order corresponding to the minimal term of the
LO renormalon contribution, i.e. at order N0 �

2�=��0�S�, 
mpole�N0
or 
VQCD�r��N0

diverge as ~� logN0

within the large-�0 approximation. We may compare
~� logN0 with the usual interpretation that mpole and
VQCD�r� contain O��QCD� perturbative uncertainties due
to the LO renormalons. (2) An argument similar to (1)
applies for � � 1. (3) As we will see in the next subsection,
even if we estimate higher-order terms using the RG
equation and incorporate effects of the two-loop running
and beyond, D�	;N� has a similar behavior to that in the
large-�0 approximation.

Let us further discuss questions concerning the strategy
and results of the analysis given above.

Naively, one would expect that scale dependence de-
creases as more terms of the perturbative expansion are
summed, as long as the series is converging. Is this realized
by our results? In fixed-order perturbation theory, it is a
common practice to vary the scale �, say, by a factor two,
and examine the stability of the prediction. It may be more
natural to vary� such that � changes by order

���������
1=N

p
, as we

argued at the end of Sec. III A. In either case, if we fix N in
Eq. (21), the variation in � vanishes in the large N limit. A
closer examination shows that the variation of vC�	;N� �
B�N�, corresponding to these changes of �, also vanishes
in the large N limit, as long as � is close to 1. In this sense,
our prediction becomes stable against scale variation at
large orders.

There exists an argument that the linear potential cannot
emerge in perturbative QCD: From dimensional analysis,
the coefficient of a linear potential should be nonanalytic in
�S, i.e. of order ��1-loop

MS
�2 � �2 exp
�4�=��0�S��; there-

fore, it should vanish at any order of perturbative expan-
sion. Within our large-order analysis, this argument is
circumvented as follows. rVN�r� includes terms of the
form Tn � f

�0�S���
2� log��r�gn for 0 � n � N. If we sub-

stitute the relation (21) and take the limit N ! 1 while
fixing n=N finite, it is easy to see that Tn !

��1-loop

MS
r�3�n=N . Thus, perturbative terms converge to

��1-loop

MS
r�P with positive powers 0<P< 3�. In fact, the

power P has a continuous distribution. Our result shows
that the continuous distribution can be decomposed into a

sum of fr0; r1; r2; r3�g terms, up to logarithmic corrections
(for 2=3 � � � 1). Nonanalyticity in�S enters through the
relation (21).

Thus, the characteristic feature of our large-order analy-
sis is the prescription equation (21). We may consider that
an additional input has been incorporated through the
relation (21) beyond a simple large-order analysis within
perturbative QCD. Here, we emphasize that the number of
parameters has not decreased from that of the original
perturbative expansion (�S, �, r, and N) apart from N.
(We fix �MS, r, and � finite when sending the truncation
order N ! 1.) The Coulomb� linear part, vC�	� � C	,
emerges independently of � and N in this limit. In this
sense, we consider vC�	� � C	 a genuine prediction of
perturbative QCD at large orders, within our estimate of
the higher-order terms.

C. VN�r� at large orders: RG estimates

In this subsection we examine VN�r� for large N using
RG estimates of the all-order terms of VQCD�r�. We exam-
ine three cases, corresponding to the estimates of�PT

V �q� up
to LL, NLL, and NNLL in Eqs. (5) and (6) [note that an �
Pn�0� for n � 2]:

(a) [LL] �0, a0: exact values, �n � Pn�0� � 0 (n 
 1);
(b) [NLL]�0,�1, a0, a1: exact values, �n � Pn�0� � 0

(n 
 2);
(c) [NNLL] �0, �1, �2, a0, a1, a2: exact values, �n �

Pn�0� � 0 (n 
 3).

Namely, cases (a), (b), (c), respectively, correspond to
taking the sum up to n � 0, 1, 2 in Eq. (5) and reexpanding
in �S���. From naive power counting of logarithms, one
should also include US logarithms at NNLL. We examine
them separately:

(c’) [NNLL0] Resummation of US logs is included via
Eq. (7), in addition to (c).

We assume �0, �1, �2, a0, a1, a2�exact�> 0.22 In the
standard 1-, 2-, and 3-loop RG improvement of the QCD
potential (in the MS scheme), the same all-order terms as
above are resummed; the difference of our treatment is that
the perturbative series are truncated at O��S���

N�. We
note that the estimate of higher-order behavior based on
renormalon dominance hypothesis, as given in Sec. II C, is
consistent with the above estimates, or more generally,
with the RG analysis [38]. All the results for case (a) can
be obtained from the results of the large-�0 approximation
given in the previous subsection, if we replace ~� by
�1-loop

MS
.

Below we summarize our results. (See Sec. III D for
derivation.) Similar to the previous subsection, we can

22This is the case when the number of active quark flavors is
less than 6 and all the quarks are massless.
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decompose VN�r� into four parts:

 

VN�r� � VC�r� �B�N; �� � Cr�D�r; N; ��

� �terms that vanish asN ! 1�; (36)

where

 VC�r� � �
4�CF
�0r

�
2CF
�

Im
Z
C1

dq
eiqr

qr
�PT
V �q�; (37)

 B �N; �� � lim
r!0

2CF
�

Re
Z
C1

dq eiqrf�PT
V �q� � 
�

PT
V �q��Ng;

(38)

 C �
CF
2�i

Z
C2

dq q�PT
V �q�; (39)

 D �r; N; �� � VN�r� � 
VC�r� �B�N; �� � C r�: (40)

The integral contours C1 and C2 on the complex q-plane
are displayed in Figs. 10(a) and 10(b). From the above
equations, one can see that the Coulomb and linear parts,
VC�r� and Cr, are independent of � and N, since �PT

V �q� is
independent of � and N.

The asymptotic behaviors of VC�r� for r! 0 are the
same as those of VQCD�r� in the respective cases, as deter-
mined by RG equations; the asymptotic behaviors of VC�r�
for r! 1 are given by the first term of Eq. (37) in all the
cases. Namely,
 

VC�r� � �
2�CF
�0

1

rj log��MSr�j

�
1�

�
2

logj log��MSr�j

j log��MSr�j

�
;

r! 0; (41)

 VC�r� � �
4�CF
�0r

; r! 1; (42)

where � � 0 in case (a). In the intermediate region both
asymptotic forms are smoothly interpolated.

Evaluating the integral equation (39), the coefficient of
the linear potential can be expressed analytically in
cases (a)–(c):

 C �a� �
2�CF
�0

��1-loop

MS
�2; (43)

 

C�b� �
2�CF
�0

��2-loop

MS
�2

e��

��1� ��

�

�
1�

a1

�0
��1��e�
�1� �; ��

�
; (44)

where 
�x; �� �
R
�
0 dt t

x�1e�t represents the incomplete
gamma function; see e.g. [44] for definitions of �n-loop

MS
.

In case (c), the expression for C is lengthy and is given in
Appendix C. Numerical values of C=�2

MS
for various nl are

shown in Table I.
B�N; �� and D�r; N; �� depend on � and diverge asN !

1 if � is sufficiently large. In fact, apart from the overall
normalization (and some details), behaviors of B�N; �� and
D�r; N; �� are similar to those presented in the previous
subsection. We give two examples.

(i) D�r; N; �� in case (b) with a1 � 0 and � � 1:

(a) (b)

FIG. 10. Integral contours C1 and C2 on the complex q-plane. q� denotes the Landau singularity of �S�q�. For 1-loop running, q� is a
pole; for 2- and 3-loop running, q� is a branch point. In the latter case, the branch cut is on the real axis starting from q� to �1.

TABLE I. Coefficients of the linear potential normalized by
the Lambda parameter in the MS scheme, for different values of
nl.

nl 0 1 2 3 4 5

C�a�=��1-loop

MS
�2 0.762 0.811 0.867 0.931 1.005 1.093

C�b�=��2-loop

MS
�2 0.591 0.622 0.664 0.722 0.807 0.935

C�c�=��3-loop

MS
�2 1.261 1.317 1.385 1.465 1.556 1.644
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D�b��r; N; ��j��1;a1�0 �
4CF
�0
��2-loop

MS
�3r2

�
1

12

�
3

2e

�
3�=2 1

��1� 3
2��

logN � d�b��r�2-loop

MS
�

�
; (45)

 

d�b��	� �
1

12

�
3

2e

�
3�=2 1

��1� 3
2��
�log2� 
E�

� Re
Z 1

0
ds
�

���x�
��1� x

2��
	�ise��ix=2

�
x
2e

�
x�=2
�

i
2x�3� x�

�
3

2e

�
3�=2 1

��1� 3
2��

�
x�3�is

: (46)

The asymptotic forms of d�b��	� are given by

 d�b��	� �
1

12

�
3

2e

�
3�=2 1

��1� 3
2��

�
2 logj log	j � log

9

2
� 
E

�
; 	! 0 or 	! 1; (47)

and in the intermediate region both asymptotic forms are smoothly interpolated.
(ii) D�r;1; �� in case (b) with a1 � 0 and 2=3< �< 1:

 D �b��r;1; ��ja1�0 � �
4CF
�0
��2-loop

MS
�3�r3��1 Re

Z 1
0
ds

���x�
��1� x

2��
�r�2-loop

MS
��ise��ix=2

�
x
2e

�
x�=2

��������x�3��is
: (48)

Its asymptotic forms are given by

 D �b��r;1; ��ja1�0 �
��2-loop

MS
�3�r3��1

log�r�2-loop

MS
�
�

4CF
�0

���3��

��1� 3
2���

sin
�
3

2
��

��
3�
2e

�
3��=2

; r! 0 or r! 1: (49)

The expressions when a1 � 0 or in case (c) are more
complicated and lengthy.

In Figs. 11–14, we show VN�r� for different values of N
and � in cases (b) and (c). (We set nl � 0 in these figures.)
They are compared with the Coulomb� linear potential
VC�r� � Cr. The corresponding figures in case (a) can be
obtained by the simple rescaling of Figs. 6 and 8. Apart

from the overall normalization, we see similar general
features. Most importantly, VN�r� approximates well
VC�r� � Cr at r & ��1

MS
for a reasonably wide range of �

andN. For fixed �, VN�r� becomes steeper at r * ��1
MS

asN
increases [cf. Eqs. (30) and (45)]. For fixed N, VN�r� is
steeper for larger � at r * ��1

MS
; this is because, if �S��� is

kept fixed and the truncation order is increased, all the
higher-order terms additionally included contribute with a
positive sign. An only qualitative difference between

FIG. 11 (color online). [Case (b): NLL] VN�r� for N � 10, 30,
100 and � � 1 (dashed lines). For comparison, the Coulomb�
linear potential VC�r� � Cr is also plotted (solid black line).
Constants have been added to VN�r� and VC�r� � Cr to make
them coincide at r�2-loop

MS
� 0:5. We set nl � 0.

FIG. 12 (color online). [Case (b): NLL] VN�r� for different
values of � and N. (Dashed lines for � � 0:9 and dot-dashed line
for � � 1:1.) For comparison, the Coulomb� linear potential
VC�r� � Cr is also shown (solid line). Other conventions are the
same as in Fig. 11.
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case (a) and cases (b), (c) is that, for the same value of �
and N, VN�r� is slightly steeper (in comparison to VC�r� �
Cr) at r * ��1

MS
in cases (b), (c) than in case (a). We

postpone comparisons between cases (a), (b), (c) or com-
parisons with lattice computations of VQCD�r� until Sec. V.

The effects of US logs in case (c’) are very small (if we
ignore shifts by an r-independent constant). For instance, if
we superimpose plots of VN�r� and VC�r� � Cr of case (c’)
on Fig. 13, as we vary �f�3-loop

MS
between 2–5, they are

hardly distinguishable from the corresponding lines of
case (c). (Only VN�r� for N � 100 is visibly raised at
r�3-loop

MS
* 2.) The smallness of contributions from US

logs stems from the small coefficient C3
A=�6�0� and sup-

pression by log
�S�q�=�S��f�� in Eq. (7).
Conclusions are essentially the same as those in the

large-�0 approximation, because qualitative behaviors of
VN�r� are similar: The Coulomb� linear potential,
VC�r� � Cr, can be regarded as a genuine part of our
prediction, while we may associate D�r; N; �� with an
O��3

QCDr
2� uncertainty (and beyond) due to IR renorma-

lons. Taking the variations of VN�r�, corresponding to the
different values of � and N shown in Figs. 11–14, as
a measure of uncertainties of the predictions for VN�r�,
the uncertainties are fairly small in the distance region
r <��1

MS
.

