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When a quantum system is divided into subsystems, their entanglement entropies are subject to an
inequality known as strong subadditivity. For a field theory this inequality can be stated as follows: given
any two regions of space A and B, S�A� � S�B� � S�A [ B� � S�A \ B�. Recently, a method has been
found for computing entanglement entropies in any field theory for which there is a holographically dual
gravity theory. We give a simple geometrical proof of strong subadditivity employing this holographic
prescription.
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Entanglement entropy is an important tool in the study
of quantum information (see e.g. [1]). It quantifies the
extent to which the state of a given subsystem of a quantum
system is correlated with that of the rest of the system.
Entanglement entropy enjoys a crucial mathematical prop-
erty called strong subadditivity [2]. Recently, Ryu and one
of the authors of the present paper [3] proposed a relation-
ship, applicable to any quantum field theory with a holo-
graphic gravity dual, between the entanglement entropy of
a region of space in the quantum field theory (QFT) and the
area of a certain minimal surface in the dual spacetime. An
important test of the validity of this proposal is whether it
has the property of strong subadditivity. This question was
investigated in a variety of examples in the paper [4],
always with an affirmative answer. In this note we give a
general argument that it does, based only on general prop-
erties of holographic dualities. Besides giving support to
the proposal, our argument provides an intuitive, geomet-
rical way to understand strong subadditivity, a property
whose formal algebraic proof is highly nontrivial.

The same argument can be used to establish a concavity
property for holographically computed Wilson loop expec-
tation values when the loops are coplanar. This is briefly
discussed at the end of the paper.

The von Neumann entropy of a density matrix �, S��� �
�Tr�� ln��, quantifies the extent to which the state repre-
sented by � fails to be a pure state. If � is obtained by
tracing over part of the Hilbert space representing a sub-
system—for example, one that is inaccessible to the ex-
perimentalist—then S��� is referred to as the
entanglement entropy of the remaining subsystem. More
formally, if the Hilbert space of the full system factorizes
into Hilbert spaces of two subsystems, H full �
H 1 �H 2, then for each subsystem we define a reduced
density matrix �1 � TrH 2

�full, �2 � TrH 1
�full, and a cor-

responding entanglement entropy S��1� and S��2�. On the
basis of the concavity of the function �x lnx and elemen-
tary properties of Hilbert spaces, these can be shown quite
generally to obey the following inequalities:

 jS��1� � S��2�j � S��full� � S��1� � S��2�: (1)

This property of entanglement entropy is known as sub-
additivity (the first inequality is also called the Araki-Lieb
inequality [5]). In particular, if the full system is in a pure
state then the two subsystems have the same entanglement
entropy.

Now suppose the system is made up of more than two
subsystems, H full �

N
iH i. Then the inequalities (1)

can be strengthened to yield [2]

 S��12� � S��23� � S��2� � S��123�;

S��12� � S��23� � S��1� � S��3�;
(2)

where �12 is the reduced density matrix for H 1 �H 2,
etc. These two inequalities can be shown to be equivalent
by the formal device of adding a fourth subsystem such that
�1234 is a pure state. This property of entanglement entropy
is known as strong subadditivity, and its proof is highly
nontrivial (although again it depends only on elementary
properties of Hilbert spaces) [6]. Strong subadditivity rep-
resents the concavity of the von Neumann entropy and is a
sufficiently strong property that it essentially uniquely
characterizes the von Neumann entropy [7].

In the context of a quantum field theory, a natural type of
subsystem to consider is that associated with a given region
of space. To any region A is associated a Hilbert space
H A, and for two disjoint regions A and B we have
H A[B �H A �H B. For the entanglement entropy asso-
ciated to H A we will write simply S�A� [rather than
S��A�]. Because of the infinite number of degrees of free-
dom involved in a field theory, S�A� typically suffers from
an ultraviolet divergence proportional to the surface area of
A [8,9]. In order to deal with finite quantities one must
impose a UV cutoff (and, if the surface area of A is infinite,
an IR cutoff as well). One may also consider subtracted
quantities that remain finite as the UV cutoff is removed,
such as the mutual information, I�A;B� � S�A� � S�B� �
S�A [ B�, defined when A and B (and their surfaces) are
disjoint. By (1) this is non-negative. By employing these
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quantities, Casini and Huerta [10] showed that an analogue
of the c-theorem in two-dimensional QFTs can be derived
from strong subadditivity.

To avoid confusion, it is important to remember that the
concept of entanglement entropy refers to a specific state of
the system at a specific time. Therefore all of the regions
and surfaces we consider in this paper are restricted to a
fixed constant-time slice of the field theory’s spacetime.

