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Explicit Calabi-Yau metrics are derived that are argued to map to the Maldacena-Nuñez AdS solutions
of M-theory and IIB under geometric transitions. In each case the metrics are singular where a H2 Kähler
two-cycle degenerates but are otherwise smooth. They are derived as the most general Calabi-Yau
solutions of an ansatz for the supergravity description of branes wrapped on Kähler two-cycles. The ansatz
is inspired by rewriting the AdS solutions, and the structure defined by half their Killing spinors, in this
form. The world-volume theories of fractional branes wrapped at the singularities of these metrics are
proposed as the duals of the AdS solutions. The existence of supergravity solutions interpolating between
the AdS and Calabi-Yau metrics is conjectured and their boundary conditions briefly discussed.
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I. INTRODUCTION AND MAIN IDEA

The AdS/CFT correspondence [1] is best understood for
D3 branes at the apex of a Calabi-Yau cone. There are two
ways in which we know how to think about this system.
One is in terms of open string theory and probe D3 branes
on the singular Calabi-Yau; at low energies, one gets a
four-dimensional conformal field theory, at weak ’t Hooft
coupling, on the brane world volume. The other is in terms
of closed string theory on the product of AdS5 with a
Sasaki-Einstein manifold; by the AdS/CFT correspon-
dence, this is the same as the CFT at strong ’t Hooft
coupling. The classical link between the two geometries
is a smooth supergravity solution, preserving half their
supersymmetries, that interpolates between them; the
Calabi-Yau singularity is excised and replaced with an
AdS horizon at infinite proper distance. In this sense the
branes are said to induce a geometric transition: they
resolve (rather, remove to infinity) the singularity of the
Calabi-Yau manifold. The geometrical data of both the
Calabi-Yau and the Sasaki-Einstein manifold are encoded
in the CFT (at weak and strong coupling, respectively), so
interpolating the ’t Hooft coupling in the CFT gives a
quantum definition of the geometric transition. The dictio-
nary—encoding and decoding Calabi-Yau and Sasaki-
Einstein data in the CFT at weak and strong coupling,
respectively—has been worked out in detail in beautiful
work for R6, the conifold, and the Yp;q metrics [2–10].

Since the work of Maldacena and Nuñez [11], we know
that there are many other ways in which anti-de Sitter
geometries can be related to special holonomy manifolds
and conformal quantum theories. In [11], three AdS solu-
tions of M- and string theory were constructed: two AdS5

solutions in 11 dimensions, with, respectively, sixteen and
eight Killing spinors, and an AdS3 solution admitting eight
Killing spinors in IIB.1 These were interpreted as arising,

in the near-horizon limit, from branes wrapping H2 Kähler
two-cycles in, respectively, Calabi-Yau two-, three-, and
threefolds. The dual conformal field theories are N � 2
and N � 1 in four dimensions, and N � �2; 2� in three
dimensions. Since this work, it has been found that there
exist AdS solutions associated to all types of calibrated
cycles in all types of special holonomy manifold of dimen-
sion ten or less; for example, [12–17]. The CFTs dual to
AdS manifolds of this type define quantum gravity theories
for calibrated geometries. In line with the intuition gained
from branes at conical singularities, one would expect that
the CFTs could be realized, at weak coupling, as the world-
volume theories of fractional probe branes, wrapped on
degenerating calibrated cycles in singular special holon-
omy manifolds. Such a system is likewise expected to
undergo a geometric transition, with the singularity excised
and replaced with an AdS region. Classically, there should
be a supergravity solution interpolating between the
Calabi-Yau and AdS geometries.

