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This paper extends the study, initiated by Rozowsky and Thorn, of gauge fields in interaction with Dirac
fields living on separated parallel 1-branes. In a light-cone description, replacing static point sources by
1-brane sources allows p� conservation to be maintained in their presence, which simplifies the light-cone
quantization procedure. Here we calculate on-shell branion scattering amplitudes through one loop in
light-cone gauge, and thereby resolve a puzzling ambiguity encountered in the earlier off-shell calcu-
lations. We confirm that infrared divergences cancel in properly defined scattering probabilities. This work
lays the groundwork for the incorporation of 1-brane sources in the light-cone worldsheet formalism.
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I. INTRODUCTION

The response of gauge fields to separated static quark
antiquark (Q �Q) sources provides valuable information
about a gauge theory. For example, in QCD this response
is described by the expectation of a long rectangular
Wilson loop hW�L; T�i, with T � L, which provides
among other things an elegant criterion for quark confine-
ment: In pure Yang-Mills theory without quarks,
hW�L; T�i � e�T0LT�1�O�

P
ncne

��nT�� implies a con-
stant confining force T0. With quarks included, this crite-
rion only works in the ’t Hooft limit [1] Nc ! 1 of QCD
generalized from a 3 color to an Nc color gauge theory[2].
The confining force is due to the formation of a flux tube,
whose excitations can be further studied by extracting the
discrete (at Nc 	 1 [3]) excited energy levels �n from an
analysis of the large T behavior of hWi.

Such a system of sources is also an insightful tool in the
study of string/field duality as exemplified by the AdS/CFT
correspondence [4]. On the field theory side the CFT is the
conformally invariant N 	 4 super Yang-Mills theory. Its
response to the Q �Q source system can be calculated at
weak ’t Hooft coupling � 
 Nc�s=�� 1 by expanding
hWi as a sum of planar Feynman diagrams. On the string
side, hWi is given as a worldsheet path integral for an open
string, moving on a manifold AdS5 � S5, and whose ends
are fixed to two points separated by a distance L on the
boundary of AdS5. At strong ’t Hooft coupling the world-
sheet dynamics can be treated semiclassically, enabling the
calculation of the ground state energy�c

����
�
p
=L of the flux

tube [5] as well as its excited energy spectrum [3,6] when
�� 1.

Although the AdS/CFT correspondence asserts the
equivalence of N 	 4 Yang-Mills to IIB superstring the-
ory on AdS5 � S5 at all couplings, very little is known
about the physics, from either point of view, at intermedi-
ate coupling � 	 O�1�. Some physical quantities [e.g.

Bogomol’nyi-Prasad-Sommerfield (BPS) states] are pro-
tected by supersymmetry from dependence on the cou-
pling, and so are ‘‘known’’ at all coupling. An example is
the single straight Wilson line representing a static isolated
quark. The circular Wilson loop, which is conformally
related to the Wilson line and ‘‘almost’’ BPS, does depend
on the coupling, but because all diagrams except rainbow
graphs cancel, it is easily computable by graph summation
at all coupling [7,8]. Unfortunately, the rectangular Wilson
loop does not enjoy these cancellations. Nonetheless, some
interesting qualitative insight into its behavior has been
obtained by summing the ladder subset of planar diagrams
[3,9,10].

In a separate line of development, the light-cone world-
sheet formalism [11–13] has provided a way to map, in a
generic way, the sum of all planar diagrams of a wide range
of quantum field theories to a worldsheet dynamical sys-
tem. Treated in mean field theory, a plausible approxima-
tion in the strong ’t Hooft coupling limit, this worldsheet
system resembles a string moving on an AdS-like manifold
[14–16], encouraging the hope that a more exact treatment
of it can help in understanding string/field duality at all
coupling. Our aim in the present article is to take a first step
toward including Q �Q sources in this formalism, a task that
involves complications which we briefly describe below.