Recently, a proposal has been made in [3] for how to
compute the entanglement entropy of a region of space in
any quantum field theory that admits a holographic gravity
dual. The proposal is very simple. The gravity theory lives
in a space which as usual we call the bulk, and the QFT on
its conformal boundary. (To avoid confusion, we will
reserve the term ‘‘boundary’’ for the space on which the
QFT lives, and use the term ‘‘surface’’ for the boundaries
of various regions in the bulk and boundary.) We consider
all hypersurfaces [11]m in the bulk that end on @A, and ask
for the one with minimal area. (See Fig. 1.) We then have

 S�A� �
1

4GN
min

m:@m�@A
a�m�; (3)

where a�m� is the area of m. For the case when the bulk
gravity theory lives on a static asymptotically anti–
de Sitter (AdS) spacetime, Fursaev [12] has given a deri-
vation of (3) using Euclidean quantum gravity and the
basic principles [13] of the anti–de Sitter/conformal field
theories (AdS/CFT) correspondence [14]. Notice that ex-
pression (3) coincides with the Bekenstein-Hawking for-
mula of black hole entropy if we replace the minimal
surface with a black hole horizon. Indeed, at high tempera-
ture the spacetime of the gravity theory generally includes
a horizon; when part of the minimal surface wraps the
horizon, its contribution corresponds to the usual thermal

entropy. We will see an example of this situation when we
come to Fig. 2 below.
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FIG. 1. A constant-time slice of a spacetime on which a
gravity theory lives, and the conformal boundary on which its
holographically dual field theory lives. A is a region of the
boundary; m is the minimal hypersurface in the bulk ending
on @A; and r is a region of the bulk such that @r � A [m.
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FIG. 2. Two examples in which the QFT lives on a compact
space and the bulk contains a black hole. (Technically, since we
are considering an eternal black hole in static coordinates, in
each case the full spacetime consists of two copies of the region
shown connected by an Einstein-Rosen bridge; this will not
affect our discussion.) The boundary is divided into two regions
A and B. Since @A � @B, if the bulk had trivial �d� 1�st
homology the corresponding minimal hypersurfaces mA and
mB would be identical, and we would have S�A� � S�B�.
However, due to the requirement that each hypersurface be
homologous to the corresponding boundary region, mB can
either (top) wrap around the other side of the event horizon, or
(bottom) separate into two connected components, one being mA
and the other the event horizon. In the latter case we have S�B� �
S�A� � SBH, where SBH is the black hole’s Bekenstein-Hawking
entropy; since Sfull � SBH, the Araki-Lieb inequality is satu-
rated.
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Three refinements should be made to (3). First, both
sides are divergent; the left-hand side is ultraviolet diver-
gent as discussed above, while the right-hand side is infra-
red divergent due to the infinite proper distance from any
point in the bulk to the conformal boundary. It is easy to see
that the latter divergence, like the former, is proportional to
the surface area of A. In fact, these two divergences are the
same, a manifestation of the usual UV/IR correspondence
characteristic of holographic dualities. Therefore (3) is
meant to apply in the presence of a UV cutoff in the
QFT, corresponding to an IR cutoff in the gravity theory.
The simplest such cutoff is a brute force one that cuts off
the bulk space at a finite value of the holographic coordi-
nate. The exact choice of cutoff will not be important in
what we say below, and for simplicity of presentation we
will leave it implicit in the discussion.

Second, there is a complication that occurs when the
bulk has nontrivial �d� 1�st homology (where d is the
spatial dimension of the bulk, which is also the spacetime
dimension of the boundary). This will be the case, for
example, when the bulk contains a black hole. Fursaev’s
derivation of (3) then tells us that we should minimize a not
over all hypersurfaces ending on @A but only over those
that are homologous to A; that is, there should exist a
region r of the bulk such that @r � A [m. See Figs. 1
and 2 for examples. (See [3,12,15] for further discussion.)
This rule will be essential in what follows.

Third, formula (3) is exact in the limit that the gravity in
the bulk is controlled by the Einstein-Hilbert action.
Higher curvature corrections to the bulk action will lead
to corrections to the functional a�m�. For example, Fursaev
[12] showed that, if the bulk action is corrected by a Gauss-
Bonnet term, then a�m� is corrected by an Einstein-Hilbert
term,

 a�m� �
Z
m

���
h
p
�1� 2�R�h�� � 4�

Z
@m

����
�
p

K; (4)

where h is the induced metric onm and � is the coefficient
of the Gauss-Bonnet term in the bulk action (see [12] for
details). In order to make the variational problem for m
well defined, we have also included a Gibbons-Hawking
boundary term; � is the induced metric on @m, and K is the
trace of its extrinsic curvature (in m).

All of these regions and surfaces—both on the boundary
and in the bulk—must lie on a single constant-time slice.
In order to have a well-defined notion of ‘‘constant-time
slice’’ in the bulk, we must restrict ourselves to states for
which the bulk geometry is static. A covariant general-
ization of (3) to time-dependent geometries will be dis-
cussed in [16]. We leave the proof of strong subadditivity
in that context to future work.