Our understanding of AdS/CFT for wrapped branes is
much more rudimentary than for branes at conical singu-
larities. Chief among the obstacles has been the inability to
move beyond the near-horizon limit; typically, only the
AdS geometries are known. The lesson from branes on
cones is that in order to get a real handle on field theory
dynamics—to write down the particle content and super-
potential for a dual of a specific AdS solution—the asso-
ciated Calabi-Yau geometry must be known. The main
point of this paper is to give a way of associating a special
holonomy metric to an AdS metric, illustrated for the
Maldacena-Nuñez solutions. The main assumption of this
paper is the existence of a supersymmetric supergravity
solution interpolating between a special holonomy mani-
fold and an AdS spacetime when there exists an AdS/CFT
dual. Roughly, an interpolating solution should be a metric
and a flux admitting two distinct limits in which the
supersymmetry doubles, with the metric becoming
Calabi-Yau in one limit and AdS in the other. More for-
mally, we can think of the metric and flux of an interpolat-
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1These solutions will be denoted by MN(I), MN(II), and
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ing solution as providing a smooth and smoothly invertible
map f:

 f: Special Holonomy! AdS: (1.1)

We take this as a definition of what is meant in this paper
by a geometric transition. It is a purely classical definition;
in more physical terms, such a map gives the full super-
gravity description of a wrapped brane. But if a CFT dual
can be identified, the map can be promoted to the quantum
level; the CFT itself provides the map, with the ’t Hooft
coupling the interpolating parameter.

The equations that interpolating solutions should satisfy
are known, through various symmetry arguments. An
important property of these solutions is that they should
admit a global reduction of their frame bundle, to a sub-
bundle of the appropriate structure [18,19]. For example, in
the supergravity description of M5-branes wrapped on
Kähler two-cycles in Calabi-Yau twofolds—maps
f: CY2 ! AdS5—the global structure of an interpolating
solution is SU�2�. The structure is defined by eight Killing
spinors, or alternatively, an almost complex structure J and
a (2, 0) form �. The truncation of 11-dimensional super-
gravity to this frame bundle was first worked out by
Fayyazuddin and Smith [20] (see also [18,21]). The metric
and flux are
 

ds2 � L�1ds2�R1;3� � ds2�M4� � L
2�dt2 � t2ds2�S2��;

?7F � L2d�L�2J�: (1.2)

Here and throughout we follow all conventions and orien-
tations of [18]. The Minkowski isometries are isometries of
the full solution, and M4 admits a globally defined SU�2�
structure. The structure is constrained by the Fayyazuddin-
Smith equations:

 d �L�1=2�� � 0; dt ^ Vol�S2� ^ d�LJ� � 0: (1.3)

Eleven-dimensional supergravity, in this truncation, re-
duces to the torsion conditions (1.3) and the four-form
Bianchi identity.

To the knowledge of the author, no interpolating solu-
tions of these equations, or their analogues in other con-
texts, are known. However, in recent work [18,19,22], it
has been shown how the supersymmetry conditions for
general classes of supersymmetric AdS solutions of M-
theory (including all known examples) can be derived from
such equations. In particular, in [18] it was shown that the
conditions of Lin, Lunin, and Maldacena (LLM) [23] for
half–Bogomol’nyi-Prasad-Sommerfield (BPS) AdS5 solu-
tions can be derived from the Fayyazuddin-Smith equa-
tions. It follows that any solution of the LLM conditions
can be rewritten as a solution of the Fayyazudin-Smith
equations; and similarly for every other AdS solution
covered by [18,19,22]. Applying this procedure to the
MN(I) solution, we will see in the next section that it
may be rewritten in the form

 

ds2 � L�1

�
ds2�R1;3� �

F
2

ds2�H2�

�
� L2�F�1�du2 � u2�d � P�2� � dt2 � t2ds2�S2��;

dP � Vol�H2�; (1.4)

for particular determined functions F�u; t�, L�u; t� and a
particular choice of frame which will be discussed in detail.
We use this form of the AdS solution as a guide to what the
inverse geometric transition f�1: MN�I� ! CY2 should be.
Clearly, it should respect the topological structure of
MN(I); the simplest choice, which we make, is that f is
given by a solution F�u; t�, L�u; t�, of the Fayyazuddin-
Smith equations. With this metric and the frame of Sec. II,
they reduce to

 

1

t2
@t�t2@tF� � �u@u

�
F
u
@uF

�
; L3 � �

1

4u
@u�F2�:

(1.5)