Let us compare our results in Secs. III B and III C with
the results of the existing literature. The scale-fixing pre-
scription according to the principle of minimal sensitivity
was advocated and studied originally in [35]. In [45], a
scale-fixing prescription close to Eq. (21) was advocated,
based on an analysis of large-order behavior of perturba-
tive series à la renormalons; the prescription was used to
suppress an ambiguity induced by the UV renormalon,
which is located closer to the origin than IR renormalons

in the Borel plane. We studied in [30] the large-
order behaviors of VN�r� using the scale-fixing con-
dition Eq. (21) but restricting to the case � � 1, in the
large-�0 approximation and using the estimates by RG.
Reference [39] extended these analyses: Within the
large-�0 approximation, and using the scale-fixing condi-
tion Eq. (21), a general formula for the large-order behav-
ior of a wide class of perturbative series was obtained and
the relation to the Borel summation was elucidated; fur-
thermore, the relation to the principle of minimal sensitiv-
ity was studied. Our present analysis is a direct extension
of [30]; our results in the large-�0 approximation in
Sec. III B are consistent with the general formula of [39]
when the formula is applied to V�0

�r�. (Since the assumed
singularity structure in the Borel plane is slightly different
from that of V�0

�r�, a slight modification of the formula is
necessary). Unique aspects of [30] and the present work,
besides being a dedicated examination of the QCD poten-
tial, are (a) the specific way of decomposition (close to
Laurent expansion in r), and (b) inclusion of 2-loop and 3-
loop running of �S�q�. Furthermore, the separation into the
scale-independent (prescription-independent) part and the
scale-dependent (prescription-dependent) part is unique to
the present work.

D. 
�PT
V �q��N as N! 1

In order to understand the properties of VN�r� given in
the previous two subsections, we examine behaviors of the
truncated V-scheme coupling at N ! 1, defined by

 
�PT
V �q��1 � lim

N!1

�PT

V �q��N: (50)

The relation (21) between �S��� and N is understood in
taking the limit.

FIG. 14 (color online). [Case (c): NNLL] VN�r� for different
values of � and N. (Dashed lines for � � 0:9 and dot-dashed line
for � � 1:1.) For comparison, the Coulomb� linear potential
VC�r� � Cr is also shown (solid line). Other conventions are the
same as in Fig. 11.

FIG. 13 (color online). [Case (c): NNLL] VN�r� for N � 10,
30, 100 and � � 1 (dashed lines). For comparison, the
Coulomb� linear potential VC�r� � Cr is also plotted (solid
black line). Other conventions are the same as in Fig. 11.
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In the large-�0 approximation, one easily finds

 
�PT
V;�0
�q��1 � lim

N!1

�
�S���

1

1� L

�
N

� lim
N!1

�S���
1� LN

1� L

�
2�

�0 log�q=~��

�
1�

�~�

q

�
3�
�
; (51)

where L � �0�S���
2� log��e

5=6

q � � 1� 3�
N log�

~�
q�. There is no

singularity at q � ~�, and 
�PT
V;�0
�q��1 is regular at 0<

jqj<1 in the complex q plane. For �� 1, the first term in
the curly bracket is dominant at UV (q! 1), whereas the
second term is dominant at IR (q! 0). Hence, 
�PT

V;�0
�q��1

can be regarded as a modified coupling, regularized in the
IR region, jqj & ~�; by including a power correction, the
Landau pole of the original coupling, �PT

V;�0
�q� �

2�=
�0 log�q=~���, has been removed. (See Fig. 15.)
One can test sensitivity of the prediction to the IR

behavior of the regularized coupling by varying �. The
results of Sec. III B show that B�N� and D�	;N�, associ-
ated with IR renormalons, are sensitive to the IR behavior
of 
�PT

V;�0
�q��1, in accord with our expectation. On the

other hand, � independence of vC�	� � C	 shows that
vC�	� � C	 is determined only by the original coupling
�PT
V;�0
�q�, and that it is insensitive to the IR behavior of the

regularized coupling.
If we estimate the higher-order terms using RG,


�PT
V �q��1 in case (a) is obtained simply by replacing ~�

by �1-loop

MS
in Eq. (51). 
�PT

V �q��1 in case (b) can be ana-
lyzed using a one-parameter integral representation. To this
end, let us first analyze the two-loop running coupling
constant �S�q� (defined by Eq. (6) with �n � 0 for n 

2) and 
�S�q��1. Motivated by Eq. (51), we separate

�S�q��1 into �S�q� and ��S�q� � 
�S�q��1 � �S�q�.

They can be expressed in one-parameter integral forms,
respectively, as
 

�S�q� �
Z 1

0
dxf1�x; q�; ��S�q� � �

Z 1
3�
dxf1�x; q�;

(52)

with

 f1�x; q� �
2�
�0
�q=�2-loop

MS
��x

�
x
2e

�
x�=2 1

��1� x�=2�
: (53)

(See Appendix B for derivation.) These expressions are
valid for a complex argument q if jqj> q� �

���=2�2-loop

MS
; they can be analytically continued to other

regions by deforming the integral contour of x. �S�q� and
��S�q�, respectively, are singular at the Landau singularity
q � q� (branch point), whereas their sum 
�S�q��1 is
regular at 0< jqj<1. One may find asymptotic behav-
iors of �S�q� and ��S�q� from the above expressions. The
well-known asymptotic behavior of �S�q� as q! 1 is
reproduced by rescaling x log�q=�2-loop

MS
� ! x and expand-

ing the integrand in 1= log�q=�2-loop

MS
�. The asymptotic

behavior of �S�q� as q! 0, when q is varied along the
path C1 of Fig. 10, can be obtained as follows. First rotate
the integral contour clockwise around the origin, x �
e�i�y (0< y<1), then rescale y log��2-loop

MS
=q� ! y

and expand the integrand in 1= log��2-loop

MS
=q�. The asymp-

totic behavior of 
�S�q��1 as q! 1 can be obtained by
expanding the integrand of Eq. (52) about x � 3� except
for the factor �q=�2-loop

MS
��x. The asymptotic behavior of


�S�q��1 as q! 0, when q is varied along the path C1, can
be obtained similarly, by first rotating the integral contour
clockwise around the origin. The results read

 �S�q� �
2�

�0 log�q=�2-loop

MS
�
; q! 0 or q! 1;

(54)

 

��S�q� � �
2�

�0 log�q=�2-loop

MS
�

��2-loop

MS

q

�
3�

�
�3�=�2e��3��=2

��1� 3��=2�
; q! 0 or q! 1:

(55)

Thus, apart from the overall normalization, the leading
asymptotic behaviors are identical with the one-loop run-
ning case, Eq. (51).23

FIG. 15 (color online). �0
�PT
V;�0
�q��N and �0�PT

V;�0
�q� vs q=~�

for different values of � and N.

23There are qualitative differences in the subleading asymptotic
behaviors.
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�PT
V �q� in case (b) is given by �S�q� � �

a1

4���S�q�
2 in

terms of the two-loop running coupling constant. We also
separate 
�S�q�2�1 into �S�q�2 and ��S�q�2 �

�S�q�2�1 � �S�q�2, which can be analyzed similarly us-
ing the one-parameter integral expressions
 

�S�q�
2 �

Z 1
0
dxf2�x; q�;

��S�q�
2 � �

Z 1
3�
dxf2�x; q�;

(56)

with

 f2�x; q� �
8�2

�1

�
q=�2-loop

MS

�
�x
��x�=2 
�1� x�=2; x�=2�

��1� x�=2�
:

(57)

The asymptotic forms of ��S�q�2 are given by
 

��S�q�
2 ��

2�

�0 log�q=�2-loop

MS
�

��2-loop

MS

q

�
3�

�
4��0

�1
��3��=2 
�1� 3��=2; 3��=2�

��1� 3��=2�
;

q! 0 or q! 1; (58)

while the asymptotic behaviors of �S�q�2 are given simply
by the square of Eq. (54). Thus, the �a1

4���S�q�
2 term does

not affect the asymptotic behaviors of �PT
V �q� and

��PT
V �q� � 
�

PT
V �q��1 � �

PT
V �q�, apart from the overall

normalization.
The same is true in case (c). The leading asymptotic

behaviors of �PT
V �q� and ��PT

V �q� as q! 0 (when q is
varied along the path C1) and q! 1 are the same as those
in case (a) (one-loop running), besides the overall normal-
ization. These IR and UV behaviors determine the behav-
iors of VN�r� at r! 1 and r! 0 for large N. For this
reason, the truncated potentials VN�r� have qualitatively
similar features in all the cases examined in Secs. III B and
III C. We also note that, since 
�PT

V �q��1 has no singularity
along the positive real axis, and since ��PT

V �q� is more
dominant than �PT

V �q� in IR, the leading IR behavior of

�PT

V �q��1, when q is sent to �0 along the positive real
axis, is the same as that of ��PT

V �q� as q! 0 (when q is
varied along the path C1).

E. How to decompose VN�r�

We explain how we decompose VN�r� into 4 parts, as
given in Secs. III B and III C. Integrating over the angular
variables in Eq. (20), one obtains

 VN�r� � �
2CF
�

Z 1
0
dq

sinqr
qr

�PT

V �q��N

� �
2CF
�

Im
Z 1

0
dq
eiqr

qr

�PT

V �q��N: (59)

We separate the integral into two parts, according to the
different asymptotic behaviors of 
�PT

V �q��1, i.e. �PT
V �q�

and ��PT
V �q� � 
�

PT
V �q��1 � �

PT
V �q�:

 VN�r� � U1�r� �U2�r; N; ��; (60)

 U1�r� � �
2CF
�

Im
Z
C1

dq
eiqr

qr
�PT
V �q�; (61)

 

U2�r; N; �� � �
2CF
�

Im
Z
C1

dq
eiqr

qr
f
�PT

V �q��N � �
PT
V �q�g:

(62)

We deformed the integral contour in order to avoid the
Landau singularity on the positive real axis; see Fig. 10(a).
Contributions from the Landau singularity cancel between
U1 and U2, since the original integral (59) does not contain
the singularity.

Since 
�PT
V �q��N � �

PT
V �q� � q

�3�= logq as N ! 1, the
integral in Eq. (62) becomes IR divergent in this limit for
�� 1. On the other hand, the negative power of q induces
the positive power behavior of r in U2 in the large N limit.
Assuming � > 2=3, let us define
 

U2�r; N; �� �
A

r
�B�N; �� � Cr�D�r; N; ��

� �terms that vanish asN ! 1�; (63)

where D�r; N; �� is subleading as compared to Cr at short
distances. A and C can be extracted as follows:
 

A � lim
r!0

rU2

� lim
r!0
�

2CF
�

Im
Z
C1

dq
eiqr

q
f
�PT

V �q��N � �
PT
V �q�g

�
CF
�i

Z
C2

dq
1

q
f
�PT

V �q��N � �
PT
V �q�g

� �
CF
�i

Z
C2

dq
�PT
V �q�
q

� �
4�CF
�0

; (64)

 C � lim
r!0

1

2

@2

@r2 �rU2�

� lim
r!0

2CF
�

Im
Z
C1

dq eiqrqf
�PT
V �q��N � �

PT
V �q�g

�
CF
2�i

Z
C2

dq q�PT
V �q�: (65)

To show the last equality of Eq. (64), we may use the RG
equation (6), or, we can evaluate the integral explicitly
using �PT

V �q� at LL, NLL, and NNLL. 
�PT
V �q��N does

not contribute because it has no singularity inside the
contour C2, hence, both A and C are independent of �
and N. Similarly, B and D are given by
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B�N;�� � lim
r!0

@
@r
�rU2�

� lim
r!0
�

2CF
�

Im i
Z
C1

dqeiqrf
�PT
V �q��N��

PT
V �q�g;

(66)

 

D�r; N; �� � U2�r; N; �� �
�
A

r
�B�N; �� � C r

�

� �
2CF
�

Im
Z
C1

dq
eiqr � 
1� iqr� 1

2 �iqr�
2�

qr

� f
�PT
V �q��N � �

PT
V �q�g: (67)

In the limit N !1, B is IR divergent, and if � 
 1, D is
also IR divergent. We would want to factor out the diver-
gent part as N ! 1 in these cases.24

If � < 1, D is finite as N ! 1. Then, we may insert the
expression for ��PT

V �q� obtained in the previous subsec-
tion. In case (a) or in the large-�0 approximation, it is
convenient to deform the integral contour into the upper
half-plane by setting q � ix=r (0< x<1). Then, one
readily obtains Eq. (33). To find the asymptotic forms,
Eq. (34) and subleading terms, one expands the integrand
(inside Im
. . .�) by logx. In cases (b) and (c), we may insert
the integral expressions for ��PT

V �q� to Eq. (67) and inte-
grate over q. Thus, we obtain one-parameter integral ex-
pressions for D, except for the coefficient of a2 in
case (c).25 We may find asymptotic forms of D, for in-
stance, if we insert the asymptotic expansion of ��PT

V �q�
[Eqs. (55) and (58) and subleading terms] and proceed as in
case (a).

