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4Soltan Institute for Nuclear Studies, Hoza 69, 00-681 Warsaw, Poland

(Received 5 October 2007; published 6 December 2007)

We evaluate the cross section for �pp! ‘�‘��0 in the forward direction and for a large lepton pair
invariant mass. In this kinematical region, the leading-twist amplitude factorizes into a short-distance
matrix element, long-distance antiproton-distribution amplitudes, and proton to pion transition distribu-
tion amplitudes (TDAs). Using a modeling inspired from the chiral limit for these TDAs, we obtain a first
estimate of this cross section, which demonstrates that this process can be measured at GSI-FAIR.
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Transition distribution amplitudes (TDAs) [1] are uni-
versal nonperturbative objects describing the transitions
between two different particles (e.g. p! �, �! �, �!
�). They appear in the study of backward electroproduc-
tion of a pion [2], of �?�! �� and �?�! �� reactions
[3] as well as in hard exclusive production of a �?� pair in
�pp annihilation:

 �p�p �p�p�pp� ! �?��p�� ! ‘��p‘��‘
��p‘����p�� (1)

at small t � �p� � pp�2 [or at small u � �p� � p �p�
2],

which is the purpose of the present work. The TDAs are
an extension of the concept of generalized parton distribu-
tions (GPDs), as already advocated in [4]. The proton to
meson TDAs are defined from the Fourier transform of a
matrix element of a three-quark-light-cone operator be-
tween a proton and a meson state. They obey QCD evolu-
tion equations which follow from the renormalization-
group equation of the three-quark operator. Their Q2 de-
pendence is thus completely under control.

Whereas in the pion to photon case models used for
GPDs [5–7] could be applied to TDAs since they are
defined from matrix elements of the same quark-antiquark
operators, the situation is clearly different for the nucleon
to meson TDAs. Before estimates based on models such as
the meson-cloud model [8] become available, it is impor-
tant to use as much model-independent information as
possible. In [2], we derived constraints from the chiral
limit on the TDAs p! � and made a first evaluation of
the cross section for the backward electroproduction of a
pion in the large-� (or small E�) region. Related processes
were also recently studied in [9] similarly to what was
proposed in [10]. In this work, we apply the same setting to
evaluate the cross sections for �pp! ‘�‘��0 in the kine-
matical region accessible by GSI-FAIR [11] in the forward
limit and at moderate energy of the meson. For a discussion
of a related process with fermionic exchange in the
t-channel in a different framework, see [12].

In the scaling regime where Q2 � q2 is of the order of
W2 � �p �p � pp�2, the amplitude for the process (1) at
small t—or c.m. angle of the pion ��� close to 0 —involves
the p! � TDAs Vp��xi; �;�2�, Ap��xi; �;�2�,
Tp��xi; �;�2�, where xi (i � 1, 2, 3) denote the light-
cone-momentum fractions carried by the participant
quarks and � is the skewedness parameter such that 2� �
x1 � x2 � x3. The amplitude is a convolution of the anti-
proton DAs, a perturbatively calculable-hard-scattering
amplitude and the p! � TDAs.

The momenta of the subprocess �pp! �?� are defined
as shown in Fig. 1. The z-axis is chosen along the colliding
proton and antiproton and the x-z plane is identified with
the collision or hadronic plane. We define the light-cone
vectors p and n such that 2p � n � 1, as well as P � �pp �
p��=2, � � p� � pp, and its transverse component �T

(�2
T < 0). � is defined as � � � ��n

2P�n . We express the
particle momenta through a Sudakov decomposition:

 pp � �1� ��p�
M2

1� �
n

p �p �
2M2�1� ��

�
p�

�
2�1� ��

n

(2)

FIG. 1 (color online). The factorization of the process p �p!
�?� into antiproton-distribution amplitudes (DA), the hard-
subprocess amplitude (Mh) and proton! pion TDA.
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p� � �1� ��p�
m2
� � �2

T

1� �
n� �T

� � �2�p�
�
m2
� � �2

T

1� �
�

M2

1� �

�
n� �T

q ’ 2�p�
M2

W2 �1� �� �
�
W2

1� �
�
m2
� ��2

T

1� �

�
n� �T

�2
T �

1� �
1� �

�
t� 2�

�
M2

1� �
�

m2
�

1� �

��
; (3)

where � � W2 � 2M2 �W
�����������������������
W2 � 4M2
p

’ 2W2; the ap-
proximate expression for q is obtained with M� W.