An interpolating solution of these equations has not been
found. However, assuming one exists, the general Calabi-
Yau solution of (1.5) is the image of MN(I) under f�1. Up
to an overall scale, the general Calabi-Yau solution is L �
1 and

 d s2
4 �

dR2

� 1
R4 � 1�

�
R2

4

�
ds2�H2� �

�
1

R4 � 1
�
�d � P�2

�
:

(1.6)

The range of R is ��1; 0� or �0; 1�. As expected, the metric
is singular, where the Kähler two-cycle H2 degenerates.
The singularity, at R � 0, is at finite proper distance. The
metric is nonsingular at the H2 bolt as R4 ! 1, if  has
period 2�; we will see in the next section that this is
precisely the periodicity that is inherited through f�1

from MN(I). Some additional evidence that this Calabi-
Yau is a sensible candidate comes from the following.
Every AdS5 solution of the LLM conditions, including
MN(I), is completely determined by a solution of the
three-dimensional continuous Toda equation. There also
exists a class of Calabi-Yau twofolds that is completely
determined by a solution of the three-dimensional continu-
ous Toda equation. This is such a Calabi-Yau metric, and
furthermore it is given by the same solution of the Toda
equation as MN(I). Toda-Calabi-Yau metrics have been
obtained in this context before as scaling limits of the
1=2-BPS AdS5 metrics [23,24]. Here this metric is ob-
tained in a different way, as a solution of the 1=4-BPS
Fayyazuddin-Smith equations. It will be interesting to see
how these procedures are related.

The world-volume theory of fractional M5-branes
wrapped at the singularity of this metric (whatever it might
be) is proposed as the quantum dual of MN(I). Though the
geometry is noncompact, this is not necessarily problem-
atic, as the field theory should only encode oscillations in
the directions transverse to the brane, purely in the fibre;
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and the fibre has finite proper volume. The cycle may in
any event be rendered compact by taking a freely acting
quotient by a discrete subgroup of its isometry group. The
Calabi-Yau will still be noncompact, because of the
singularity.

In a similar vein, we obtain candidate Calabi-Yaus for
inverse geometric transitions from MN(II) and MN(III).
For MN(II), to be discussed in detail in Sec. III, the first
step is to use the results of [4,18] to write it in the form
 

ds2 � L�1

�
ds2�R1;3� �

F1F2

3
ds2�H2�

�

� L2

�
F�1

1

�
du2 �

u2

4
�d � P� P0�2

�

� F�1
2

u2

4
ds2�S2� � dt2

�
; (1.7)

with dP � Vol�S2� and dP0 � Vol�H2�. Then, letting L,
F1, F2 be arbitrary functions of u, t, the general Calabi-Yau
threefold solution2 is, up to an overall scale,

 d s2 �
1

2
�1� sin��ds2�H2� �

cos2�
2�1� sin��

ds2�S2�

�
1

cos2�
�dR2 � R2�d � P� P0�2�; (1.8)

where sin� is a root of the cubic equation

 � 1
3sin3�� sin� � 2

3� R
2: (1.9)

The metric is singular, as expected, at � � ��=2, R �
2=

���
3
p

, where the H2 cycle degenerates. The metric is
smooth at � � �=2, which coincides with R � 0; there
an S3 smoothly degenerates, provided that  has the 4�
periodicity it inherits from MN(II) under f�1. The quan-
tum dual of MN(II) is proposed to be the world-volume
theory of fractional M5s wrapped at the singularity of this
metric.

The MN(III) solution comes from D3 branes wrapped
on a Kähler H2 cycle in a Calabi-Yau threefold; the geo-
metric transition is CY3 ! AdS3 in IIB. The discussion in
this case proceeds along very much the same lines as for
MN(II), and will be reported in detail elsewhere [25]. The
image of MN(III) under the inverse transition is again the
Calabi-Yau (1.8). The dual field theory is proposed to be
the world-volume theory of D3 branes wrapped at the
singularity. It seems that both M5 branes and D3 branes
can probe the singularity of this manifold; the quantum
descriptions are, respectively, four- and two-dimensional
conformal theories. In the IIB description, given the met-
ric, it might be possible to construct the field theory with
existing techniques.