The first complication is the awkwardness of describing
a fixed point source on the light cone. Light-cone time
is � 	 �t� z�=

���
2
p

. This leaves x 	 �x; y� and x� 	 �t�
z�=

���
2
p

as spatial coordinates. We would like a point source
to be at fixed x, y, z not fixed x, y, x�. Fixed x� would
describe an object moving at the speed of light, and a point
source at fixed �x; y; �� x�� would not be static with
respect to light-cone time. Furthermore, either alternative
would violate p� conservation, an essential ingredient of
the natural light-cone symmetry of the bulk gauge theory,
Galilei invariance in the transverse space. Since the mo-
mentum component p� 	 �E� pz�=

���
2
p

plays the role of
the Newtonian mass in Galilei boosts, Galilei invariance
dictates its conservation. A way to maintain p� conserva-*thorn@phys.ufl.edu
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tion was proposed in [17]: fix the transverse coordinate of
the source, but allow the source to move freely on a line
parallel to the z axis. In the language of string theory the
source is then not a point (0-brane) but a 1-brane. For
brevity we have called particles living on a 1-brane bran-
ions. So in [17] we replaced the usual static Q �Q system
with a branion in color irrepNc living on a 1-brane together
with a branion in color irrep �Nc living on a second 1-brane
separated from the first by a distance L. Then p� conser-
vation will be preserved at the price of having to solve the
limited 1� 1 dynamics of the branions. This generaliza-
tion of sources is also natural for the light-cone parametri-
zation of string which relies on p� to label points on a
string. In this parametrization the motion of the string in
x���; �� is completely constrained in terms of the trans-
verse motion x��; ��. Fixing x at the string ends allows no
freedom to independently fix boundary conditions on x�.
Indeed x� will have Neumann boundary conditions
whether x has Dirichlet or Neumann boundary conditions.

The second complication, present even using 1-brane
sources, is that the light-cone worldsheet formalism is
constructed from the planar diagrams using transverse
momentum space in the Feynman rules. As a consequence
the worldsheet path integral is expressed in terms of q��; ��
which is T-dual to the usual transverse coordinates x��; ��:
q0 	 _x. (The corresponding relation between _q and x0 is
complicated, depending on the detailed dynamics.) This is
fundamental to the formalism, which is founded on the
worldsheet representation of a gluon propagator:

 

exp
�
�i

x�

2p�
p2

�
	
Z

q�0;��	0
q�p� ;��	p

DcDbDq

� exp
�Z T

0
d�

Z p�

0
d�

�
b0c0 �

1

2
q02
��
:

(1)

Here �, � parameter space is a rectangle 0  �  T 

ix�, 0  �  p�, and q��; �� is a worldsheet field satisfy-
ing Dirichlet boundary conditions such that q�p�; �� �
q�0; �� 	 p. The Grassmann b, c ghost path integral can-
cels the determinant prefactor coming from the Gaussian q
path integration. Replacing all the propagators in a planar
Feynman diagram with this representation automatically
constructs the diagram’s worldsheet representation. The
complication with introducing localized 1-brane sources
at the worldsheet boundaries is that, in the string represen-
tation, the fixed 1-brane locations are x�0; ��, x�p�; ��. The
fact that they are static locations translates to simple
Neumann conditions on the dual variables q0 	 0. This is
not so bad. The complication comes in describing the
separation between the branes,

 L 	 x�p�; �� � x�0; �� 	
Z p�

0
d�x0: (2)

For a string in flat space x0 	 � _q, and the separation can
be interpreted as a nonzero ‘‘momentum’’ associated with
translational invariance in q. But the worldsheet action
derived from the sum of planar diagrams shows that q
has, in general, very complicated interactions with other
worldsheet degrees of freedom that are not necessarily
interpreted as coordinates of a manifold, as they happily
can be in the AdS/CFT case.