For �T � 0, M� W, and m� � 0, one gets
 

pp � �1� ��p; p �p �
W2

1� �
n; p� � �1� ��p;

t �
2�M2

1� �
; � �

Q2

2W2 �Q2 : (4)

In the fixed-target mode, the maximal reachable value for
W2 � 2M2 � 2ME �p at GSI will be ’ 30 GeV2 (for E �p �

15 GeV). The highest invariant mass of the photon could
be Q2

max ’ 30 GeV2. We refer to Ref. [13] for a complete
discussion of the kinematically allowed domain. In terms
of our notations, in the proton rest frame, we have p �
M

1�� �1; 0; 0;�1� and n � 1��
4M �1; 0; 0; 1�. Thus � 2 	0:5; 1


corresponds to jpz�j<M=3 ’ 310 MeV in the laboratory
frame at �T � 0.

Let us now turn to the kinematics of �pp! ‘�‘��0. We
have for the unpolarized differential cross section

 d� �
1

2
�������������������������������
��W2;M2;M2�

p
�2��5

j �Mj2d3�PS�: (5)

The 3-particle differential Lorentz invariant phase space
(dLIPS), d3�PS�, can be decomposed into two 2-particle
dLIPS (where q is the momentum of the �?):
 

d3�PS��	
4�pp�p �p�p‘� �p‘� �p��

d3 ~p‘�

2p0
‘�

d3 ~p‘�

2p0
‘�

d3 ~p�
2p0

�

�	4�pp�p �p�q�p��
d3 ~p�
2p0

�

d3 ~q

2q0

�dQ2	4�q�p‘� �p‘��
d3 ~p‘�

2p0
‘�

d3 ~p‘�

2p0
‘�
:

In the �pp c.m., we have
 

	4�pp�p �p� q�p��
d3 ~p�
2p0

�

d3 ~q

2q0 �
d�?

�

8W2

������������������������������
��W2;Q2;m2

��
q

and in the ‘�‘� c.m., we have (m‘ ’ 0)

 	4�q� p‘� � p‘��
d3 ~p‘�

2p0
‘�

d3 ~p‘�

2p0
‘�
�
d�‘

8
�
d cos�‘d’‘

8
:

(6)

Expressing t � �p� � pp�2 in terms of cos�?� [14], we get

 dt �
d cos�?�

2W2

�������������������������������
��W2;M2;M2�

q ������������������������������
��W2; Q2; m2

��
q

: (7)

Altogether, by integrating on ’?� and on ’‘,

 

d�

dtdQ2d cos�‘
�

R
d’‘jM

�pp!‘�‘��0
j2

64W2�W2 � 4M2��2��4
; (8)

to be compared with the cross section for �pp! �?�0:

 

d�
dt
�

jM �pp!�?�0
j2

16�W2�W2 � 4M2�
: (9)

At �T � 0, the leading-twist TDAs for the p! �0

transition, Vp�
0

i �xi; �;�
2�, Ap�

0

i �xi; �;�
2�, and

Tp�
0

i �xi; �;�2� are defined as (see Appendix for details)
 

F �h�0�p��j

ijkui��z1n�u

j
��z2n�d

k
��z3n�jP�pp; sp�i�

�
i
4

fN
f�
	Vp�

0

1 �p6 C����u
��pp; sp���

� Ap�
0

1 �p6 �5C�����
5u��pp; sp���

� Tp�
0

1 ��p�C�����
�u��pp; sp���
; (10)

where ��
 � 1=2	��; �

, C is the charge conjugation
matrix, f� � 131 MeV is the pion decay constant, and
fN � 5:2� 10�3 GeV2. u� is the large component of
the nucleon spinor: u�pp; sp� � �n6 p6 � p6 n6 �u�pp; sp� �

u��pp; sp� � u��pp; sp� with u��pp; sp� �
�������
p�p

q
and

u��pp; sp� �
������������
1=p�p

q
.