The remainder of this paper is organized as follows.
Section II is devoted to MN(I) and its Calabi-Yau image.
Section III repeats the analysis of Sec. II for MN(II).
Section IV contains conclusions and outlook, and also
some discussion of the boundary conditions for interpolat-
ing solutions for the MN/Calabi-Yau pairs.

II. THE N � 2 M-THEORY SOLUTION

To begin, we will review the N � 2 AdS5 geometry of
[11] in some detail. The metric is given by
 

ds2 �
1

�

�
ds2�AdS5� �

1

2
ds2�H2� � �1� �3�2��d � P�2

�
�3

4

�
d�2

1� �3�2 � �
2ds2�S2�

��
; (2.1)

where

 �3 �
8

1� 4�2 ; dP � Vol�H2�: (2.2)

Here and throughout we denote by ds2�M� the metric of
unit radius of curvature on M. The range of the coordinate
� is either � 2 ��1=2; 0� or � 2 �0; 1=2�. At � � 0, in
either branch, the R-symmetry S2 smoothly degenerates.3

As �! �1=2, the R-symmetry U�1�, with coordinate  ,
smoothly degenerates, provided that  is identified with
period 2�. Henceforth we will take � to be non-negative.

This manifold, as a solution of 11-dimensional super-
gravity, admits 16 Killing spinors. The Killing spinors may
be used to define an identity structure—a preferred frame
associated to them. The structure is discussed in detail in
[18]. We choose coordinates for the preferred frame ac-
cording to

 e1 � ie2 �
1������
2�
p ei �d�� i sinh�d��;

e3 �

��������������������
1� �3�2

�

s
�d � cosh�d��;

�̂ �
�d�

2
��������������������
1� �3�2

p ; r̂ � ��1=2dr;

(2.3)

where we have chosen Poincaré coordinates on AdS,

 d s2�AdS5� � e�2rds2�R1;3� � dr2: (2.4)

The remaining directions play no role in the rest of the
discussion.

The MN(I) solution is a particular case of a broader class
of half-BPS AdS5 solutions which are completely deter-
mined by a solution of the three-dimensional continuous
Toda equation.4 The Toda equation,

2This is the general metric with suitable regularity properties,
that will be discussed in Sec. III.

3The R-symmetry of the dual theory is SU�2� 	U�1�.
4It is strongly believed, at least by the author, that all half-BPS

AdS5 solutions of M-theory are of this form.
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 r2
R2D� @2

�eD � 0; (2.5)

may be viewed as a three-dimensional Laplace equation,

 r2
3D � 0; (2.6)

on a three-manifold with metric

 d s2 � d�2 � eDds2�R2�: (2.7)

The metric on every half-BPS AdS5 solution of 11-
dimensional supergravity determined by the Toda equation
may be written as follows [23]:

 d s2 �
1

�

�
ds2�AdS5� � �1� �

3�2��d � V�2 �
�3

4

	

�
1

1� �3�2 �d�
2 � eDds2�R2�� � �2ds2�S2�

��
;

(2.8)

where

 �3 �
�@�D

��1� �@�D�
; (2.9)

 V � 1
2 ?2 d2D; (2.10)

where d2 is the exterior derivative restricted to R2, and D
solves (2.5). The MN(I) solution is given by

 eD �
1

4x2
1

�1� 4�2�: (2.11)

In order to make the relationship between the MN(I)
geometry and wrapped branes more concrete, we now want
to exhibit it as a solution of the Fayazzuddin-Smith equa-
tions. The essential point is that, in addition to its identity
structure, MN(I) also admits an SU�2� structure, defined by
half its Killing spinors, which indeed solves the
Fayyazuddin-Smith equations. In [18] it was shown how
to obtain an arbitrary Toda-AdS5 manifold as a 1=4 BPS
solution of the wrapped-brane conditions by constructing
its SU�2� structure. Here we will apply these general results
to the specific case of interest.