Although we will leave definitive resolution of these
difficulties to future work, we can catch a glimpse of the
issues involved by considering the light-cone description
of an AdS string [18]. We choose coordinates so that the
line element in AdS is ds2 	 R2�dx�dx� � dz2�=z2. Then
the worldsheet action for a string moving on AdS5 is

 Sws 

Z
d2�L

	 �
T0

2

Z
d2�

���
g
p
g��

R2

z2 �@�x � @�x� @�z@�z�:

For N 	 4 super Yang-Mills theory, T0R2 	����������������������
g2Nc=4�2

p
	

����
�
p

. Light-cone parametrization of the
string means x� 	 � and P� 	 1, where P� is the mo-
mentum conjugate to x�. Then in this parametrization

 Sws !
Z
d�

Z p�

0
d�

1

2

�
_x2 � _z2 �

R4T2
0

z4 �x
02 � z02�

�
:

For a closed string one must also impose the constraintRp�
0 d��x0 �P � z0�� 	 0. The equation of motion for x

following from this action is

 

�x 	
�
R4T2

0x
0

z4

�
0
:

To put the AdS string action in a form similar to the light-
cone worldsheet action read off from graph summation, we
do the T-dual transformation

 q 0 	 _x; _q 	
R4T2

0

z4 x0:

The integrability condition for these equations implies the
equation of motion for x. Expressing the worldsheet
Lagrangian in terms of q gives

 L !
1

2

�
�q02 �

z4

R4T2
0

_q2 � _z2 �
R4T2

0

z4 z02
�
:

We recognize in the q02 term the part of the quantum field
theory (QFT) worldsheet action coming from the propa-
gator representation (1). The rest of the AdS worldsheet
action must simulate the sum over planar loop corrections.
Notice that the _q dependence is negligible near the bound-
ary of AdS (z 	 0). The intuitive origin of such terms is
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explained in the foundational papers on the light-cone
worldsheet [11–13]. We just mention here that a loop is
represented on the QFT worldsheet by a line segment at
fixed � on which _q 	 0. Thus terms in the action that
energetically favor this condition will be gradually brought
into the worldsheet action as one includes more and more
loops. It is very plausible that in the strong ’t Hooft cou-
pling limit a mean field treatment of the sum over loops can
be represented by a bulk term in the action similar to the _q2

term in the AdS string action. Our purpose here is to give
an indication of how to describe separated 1-branes using
the light-cone worldsheet formalism. From the T-duality
transform we see that a string ending on two 1-branes
separated by L must satisfy the constraint

 L 	
Z p�

0
d�

z4

T2
0R

4
_q: (3)

In fact, this quantity is conserved by the AdS dynamics and
so it is a constraint that imposed initially will hold for all
times thereafter. However, its analogue in the QFT world-
sheet will depend in detail on the outcome of the sum over
loops, and is not expected in a generic theory to have at all
the simplicity of this formula. On the other hand, from the
point of view of Feynman diagrams in quantum field
theory, there is no doubt about how the 1-brane separation
enters. Quantum fields, representing branions, in 1� 1
space-time dimensions will live on each 1-brane, and these
fields will interact with the gauge fields in the bulk. A
gluon propagator that ends on a branion will have that end
localized on the corresponding brane. If the gluon propa-
gator is expressed in transverse momentum space, this
means the gluon branion vertex will be associated with a
factor eiQ�r where r is the transverse location of the 1-brane
and Q is the gluon momentum. We expect it to be a
significant challenge, beyond the scope of this article, to
figure out in detail how this simple prescription turns into a
constraint like (3) in the light-cone worldsheet formalism.

We devote the remainder of this article to a study of the
branion-gauge field interactions at weak coupling, i.e. to
the evaluation of the corresponding Feynman diagrams
through one loop. Although we shall not attempt to give
a definitive interpretation of our results in terms of the
light-cone worldsheet here, we shall take a step in that
direction by regularizing the loop integrals in a worldsheet-
friendly way. We employ dual momentum variables, and
the ultraviolet cutoff e�	q

2
as in [14,15,19–21]. We shall

extend the results of [17] in important ways. In the latter
work four-branion one-loop Feynman diagrams were eval-
uated in light-cone gauge, but with the branions off shell. A
simple ultraviolet cutoff on transverse momentum was
imposed, and infrared divergences were regulated by dis-
cretizing p�. This is natural from the point of view of light-
cone worldsheet path integrals, because it is nothing more
nor less than defining the path integrals on a lattice [22–