For the three TDAs Vp�
0

1 , Ap�
0

1 , and Tp�
0

1 , contributing
in the limit �T ! 0, we use the following expressions for
�T � 0 and large � (see the Appendix):

 fVp�
0

1 ; Ap�
0

1 ; Tp�
0

1 g�x1; x2; x3; �;�
2�

�
1

4�
fVp; Ap; 3Tpg

�
x1

2�
;
x2

2�
;
x3

2�

�
; (11)

where Vp, Ap, and Tp are the proton DAs [15].
At the leading order in �s and at �T � 0, the amplitude

M
sps �p

� for �p�p �p; s �p�p�pp; sp� ! �?�q; ���0�p�� reads

 M
sps �p

� � �i
�4��s�2

���������������
4��em
p

f2
N

54f�Q
4 S

sps �p

� I (12)

with S
sps �p

� � �v��p �p; s �p�"6 ?����5u��pp; sp� and

 I �
Z 1��

�1��
	dx


Z 1

0
	dy


�
2
X7

��1

R� �
X14

��8

R�

�
; (13)

where 	dx
 � dx1dx2dx3	�2��
P
kxk� and 	dy
 �

dx1dx2dx3	�1�
P
kyk�; the coefficients R��� �

1; . . . ; 14� exactly correspond to T� in [2] after the replace-
ment �i
! i
 due to the presence of the �? in the final
instead of initial state. Even though the TDA formalism
can be applied at any value of � (or E�), we have for now at
our disposal estimates for the p! � TDAs only at large �.
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In the following, we shall therefore limit ourselves to the
computation of the cross section for reaction (1) in this
region. At large �, the ERBL regime (xi > 0) covers most
of the integration domain. Therefore it is legitimate to
approximate the cross section only from the ERBL con-
tribution, i.e. when the integration range of the momentum
fractions is restricted to 	0; 2�
.

The differential cross section for unpolarized protons
and antiprotons is calculated as usual using Eq. (9) from
the averaged-squared amplitudes,

 jM��0 j
2 �

1

4

X
sps �p

M�
sps �p
�M�0

sps �p
��: (14)

jM00j
2 vanishes at the leading-twist accuracy, as in the

nucleon-form-factor case. The same is true for jM��j
2

and jM0�j
2, etc., since the x and y directions are not

distinguishable when �2
T is vanishing. We then define

jMTj
2 
 jM��j

2 � jM��j
2.

To compute I , we need to choose models for the DAs
and the deduced TDAs. For the sake of coherence with
experimental data, we shall use reasonable parametriza-
tions of Chernyak-Zhitnitsky (CZ) [15] and King-
Sachrajda (KS) [16], which are both based on an analysis
of QCD sum rules. For CZ, they are

 Vp�xi� � ’as	11:35�x2
1 � x

2
2� � 8:82x2

3 � 1:68x3 � 2:94
;

Ap�xi� � ’as	6:72�x2
2 � x

2
1�
;

Tp�xi� � ’as	13:44�x2
1 � x

2
2� � 4:62x2

3 � 0:84x3 � 3:78
;

and for KS (which we used in Fig. 2)

 Vp � ’as	17:64�x2
1 � x

2
2� � 22:68x2

3 � 6:72x3 � 5:04
;

Ap � ’as	2:52�x2
2 � x

2
1� � 1:68�x2 � x1�
;

Tp � ’as	21:42�x2
1 � x

2
2� � 15:12x2

3 � 0:84x3 � 7:56
;

and we evaluate our model TDAs from Eq. (11). This gives
I ’ 1:28� 105 for CZ and I ’ 2:15� 105 for KS; this
yields an induced uncertainty of order 3 for our estimates
of the cross section. In the following, we use �s � 0:3 as
suggested in [15].