When � � 1, we may factor out the divergence as

 

D�r; N; 1� � �
2CF
�

Im
Z
C1

dq
eiqr � 
1� iqr� 1

2 �iqr�
2 � ��q0 � jqj�

1
6 �iqr�

3�

qr
��PT

V �q�j��1

�
2CF
�

Im
Z q0

0
dq
�iqr�3

6qr
f
�PT

V �q��N � �
PT
V �q�g��1; (68)

where q0 is an IR cutoff to remove the IR divergence as
q! 0. In all the cases (a)–(c), one may extract the diver-
gent part from the second term, which may be taken as

 

Z 1

0
d~q

~q2

log~q

��
1�

3

N
log~q

�
N
� 1

�

�
1

2
�logN � log2� 
E� �O

�
1����
N
p

�
; (69)

apart from an overall normalization (proportional to r2).
Here, we have rescaled q to a dimensionless variable ~q. If
� > 1, one may factor out the divergences in a similar
manner; one should subtract powers of r as many times
as needed to remove all the IR divergences. It is even
simpler to factor out divergences from B�N; ��; for in-
stance, see Eq. (21) of [30] for � � 1 and in the large-�0

approximation.
We define the Coulomb potential (with logarithmic cor-

rections at short distances) as

 VC�r� � U1�r� �
A

r
: (70)

It is determined by �PT
V �q�, therefore, it is independent of �

and N. Since the leading behavior of VN�r� as r! 0 is
const:=�r logr� as determined by the RG equation, the A=r
term of U2 must be cancelled by the 1=r term contained in

U1. To compute the asymptotic forms of U1�r� as r! 0
and r! 1, one may insert the integral expressions for
�PT
V �q�, given in the previous subsection, and integrate over

q; then rescale x log�1=r�2-loop

MS
� ! x and expand the in-

tegrand in 1= log�1=r�2-loop

MS
�. In this method, however, one

should carefully choose the integral contour for x to avoid
singularities. Another method is as follows. Consider first
the case (a). We deform the integral contour into the upper
half-plane on the complex q-plane and integrate by parts:

 U1�r� �
4CF
�0r

Im
Z 1

0

dx
x

e�x

log�x=	� � i�=2

� �
4CF
�0r

Im
Z 1

0
dx e�x log

�
log	� logx�

i�
2

�
;

(71)

where 	 � r�1-loop

MS
. By expanding the integrand in logx,

we obtain the asymptotic forms Eq. (27). In cases (b) and
(c), we may proceed in parallel with the above steps, after
the appropriate change of variables in the integration. Then
Eqs. (41) and (42) are obtained.

Let us summarize our algorithm for decomposing VN�r�
into VC�r� �B� Cr�D�r�. First we separate 
�PT

V �q��N
into 2 parts according to the different asymptotic behaviors
of 
�PT

V �q��1 as q! 0 and q! 1. The separation is
particularly simple in the one-loop running case,
Eq. (51). Next we deform the integral contour into the
upper half-plane to avoid the Landau singularity. Thus,
VN�r� is separated into U1�r� and U2�r�. U2�r� has a power
series expansion in r from O�r�1� to O�r�. Beyond that

24The integrals (64)–(67) are convergent in the UV region,
assuming the double limits Eq. (23).

25We were able to reduce the coefficient of a2 in case (c) only to
a 2-dimensional integral form.
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order, power series expansion in r breaks down due to
nonanalyticity in r.26 Hence, U2�r� is naturally decom-
posed into A=r�B� Cr�D�r�. Then, A=r is com-
bined with U1�r� to form VC�r�, which behaves as a
Coulombic potential in the entire range of r apart from
logarithmic corrections. Thus, VN�r� is decomposed into
fVC�r�;B; Cr;D�r�g, which correspond to fr�1; r0; r1;
r3��1g terms; the r�1 and r3��1 terms include logarithmic
corrections. The Coulomb� linear potential, VC�r� � Cr,
is determined only by �PT

V �q�, hence, it is independent of �
and N.

If we choose a different prescription to avoid the Landau
singularity in defining U1�r� and U2�r�, each of them will
change (but the sum VN�r� will not). Consequently, VC�r�
and D�r� will also change. Since, however, the contribu-
tion of Landau singularity does not have a simple power-
like form in r, in other prescriptions VC�r� �
U1�r� �A=r is not Coulomb-like at large distances
(rather oscillatory). We consider our decomposition natu-
ral, in the sense that it is closest to a decomposition into
terms with simple powers in r (cf. argument at the end of
Sec. II D), as well as since VC�r� � Cr is a good approxi-
mation of VN�r� at r & ��1

MS
for a reasonably wide range of

� and N (cf. Figs. 8 and 11–14).

IV. RENORMALIZATION SCHEMES IN OPE OF
VQCD�r�

We analyze VQCD�r� in OPE when r	 ��1
QCD. As we

have seen in Sec. II D, the leading short-distance contribu-
tion is given by the singlet potential VS�r�. In this section,
we provide renormalization prescriptions for VS�r� explic-
itly. We also show that the Coulomb� linear potential,
extracted in the previous section, can be qualified as a
singlet potential (Wilson coefficient) defined in a specific
renormalization scheme. These renormalized singlet po-
tentials are free from IR renormalons and IR divergences;
hence, they can be computed systematically and (in prin-
ciple) we can improve the predictions to arbitrary preci-
sion. Correspondingly, the nonperturbative contributions
are unambiguously defined.

A. Factorization scheme vs Coulomb� linear potential

Following the argument of Sec. II D, let us define a
renormalized singlet potential, in a scheme where the IR
divergences and IR renormalons are subtracted, as

 V�R�S �r;�f� � �
2CF
�

Z 1
�f

dq
sin�qr�
qr

��R�VS �q;�f� (72)

with

 ��R�VS �q;�f� � �PT
V �q� � ��V�q;�f�: (73)

��V�q;�f� is the counterterm which subtracts the IR
divergences of �PT

V �q�, given as multiple poles in �. (We
assume that �PT

V �q� is computed in dimensional
regularization.)

Let us consider two schemes, in particular, for defining
��V�q;�f�. First one is to subtract the IR divergences of
�PT
V �q� in the MS scheme. Explicitly, at NNNLO, we set

 

��V�q;�f� � �S���
�
�S���

4�

�
3

� 72�2

�
�

1

�
� 8 log

�
�
q

�
� 4
E

� 4 log�4�� � 2 log
��f

q

��
; (74)

where we retained (only) the physical US logarithm ac-
cording to the argument given below Eq. (A13). Here, �f

represents the scale at which loop momenta are effectively
cut off. The logarithms induced by the running of�S can be
resummed up to NNNLL by setting �! q in ��R�VS �q;�f�.
As we saw in Sec. III C, the resummation of US logarithms
does not give sizable effects, so we will not try to resum US
logs but rather include US logs only up to NNNLO, as
given in Eq. (74).27

The second scheme is to regularize the IR divergences
by expanding �PT

V �q� as a double series in �S and log�S.
Then, no artificial subtraction from the IR region of loop
momenta is made, and��R�VS �q;�f� becomes independent of
�f. At NNNLO, ��V�q;�f� is obtained from the Fourier
transform of Eq. (A14):
 

��V�q;�f� � �S���
�
�S���

4�

�
3
72�2

�

�
�

1

�
� 4

�
2 log

�
�
q

�
� log�4��

�
� 6
E

�
5

3
� 2 log�3�S����

�
: (75)

Indeed it is independent of �f. This prescription introdu-
ces a physical scale �V�r� � VO�r� � VS�r� � CA�S=r as
an IR regulator in loop integrals, hence, contributions from
q < �V�r� are suppressed [1]. Below, we will resum
powers of log��=q� associated with the running of �S
but not powers of US log�S, for the same reason as in
the first scheme. In Sec. VA, we will compare the two
schemes Eqs. (74) and (75) numerically.

The dependence of V�R�S �r;�f� on �f is introduced
through subtraction of the IR divergences (in the first
scheme) and of the IR renormalons. The subtraction of
the IR divergences in the first scheme induces logarithmic

26For simplicity, we restrict ourselves to the case 2=3 � � � 1
in this and the next paragraph.

27Resummation of US logs up to NNLL is achieved if we omit
log��f=q� in Eq. (74) and make the replacement Eq. (7).
Resummation of US logs up to NNNLL has not been computed
yet.
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dependences on �f [Eq. (74)], while the subtraction of the
IR renormalons induces powerlike dependences on �f.
The former resides in the counterterm ��V�q;�f�, and
the latter arises from the lower cutoff of the integral in
Eq. (72). Roughly,

 

@
@�f

V�R�S �r;�f� �O��2
fr

2�; (76)

neglecting the r-independent part. Note that �fr	 1 due
to the hierarchy (15).

Corresponding to the above definitions of V�R�S �r;�f�,

we define the Coulomb� linear potential from ��R�VS �q;�f�

by

 VC�L�r� � V�R�C �r� � C�R�r; (77)

where

 V�R�C �r� � �
CF
�ir

Z
C2

dq
��R�VS �q;�f�

q

�
2CF
�

Im
Z
C1

dq
eiqr

qr
��R�VS �q;�f�; (78)

 C �R� �
CF
2�i

Z
C2

dq q��R�VS �q;�f�: (79)

Up to NNLL, it is natural to take ��V�q;�f� � 0, hence,
in this case, VC�L�r� coincides with the Coulomb� linear
potential obtained in the large-order analysis, Eqs. (37) and
(39) [cf. Eq. (64)];, in particular, VC�L�r� is independent of
�f up to this order.

Below we will show that

 V�R�S �r;�f� � VC�L�r� � const:�O��3
fr

2�: (80)

Equations (17) and (80) imply that, within the framework
of OPE, short-distance contributions (q >�f) determine
the Coulomb� linear part of the QCD potential, hence it is
predictable in perturbative QCD. The residual term (apart
from an r-independent constant) is of order �3

fr
2, which

mixes with the nonperturbative contribution �EUS�r�, and
is subleading at r	 ��1

f . These features are consistent
with our expectation discussed at the end of Sec. II D.

Equation (80) can be shown as follows. According to
Eqs. (72) and (77)–(79),
 

V�R�S �r;�f��VC�L�r� �
CF
�ir

Z
C2

dq
��R�VS �q;�f�

q

�
2CF
�

Im
Z
C3

dq
eiqr

qr
��R�VS �q;�f�

� C�R�r; (81)

where the integral path C3 is shown in Fig. 16. Since
�fr	 1, we may expand the Fourier factor as eiqr � 1�
iqr� 1

2 �qr�
2 � . . . in the integral along C3. Then the lead-

ing term of the expansion cancels against the first term of
Eq. (81), while the third term of the expansion [� 1

2 �qr�
2]

cancels against �C�R�r of Eq. (81). Therefore, only
remaining terms on the right-hand side of Eq. (81) are
const:�O��3

fr
2�.

One may think that in defining V�R�S �r;�f� subtracting
the integral Eq. (18) is not sufficient for subtracting all the
IR renormalons. The relation Eq. (80) is unchanged, even if
one subtracts the IR renormalon contributions using what-
ever other sophisticated method for estimating them. This
is because the IR renormalons in V�R�S �r;�f� take the form
const:�O��3

QCDr
2�.

The perturbative expansion of V�R�S �r;�f�may still be an
asymptotic series (due to e.g. UV renormalons28). Since
the IR renormalons have been subtracted and the factori-
zation scale is set as �f � �QCD, we may expect that

V�R�S �r;�f� is Borel summable.29 (At least, the Borel in-
tegral is convergent in the large-�0 approximation.) Then,
we may define V�R�S �r;�f� from the perturbative series
either by Borel summation or according to the prescription
of [39,45]. Thus, V�R�S �r;�f� can be computed systemati-
cally (based on perturbative QCD).

FIG. 16. Integral path C3 in the complex q-plane. q� denotes
the Landau singularity of �S�q�. For 1-loop running, q� is a pole;
beyond 1-loop running, q� is a branch point. In the latter case,
branch cut is on the real axis starting from q� to �1.

28Nevertheless, we note that up to now UV renormalons have
not been identified in VQCD�r�.

29This is up to the uncertainties caused by the instanton-
induced singularities in the Borel plane, which we neglect in
our analysis.
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B. VC�L�r� as a �f -independent renormalized singlet
potential

Up to NNLL, the Coulomb� linear potential
VC�L�r� � VC�r� � Cr was extracted from VN�r� as a
prescription-independent part, corresponding to a
renormalon-free part, in Sec. III. We have also seen that
VC�L�r� coincides, up to O�r2�, with V�R�S �r;�f�, which is
the Wilson coefficient free from IR renormalons.
Therefore, unlike the original perturbative expansion of
VQCD�r�, we expect that VC�L�r� is free from intrinsic
uncertainties. In fact, VC�L�r� can be computed systemati-
cally and its accuracy can be improved (in principle) to
arbitrary precision as follows. Since ��R�VS �q;�f� does not

contain IR renormalons,30 we may compute ��R�VS �q;�f�

and improve accuracy of its value along the contours C1

andC2 by including corrections at LL, NLL, NNLL, and so
on. (We further improve the series by Borel summation or
by the prescription of [39,45] if necessary.) In the infinite-
order limit, ��R�VS �q;�f� is expected to be finite everywhere
along these contours.31 Then, via Eqs. (78) and (79),
VC�L�r� can be computed. (It is beyond our scope to prove
convergence of VC�L�r�. Here, we have eliminated all of
the known sources of divergences.)

In the definition of VC�L�r�, renormalization scheme
dependence enters through the definition of ��R�VS �q;�f�

or of ��V�q;�f�. Below, we will focus on the second
scheme, discussed in the previous subsection: To regular-
ize the IR divergences by expanding �PT

V �q� as a double
series in �S and log�S. Then, VC�L�r� becomes indepen-
dent of �f. In view of the construction of OPE of the QCD
potential, the Coulomb� linear potential VC�L�r� defined
in this scheme can be qualified, without any problem, as a
renormalized singlet potential (Wilson coefficient) defined
in a specific scheme. We remind the reader that the bare
singlet potential VS�r� coincides with the perturbative ex-
pansion of VQCD�r�, and that the renormalized singlet
potential is defined by subtracting IR renormalons and IR
divergences from it. According to the large-order analysis
and the definition (77)–(79), VC�L�r�matches this require-
ment. Furthermore, Eq. (80) ensures the consistency of
identifying VC�L�r� as a renormalized singlet potential.
VC�L�r� is well defined, systematically computable, and
free from ambiguities induced by IR renormalons or IR
divergences. The only notable difference from the ordinary
OPE is that, in this scheme, VC�L�r� is independent of the
factorization scale �f.