24]—a very standard thing to do. However, in [17] we
examined the continuous p� limit for the off-shell ampli-
tudes we computed, and found some residual artificial
p� 	 0 divergences. These are artificial because true in-
frared divergences are not present off shell. On the other
hand, off-shell amplitudes are gauge noninvariant and un-
physical, so such artificial divergences are not ruled out.
Unfortunately, in [17] it was found that these divergences
did not disappear unambiguously in the on-shell limit: this
limit involved quantities of the form 0=0, with values that
depended on exactly how the on-shell limit was taken. This
issue was left unresolved in [17], because it was also
tangled up with conventional infrared divergences which
were beyond the scope of that paper.

In the work described here we calculate on-shell scat-
tering amplitudes, using discretized p� as an infrared cut-
off that makes these on-shell quantities finite. Then we do
the standard Lee-Nauenberg analysis of infrared divergen-
ces and show that they cancel as they should, allowing an
unambiguous continuum limit of the p� sums. The reso-
lution of the ambiguity found in [17] is that the on-shell
limit and continuous p� limit do not commute: one must
only take p� continuous for physical on-shell quantities. In
the course of these calculations, we identify all of the
counterterms that are needed to remove gauge violating
artifacts that crop up because of ultraviolet divergences.
We identify these counterterms by comparing the results of
our 	 regularization to the results given by dimensional
regularization in the transverse dimensionality. The as-
sumption here is that dimensional regularization gives
the correct gauge invariant results. In fact, one of these
inferred counterterms is essential for the cancellation of
infrared divergences, giving some independent support for
this assumption. This last counterterm shows worldsheet
nonlocal features when directly interpreted. However, as in
the case of some of the counterterms needed in the gluon
scattering calculations of [21], it is possible to realize them
locally if additional worldsheet fields are introduced.

The rest of the paper is organized as follows. In Sec. II
we summarize the Feynman rules for branions in interac-
tion with bulk gauge fields and give the tree level branion
scattering amplitude. In the next three sections we evaluate
the branion and gluon self-energy diagrams, triangle dia-
grams, and box diagrams, respectively. In Sec. VI we show
that the residual infrared divergences in the one-loop elas-
tic scattering amplitudes cancel in their contribution to
scattering probabilities against divergences in the proba-
bility for the emission of extra soft gluons. Concluding
remarks are in Sec. VII. Finally, there are two appendixes
in which needed loop integrals are evaluated.

II. FEYNMAN RULES FOR BRANIONS AND
4 BRANION TREES

The light-cone setup and light-cone gauge Feynman
rules for branions, taken to be 1� 1 Dirac fermions,
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were obtained in [17] and summarized in a table of that
reference reproduced here in Fig. 1 for the reader’s conve-
nience. The physical process we analyze in this article is
on-shell branion-branion scattering, where the two incom-
ing branions as well as the two outgoing branions are on
different 1-branes separated by a distance L. We write the
amplitude for this process as a Fourier transform:

 

~��p; q;Qk;L� 

Z dQ

�2��2
eiQ�L��p; q;Qk;Q�: (4)

Here p, q are the 2-vector momenta of the two incoming
branions and Qk is the momentum transfer of the process,
the final 2-vector momenta being p�Qk, q�Qk, respec-
tively. The integrand � is evaluated by the usual momen-
tum space Feynman rules, with the understanding that the
branions can absorb or give up any amount of transverse
momentum with no change of state. The gluons attached to
the right branion carry away a total transverse momentum
of Q which is absorbed by the left branion from the gluons
attached to it. We calculate � by fixing this total transverse
momentum and integrating over all the other momenta as
loop momenta.