Altogether, we have the following analytic results for the
dominant ERBL contribution:

 jMT j
2 �
�4��s�4�4��em�f4

N

542f2
�

2�1� ��jI j2

�Q6
: (15)

From this, we straightforwardly obtain d�
dt , whose W2

evolution is displayed on Fig. 2(a) at �T � 0 for the two
extreme values of meson longitudinal momentum where
one may trust the soft-pion limit, corresponding to pz� � 0
or jpz�j � M=3 in the laboratory frame (� � 1 or 1=2).

For the process (1), the averaged-squared amplitude is

 jM �pp!‘�‘��0
j2 �

1

4

X
sp;s �p;�;�0

M�
sps �p

1

Q2 L
��0 1

Q2 �M
�0
sps �p
��;

with L��0 � e2 Tr�p6 ‘�"6 ���p6 ‘�"6
?��0��. Integrating on the

lepton azimuthal angle ’‘, we have

 

Z
d’‘jM

�pp!‘�‘��0
j2 � jMT j

2 2�e2�1� cos2�‘�

Q2 ; (16)

from which we get, via Eq. (8) and integrating over �‘, the
differential cross section displayed in Fig. 2(b).

Although the cross sections are evaluated at �T � 0, we
do not anticipate any dramatic �T-dependence of the
TDAs below a few hundred MeV, so that our estimates
are likely to be valid in a not-too-narrow �T region. To
evaluate a magnitude of the integrated cross section, we
take as an example the kinematical region with W2 �
10 GeV2 in Fig. 2(b) accompanied by the Q2 window
7 GeV2 <Q2 < 8 GeV2, which corresponds to � � 1=2
or to the pion momentum of the order 310 MeV. Integrating
over this Q2-bin and in a t-bin corresponding to �T <
500 MeV leads then to a cross section around 100 fb.
With an integrated luminosity of about 2 fb�1 for a 100-
day experiment, this yields a few hundreds of events above
Q2 � 7 GeV2, which is more than sufficient to get a first
sight through this new physics window.

The calculations done until now and which involve the
proton! �0 TDA are valid for the small t region. Let us
however stress that—due to the charge symmetry—an
identical result will be obtained in the small u region but
with the �p! �0 TDA. In the laboratory frame at GSI-
FAIR, this second region is quite different from the pre-
vious one since the �0 meson is boosted in the forward
direction. A precise detection of the particles of the final
state, either in the proton or the antiproton ‘‘fragmenta-
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FIG. 2. (a) Differential cross section d�=dt for �pp! �?�0 as a function a W2 for jpz�j � 0 (lower curve) and jpz�j � M=3.
(b) Differential cross section d�=�dtdQ2� for �pp! ‘�‘��0 as a function of Q2 for various beam energies.
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tion’’ kinematics, will depend on the detector perfor-
mances in the respective regions.

In conclusion, we have demonstrated that the study of
proton-antiproton exclusive annihilation into a lepton pair
and a pion is feasible at large values of the lepton pair
invariant mass in the forthcoming PANDA or PAX experi-
ments at GSI-FAIR. We believe that such a study will bring
unique information about the inner structure of the proton,
and particularly about the pion content of a proton, pro-
vided that the predictions (scaling behavior, angular de-
pendence of the lepton pair) of the factorized framework
used here are shown to be valid. Expressing the cross
section of this process as the convolution of a hard-
scattering amplitude for quarks with a photon with DAs
and proton to pion TDAs will allow one to evaluate these
new hadronic matrix elements which contain much infor-
mation about the confinement dynamics. It has to be em-
phasized that the same hadronic matrix elements appear
also in a similar description of backward electroproduction
of a pion [2]. Note that other channels are also of much
interest, such as �pp! l�l�� or �pp! l�l��0. The theo-
retical treatment of the � is identical to the one for the �0,
but for the isosinglet nature of �. In the �0 case, one should
distinguish between the longitudinally polarized meson
where the TDA has the same structure as for the �0 and
the transversally polarized case which leads to more TDAs.
Needless to say, we are strongly lacking model estimates
for these p! � and p! � TDAs but their experimental
determination (or at least the measurement of their ratios to
the p! � TDAs) opens a fascinating window on the
properties of the sea quarks in the proton wave function.