The canonical frame of the identity structure is related to
the canonical frame of the SU�2� structure by a local
rotation. If we define the Minkowski frame ea, e4, t̂ �
Ldt, a � 1, 2, 3, with ea, e4 a basis for M4, the relation-
ship between the ‘‘AdS’’ and ‘‘Minkowski’’ frames is given
by

 eaMink � eaAdS; e4 � cos��̂� sin�r̂;

t̂ � � sin��̂� cos�r̂:
(2.12)

For more details of this procedure, which seems to be a
universally applicable way of writing AdS manifolds in a
wrapped-brane form, the reader is referred to [18,19,22].5

In the case at hand, the rotation angle is related to the AdS
warp factor and the coordinate � by

 cos� � �3=2�; (2.13)

and also the warp factors are related by

 L � �e2r: (2.14)

Near � � 0, the AdS radial direction aligns with�e4. Near
� � 1=2, it aligns with t̂. Since we know everything on the
right-hand side of (2.12), we can see that

 e4 � Le�rd
�
�

�����������������
1� 4�2

8

s
e�r

�
; t̂ � Ld

�
�
�
2
e�2r

�
:

(2.15)

Therefore defining the Minkowski-frame coordinates

 u � �

�����������������
1� 4�2

8

s
e�r; t � �

�
2
e�2r; (2.16)

we can rewrite the AdS5 solution as
 

ds2 � L�1

�
ds2�R1;3� �

F
2

ds2�H2�

�
� L2�F�1�du2 � u2�d � P�2� � dt2 � t2ds2�S2��;

(2.17)

where F � e2r is determined by a root of the quadratic

 2t2e4r � u2e2r � 1
8 � 0: (2.18)

One of these roots is always negative, so we choose the
other, which is always positive:

 F �
u2

4t2
��1�

��������������������
1� t2=u4

q
�: (2.19)

The warp factor in the Minkowski frame is

 L3 �
u2��������������������

1� t2=u4
p �

�1�
��������������������
1� t2=u4

p
4t2

�
2
: (2.20)

The canonical frame for the SU�2� structure, rewritten in
terms of the new coordinates, is
 

e1 � ie2 �

������
F
2L

s
ei �d�� i sinh�d��;

e3 � �
Lu����
F
p �d � cosh�d��;

e4 �
L����
F
p du; t̂ � Ldt; (2.21)

with a minus sign in the second equation because of the
definition of u. The SU�2� structure then takes the standard
form,

 J � e12 � e34; � � �e1 � ie2��e3 � ie4�; (2.22)

and it may now be verified by explicit computation that it
satisfies the Fayyazudin-Smith equations. This was, of
course, guaranteed by the construction, but it serves as a
consistency check. Having obtained the SU�2� structure
of MN(I), it is now an obvious thing to use it as an ansatz
for further, topologically related, solutions of the

5The frame rotation, as a way of deriving warped AdSd�2
supersymmetry conditions from warped R1;d supersymmetry
conditions, was first employed in [4].
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Fayyazuddin-Smith equations. To this end, we let F and L
be arbitrary functions of u t, and insert the frame (2.21) into
the SU�2� torsion conditions and Bianchi identity. They
reduce to the single nonlinear second order pde for F:

 

1

t2
@t�t

2@tF� � �u@u

�
F
u
@uF

�
: (2.23)

Given a solution of this equation, L is then determined by

 L3 � �
1

4u
@u�F

2�: (2.24)

As a purely mathematical aside, we observe that the other
root of the quadratic (2.18) is also a solution of these
equations. But of particular interest is the most general
Calabi-Yau solution of this system. It may be most easily
determined by imposing L � constant and closure of J.
The (2, 0) form L�1=2� is always closed with this ansatz.
The general Calabi-Yau solution is

 F2 � a� bu2: (2.25)

For a metric of the right signature, we must have a > 0,
b < 0. By rescaling, we can set b � �2, so that L � 1 (up
to an overall scale in the 11-dimensional metric). This
Calabi-Yau is diffeomorphic to a Toda-Calabi-Yau, as
may be seen by performing the coordinate transformation