With this understanding, we find for the lowest order
(tree) contribution to this process,

 �Tree 	
2ig2
�1 


�
2 Q

�

Q�Q2 	
2ig2
�1 


�
2 Q

�

Q��Q2 � 2Q�Q��
: (5)

Because the branions are free to move in only one
dimension the on-shell condition is very restrictive: there
is only the option of forward and backward scattering:
Qk 	 0, q� p, respectively. To avoid Q� 	 0 issues we
restrict consideration in the rest of the paper to on-shell
backward scattering, Q� 	 q� � p�, Q� 	 �m2�q� �
p��=2q�p�. Then

 �Tree 	 �
ig2m2
�1 


�
2

p�q�Q2 �m2�q� � p��2
; (6)

 

~� Tree 	 �
ig2m2
�1 


�
2

2�p�q�
K0

�
Lm

q� � p��������������
p�q�

p
�
: (7)

It is easy enough to obtain ~� for the tree amplitude in terms
of the Kelvin functionK0. But for the one-loop calculations
that follow we calculate � and do not carry out the final
Fourier transformation that would convert it to ~�.

III. SELF-ENERGY DIAGRAMS

A. Branion self-energy

The branion self-energy diagram is shown in Fig. 2.
Notice that the gluon propagates in the bulk whereas the
fermion resides on the 1-brane. Applying the Feynman
rules (Fig. 1) we find

FIG. 3. Triangle Feynman diagrams contributing to the four-
point amplitude. The arrows show the direction of color flow,
and p, q are incoming momenta.

FIG. 2. Branion self-energy diagram. Only the gluon line
carries transverse momentum.

FIG. 1. Light-cone Feynman rules using ‘‘double line’’ nota-
tion. All momenta in vertices are taken to be incoming, and the
line in the three-gluon vertex distinguishes the three cyclic
orderings. Index � only includes brane coordinates, while in-
dices �i run over all coordinates.
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 � i��p� 	 g2Nc
Z d4K

�2��4
e�	�K�k0�

2 
��m� 
 � �p� Kk��
�

m2 � �p� Kk�2
2K�

K�K2

	 g2Nc

�
Z d4K

�2��4
e�	�K�k0�

2 2�p� � K��

m2 � �p� Kk�
2

2K�

K�K2 : (8)

To evaluate the K� integral by residues we must add a semicircle at infinity that gives a finite contribution, since the
integrand only falls as 1=K� at large K�:

 

2�p� � K��

m2 � �p� Kk�2
2K�

K�K2 �
2�p� � K��

2�p� � K��K�
2K�

��2�K�2K�
��

1

K�2K�
: (9)

Thus the added semicircular contour will contribute�i�=K�2 if it closes the contour in the upper half plane and�i�=K�2

if it closes in the lower half plane. In evaluating the K� integral by residues it is convenient to close in the upper half plane
whenK� > p� and in the lower half plane whenK� <p�. The integral overK� will be given by the residues of any poles
inside the closed contour minus the contributions of the added semicircular contours:

 � i��p� 	 g2Nc
�
Z dK

�2��4
e�	�K�k0�

2

�X
K�

Residue
2�p� � K��

m2 � �p� Kk�2
2K�

K�K2 � i�
X

K�>p�

1

K�2 � i�
X

K�<p�

1

K�2

�

	 g2Nc
�
Z dK

�2��4
e�	�K�k0�

2

�X
K�

Residue
2�p� � K��

m2 � �p� Kk�2
2K�

K�K2 � 2i�
X

0<K�<p�

1

K�2

�
: (10)

Because of our choice of closed contours, only the pole at K2 � i� 	 0 contributes to the integral and then only when
0<K� <p�:
 

�i��p� 	
ig2Nc


�

8�3

X
0<K�<p�

1

K�2

Z
dKe�	�K�k0�

2 2K�p� �m2K�=�p� � K��

K2 � 2K�p� �m2K�=�p� � K��

�
ig2Nc


�

8�2

X
0<K�<p�

�
m2 � p2

p�K�
�

m2

p��p� � K��

�
ln	e


K��m2 � p2 � 2K�p��
p� � K�

�
ig2Nc


�

8�2

X
0<K�<p�

m2

p��p� � K��
ln

K�2m2	e


p��p� � K��
� �m2 � p2�

ig2Nc

�

8�2

�
X

0<K�<p�

1

p�K�
ln
K�2m2	e
�1

p��p� � K��
�O��m2 � p2�2� (11)

where the final form applies near mass shell m2 � p2 � 0. Stripping away the 
� and multiplying by 2ip� gives the shift
in the quantity m2 � p2, and so we find