We are thankful to V. Braun, T. Hennino, and F. Maas for
useful and stimulating discussions. This work is supported
by Polish Grant No. 1 P03B 028 28, the French MAEE
Eco-Net program, EU Contract No. RII3-CT-2004-
506078, and the FNRS (Belgium).

APPENDIX

We now derive the general limit of the three contributing
TDAs at �T � 0 in the soft-pion limit, when � gets close to
1. In that limit, the soft-meson theorem [17] derived from
current algebra applies [10], which allows us to express
these 3 TDAs in terms of the 3 distribution amplitudes
(DAs) of the corresponding baryon. Conventionally [15],
the three proton DAs are defined through the decomposi-
tion of the following matrix element of the 3-quark opera-
tor in terms of three invariant functions of the scalar
product of the lightlike separation zin 
 ~zi with the proton
momentum pp, Vp�~zi � pp�, Ap�~zi � pp�, and Tp�~zi � pp�,
 

h0 ju��z1n�u��z2n�d��z3n�jpp�i

� 1
4fN	V

p�~zi � pp��p6 pC�����5u��pp; sp���

� Ap�~zi � pp��p6 p�
5C���u

��pp; sp��

� Tp�~zi � pp���pp�C�����
��5u��pp; sp���
: (A1)

The latter functions satisfy Vp�~zi �pp�0��Tp�~zi �pp�
0��1 and Ap�~zi � pp � 0� � 0, which provides the inter-
pretation of fN as the value of the proton wave function at
the origin. To go to momentum space one writes a Fourier
transform [16] which enables one to define functions of
momentum fractions xi (F � Vp, Ap, Tp) [	d~z � ���
 �
d�~z1 � ����d�~z2 � ����d�~z3 � ����]:

 

~F�xi� 

Z 1
�1

	d~z � pp


�2��3
ei�kxk~zk�ppF�~zi � pp�: (A2)

Inspired by [10], which considered the related case of the
distribution amplitude of the proton-meson system, we use
the soft-pion theorems [17] to write

 h�a�p��jOjP�p1;s1�i��
i
f�
h0j	Qa

5 ;O
jP�p1;s1�i; (A3)

where we neglected the nucleon pole term, which does not
contribute at threshold.

For the transition p! �0, Qa
5 � Q3

5, and O � u�u�d�.
Since the commutator of the chiral charge Q5 with the
quark field  (�a being the Pauli matrix)

 	Qa
5 ;  
 � �

�a

2
�5 ; (A4)

the right-hand side (rhs) of Eq. (A3) gives three terms from
��5u��u�d�, u���5u��d�, and u�u���

5d��. The corre-
sponding multiplication by �5 [or ��5�T when it acts on
the index�] on the vector and axial-vector structures of the
DA [Eq. (A1)] gives two terms which cancel and the third
one, which remains, is the same as the one for the TDA up
to the modification that on the DA decomposition, pp is the
proton momentum, whereas for the TDA one, p is the
light-cone projection of P, i.e. half the proton momentum
if one neglects the pion one. This introduces a factor 2� in
the relations between the 2 DAs Ap and Vp and the 2 TDAs

Vp�
0

1 and Ap�
0

1 .
To what concerns the tensorial structure multiplying Tp,

the three terms are identical at leading-twist accuracy and

correspond to the structure multiplying Tp�
0

1 , this gives a
factor 3. We eventually have the soft limit for our three
TDAs at �T � 0:

 �Vp�
0

1 ;Ap�
0

1 ;Tp�
0

1 ��~zi �p� � ��Vp;Ap;3Tp��~zi �pp�: (A5)