In paper [4] the authors investigated in a variety of
examples whether the formula (3) for the entanglement
entropy satisfied the property of strong subadditivity, and
in all cases studied it did. Here we will give a simple
argument that it does in general.

We begin by rewriting the inequalities (2) in the forms

 S�A� � S�B� � S�A [ B� � S�A \ B�;

S�A� � S�B� � S�A n B� � S�B n A�;
(5)

where A n B 	 A \ Bc. We will prove the first inequality;
the proof of the second one is very similar and is left as an
exercise to the reader.

Let mA, mB be the minimal hypersurfaces in the bulk
ending on @A, @B respectively, and rA, rB be the corre-
sponding regions of the bulk (so that @rA � A [mA, @rB �
B [mB). (See top of Fig. 3.) We now define the regions
rA[B � rA [ rB, rA\B � rA \ rB. We can decompose the
surfaces of these regions as usual into a part on the bound-
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rA

mA

B

rB mB

A B

mA B
mA B

FIG. 3. Two overlapping regions A and B of the boundary, with
(top) their respective minimal bulk hypersurfaces mA, mB and
bulk regions rA, rB, and (bottom) their minimal hypersurfaces
mA and mB cut up and rearranged into two new hypersurfaces
mA[B (the bulk part of the surface of rA [ rB) and mA\B (the bulk
part of the surface of rA \ rB). mA[B and mA\B end on @�A [ B�
and @�A \ B� respectively (although they are not necessarily the
minimal such hypersurfaces).
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ary and a part in the bulk,

 @rA[B � �A [ B� [mA[B; @rA\B � �A \ B� [mA\B:

(6)

(See bottom of Fig. 3.) Clearly mA[B ends on @�A [ B�.
While nothing says that it is the minimal hypersurface
ending on @�A [ B�, its area is an upper bound on the
area of the minimal one, and therefore on 4GNS�A [ B�;
similarly for A \ B. Now the hypersurfacesmA[B andmA\B
are simply rearrangements of mA and mB (meaning that
mA[B [mA\B � mA [mB), so they have the same total
areas, [17]

 a�mA[B� � a�mA\B� � a�mA� � a�mB�; (7)

which completes the proof.
Note that Eq. (7) holds not just if a is the area, but if it is

any extensive functional of the hypersurface. This means
that if m and m0 are two disjoint hypersurfaces with a
common boundary, @m \ @m0 � ;, then we have a�m [
m0� � a�m� � a�m0�. This is true, for example, for the
Einstein-Hilbert term (with boundary term) added in (4).

In this paper we gave a simple geometric proof of strong
subadditivity of entanglement entropy based on the holo-
graphic formula (3). The extra dimension in the holo-
graphic dual obviously plays an essential role in this
proof. Since the strong subadditivity of entanglement en-
tropy should be true in any quantum mechanical many-
body system, our result shows that the idea of holography
is consistent with any quantum system from this basic
viewpoint.

It is interesting to ask when the inequalities (2) are
saturated. The only examples we know in the holographic
context involve only two disjoint regions, and therefore
reduce to the saturation of weak subadditivity, inequalities
(1). (It would be interesting to find examples where this is
not the case.) The first of these, the Araki-Lieb inequality,
is obviously saturated when the full system is pure; then
each entanglement entropy is due only to correlations
between the subsystems, rather than to the full system
being in a mixed state. A system that is in a mixed state
but nonetheless saturates the Araki-Lieb inequality is de-

picted in the bottom panel of Fig. 2. The fact that mB is
disconnected suggests that here the entanglement entropy
of B has two separate and unrelated origins: the thermal
entropy of the full system (Sfull), and the correlations
between A and B (S�A�). On the top panel of that figure,
where mB is connected, the inequality is not saturated.

As for the second inequality in (1), it is saturated (i.e. the
mutual information vanishes) when two regions are suffi-
ciently far apart that their union’s minimal hypersurface
does not connect them but instead is simply the union of
their respective minimal hypersurfaces. This was seen in
explicit examples in [4]. The mutual information vanishes
if and only if the two systems are uncorrelated, i.e. �12 �
�1 � �2 [1]. It is interesting that the correlations can go
strictly to zero in a field theory (in the large N limit).

Finally, it is useful to notice that our argument can be
directly applied to the holographic derivation of a concav-
ity property of coplanar Wilson loops [4], which is closely
related to the Bachas inequality [18]. If the curves CA �
@A and CB � @B lie in the same two-dimensional plane,
then it is clear that the holographically computed expecta-
tion values of the corresponding Wilson loops satisfy

 hW�CA�ihW�CB�i � hW�CA\B�ihW�CA[B�i;

hW�CA�ihW�CB�i � hW�CAnB�ihW�CBnA�i;

where we defined CA\B � @�A \ B�, etc. They are equiva-
lent to (5) once we remember that the holographic Wilson
loop expectations can also be found from the minimal
surface [19]. The evidence from the gauge theory side for
these relations will be discussed in [20].
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