 16U2 � a� 2u2: (2.26)

Defining A2 � a=4, the metric becomes

 d s2 �
4

@uD
�d�� V�2 � @uD�du

2 � eDds2�R2��;

(2.27)

where

 eD �
1

4x2
1

�A2 � 4U2�; (2.28)

which, modulo the constant, is the same solution of the
Toda equation as that determining MN(I). An alternative
form of the metric, reminiscent of Eguchi-Hanson, is given
by choosing the coordinate

 R2 �
1

a1=4

��������������������
2a� 4u2

p
: (2.29)

Up to an overall scale the metric becomes

 d s2 �
dR2

� 1
R4 � 1�

�
R2

4

�
ds2�H2� �

�
1

R4 � 1
�
�d � P�2

�
;

(2.30)

which is the form given in the introduction.

III. THE N � 1 M-THEORY SOLUTION

Again, we begin with a review of the AdS geometry. The
MN(II) metric is
 

ds2 �
1

�

�
ds2�AdS5� �

1

3
ds2�H2� �

1

9
�1� �3�2��ds2�S2�

� �d � P� P0�2� �
�3

4�1� �3�2�
d�2

�
; (3.1)

where now

 � �
4

4� �2 ; dP � Vol�S2�; dP0 � Vol�H2�:

(3.2)

This time, the range of � is ��2=
���
3
p
; 2=

���
3
p
�; at � �

�2=
���
3
p

, an S3 smoothly degenerates. This manifold admits
eight Killing spinors, which collectively define an SU�2�
structure. If we define the frame

 e1 � ie2 �
1������
3�
p ei	 �d�� i sinh�d��;

e3 � ie4 �
1

3

��������������������
1� �3�2

�

s
ei
 �d�� i sin�d��;

e5 �
1

3

��������������������
1� �3�2

�

s
�d � P� P0�;

�̂ �
�

2
��������������������
1� �3�2

p d�;

(3.3)

where the constant phases 	, 
 sum to unity, then the
SU�2� structure forms are given by

 J4 � e12 � e34; �4 � �e1 � ie2��e3 � ie4�: (3.4)

It may be explicitly verified that this six-dimensional
SU�2� structure satisfies the conditions of [4].

The MN(II) solution is interpreted as coming from M5
branes wrapping a H2 Kähler two-cycle in a Calabi-Yau
threefold. Again, we will make this more precise, by
exhibiting MN(II) as a solution of the 1=8 BPS SU�3�
analogue of the Fayazzuddin-Smith equations. In this
case, half the Killing spinors of the AdS manifold define
an SU�3� structure, with structure forms J6, �6. Then the
supergravity description of 1=8 BPS M5 branes wrapping a
Kähler two-cycle in a Calabi-Yau threefold [18,26] is as
follows. The metric and flux are

 d s2 � L�1ds2�R1;3� � ds2�M6� � L
2dt2;

?7F � �L2d�L�2J6�;
(3.5)

where M6 admits a globally defined SU�3� structure, and
again, all conventions and orientations follow [18]. The
torsion conditions for the structure are

 d t ^ d�L�1J ^ J� � 0; d�L�3=2�� � 0: (3.6)

These, together with the Bianchi identity, are sufficient to
guarantee a solution of 11-dimensional supergravity.

We now perform the frame rotation exactly as in the
previous section. The relationship between the Minkowski
and AdS frames is

 eaMink � eaAdS; e6 � cos��̂� sin�r̂;

t̂ � � sin��̂� cos�r̂;
(3.7)
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where now a � 1; . . . ; 5. Again, �3=2� � cos�. Therefore,
r̂ is antialigned with t̂ at � � �2=

���
3
p

. It then rotates
through an angle of � as � spans its range, so that it is
aligned with t̂ at � � 2=

���
3
p

. We find that e6, t̂ are given by

 e6 � Le�r=2d
�
�

1

3
e�3r=2

�����������������
4� 3�2

q �
;

t̂ � Ld
�
�
�
2
e�2r

�
:

(3.8)