We will derive now this relation in the momentum
representation of DAs and TDAs. To do so, we start from
translational invariance which implies

 h0ju��~z1 � a�u��~z2 � a�d��~z3 � a�jppi

� e�ia�pph0ju��~z1�u��~z2�d��~z3�jppi; (A6)

and thus F��~zi � a� � pp� � e�ia�ppF�~zi � pp�. In momen-
tum space, we correspondingly get
 

~F�xi� �
Z 1
�1

	d�~z� a� � pp


�2��3
ei�kxk�~zk�a��ppF��~zi � a� � pp�

� ei��kxk�1�a�pp ~F�xi�: (A7)
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This condition is conveniently expressed by the following
redefinition: ~F�xi� � 	�

P
kxk � 1�F�xi�. The inverse

Fourier transform is then written as (	dx
 � dx1dx2dx3):

 F�~zi � pp� �
Z 1

0
	dx
e�i�kxk~zk�pp	

�X
k

xk � 1
�
F�xi�: (A8)

The normalization conditions then read

 

Z 1

0
	dx
	

�X
k

xk � 1
�
�Vp; Ap; Tp��xi� � �1; 0; 1�: (A9)

Note that the delta function ensuring translational in-
variance is exactly the one expected from the interpretation
that xi be the momentum fraction carried by the quark i off
the proton of momentum pp. This shows that the natural
conjugate variable to the momentum fractions xi’s are the
~zi � pp’s, i.e. the spatial separation dotted by the proton
momentum. Indeed, pp enters in the exponential of the rhs
of Eq. (A7), via the conjugate variable to xi, ~zi � pp, and as
the initial-state momentum of the matrix element. Another
choice than ~zi � pp would not have provided the correct
support for the xi’s.

The case of TDAs is similar except for the choice of the
natural conjugate variable. We start with translational in-
variance:

 hB�pB�j
ijkui��~z1 � a�u
j
��~z2 � a�dk��~z3 � a�jA�pA�i

� e�ia:�pA�pB�hB�pB�j
ijkui��~z1�u
j
��~z2�dk��~z3�jA�pA�i:

Now let us define a Fourier transform without specifying
the momentum p0 to which we dot the spatial separation:
 

~FA!B�xi� �
Z 1
�1

	d��~z� a� � p0�


�2��3
ei�kxk�~zk�a��p0

FA!B��~zi � a� � p0� � ei��kxka�p0�a��pA�pB�� ~FA!B�xi�:

The condition derived from translational invariance would

then be satisfied by 	�
P
kxka � p0 � a � �pA � pB��. In

order to get the correct support, i.e. 	�2��
P
kxk�, for a

translation a along n, we have to choose p0 such that 2� �
n:�pA�pB�

n�p0
� � n��

n�p0
, which is satisfied by p0 � �pA �

pB�=2 � P or a light-cone vector p (p2 � 0) such that P �
n � p � n. We choose p and have
 

	
�
2��

X
k

xk

�
FA!B�xi� 
 F �F�zi�n � p���


 �n � p�3
Z 1
�1

	dz


�2��3

� ei�kxkzk�n�p�F�zi�n � p��:

Let us now use the Fourier transform Eq. (A2) on both
sides of Eq. (A5). Defining � such that pp � n � �P � n �
�p � n, we get for instance for the V’s,
 

	
�X
k

xk � 1
�
Vp�xi� �

Z 1
�1

	d~z � pp


�2��3
ei�kxk~zk�ppVp�

0

1 �~zi � p�

� �3�n � p�3
Z 1
�1

	dz


�2��3
ei�kxkzk��n�p�

� Vp�
0

1 �zi�n � p��

� �3	
�
2��

X
k

��xk�
�
Vp�

0

1 ��xi�:

We conclude that translational invariance imposes natu-
rally, through the delta function, that � � 2�; the change
of variable x0i � �xi then yields

 fVp�
0

1 ; Ap�
0

1 ; Tp�
0

1 g�x1; x2; x3; �;�2�

�
1

4�
fVp; Ap; 3Tpg

�
x1

2�
;
x2

2�
;
x3

2�

�
; (A10)
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