 �m2 	 �
g2Nc
4�2

X
0<K�<p�

m2

p� � K�
ln

K�2m2	e


p��p� � K��
; Z2 	 1�

g2Nc
4�2

X
0<K�<p�

1

K�
ln
K�2m2	e
�1

p��p� � K��
: (12)

The mass shift should be a numerical function of the UV cutoff 	, but the divergent sum near K� 	 p� introduces an
apparent infrared divergence depending on p�. This is due to the small 	 approximation used in the second line of (11),
which implicitly neglected 	 in comparison to the p� discretization unit �=p�2. If we go back to the on-shell limit of the
first line, we see that the continuum limit of the K� sum is actually convergent at fixed 	.

 � i��p�jp2	�m2 	 �
ig2Nc
�

8�3

X
0<K�<p�

m2

p��p� � K��

Z
dK

e�	�K�k0�
2

K2 �m2K�2=p��p� � K��

! �
ig2Ncm

2
�

8�3p�
Z 1

0

dx
1� x

Z
dK

e�	�K�k0�
2

K2 �m2x2=�1� x�
; (13)

 �m2 	
g2Ncm2

4�2

Z 1
0

dT
T � 	

Z 1

0

dx
1� x

exp
�
�
m2Tx2

1� x
�
T	k2

0

T � 	

�
: (14)
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One can easily check the large and small T behavior of the function

 F�T� 	
Z 1

0

dx
1� x

exp
�
�
m2Tx2

1� x

�
�

� 1
2

�������
�
m2T

q
for T ! 1;

� ln�m2Te
� for T ! 0;
(15)

which confirms that �m2 is finite at fixed 	. Furthermore, the small T behavior of F controls the small 	 behavior of �m2:

 �m2 �
g2Ncm

2

8�2 �ln2�m2	e
� �O�1��: (16)

Comparing this to (11), we see that the double logarithmic UV divergence in (16) shows up as a single log UV divergence
times a single log IR divergence in (11) when 	! 0 is taken before the continuum limit. This nonuniformity is because, in
the latter case, the part of the UV divergence due to the zero thickness of the 1-brane is cut off by the p� discretization.
However, for Z2 and the more complicated diagrams considered later, it is valid to make the small 	 approximation at
discrete p�, because in those cases singularities due to the zero thickness are integrable. The double log divergence in �m2

would not be present if the branion had not been confined to a brane. Indeed, for a p-brane with p > 1 the corresponding
singularity would be integrable.

It is instructive to compare the transverse momentum integral using our 	 regulator with that using dimensional
regularization, with transverse dimension d < 2, which gives

 � i��p� 	
ig2Nc
�

2�

X
0<K�<p�

1

K�2

Z dK

�2��d
2K�p� �m2K�=�p� � K��

K2 � 2K�p� �m2K�=�p� � K��

	 �
ig2Nc
�

2�

X
0<K�<p�

1

K�2

��1� d=2�

�4��d=2

�
m2K�2

p��p� � K��
� �m2 � p2�

K�

p�

�
d=2

��
2ig2Nc
�

�4��1�d=2

X
0<K�<p�

��1� d=2�K�d�2md

p�d=2�p� � K��d=2

�
1�

d
2
�m2 � p2�

p� � K�

m2K�

�
; (17)

where in the last line we expanded about mass shell p2 �m2 � 0, from which we read off �m2:

 �m2 	
g2Nc
�

��1� d=2�

�4��d=2

X
0<K�<p�

K�d�2md

p�d=2�1�p� � K��d=2
!
g2Nc
�

md��1� d=2�

�4��d=2

Z 1

0
dxxd�2�1� x��d=2

	
g2Nc
�

md��1� d=2�2

�4��d=2

��d� 1�

��d=2�
(18)

which is finite for d < 2. Here the double pole at d 	 2 reflects the double log divergence in (16). Reading off Z2 we find

 