Defining the Minkowski-frame coordinates,

 u � �
1

3
e�3r=2

�����������������
4� 3�2

q
; t � �

�
2
e�2r; (3.9)

the metric in the Minkowski frame is given by
 

ds2 � L�1

�
ds2�R1;3� �

F2

3
ds2�H2�

�

� L2

�
F�1�du2 �

u2

4
�ds2�S2�

� �d � P� P0�2�� � dt2
�
; (3.10)

where F � er. This time, in order to determine F in terms
of the Minkowski-frame coordinates, we must find the
roots of a quartic polynomial. The polynomial is

 12t2e4r � 9u2e3r � 4 � 0: (3.11)

The Minkowski frame is given by
 

e1 � ie2 �
F������
3L
p ei	 �d�� i sinh�d��;

e3 � ie4 � �
Lu

2
����
F
p ei
 �d�� i sin�d��;

e5 � �
Lu

2
����
F
p �d � P� P0�;

e6 �
L����
F
p du; t̂ � Ldt:

(3.12)

Again, the minus signs come from the definition of u. Then
the SU�3� structure of MN(II) is given by

 J6 � e12 � e34 � e56;

�6 � �e
1 � ie2��e3 � ie4��e5 � ie6�:

(3.13)

At this point, repeating the analysis of the previous section
directly, we would let L, F become arbitrary functions of u,
t, and then find the general Calabi-Yau solution. The
torsion conditions and Bianchi identity reduce to

 @2
t F�

1

u
@u�uF@uF� � 0; L3 �

2F2

3u
@uF � 0:

(3.14)

It follows from the construction of [4,18] that the root of
the quartic corresponding to the MN(II) solution solves

these equations. It seems very likely that so do all the roots,
though this has not been verified. However, it turns out that
there is no Calabi-Yau solution. To find one, we must
extend the ansatz, to
 

ds2 � L�1

�
ds2�R1;3� �

F1F2

3
ds2�H2�

�

� L2

�
F�1

1

�
du2 �

u2

4
�d � P� P0�2

�

� F�1
2

u2

4
ds2�S2� � dt2

�
: (3.15)

This extension of the ansatz is not unnatural as it clearly
contains MN(II) as the special case F1 � F2. Furthermore
it leaves the (3, 0) form � invariant;6 it is a purely Kähler
deformation of the SU�3� structure. We also make the
obvious modification of the frame ansatz. In general, the
torsion conditions and Bianchi identity are rather compli-
cated. However, it is easy to determine the most general
Calabi-Yau solution with this ansatz, imposing closure of J
and constancy of L. The Calabi-Yau condition reads

 @tF1 � @tF2 � 0;
1

3
@u�F1F2� �

u
2F1
� 0;

@u

�
u2

4F2

�
�

u
2F1
� 0;

(3.16)

with general (positive signature) solution

 F1 �
3a4

u2 cos2�; F2 �
u2

2a2

�1� sin��

cos2�
; (3.17)

where a2, b are constants and sin� is a root of the cubic
equation

 �
1

3
sin3�� sin� � b�

u4

12a6
: (3.18)

This Calabi-Yau has two moduli. One, as usual, is just the
overall scale. Defining

 R �
u2

2
���
3
p
a3
; (3.19)

the metric is
 

ds2 � a2

�
1

2
�1� sin��ds2�H2� �

cos2�
2�1� sin��

ds2�S2�

�
1

cos2�
�dR2 � R2�d � P� P0�2�

�
;

�
1

3
sin3�� sin� � b� R2: (3.20)

The modulus b parametrizes inequivalent metrics. The
generic metric of this form has three degeneration points:
R � 0 and � � ��=2. The point � � ��=2 (where the

6Observe that L�3=2� is always closed with this frame ansatz.
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H2 cycle degenerates) is necessarily and expectedly sin-
gular. This is where fractional branes are wrapped, in the
probe picture. If R � 0 and � � �=2 do not coincide, the
point R � 0 is also singular, since there the U�1� degener-
ates with a 4� periodicity inherited from the AdS frame.
To analyze what happens near � � �=2, we expand the
cubic to fourth order in � in the vicinity of this point to find