Equation (80) shows that V�R�S �r;�f� approaches
VC�L�r� as we reduce �f�� �QCD�. This matches our
naive expectation: VC�L�r� is obtained from the bare
VS�r� by subtracting the part corresponding to IR renorma-
lons, which reside in the region q��QCD; on the other

hand, V�R�S �r;�f� is obtained by cutting off a larger domain
q < �f.

C. �EUS�r�: C�L scheme and factorization scheme

We may replace VS�r� in Eq. (17) by VC�L�r� and
V�R�S �r;�f�, respectively, and define the nonperturbative
contributions �EUS�r� corresponding to both schemes.
Alternatively,32 via Eq. (16), we may identify them, re-
spectively, with VQCD�r� � VC�L�r� and VQCD�r� �

V�R�S �r;�f�. Let us call the former �EUS�r� in the C� L
scheme and the latter �EUS�r� in the factorization scheme.
As mentioned above, there are no intrinsic uncertainties in
VC�L�r� and V�R�S �r;�f�, so that �EUS�r� in both schemes
are unambiguously defined. IR renormalons have been
subtracted from the bare VS�r� and absorbed into
�EUS�r�. �EUS�r� in the C� L scheme is independent
of �f, while �EUS�r� in the factorization scheme depends
on �f.

According to the argument in Sec. II D, r dependence of
�EUS�r� in the factorization scheme can be predicted. (We
always set �f � �QCD in the factorization scheme.) It is
either of order �4

fr
3 (very small r) or of order �3

fr
2 (small

r), depending on the relation between �V�r� and �f. We
expect the latter r dependence in the distance region of our
interest. On the other hand, the r dependence of �EUS�r� in
the C� L scheme can be estimated in parallel with that of
�EUS�r� in the factorization scheme with �f ��QCD.
Therefore, r dependence in the C� L scheme can be
predicted for small r (corresponding to �V�r� � �QCD)
to be order �4

QCDr
3. If r is not sufficiently small (�V�r� �

�QCD), precise r dependence is not known. Since, however,
�EUS�r� in the C� L scheme contains no other scale than
�QCD, it should be at most order �QCD at r & ��1

QCD.
Namely, it is much smaller than �EUS�r� in the factoriza-
tion scheme (order�3

fr
2), provided�f is sufficiently large.

It means that VC�L�r� is much closer to VQCD�r� than

V�R�S �r;�f� in the distance region of our interest. This gives
us a good motivation to analyze VC�L�r� in OPE, in addi-
tion to the more conventional factorization (�f-dependent)
scheme.

30In a more sophisticated estimate of renormalons than
Eq. (18), one may find that ��R�VS �q;�f� still contains IR renor-
malons. If this turns out to be the case, according to our
philosophy, it is appropriate to subtract the renormalons by
modifying the counterterm ��V�q;�f�.

31There is no known source of divergence except the instanton-
induced singularities, which we neglect in this paper.

32As for �EUS�r� in the factorization scheme, contributions
from gluons close to the UV cutoff q��f can be computed
reliably in expansion in �S using Eq. (17) (although the entire
�EUS�r� cannot be computed reliably). Then, one can show
explicitly that the �f dependence of V�R�S �r;�f� [cf. Eq. (76)]
are cancelled by the �f dependence of �EUS�r� [24], showing
the consistency of defining �EUS�r� in two ways.

Y. SUMINO PHYSICAL REVIEW D 76, 114009 (2007)

114009-22



All the above arguments are based on order-of-
magnitude estimates. We would like to make the state-
ments clearer by making a quantitative analysis.

V. DETERMINATIONS OF �EUS�r�AND r0�MS

In this section, we compare the singlet potentials, which
we defined in different schemes in the previous section,
and recent lattice data for the static QCD potential.
According to previous analyses, (a) accuracy of the pre-
diction for V�R�S �r;�f� or VC�L�r� can be improved sys-
tematically; (b) the difference �EUS�r� � VQCD�r� �

V�R�S �r;�f� [VQCD�r� � VC�L�r�] is expected to be
O��3

fr
2� [O��4

QCDr
3� at small distances, whereas the pre-

cise form is unknown at larger distances] and is nonper-
turbative. We verify these properties numerically by
comparison to lattice computations of VQCD�r�. Then we
determine the size of the nonperturbative contribution
�EUS�r�. As a byproduct, we determine the relation be-
tween �MS and lattice scale (Sommer scale) at the same
time.

Throughout this section, we use lattice data in the
quenched approximation, since in this case lattice data
are most accurate in the short-distance region. In compu-
tations of V�R�S �r;�f� and VC�L�r�: we set nl � 0 accord-
ingly; except where stated otherwise, we take the input
parameter as �S�Q� � 0:2, which corresponds to33

�1-loop

MS
=Q � 0:057, �2-loop

MS
=Q � 0:13, �3-loop

MS
=Q � 0:12;

at NNNLL, except where stated otherwise, we use the
estimate of �a3 by Pineda in Eq. (A13), �a3 � 292� 43 �
18 688 [26]. An arbitrary r-independent constant has been
added to each potential and each lattice data set to facilitate
comparisons in the figures. Methods for numerically eval-
uating V�R�S �r;�f� and VC�L�r� are shown in Appendix D.

We relate the scale for each lattice data set to �MS in the
following manner. For each lattice data set we calculate (or
use the given value of) the Sommer scale r0 defined by [46]

 r2 dVQCD

dr

��������r�r0

� 1:65: (82)

(For reference to the real world, it is customary to interpret
r0 � 0:5 fm � 2:5 GeV�1.) Then the lattice data are ex-
pressed in units of r0. In Sec VA, we convert the units into
�3-loop

MS
using the central value of the relation

 r0�3-loop

MS
� 0:602� 0:048; (83)

as obtained by [47]. In contrast, in Sec. V B, we will not use

the relation between r0 and �3-loop

MS
as an input but rather

determine this relation from a fit to the data for �EUS�r�.
We will explain the mechanism why this is possible.

A. Consistency checks

Here, we verify various properties of the singlet poten-
tials V�R�S �r;�f� and VC�L�r� and of the corresponding
nonperturbative contributions.

First we compare the Coulomb� linear potential
VC�L�r� up to different orders, in the �f-independent
scheme defined in Secs. IVA and IV B. Up to NNLL,
they coincide with VC�r� � Cr of Sec. III C. We also com-
pare them with lattice calculations of the QCD potential.
See Fig. 17.34 We see that VC�L�r� up to different orders
agree well with one another at small distances, whereas at
large distances VC�L�r� becomes steeper as we include
higher-order terms via RG; cf. Table II. This feature is in
accordance with the qualitative understanding within per-
turbative QCD, in which the potential becomes steeper due
to the running of the strong coupling constant, since �PT

V �q�
increases more rapidly at IR as we include higher-order
terms. The lattice data and VC�L�r� also agree well at small
distances, while they deviate at larger distances. We in-
clude more terms in VC�L�r�, up to larger distances the
potential agrees with the lattice data.35 Theoretically, we

FIG. 17 (color online). Comparison of VC�L�r� in the
�f-independent scheme (solid lines) and the lattice data in
quenched approximation [Takahashi et al. [54] (�), Necco/
Sommer [48] ( � ), and JLQCD [55] ( ? )]. Input parameters
for VC�L�r� are �S�Q� � 0:2 and nl � 0; at NNNLL, Pineda’s
estimate for �a3 is used.

33As is well known, when the strong coupling constant at some
large scale, e.g. �S�mb�, is fixed, the values of �1-loop

MS
, �2-loop

MS
,

and �3-loop

MS
differ substantially. As a result, if we take a common

value of �MS as the input parameter, VC�L�r� up to different
orders differ significantly at small distances, where the predic-
tions are supposed to be more accurate.

34If we use Chishtie-Elias’s estimate of �a3, the NNNLL line in
Fig. 17 hardly changes. If we use the estimate of �a3 by large-�0
approximation, the NNNLL line is located between the present
NNNLL line and NNLL line.

35It is worth noting that the NNLL line in Fig. 17 is numerically
very close to the NNLO prediction obtained with the principle of
minimal sensitivity in [27].
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expect VC�L�r� to converge as we increase the order. The
current status seems to be consistent with this expectation,
since the lines in Fig. 17 apparently converge to the lattice
data. One may adjust the input value �S�Q� such that
convergence becomes fast at some particular r; present
choice �S�Q� � 0:2 leads to a fast convergence at
r�3-loop

MS
< 0:1. We may increase the value of input �S�Q�

such that convergence becomes fast at larger r. Then,
VC�L�r� up to different orders come closer to one another
at r�3-loop

MS
> 0:1. [The relation between VC�L�r� up to

NNLL and the lattice data remains unchanged, since we
use the 3-loop RG relation to fix the lattice scale, i.e. this
relation is invariant under 3-loop RG evolution.]

Next we compare the renormalized singlet potential
V�R�S �r;�f� for different values of the factorization scale

�f. In Fig. 18, we plot V�R�S �r;�f� up to NNLL for

�f=�3-loop

MS
� 2, 3, 4, 5. Note that, up to NNLL, there is

no distinction between the first scheme and the second
scheme of Sec. IVA. We see that VC�L�r� is located closer
to the lattice data than V�R�S �r;�f� for all �f. As we vary

�f, the variation of V�R�S �r;�f� is larger at larger distances.

As we lower �f, V�R�S �r;�f� approaches VC�L�r�. These
features are in agreement with the argument given in
Sec. IV C. Note that we cannot lower �f below the

Landau singularity q3-loop
� � 1:53�3-loop

MS
. V�R�S �r;�f� up

to different orders behave similarly: As �f is lowered,

V�R�S �r;�f� is raised at larger distances, approaching
VC�L�r� up to the corresponding order. For fixed �f,

V�R�S �r;�f� agrees with lattice data up to larger distances
as we increase the order.

We turn to the measurement of �EUS�r�. In computing
�EUS�r�, we use the lattice data from Table 2 of [48] for a
nonperturbative computation of VQCD�r�, since this data set
seems to be most accurate at short distances. In Fig. 19(a),
we plot �EUS�r� in the C� L scheme [VQCD�r� � VC�L�r�]

in units of �3-loop

MS
. The errors of the data points, due to the

errors of the lattice data for VQCD�r�, are comparable to or
smaller than the sizes of the symbols used for the plot. Also
shown in the same figure are fits to the data points of the
form A1	� A2	

2 � A3	
3, where 	 � r�3-loop

MS
. Only the

data points in the range r�3-loop

MS
< 0:5 were used for the

fits. We have added r-independent constants such that all
the fits go through the origin. As we increase the order,
�EUS�r� becomes smaller. We see that the cubic fit be-
comes a better approximation in a wider range in
r�3-loop

MS
< 1 as we increase the order. [Here, we determine

�EUS�r� in expansion in r, hence, we fit the data in the
small r region (r�3-loop

MS
< 0:5); it helps to enhance sensi-

tivity to the coefficients of rn for small n. Since �EUS�r� �
O��4

QCDr
3� at sufficiently small r, i.e. �EUS�r� ! 0 as r!

0, it would make sense to perform a polynomial fit; how-
ever, in the next subsection, we reconsider this naive
picture and give a more complete analysis.]

We can learn more detailed features from the explicit
polynomials obtained from the fits, shown in Table III. The
coefficient of the linear potential decreases as we increase
the orders, from LL to NNNLL. Up to NNNLL, the coef-
ficient in units of ��3-loop

MS
�2 is about 0.7. We may compare

this value with the string tension (coefficient of linear
potential) extracted from the large-distance behavior of
the lattice data 
 � 3:8��3-loop

MS
�2 [48]. Thus, the linear

potential in �EUS�r� is quite small comparatively at our
current best knowledge. We are interested in �EUS�r� in the

FIG. 18 (color online). Comparison of lattice data and V�R�S �r;�f� up to NNLL for�f=�3-loop

MS
� 2 to 5 (downwards). As a reference,

we also plot VC�L�r� up to NNLL. The lattice data and parameters for V�R�S �r;�f� and VC�L�r� are the same as in Fig. 17.

TABLE II. Coefficient of the linear potential [Eq. (79)] in units
of ��3-loop

MS
�2. Conventions are the same as in Fig. 17.

LL NLL NNLL NNNLL

C�R�=��3-loop

MS
�2 0.1836 0.6950 1.261 1.758
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infinite-order limit. Up to our current best knowledge,
however, �EUS�r� in the C� L scheme has not stabilized
yet, although we see a tendency that it approaches a
quadratic form. We conclude that the present status is
consistent with �EUS�r� in the infinite-order limit being
order �3

QCDr
2 at r�3-loop

MS
& 1 (vanishing linear potential).

From Figs. 17 and 19(a), it is not clear whether the limit
would also be consistent with order �4

QCDr
3 or with zero.

We will clarify this point quantitatively in the next
subsection.