Z2 	 1�
g2Nc
�

d
2

��1� d=2�

�4��d=2

X
0<K�<p�

K�d�3md�2

p�d=2�1�p� � K��d=2�1

� 1�
g2Nc
4�2

X
0<K�<p�

1

K�

�
��1� d=2�

�4���d�2�=2
� ln

K�2m2e
p��p� � K��

�
; (19)

where in the last line we have taken d� 2. As mentioned
above the singularity for K� ! p� is integrable at d 	 2
here, so this is a valid procedure. We leave K� discrete
because these expressions are divergent for d < 2.
Comparing to the 	-regulator result for Z2 (11), we find
the correspondence

 

��1�d=2�

�4���d�2�=2
$� lne
	 or

2

2�d
$� ln�4�	�: (20)

Using this correspondence we shall find that in different
diagrams the two regulators are not in precise agreement as
to the 	 independent terms, and counterterms must be
introduced to achieve equivalent results. Since dimensional
regularization preserves more symmetry than the 	 regu-
lator, we shall presume that it is the latter that requires the
counterterms. Then simple comparison of the two regula-
tors in each diagram gives an efficient procedure for the
identification of the required counterterms.
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B. Gluon self-energy

From [20,25] the gluon self-energy diagram is given by
[26]

 ����Q� 
 Q�2�1 	 �
g2Nc
4�2 Q

�2

�
1

6
lnfQ2	e
g �

4

9

�
;

(21)

 �^_�Q� 
 �Q2�2

	
g2Nc
4�2 Q

2

�
A�Q2; Q�� �

11

6
lnfQ2	e
g �

67

18

�
;

(22)

 A �Q2; Q�� 

X
q�

�
1

q�
�

1

Q� � q�

�
lnfx�1� x�Q2	e
g:

(23)

The corresponding gluon propagator up to one loop is

 

D���Q� 	
i

Q�2 �1��1�;

Dij�Q� 	
�i	ij
Q2 �1��2�:

(24)

The contribution of � to one-loop branion scattering is
then

 

MSE 	 ig2
�1 

�
2

�
�
Q2�2

Q�2Q2 �
�1

Q�2

�
	 ig2
�1 


�
2

�
�

2Q��2

Q�Q2 �
�1 ��2

Q�2

�

	
ig4Nc


�
1 

�
2

4�2

�
2Q�

Q�Q2

�
A�Q2; Q�� �

11

6
lnfQ2	e
g �

67

18

�
�

1

Q�2

�
A�Q2; Q�� � 2 lnfQ2	e
g �

25

6

��
: (25)

We note that, if the integrals are done in dimensional regularization and the correspondence (20) is assumed, then �2 is
unchanged and the pure number in �1 is replaced as follows:

 �
4

9
! �

5

18
; (26)

that is, 1=6 is added, so the 25=6 in (25) is changed to 4.

IV. TRIANGLE DIAGRAMS

We now calculate the triangle graphs contributing to the four-point amplitude. The Feynman diagrams for these
contributions are portrayed in Fig. 3. Using the light-cone Feynman rules we immediately write the Feynman integral
corresponding to the diagram on the left of Fig. 3.

 

�4L
	 Nc

Z d4K

�2��4
�ig
�1 �

�i

�1 �p� Kk�� �m

�ig
�1 �D
��1�K�D��2�K �Q�D��3�Q�V�1�2�3

�K;�K �Q;Q��ig
�2 �

! �
4g4Nc


�
1 

�
2

Q�Q2

1

2�

X
K�

Z dK

�2��2
dK�

2�
�p� � K�� � F

��p� Kk�2 �m2�K�K2�K� �Q���K �Q�2
; (27)

where

 F 	 K��Q2�2Q� � K�� � K �Q�2K� �Q��� �Q��K2�2K� �Q�� � K �Q�2Q� � K���: (28)

The subscripts on the 
’s distinguish between the different branes. All branion-branion-gluon vertices only include the �
component of 
�, since the gluon propagator, D��, vanishes when � 	 �. We have replaced the K� integral by a sum
over discretizedK� 	 ‘�, where

P
K� means �

P
l. For each propagator in a Feynman diagram, the p� 	 0 term in the sum

is excluded. This discretization and zero mode exclusion serves two purposes: first, it systematically regulates the artificial
p� 	 0 divergences that crop up in light-cone gauge, and second, it provides a cutoff to regulate the physical infrared
divergences due to massless gauge particles. In principle, we only take the continuum K� limit for properly defined
physical quantities.