 R2 �

�
b�

2

3

�
�
�4

4
: (3.21)

Clearly we require b 
 2=3 (otherwise � � �=2 is not part
of the space). If b > 2=3, then R2 goes to a fixed positive
value at � � �=2; the metric there is clearly singular when
written in terms of �. However, the point in moduli space
b � 2=3 where the R � 0 and � � �=2 degeneration
points of the metric coincide is special. With b � 2=3
the metric near � � �=2 becomes

 

ds2 � a2

�
ds2�H2� � d�2 �

�2

4
�ds2�S2�

� �d � P� P0�2�
�
: (3.22)

With the periodicity of  as inherited from the AdS frame,
an S3 smoothly degenerates. The Calabi-Yau (3.20), with
b � 2=3, is interpreted as the image of MN(II) under an
inverse geometric transition. Analyzing the relationship
between R and � near � � ��=2, we can deduce that
the range of R is either ��2=

���
3
p
; 0� or �0; 2=

���
3
p
�. In either

branch, the singularity is at finite proper distance.

IV. CONCLUSIONS AND OUTLOOK

In this paper a way of mapping a supersymmetric AdS
manifold to a special holonomy manifold has been pro-
posed. The main conclusion is that this procedure should
be applicable to all known wrapped-brane AdS solutions of
string and M-theory; it will be very interesting to explore
the special holonomy metrics in each case. Given the
metrics for the string theory solutions, it should be possible
to make progress towards constructing the dual field
theories.

The construction relies in an essential way on the ex-
istence of an interpolating solution. For MN(I) and (II), we
can say a little about what the boundary conditions for an
interpolation should be. For MN(I), the interpolating solu-
tion should be globally smooth, and should contain a
neighborhood where the metric is diffeomorphic to the
limit of the metric (2.30) as R! 1. It should also contain

a neighborhood where the metric is diffeomorphic to the
limit as �! 0 of (3.1). For MN(II), an interpolating solu-
tion should contain a neighborhood diffeomorphic to the
Calabi-Yau metric (3.20) near � � �=2. It should also
contain a neighborhood where the metric is diffeomorphic
to (3.1) as �! �2=

���
3
p

. Global topological considerations
will be important in trying to construct an interpolation; for
example, by a careful analysis it should be possible to fix
the relative scales of the Maldacena-Nuñez/Calabi-Yau
metrics. This might be done, for example, by comparing
the sizes of the H2 bolts in the AdS and Calabi-Yau
metrics, at the point in each where the U�1� or S3 degen-
erates, for MN(I) and MN(II), respectively. However, since
an interpolating solution would necessarily be cohomoge-
neity two, and the governing equations are nonlinear,
finding one explicitly will be challenging. It might be
worthwhile to perform a numerical analysis, if a better
handle can be obtained on the boundary conditions.

There might be other, more complicated, Calabi-Yau
manifolds that could be related to the Maldacena-Nuñez
solutions. This would be analogous to the way in which
conical Calabi-Yaus can be thought of as generic local
models for a particular sort of singularity, in a manifold
whose global structure could be much more complicated.
Placing D-branes at the singularity is usually argued to
produce an AdS throat, which is insensitive to the global
structure. It would be interesting to know if the Calabi-Yau
metrics obtained here can be thought of in a similar way—
as local models of a more generic type of singularity. The
topology of the manifolds in this paper is more compli-
cated, so it is not obvious yet whether or not this is true. In
any event, for the purposes of constructing the dual, in the
conical case only the geometry near the singularity—the
conical metric—is required. Analogously, for the purposes
of constructing the duals of the Maldacena-Nuñez solu-
tions, the metrics of this paper are interpreted as the
appropriate backgrounds.

There appears to be an intriguing link between solutions
of the various nonlinear equations we have encountered
and roots of polynomials. This seems to suggest some
underlying algebraic geometry which has not been prop-
erly appreciated. It will be interesting to explore this in
more detail; it appears to be a generic feature of how AdS
manifolds solve wrapped-brane structure equations.
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