In Fig. 19(b) are plotted �EUS�r� in the first scheme (IR
divergences of �PT

V �q� are subtracted in the MS scheme)
within the factorization scheme [VQCD�r� � V

�R�
S �r;�f�].

In this figure and in Table III, we see that �EUS�r;�f�

approximate the quadratic form O��3
fr

2� expected from
OPE. Approximation to the quadratic form is more evident
than in the C� L scheme, since the coefficients of the
quadratic terms are larger. Differences between the first
and second scheme in the factorization scheme are tiny: If
we plot, in the same figure, �EUS�r� in the second scheme

(IR divergences of �PT
V �q� are regularized by double ex-

pansion in �S and log�S), they are hardly distinguishable
from the lines of the first scheme. This is also confirmed by
the explicit forms of the polynomial fits in Table III.

We may compare the fits of �EUS�r� in the factorization
scheme and those in the C� L scheme in Table III. The
coefficients of linear terms are almost the same in both
schemes, up to NNLL and up to NNNLL, respectively.
This confirms consistency with Eq. (80). The difference of
the coefficients of quadratic terms between both schemes is
expected to be proportional to�3

f in the limit �f � �QCD,
according to Eq. (80). This relation is roughly satisfied in
Table III as well.36

TABLE III. Fits of �EUS�r�=�3-loop

MS
by cubic polynomials in the region 	 < 0:5, where 	 � r�3-loop

MS
. (See Fig. 19 for plots.) The

lattice data [48] are used. Parameters for VC�L�r� and V�R�S �r;�f� are the same as in Fig. 17.

C� L scheme Factorization scheme (�f � 3�3-loop

MS
) Factorization scheme (�f � 5�3-loop

MS
)

LL 6:7	� 9:6	2 � 8:7	3

NLL 3:5	� 3:6	2 � 3:6	3

NNLL 1:6	� 0:3	2 � 0:8	3 1:6	� 0:9	2 � 0:8	3 1:5	� 3:5	2 � 0:8	3

NNNLL, 1st scheme 0:7	� 1:8	2 � 0:1	3 0:6	� 5:0	2 � 1:8	3

NNNLL, 2nd scheme 0:7	� 0:8	2 � 0:1	3 0:7	� 2:0	2 � 0:0	3 0:6	� 5:1	2 � 1:9	3

Large-�0 appr. �2:7	� 10:9	2 � 9:1	3

FIG. 19 (color online). �EUS�r�=�3-loop

MS
vs r�3-loop

MS
. The lattice data from Table 2 of [48] are used. Parameters for VC�L�r� and

V�R�S �r;�f� are the same as in Fig. 17. Lines represent fits to the data points in the range r�3-loop

MS
< 0:5 by third-order polynomials,

given explicitly in Table III. (a) C� L scheme, up to LL, NLL, NNLL, and NNNLL; C� L scheme in the large-�0 approximation is
also shown. (b) first scheme within the factorization scheme (subtraction of IR divergences by the MS scheme); for display purposes,
�EUS�r�=�3-loop

MS
at NNLL are shifted by �1 vertically.

36This is not a test of Eq. (80) or Eq. (81); this is a test of the
quality of the cubic fits. A comparison with the direct compu-
tation of Eq. (81) in Table V indicates that the coefficients of the
linear terms are determined with good accuracy, whereas the
coefficients of the quadratic terms are determined with about
20% accuracy.
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Next we compare VC�L�r� in the large-�0 approxima-
tion,37 analyzed in Sec. III B, with the lattice data. We take
two different values of the input parameter: �S�Q� � 0:2
and �S�Q0� � 0:5, which correspond to Q=�1-loop

MS
� 17:4

and Q0=�1-loop

MS
� 3:1, respectively. See Fig. 20. Since the

large-�0 approximation incorporates only 1-loop running
of �S, the prediction for VC�L�r� is fairly scale depen-
dent.38 Nevertheless, considering the crudeness of the ap-
proximation, agreement of the prediction with the lattice
data is remarkably good. VC�L�r� with �S�Q� � 0:2 in
Fig. 20 is much closer to the lattice data than VC�L�r� at
LL in Fig. 17. On the other hand, a more detailed exami-
nation reveals limitations of the large-�0 approximation. In
Fig. 19, we plot �EUS�r� computed from VC�L�r� in the
large-�0 approximation with �S�Q� � 0:2; a cubic fit us-
ing the data points at r�3-loop

MS
< 0:5 is shown in the same

figure and in Table III. Although the magnitude of �EUS�r�
is small, �EUS�r� is oscillatory. The sizes of the coefficients
of the polynomial fit are unnaturally large, and the fit does
not reproduce �EUS�r� beyond r�3-loop

MS
� 0:5. Since there

is no reason to believe that the large-�0 approximation is
very close to the infinite-order limit, we consider the differ-
ent behaviors between �EUS�r� in this case and that of the
RG analysis (LL—NNNLL) to be an indication that the
consistency checks performed in this subsection have sen-
sitivity to the details.

B. Determinations of r0�MS and �EUS�r� in the C�L
scheme

From the above analysis, we conclude that all the theo-
retical expectations derived from OPE are either positively
confirmed or consistent with lattice data within the present
level of uncertainties. In this subsection, with the aid of
theoretical predictions of OPE, we estimate the infinite-
order limit of �EUS�r� in the C� L scheme.39

Up to this point, we used the central value (0.602) of the
relation between r0 and �3-loop

MS
in Eq. (83). Now we

examine how our determination of �EUS�r�will be affected
if we vary this relation. To simplify the argument, for the
moment let us suppose that the lattice data set (when
expressed in units of r0) has no errors and VC�L�r� in the
infinite-order limit is known. Let Vlatt�r; x� represent the
lattice data set converted to units of �3-loop

MS
using a given

value of x � r0�3-loop

MS
. Then, if x equals its precise value

xtrue, according to OPE, �EUS�r� � Vlatt�r; xtrue� �
VC�L�r� goes to zero as r! 0 (ignoring an
r-independent constant), hence, it would be approximated
reasonably well by a polynomial of r. When x differs from
xtrue, we thus expect

 Vdiff�r; x� � Vlatt�r; x� � VC�L�r�

� Vlatt�r; xtrue� � VC�L�r� � Vlatt�r; x�

� Vlatt�r; xtrue�

� P�r� ���r; x; xtrue�; (84)

where P�r� is a polynomial of r, and

 ��r; x; x0� � Vlatt�r; x� � Vlatt�r; x0�: (85)

If we know Vlatt�r; x� for some value of x, we can find
Vlatt�r; x� for other values of x via

 Vlatt�r; x0� � Vlatt

�
r
x
x0

; x
�
x
x0
: (86)

On the other hand, we know that Vlatt�r; x� tends to
const:� �r logjr�MSj�

�1 at short distances, while it tends
to a linear potential at large distances. Then, one readily
finds that ��r; x; xtrue� has approximately a Coulomb�
linear form at r�3-loop

MS
& 1 if x � xtrue.

In fact, by varying x � r0�3-loop

MS
within the range given

by Eq. (83), we find a very good fit of Vdiff�r; x�:
 

Vdiff�r; x� � ��r; x; 0:596�

� �0:8	� 0:7	2��3-loop

MS
j	�r�3-loop

MS


NNNLL; �a3�Pineda��: (87)

FIG. 20 (color online). Comparison of VC�L�r� in the large-�0

approximation and lattice data. Inputs for VC�L�r� are �S�Q� �
0:2 and �S�Q

0� � 0:5. Other conventions are the same as in
Fig. 17.

38c.f. The scale dependence of VC�L�r� up to NNNLL is by far
smaller.

37Here, we mean that the entire VC�L�r� is evaluated in the
large-�0 approximation, i.e. we set an � �5�0=3�n in Eq. (5) and
all �n � 0 except �0 in Eq. (6). This should not be confused
with VC�L�r� up to NNNLL where (only) �a3 is evaluated in the
large-�0 approximation.

39We note that the analysis in this subsection requires a rather
high accuracy in the numerical evaluations of VC�L�r�.
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Inclusion of ��r; x; x0� into the fitting function stabilizes
the fit considerably when r0�3-loop

MS
is far from its optimal

value (0.596): The coefficients of the linear and quadratic
terms are much less affected even if we include the cubic
term in the fitting function or even if we use data points up
to larger r for the fit, whereas they are very unstable
without ��r; x; x0� in the fitting function. A further exami-
nation shows that it is the inclusion of a Coulombic term (it
does not matter very much whether log corrections are
included or not) that stabilizes the fit when r0�3-loop

MS
is

far from its optimal value. In principle we should have
included ��r; x; x0� in the fitting function in the previous
subsection. A posteriori, it is because the central value of
Eq. (83) happened to be close to the optimal value in
Eq. (87) that polynomial fits were relatively stable (in
particular as we increase the order) and all the features
seemed quite consistent with the theoretical expectations.

We note that the error of the input r0�3-loop

MS
in Eq. (83) is

sizable with regard to the accuracy of VC�L�r� in our

analysis. Indeed, in [26], the error of the input r0�3-loop

MS
was the largest source of errors in the determination of
�EUS�r�. Conversely, this means that our analysis has a
sensitivity to determine the relation between r0 and �3-loop

MS
by itself (and possibly reduce the error of �EUS�r� at the
same time). Hence, in our determination of �EUS�r�, we
will determine the value of x � r0�3-loop

MS
simultaneously,

by performing a fit to the data for Vdiff�r; x� � Vlatt�r; x� �
VC�L�r�.

We approximate �EUS�r� by quadratic function �A0 �

A1	� A2	2��3-loop

MS
at 	 � r�3-loop

MS
& 0:5. As for errors,

we take into account three types of sources: (i) errors of the
lattice data, (ii) error of �a3, and (iii) error due to higher-
order corrections. Then we compute the probability density
distribution for the parameters �A0; A1; A2; x� in the follow-
ing way. Define

 �2
V �

X11

i�1

�Vlatt�ri; x� � fVC�L�ri; s� � t�VC�L�ri�g � �A0 � A1	i � A2	
2
i ��

3-loop

MS

�Vi �x�

�
2
; (88)

 PV�A0; A1; A2; x� �N �1
V

Z
ds dt e��

2
V=2Ps�s�Pt�t�; (89)

where x � r0�3-loop

MS
and 	i � ri�

3-loop

MS
. The normaliza-

tion constant N V is chosen such that the integral of
PV�A0; A1; A2; x� over the entire range is unity. s and t
parametrize errors of the theoretical prediction for
VC�L�r�. Details are as follows.

(i) We use the first 11 lattice data points given in Table 2
of [48]. ri � ri�x� denotes the distance r of the ith
lattice data point (given originally in units of r0 and
rc) after conversion to units of �3-loop

MS
, using40 x �

r0�3-loop

MS
; �Vi �x� denotes the error of the ith lattice

data point (given originally in units of r0) after
conversion to units of �3-loop

MS
. The first 11 data points

correspond to 	i < 0:5 when x � 0:602.
(ii) VC�L�r; s� denotes VC�L�r� up to NNNLL evaluated

with �a3 � s� �a3�Pineda�. We scan s between 0 and
2 with equal weight, i.e. Ps�s� � 1=2 if 0 � s � 2

and Ps�s� � 0 otherwise. The interval 0 � s � 2
covers within its range the estimates of �a3 by
Pineda [26], by Chishtie-Elias [13], and by
large-�0 approximation.

(iii) t�VC�L�r� represents an estimate of the difference
between VC�L�r� up to NNNLL and VC�L�r� in the
infinite-order limit. �VC�L�r� is estimated by the
difference between VC�L�r� up to NNLL and that
up to NNNLL. We scan t between �1 and 1 with
equal weight, i.e. Pt�t� � 1=2 if jtj � 1 and
Pt�t� � 0 otherwise.

Alternatively we may use the QCD force FQCD�r� �
dVQCD=dr in the determination of �EUS�r� and x. Since
we are not interested in the r-independent part of the
potential, we can extract information on the relevant pa-
rameters using the force as well. Similar to before, we
define

 �2
F �

X10

i�1

�Flatt�ri; x� � fV 0C�L�ri; s� � t�V
0
C�L�ri�g � �A1 � 2A2	i���

3-loop

MS
�2

�Fi �x�

�
2
; (90)

 PF�A1; A2; x� �N �1
F

Z
ds dt e��

2
F=2Ps�s�Pt�t�: (91)

40We fix rc=r0 � 0:5133 [48]; its error is small, which we neglect in our analysis.
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We use the first 10 points of the lattice data for
fFlatt�ri�; �Fi �ri�g, corresponding to 	i�0:602�< 0:5, given
in the same table (Table 2) in [48]. Other details are the
same as in the case using the potential.

There is a considerable difference between the use of the
potential and the force in the determination of �EUS�r� and
x. The difference stems from different correlations of the
errors (f�Vi g, f�

F
i g) of the respective lattice data sets and

from our treatment of these errors. It is known that there
exists a high correlation among the errors of the lattice data
at different ri, for the QCD potential or for the force. It is
also known that the error correlation of the force is smaller
than that of the potential [49]. On the other hand, up to
now, the covariance matrix of the errors for neither of these
quantities is available. We therefore decided to use the

lattice data with Gaussian errors, neglecting the correla-
tions; see Eqs. (88) and (90). This treatment should, in
general, result in overestimates of errors in the determina-
tion of �A1; A2; x�.

Bounds on �EUS�r� can be obtained from the probability
density distributions for �A1; A2�, defined by

 PVA1A2
�A1; A2� �

Z
dx dA0P

V�A0; A1; A2; x�; (92)

 PFA1A2
�A1; A2� �

Z
dxPF�A1; A2; x�: (93)

Figures 21 and 22(a) show contour plots of these proba-
bility density distributions corresponding to the 68%
and 95% confidence level (CL) regions. The corresponding

(a) (b)

FIG. 22 (color online). (a) Contour plot of the probability density distribution PFA1A2
�A1; A2�, corresponding to 68% and 95% CL

regions. The cross represents �A1; A2� with the highest probability density, �A1; A2� � �1:03; 0:60�. (b) Bounds on �EUS�r� in the C� L
scheme corresponding to the regions of (a). Quadratic fit with the highest probability density is also plotted (solid line at the center).

(b)(a)

FIG. 21 (color online). (a) Contour plot of the probability density distribution PVA1A2
�A1; A2�, corresponding to 68% and 95% CL

regions. The cross represents �A1; A2� with the highest probability density, �A1; A2� � �0:40; 0:76�. (b) Bounds on �EUS�r� in the C� L
scheme corresponding to the regions of (a). Quadratic fit with the highest probability density is also plotted (solid line at the center).
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bounds on �EUS�r� in the C� L scheme are given by [see Figs. 21 and 22(b)]

 Using the potential:
�
�0:7	� 1:0	2 < �EUS�r�=�3-loop

MS
< 2:1	� 0:2	2 �68%CL�

�1:3	� 1:1	2 < �EUS�r�=�3-loop

MS
< 3:7	� 0:8	2 �95%CL�

; (94)

 Using the force:
� 0:2	� 0:7	2 < �EUS�r�=�3-loop

MS
< 2:0	� 0:4	2 �68%CL�

�0:2	� 0:8	2 < �EUS�r�=�3-loop

MS
< 2:6	� 0:2	2 �95%CL�

: (95)

These bounds are mutually consistent, and the latter
bounds are tighter. Since the origin �A1; A2� � �0; 0� lies
outside the 95% CL regions in Figs. 21 and 22(a), we
conclude that �EUS�r� being O��4

QCDr
3� or �EUS�r� � 0

is disfavored. We see that positive A2 is favored, in agree-
ment with the fits in Table III.

The probability density distributions for x � r0�3-loop

MS
are defined by

 PVx �x� �
Z
dA0dA1dA2PV�A0; A1; A2; x�; (96)

 PFx �x� �
Z
dA1dA2PF�A1; A2; x�: (97)

They are shown in Fig. 23. Each distribution is close to
Gaussian, so we simply quote the mean and the standard
deviation for x:

 Using the potential: x � 0:592� 0:062; (98)

 Using the force: x � 0:574� 0:042: (99)

Note that we did not use the relation (83) at all to obtain
these results. Our results are mutually consistent, as well as
in excellent agreement with Eq. (83).41 The error in
Eq. (99) is of similar size to (slightly smaller than) that
in Eq. (83).

Some comments are in order.
As explained above, the sensitivity to x � r0�3-loop

MS
originates from the mixing of a Coulombic term in
Vdiff�r; x� when x is different from its true value. The
only assumption we made in the determination of x is
that �EUS�r� can be approximated by a quadratic polyno-
mial of r at r�3-loop

MS
& 0:5. Since �EUS�r� goes to zero at

sufficiently small r according to OPE, a polynomial fit
should be reasonable. Effects of higher powers of r are
expected to be suppressed at small r. In fact, we made a
consistency check by including the A3	3 term into the fits

of �EUS�r� and/or by varying the number of data points
used for the fits. As we include more data points, errors
determined from PVx �x� and PFx �x� decrease, respectively,
while the quality of fits tends to get worse (�2

min=Ndof

increases). This is the case when we perform quadratic fit
as well as cubic fit. The quality of fit is better when we
perform cubic fit rather than quadratic fit, especially when
we include more data points. In any case, the obtained
bounds on x are consistent with Eqs. (98) and (99). We
found that our present choice, quadratic fit with the first 11
(10) data points, is close to optimal in performing the fits.

When we scan s and t between the intervals (0, 2) and
��1; 1�, respectively, the minimum values of �2

V and �2
F

vary between (0.5, 0.6) and (0.1, 0.2), respectively. Since
the number of degrees of freedom is Ndof � 11� 4 �
10� 3 � 7, both ��2

V�min=Ndof and ��2
F�min=Ndof are below

10%. This is consistent with the existence of high correla-
tions among the lattice errors at different ri, which we
mentioned already. We note that our errors in Eqs. (94),
(95), (98), and (99) may be overestimated for this reason.

The difference between the bounds obtained by using
the potential and force can be attributed to the difference of
the correlations of the lattice errors. Since the correlation is
larger for the potential, the errors of the lattice data are
effectively more enhanced (overestimated) in our treat-
ment, hence the bounds are wider when we use the poten-
tial. The lattice errors are the dominant source of errors in

FIG. 23. Probability density distributions PV;Fx �x� vs x.

41We also note the value obtained by [48], 0:586� 0:048. This
value is closer to our values.

STATIC QCD POTENTIAL AT . . . PHYSICAL REVIEW D 76, 114009 (2007)

114009-29



the determination of �A1; A2� and x, both when we use the
potential and force. In this sense, the covariance matrices
of the lattice data are highly demanded.

Since the errors for VC�L�r� (parametrized by s and t)
are much larger than the errors of the lattice data, one may
wonder why the latter can be a dominant source of errors
with regard to the former. [Note that in Fig. 19 the errors of
the lattice data are smaller or comparable to the size of the
symbols used for the plot; the variation of VC�L�r; s�with s
is comparable in size to �VC�L�r�.] This can be understood
as follows:

(1) Practically, the measurement of x is sensitive only to
the Coulomb part of Vdiff�r; x�, hence only the
Coulomb part of the errors matters. Let us denote
by V�n�C�L�r� the difference between VC�L�r� up to
NnLL and VC�L�r� up to Nn�1LL. Then we perform
fits of V�n�C�L�r�=�3-loop

MS
in the form c�1	

�1 � c1	�

c2	
2, using the 11 data points evaluated at r � ri.

The results for n � 1, 2, 3 are shown in Table IV.
Magnitudes of all the coefficients c�n�k decrease as
the order increases, if we take s � 1 as a reference
for V�3�C�L�r�. This is natural, since V�n�C�L�r� ! 0 as
n! 1, therefore all c�n�k ! 0. Thus, it is quite
reasonable to estimate the Coulomb part of the
errors of VC�L�r� by the Coulomb part included in
tV�3�C�L�r; s � 1� or by that included in V�3�C�L�r; s� �

V�3�C�L�r; s � 1�. In fact, these error estimates are
encoded in our analysis. Noting that we neglect
the correlation of the errors of the lattice data, the
errors of the lattice data are indeed larger than the
Coulomb part of the errors of VC�L�r�. [Of course,
the argument given here is only for demonstration to
understand the errors better. When we derived our
results Eqs. (94), (95), (98), and (99), we did not do
a fit of the form c�1	�1 � c1	� c2	2 or extract a
Coulomb part.]

(2) There is a similar mechanism in the determination
of �A1; A2�. Since ��r; x; x0� has a Coulomb� linear
form, if a small admixture of the Coulomb part is
allowed in Vdiff�r� due to the errors of the lattice
data, the linear term attached to the Coulomb part
mixes in as well. Hence, if the lattice errors are

larger, allowing a Coulomb part to mix in, the
bounds on �A1; A2� spread mainly in the A1 direc-
tion. This explains the difference of Figs. 21(a) and
22(a). Again, it is the size of the Coulomb part of the
errors that matters.

Our results can be compared with the determination of
�EUS�r� by Pineda [26]. It is the only study that determined
the nonperturbative contribution using OPE, preceding our
current work. There are some important differences be-
tween Pineda’s analysis and ours.

(i) Pineda used x � r0�3-loop

MS
as an input parameter,

given by Eq. (83). Its error turns out to be the
dominant source of errors in the determination of
�EUS�r� (defined in the RS scheme [14,26]). On the
other hand, in our analysis, we determine x from a fit
to the data.

(ii) We estimate the error of the singlet potential (in the
C� L scheme) by varying s and t between 0 � s �
2 and jtj � 1. On the other hand, Pineda estimates
the error of the singlet potential (in RS scheme) by
varying �a3 between the range corresponding to
1=2< s< 3=2, while there is no estimate corre-
sponding to variation of t, i.e. t is fixed to zero.
Thus, our error estimate of the singlet potential is
more conservative.

(iii) Pineda does not incorporate errors of the lattice
data at all. On the other hand, in our analysis,
they are included neglecting the correlation. Since
our analysis is sensitive to a Coulomb part, the
lattice errors are the major source of errors.

(iv) The singlet potential in the RS scheme contains
O��3

QCDr
2� renormalon. It means that the singlet

potential has an intrinsic uncertainty of this order.
This essentially prevents a determination of
�EUS�r� with better than O��3

QCDr
2� accuracy, be-

cause �EUS�r� � VQCD�r� � VS�r� cannot be de-
fined with better accuracy. On the other hand, our
potential is free from the O��3

QCDr
2� renormalon

(and also from the rest of IR renormalons). So, at
least conceptually, there is a difference in the
achievable accuracies between the two analyses.

Because of these differences, comparisons between our
bounds on �EUS�r� and those of Pineda are not straightfor-

TABLE IV. Fits of V�n�C�L�ri�=�3-loop

MS
in the form c�1	

�1 � c1	� c2	
2, using the 11 data

points evaluated at r � ri�0:602�.

V�1�C�L�r�=�3-loop

MS
�0:0153	�1 � 1:1	� 0:5	2

V�2�C�L�r�=�3-loop

MS
�0:0087	�1 � 0:8	� 0:2	2

V�3�C�L�r; s � 1�=�3-loop

MS
�0:0028	�1 � 0:5	� 0:05	2


V�3�C�L�r; s � 2� � V�3�C�L�r; s � 1��=�3-loop

MS
�0:0038	�1 � 0:6	� 0:08	2


V�3�C�L�r; s � 0� � V�3�C�L�r; s � 1��=�3-loop

MS
�0:0038	�1 � 0:6	� 0:08	2
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ward. An explicit bound obtained by Pineda, assuming a
form �EUS�r� � const:� r2, reads
 

j�EUS�r�j< 2:8��3-loop

MS
�3r2 �RS scheme; Pineda 
26��:

(100)

One way of comparison may be to perform a fit by setting
A1 � 0 in our analysis. From the probability density dis-
tribution PFA1A2

�0; A2�, we obtain

 0:7��3-loop

MS
�3r2 < �EUS�r�< 0:9��3-loop

MS
�3r2

C� L scheme; A1 � 0
68%CL using force

� �
:

(101)

C. Determination of �EUS�r� in the factorization
scheme

We can also determine the size of �EUS�r;�f� in the
factorization scheme. In fact, in the second scheme (within
the factorization scheme), the purely nonperturbative con-
tribution is common to that in the C� L scheme. This is
because the difference of �EUS�r� is merely the difference
of the Wilson coefficients VC�L�r� and V�R�S �r;�f�; it is
given by (minus) the right-hand side of Eq. (81), which is
systematically computable by means of perturbative ex-
pansion and log resummation via RG. So, our task reduces
to estimating the infinite-order limit of Eq. (81). Using
Eq. (81), we calculate Taylor expansions of VC�L�r� �

V�R�S �r;�f� in r, which are listed in Table V for �f �

3�3-loop

MS
. We estimate errors by the size of the NNNLL

corrections and obtain
 


VC�L�r� � V
�R�
S �r; 3�3-loop

MS
��=�3-loop

MS

� �1:02� 0:02�	2 � �0:58� 0:31�	3: �	 < 0:5�

(102)

Thus, �EUS�r; 3�3-loop

MS
� in the factorization scheme (sec-

ond scheme) is given by the sum of Eqs. (95) and (102).
Given the above estimate, estimating VC�L�r� �

V�R�S �r;�f� for another value of �f is straightforward,
since the difference of the integrals [Eq. (81)] can be
evaluated by integrating over q along the real axis and
the integrand is free from singularities; convergence is
fairly good in this region of q, so one may simply use the
prediction up to NNNLL.

By the same token, we can estimate �EUS�r� in the first
scheme within the factorization scheme. The difference
between the first scheme and second scheme is perturba-
tively computable. In practice, up to NNNLL, we do not
find a significant difference between the first scheme and
the second scheme. We consider that we may apply the
above estimate (102) also to the first scheme within the
factorization scheme.

VI. SUMMARY AND CONCLUSIONS

In this paper, we analyzed the static QCD potential in the
distance region relevant to heavy quarkonium spectros-
copy, 0:5 GeV�1�0:1 fm� & r & 5 GeV�1�1 fm�, using
perturbative expansion and OPE as basic theoretical tools.
The analysis consists of three major steps:

(I) Behavior of the QCD potential at large orders of
perturbative expansion was analyzed. As for the
higher-order terms, we used the estimates by
large-�0 approximation or by RG equation; as for
the renormalization scale �, we varied it around the
minimal-sensitivity scale [or, more precisely the
scale defined by Eq. (21)]. Then the perturbative
expansion of the QCD potential, truncated at
O��NS �, was separated into a scale-independent
(prescription-independent) part and scale-dependent
(prescription-dependent) part when N � 1:
 

VN�r� � VC�r� �B�N; �� � Cr�D�r; N; ��

� �terms that vanish as N ! 1�: (103)

Here, � is a parameter for changing the scale (� � 1
corresponds to an optimal choice of scale). VC�r� is a
Coulomb potential, which includes logarithmic cor-
rections at short distances; B is an r-independent
constant; Cr is a linear potential; D�r� behaves as
r3��1 � �logcorr:� if � < 1, whereas it is O�r2� and
divergent as N ! 1 if � 
 1. VC�r� and C r corre-
spond to a renormalon-free part of VN�r� and are
finite and independent of �; thus the scale-
independent part has a Coulomb� linear form. On
the other hand, B and D�r� correspond, respectively,
to the O��QCD� IR renormalon and beyond O��QCD�

IR renormalons (starting from the O��3
QCDr

2� renor-
malon) contained in VN�r�; they are dependent on �
and divergent as N ! 1 if � is sufficiently large.
Detailed analytic behaviors of each component have
been studied.

(II) In the framework of OPE of the QCD potential,
(a) we gave explicit renormalization prescriptions

TABLE V. Expansion of 
VC�L�r� � V
�R�
S �r;�f��=�3-loop

MS
in

	 � r�3-loop

MS
, computed using Eq. (81). We neglect

	-independent constants. V�R�S �r;�f� is computed in the second
scheme and with �f � 3�3-loop

MS
. Other parameters for VC�L�r�

and V�R�S �r;�f� are the same as in Fig. 17.


VC�L�r� � V
�R�
S �r;�f��=�3-loop

MS

LL 0:53	2 � 0:00	3 � � � �

NLL 0:85	2 � 0:07	3 � � � �

NNLL 1:04	2 � 0:27	3 � � � �

NNNLL 1:02	2 � 0:58	3 � � � �
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for the Wilson coefficient (singlet potential)
V�R�S �r;�f�, which belong to the class of conven-
tional factorization schemes with a hard cutoff;
(b) the scale-independent part of (I) was generalized
and promoted to a Wilson coefficient VC�L�r�,
which is independent of the factorization scale �f.

Both V�R�S �r;�f� and VC�L�r� are free from IR
renormalons and IR divergences. Several properties
of these Wilson coefficients and of the correspond-
ing nonperturbative contributions have been derived
(partly already in [24]):

(a) V�R�S �r;�f� and VC�L�r� can be computed
systematically using perturbative expansion
and log resummation via RG, and (in princi-
ple) the predictions can be improved to arbi-
trary precision. Hence, the corresponding
nonperturbative contributions �EUS�r� are
unambiguously defined.

(b) With the usual hierarchy condition �QCD 	

�f 	 1=r, the difference between

V�R�S �r;�f� and VC�L�r� is O��3
fr

2� and per-
turbatively computable. VC�L�r� is closer to
VQCD�r� than V�R�S �r;�f�.

(c) �EUS�r� in the factorization scheme is
O��4

fr
3� at very short distances (�V�r� �

�f), whereas it is O��3
fr

2� in a semi-short-
distance region (�V�r� 	 �f 	 1=r).

(d) �EUS�r� in the C� L scheme
(�f-independent scheme) is O��4

QCDr
3� at

very short distances (�V�r� � �QCD),
whereas its behavior cannot be predicted
model-independently in a semi-short-
distance region (�V�r� ��QCD).

We conjectured that the region of our interest cor-
responds to a semi-short-distance region where �V�r� �
�QCD�	 �f�.

(III) We computed V�R�S �r;�f� and VC�L�r� numerically
for nl � 0 at our current best knowledge (NNNLL
with certain estimates of �a3)42 and compared them
with the lattice computations of VQCD�r� in the
quenched approximation. We confirmed that the
theoretical predictions of (II) are either correct or
consistent within the present level of uncertain-
ties.43 We find that a linear potential in �EUS�r�
reduces with increasing order, consistently with
vanishing in the infinite-order limit; at NNNLL,
it is much smaller than the string tension as deter-

mined by lattice simulations. (Note that the linear
potentials in the C� L scheme and in the factori-
zation scheme are common.) Then, we performed
fits of Vdiff�r; x� � Vlatt�r; x� � VC�L�r� and deter-
mined simultaneously �EUS�r� and x � r0�3-loop

MS
(relation between Sommer scale and �MS). A sen-
sitivity to x originates from the mixing of a
Coulombic term into Vdiff�r; x� when x differs
from its true value. Both the QCD potential and
QCD force were used for the fits. The latter re-
sulted in tighter bounds due to a smaller correlation
of lattice errors. We obtained

 r0�3-loop

MS
� 0:574� 0:042; (104)

in excellent agreement with the determination via
the Schrödinger functional method, Eq. (83) [47].
We also obtained
 

0:2	� 0:7	2 < �EUS�r�=�3-loop

MS
< 2:0	� 0:4	2

�C� L scheme�; (105)

where 	 � r�3-loop

MS
. [See also bounds on the co-

efficients of quadratic polynomial in Figs. 21 and
22(a).] In the factorization scheme, we obtain, for
instance,
 

0:2	�1:7	2<�EUS�r;�f�=�3-loop

MS
<2:0	�1:4	2

factorization scheme

�f�3�3-loop

MS

 !
: (106)

Estimating �EUS�r;�f� for other �f is easy. In the
factorization scheme, the obtained bounds are con-
sistent with O��3

fr
2�, rather than O��4

fr
3�. In the

C� L scheme, the obtained bound is consistent
with O��3

QCDr
2� (vanishing linear potential) at

95% CL, but the existence of a small linear term
is more favored; furthermore, �EUS�r� �
O��4

QCDr
3� or �EUS�r� � 0 is disfavored.

Consequently, we find that�f � �V�r�, in accord
with our conjecture. Also �V�r� ��QCD is more
likely than �V�r� � �QCD.44

The analysis (I) provides a reasoning within perturbative
QCD, why we observed agreement between the recent
perturbative computations of the QCD potential with phe-
nomenological potentials or lattice results: in the large-
order limit, VN�r� does approach a Coulomb� linear form.
It is quite intriguing that we can separate the renormalon-
free part and renormalon-dominant part in a natural way.

42As far as US logs are concerned, we observe that their effects
are small, hence, we did not resum the US logs but included only
up to NNNLO in the analysis.

43We also observed some limitations of the large-�0
approximation.

44Although we have not considered the possibility �V�r� 	
�QCD in this paper (since it seems to lie outside the applicable
range of our analysis), it may be worth examining this possibility
in detail in view of our present results.
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Furthermore, in this analysis, the coefficient of the linear
potential can be computed analytically up to NNLL.

In (II) we defined renormalization prescriptions for
V�R�S �r;�f�, in which all the known IR renormalons are
subtracted.45 Moreover, the introduction of a factorization-
scale-independent scheme for the Wilson coefficient,
VC�L�r�, is new. VC�L�r� has some appealing theoretical
features: it has no intrinsic uncertainties, is systematically
computable, and is closer to VQCD�r� than V�R�S �r;�f�. In
any case, since the differences between the different
schemes are perturbatively computable with good accu-
racy, the C� L scheme would serve as a useful reference.

In the numerical analysis (III), the only assumption we
made in the fits is that we can approximate �EUS�r� by a
quadratic polynomial of r at r�3-loop

MS
< 0:5. This should be

reasonable since �EUS�r� ! 0 as r! 0 according to OPE.
(An r-independent constant is irrelevant in our analysis.)
We checked the validity of the assumption by including a
cubic term and by varying the number of data points used
for the fits.

In Fig. 17 we have seen the apparent convergence of
VC�L�r� towards the lattice data, up to our current best
knowledge. However, a closer examination of �EUS�r� in
the C� L scheme revealed that �EUS�r� � 0 is disfavored.
In fact, we have improved both quantitatively and concep-
tually (in the sense that we removed all the renormalons
from the singlet potential) the bounds on �EUS�r�, as
compared to the pioneering study by Pineda [26].

The OPE analysis of the QCD potential provided, as a
byproduct, a new method for determining x � r0�3-loop

MS
.

Our current result gives an error comparable in size to the
error of the conventional result using the Schrödinger
functional method [47]. The mechanism for the sensitivity
is fairly clear, as well as the sources of errors are under-
stood well. The present status is that the errors of the lattice
data contribute more significantly than the errors of
VC�L�r�. Hence, information on the correlation of the
lattice errors (in particular, the covariant matrix) is highly
demanded in order to reduce the error.

Finally let us comment on the applicable range of per-
turbative expansion and OPE of VQCD�r�. We saw in
Fig. 17 that the current best perturbative prediction of the
Wilson coefficient VC�L�r� follows the lattice data up to
r & r0 � 0:5 fm. We consider that the distance, at which
string breaking occurs, serves as a measure of the distance
where the perturbative expansion breaks down (in the
theory with nl > 0). It is around 1 fm according to the
recent lattice simulation [50]. It is clear that the string
breaking phenomenon is nonperturbative and that the

present perturbative computation of the QCD potential
lacks ingredients necessary for the description of this
phenomenon. In the context of heavy quarkonium phe-
nomenology, string breaking corresponds to the decay
��4S� ! B �B. Since empirically the root-mean-square ra-
dius of ��4S� is around 1 fm, it is consistent with the lattice
results. We also know empirically that phenomenological
potentials are approximated well by a Coulomb� linear
form at r & 1 fm. It means that, if we separate the heavy
quark and antiquark, we have a sensitivity to the linear
potential at distances before string breaking takes place.
Thus, we consider r & 1 fm [corresponding to heavy
quarkonium states below ��4S�] to be the range in which
perturbative expansion may make sense. (Certainly more
terms of the perturbative expansion need to be included in
order to have an accurate prediction of VC�L�r� as r
approaches 1 fm.) Already in this range the QCD potential
exhibits a linear behavior in addition to the Coulomb part.
Our analysis indicates that the qualitative argument pre-
sented at the end of Sec. II D may be valid in this very
range, i.e. the Coulomb� linear potential at r < 1 fm may
be unambiguously predictable in perturbative QCD.
Ultimately, it depends on whether the linear term in
�EUS�r� is truly vanishing or not.46
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APPENDIX A: BASIC FORMULAS

In this appendix we present detailed formulas useful for
computing �PT

V �q� up to NNNLO as well as VN�r� for a
finite but large N.

The perturbative expansion of the V-scheme coupling in
momentum space �PT

V �q� is defined by Eqs. (2)–(5). The
polynomials in Eq. (4) up to NNNLO are given by

 P0�‘� � a0; (A1)

 P1�‘� � a1 � 2a0�0‘; (A2)

 P2�‘� � a2 � �4a1�0 � 2a0�1�‘� 4a0�2
0‘

2; (A3)

 

P3�‘� � a3 � �6a2�0 � 4a1�1 � 2a0�2�‘

� �12a1�
2
0 � 10a0�0�1�‘

2 � 8a0�
3
0‘

3; (A4)

45We ignored the instanton-induced renormalon singularities,
which are known to give very small contributions. From a
general argument, there should also exist contributions to IR
renormalons, which cannot be written in the form of Eq. (18); we
neglected them too.

46Note that the linear potential we are concerned with here has,
a priori, nothing to do with the linear potential at r� ��1

QCD
usually associated with confinement (in the theory with nl � 0).
A priori, we see no reason that both linear potentials should have
a common slope. Nevertheless, empirically these two linear
potentials seem to have a common slope.
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where

 ‘ � log��=q�: (A5)

The coefficients of the beta function �n, defined by
Eq. (6), are given explicitly by

 �0 � 11� 2
3nl; (A6)

 �1 � 102� 38
3 nl; (A7)

 �2 �
2857

2
�

5033

18
nl �

325

54
n2
l 
56; 57�; (A8)

 

�3 �
149 753

6
� 3564�3 �

�
�

1 078 361

162
�

6508�3

27

�
nl

�

�
50 065

162
�

6472�3

81

�
n2
l �

1093n3
l

729

58; 59�;

(A9)

where �3 � ��3� � 1:2020 . . . denotes the Riemann zeta
function ��z� �

P
1
n�1 1=nz evaluated at z � 3.

Presently, an are known up to n � 2.

 a0 � 1; (A10)

 a1 �
31
3 �

10
9 nl 
1; 2�; (A11)

 

a2 �
4343

18
� 36�2 � 66�3 �

9�4

4
�

�
1229

27
�

52�3

3

�
nl

�
100

81
n2
l 
4; 5�: (A12)

It is known that a3 is IR divergent; the coefficient of the
divergence and associated logarithm have been computed
[10,11]:

 a3 � 72�2

�
1

�
� 4f2‘� log�4�� � 
Eg

�
� �a3; (A13)

where the IR divergence is regularized by dimensional
regularization (D � 4� 2�). �a3 is just a constant
independent of �, �, r. So far, only some estimates of its
size are known: e.g. �a3�large-�0� � �

5
3�0�

3 � 6162,
�a3�Pineda� � 18 688 [14,26], �a3�Chishtie-Elias� �
20 032 [13] for nl � 0.

The physical logarithm associated with the IR diver-
gence can be extracted as follows [10,24]. Instead of
defining the ultrasoft contribution �EUS�r� in Eq. (17) as
a nonperturbative quantity, it can be computed in a double
expansion in �S and log�S within pNRQCD47:

 
�EUS�r��double
exp:
�
CFC

3
A�S���

4

24�r

�
1

�
� 8 log��r�

� 2 log�CA�S���� �
5

3
� 2
E

� 4 log�4��
�
�O��5

S�; (A14)

where 
E � 0:5772 . . . denotes the Euler constant. Upon
Fourier transform, 1=� and log� terms of Eqs. (A13) and
(A14) cancel each other.48 The remaining log�CA�S� is the
physical logarithm. The argument of the logarithm in
Eq. (A14), CA�S � 2r�V�r�, represents the ratio of the
IR regulator 2�V�r� and 1=r; cf. Sec. II D. If we perform
OPE in conventional factorization schemes, we introduce
the factorization scale�f, and the IR regulator 2�V�r�will
be replaced by �f. Thus, one finds the ultrasoft logarithm

 V�R�S �r;�f�jUS- log � �
CFC

3
A�S���

4

24�r
� 2 log��fr�:

(A15)

It is easy to verify that the �S���4 log��f=q� term of
Eq. (7) generates Eq. (A15) after Fourier transform.
(Oppositely, using the RG equation with respect to the
evolution of �f within pNRQCD, one can resum US logs
as given in Eq. (7) [12].)

One may verify explicitly that �PT
V �q� up to NNNLO,

defined via Eqs. (A1)–(A13), and 
�EUS�r��d:e: in
Eq. (A14) are separately consistent with RG equations
with respect to the evolution of �:

 

�
�2 @

@�2 � ���S����
@

@�S���

�
X � 0;

X � �PT
V �q� or 
�EUS�r��double

exp:
:

(A16)

This should be so, as long as VQCD�r� and �PT
V �q� are

defined from the Wilson loop via Eqs. (2)–(4), since the
Wilson loop is independent of �.49 To verify Eq. (A16),
one should note that the beta function in general dimension
(in MS scheme) has a form

 
���S����0 � ���S � 
���S����0: (A17)

In the rest of this appendix, we present formulas useful
for computing VN�r� for a large (but finite) N. The expan-
sion of �S�q�n in terms of �S��� can be obtained by the
iterative operation of a derivative operator as

47It can also be obtained from the difference between the
resummation of diagrams in Fig. 1 and its expansion in �S
before loop integration.

48Note that the expansion of VQCD�r� in �S, obtained from
�PT
V �q�, coincides with the expansion of the bare singlet potential

VS�r� in �S; cf. Sec. II D. Hence, the sum of 
�EUS�r��d:e:, as
given by Eq. (A14), and VS�r� represents the expansion of
VQCD�r� in �S and log�S.

49There exists a definition of the singlet potential through
threshold expansion of diagrams contributing to a quark-
antiquark Green function [51]; in this definition, � independence
of the potential is not preserved.
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 �S�q�
n � exp

�
�2‘��x�

@
@x

�
xnjx!�S���

�
X1
k�0

��2‘�k

k!

�
��x�

@
@x

�
k
xnjx!�S���; (A18)

where ���S� is defined in Eq. (6) [and Eq. (A17) if
necessary].

The V-scheme coupling in position space, ��V�1=r�, is
defined by VQCD�r� � �CF ��V�1=r�=r. The series expan-
sion of ��V�1=r� in terms of the MS coupling renormalized
at � � exp��
E�=r is obtained as follows [52]. Using the
coefficients gm defined by

 

X1
m�0

gmum � exp
�X1
k�2

��k�uk

k
f2k � 1� ��1�kg

�
; (A19)

we may write

 ��V�1=r� �
X1
m�0

gm

�
���x�

@
@x

�
m

�
X1
n�0

an
�4��n

xn�1jx!�S�exp��
E�=r�: (A20)

To obtain the expansion of ��V�1=r� in terms of �S���, we
first compute Eq. (A20), then substitute the expansions of
�S�exp��
E�=r�

n in terms of �S��� computed using
Eq. (A18). By truncating the series at an appropriate order
in �S���, the result reduces to a polynomial of log��r�.

APPENDIX B: INTEGRAL REPRESENTATION OF

�S�q��1 AT NLL


�S�q��1 for the 2-loop running coupling constant can
be expressed in a one-parameter integral form. After in-
tegrating the RG equation, �S�q� is given implicitly by the
relation

 log�q=�2-loop

MS
� � �

2�
�0�S

�
�
2

log
�

4�
�0�S

� �
�
: (B1)

Hence, using Cauchy’s theorem, one may write
 

�S�q� �
i
�0

Z
Cs
ds��s��1

�

�
log�q=�2-loop

MS
� �

�
2

log��2es� � s
�
�1

(B2)

 

�
i
�0

Z
Cs
ds��s��1

Z 1
0
dx

� exp
�
�x

�
log�q=�2-loop

MS
� �

�
2

log��2es� � s
��

�
2�
�0

Z 1
0
dx�q=�2-loop

MS
��x

�
x
2e

�
x�=2 1

��1� x�=2�
: (B3)

The integral contour Cs is shown in Fig. 24. In the last

equality, we rescaled s! s=x and used the formula
1=��z� � i�2���1

R
Cs
ds��s��ze�s.

The truncated series expansion of �S�q� in �� � �S���

can be obtained as follows. One rewrites �2-loop

MS
in terms of

�� in Eq. (B2). After changing variables as s � � 4�
�0��

�

��u, we have

 

�S�q� �
i��
2�

Z
Cu
du��u��1

�
1�

u
���� 4�=�0

�
�0��

2�

�

�
log

�
q
�

�
�
�
2

log��eu�
��
�1
: (B4)

Expanding the integrand in �� and integrating at each
order of the expansion, one obtains the series expansion
of �S�q� in ��. It is then straightforward to truncate at
order �N�. Sending N ! 1, we obtain

 

lim
N!1

�
��

�
1�

u
����4�=�0

�
�0��

2�

�
log

�
q
�

�
�
�
2

log��eu�
��
�1
�
N

�

�
log�q=�2-loop

MS
��

�
2

log��2es�� s
�
�1

�

�
1� exp

�
�3�flog�q=�2-loop

MS
��

�
2

log��2es�� sg
��
;

(B5)

where we reexpressed the truncated series in terms of s and
�2-loop

MS
. Similar to Eq. (B3), we find

 
�S�q��1 �
2�
�0

Z 3�

0
dx�q=�2-loop

MS
��x

�
x
2e

�
x�=2

�
1

��1� x�=2�
: (B6)

Thus, the one-parameter integral forms given in Eq. (52)
are obtained.

FIG. 24. Integral contour Cs.
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APPENDIX C: ANALYTIC FORMULA OF THE
LINEAR POTENTIAL IN CASE (C)

We present the analytic formula for the coefficient of the
linear potential, defined by Eq. (39), in case (c). The
integral equation (39) can be reduced to a one-parameter
integral form by the change of variables, e.g. from q to z �
1=�S. Then one readily sees that the integral can be ex-
pressed in terms of the confluent hypergeometric function
except for the coefficient of a2, while the coefficient of a2

can be expressed in terms of generalized confluent hyper-
geometic functions.

For convenience, we first define some auxiliary parame-
ters. The two solutions to the quadratic equation

 

4����S�

�2
S

��������case �c�
� �

X2

n�0

�n

�
�S
4�

�
n
� 0 (C1)

[cf. Eq. (6)] are denoted as50 �S � 1=! and 1=!�. Then
we define

 p �
2�
�0

!2

!�!�
: (C2)

We also write b0 � �0=�4��.
The coefficient of the linear potential in case (c) is given

by

 C �c� �
2�CF
�0

��3-loop

MS
�2
�
a0R0 �

a1

4�
R1 �

a2

�4��2
R2

�
;

(C3)

where

 R 0 � 2 Re
F�p� 1
2; p

�� �!F�p; p���; (C4)

 R 1 � 2 Re
F�p; p���; (C5)

 R 2 � 2 Re
G� � b�0 ��!�
2p�1��!��2p

��1: (C6)

The function F is defined by

 F�x; y� � bx�y��0

�!�!��x�y�1e�i��x�y���=2

��1� 2x�
Wy�x;x�y�1=2

�
!� �!
b0

�
; (C7)

in terms of the Whittaker function, which is related to the confluent hypergeometric function 1F1 as
 

W�;��z� �
���2��

��12��� ��
z��1=2e�z=2

1F1

�
�� ��

1

2
; 2�� 1; z

�

�
��2��

��12��� ��
z���1=2e�z=2

1F1

�
��� ��

1

2
;�2�� 1; z

�
: (C8)

On the other hand, G is defined by
 

G � b�0e
�!=b0��i��2p��1�

�
�!� �!��2��

�1� 2p�B�1� 2p; 1� 2p��
�1

�
1; 2p� 1; 2� �;

!
!� �!

;
!�!�

b0

�

�
b�2��

0

�
sin�2�p����2� ���2

�
1; 1� 2p�; 3� �;�

!
b0
;
!� �!
b0

��
: (C9)

�1 and �2 represent Appell confluent hypergeometric
functions [53] defined by the double series

 �1��;�;�0; x; y� �
X1
m;n�0

���m���n�m��
0�m�n

m!n!
xmyn;

(C10)

 �2��;�; 
; x; y� �
X1
m;n�0

���m���n
�
�m�nm!n!

xmyn; (C11)

where �a�n � ��a� n�=��a� is the Pochhammer symbol.

APPENDIX D: NUMERICAL EVALUATION OF
V�R�S �r;�f � AND VC�L�r�

In this appendix, we present a method for accurate
numerical evaluations of V�R�S �r;�f� and VC�L�r�. The
former is defined in Sec. IVA to be

 V�R�S �r;�f� � �
2CF
�

Z 1
�f

dq
sin�qr�
qr

��R�VS �q;�f�; (D1)

with

 ��R�VS �q;�f� � �PT
V �q� � ��V�q;�f� (D2)

 � �S�q�
XN
n�0

aVsn

�
�S�q�

4�

�
n
: (D3)

N � 0, 1, 2, and 3 correspond to V�R�S �r;�f� up to LL,

50We assume that the two solutions are complex conjugate of
each other. This is the case when the number of active quark
flavors is less than 6.
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NLL, NNLL, and NNNLL, respectively. (We do not resum
US logs but include only up to NNNLO.) aVsn � Pn�0� �
an for n � 2, whose explicit forms are given in
Eqs. (A10)–(A12); aVs3 � �a3 � 144�2 log��f=q� in the
first scheme [corresponding to Eq. (74)], while aVs3 � �a3 �

120�2 � 144�2f
E � log
3�S�q��g in the second scheme
[corresponding to Eq. (75)].

We deform the integral path of Eq. (D1) into the upper
half-plane:

 V�R�S �r;�f� � �
2CF
�

Im
Z 1

0
dk
�
i
exp�iqr�
qr

��R�VS �q;�f�

�
q��f�ik

: (D4)

In order to evaluate the integral numerically, we first solve the RG equation (6) with a given input value (e.g. �S�Q� � 0:2)
and find the value of Q=�MS and the value of �S��f� for a given �f=�MS. Then we solve the RG equation (6) along the
integral path q � �f � ik (0< k<1) in the complex plane, with �S��f� as the initial value. In solving the RG equation,
we take the sum for n � 0, 1, 2, and 3 on the right-hand side of Eq. (6), respectively, corresponding to V�R�S �r;�f� up to LL,
NLL, NNLL, and NNNLL.

The singlet potential in the�f-independent scheme VC�L�r� is defined in Secs. IVA and IV B. It is easier to evaluate the

difference V�R�S �r;�f� � VC�L�r� accurately, using Eq. (81), than to directly evaluate VC�L�r�:

 V�R�S �r;�f� � VC�L�r� �
2CF
�

Im
Z
C3

dq
eiqr � 
1� iqr� 1

2 �iqr�
2�

qr
��R�VS �q� � const: (D5)

Here, we choose the second scheme for ��R�VS �q�. The integral path C3 is shown in Fig. 16, e.g. q � k� ik2�k��f�
2 for

0 � k � �f. We solve the RG equation for �S�q� along this path similar to above. We may ignore the r-independent
constant on the right-hand side of Eq. (D5). Then, subtracting Eq. (D5) from V�R�S �r;�f� computed in the second scheme,
we obtain VC�L�r�.
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(McGraw-Hill, New York, 1953), Vol. 1.

[54] T. T. Takahashi, H. Suganuma, Y. Nemoto, and H.
Matsufuru, Phys. Rev. D 65, 114509 (2002).

[55] S. Aoki et al. (JLQCD Collaboration), Phys. Rev. D 68,
054502 (2003).

[56] O. V. Tarasov, A. A. Vladimirov, and A. Y. Zharkov, Phys.
Lett. B 93, 429 (1980).

[57] S. A. Larin and J. A. M. Vermaseren, Phys. Lett. B 303,
334 (1993).

[58] T. van Ritbergen, J. A. M. Vermaseren, and S. A. Larin,
Phys. Lett. B 400, 379 (1997).

[59] M. Czakon, Nucl. Phys. B710, 485 (2005).

Y. SUMINO PHYSICAL REVIEW D 76, 114009 (2007)

114009-38