The diagram on the right of Fig. 3 similarly leads to the integral
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�4R
	 Nc

Z d4K

�2��4
�ig
�2 �

�i

�1 ��q� Kk�� �m

�ig
�2 �D
��1�K�D��2�K �Q�D��3�Q�V�1�3�2

��K;�Q;K �Q��ig
�1 �

! �
4g4Nc


�
1 

�
2

Q�Q2

1

2�

X
K�

Z dK

�2��2
dK�

2�
��q� � K�� � F

��q� Kk�
2 �m2�K�K2�K� �Q���K �Q�2

; (29)

with the same expression for F given by (28).
We shall employ dual momentum variables l, k0, k1

related to the momenta via Q 	 k0 � k1, K 	 l� k0. We
shall specify our ultraviolet cutoff in these variables, by
supplying a factor e�	l

2
. When the branions are on shell,

we can use the identity

 2�p� � K��K� 	 m2 � �p� Kk�
2 �

m2K�

p�
for 4L;

(30)

 2��q� � K��K� 	 m2 � �q� Kk�2 �
m2K�

q�
for 4R

(31)

to rewrite the K� term in F. Substituting (30) or (31) into
(27) or (29), we see that the first two terms on the right of
either identity cancel a propagator, contributing a bubble-
like integral to the vertex function:

 �Bubble
4L

	 �Bubble
4R

	 �
2g4Nc


�
1 

�
2

Q�Q2

1

2�

X
K�

Z dK

�2��2
dK�

2�
Q2�2Q� � K�� �K �Q�2K� �Q��

K�K2�K� �Q���K �Q�2

	 �
g4Nc


�
1 

�
2

Q�Q2

isgnQ�

�2��3
X
K�

Z
dK
�Q2�2Q� � K�� �K �Q�2K� �Q���e�	�K�k0�

2

Q�K��Q� � K����K� xQ�2 � x�1� x�Q2�
; (32)

where we have put x 	 �K�=Q�, and have done
R
dK� by a contour chosen to pick up the K2 pole, closing in the upper

half plane for Q� > 0 and in the lower half plane for Q� < 0. A pole is enclosed by the contour only when 0<
�K�=Q� < 1. In the rest of this paper we shall, for simplicity and definiteness, assumeQ� > 0. We have also inserted the
worldsheet-friendly cutoff e�	l

2
on the dual loop momentum variable l 	 K� k0. To do the transverse momentum

integral, we exponentiate the denominator with a Schwinger representation 1=D 	
R
1
0 dTe

�DT and complete the square in
the exponent:

 �	� T�K2 � 2K � �	k0 � xTQ� � 	k
2
0 � x

2TQ2 	 �	� T�
�
K�

	k0 � xTQ
	� T

�
2
�
	T�k0 � xQ�2

	� T
: (33)

Then doing the Gaussian integral, this term becomes
 

g4Nc

�
1 

�
2

Q�3Q2

i

8�2

X
K�

Z dT
T � 	

expf�Tx�1� x�Q2 � 	T�k0 � xQ�
2=�T � 	�g

x�1� x�

�
Q2�2� x� �

�
	k0 � xTQ
	� T

�
�Q�1� 2x�

�
:

(34)

We need the integrals

 

Z 1
0

dT
T � 	

e�TA � �0�1� � ln�A	� 	 � ln�A	e
�;
Z 1

0

TdT

�T � 	�2
e�TA �� ln�A	e
�1�;

Z 1
0

dT	

�T � 	�2
e�TA � 1

(35)

in the limit 	! 0, where we have introduced Euler’s constant 
 	 ��0�1�. Then

 �Bubble
4L

	
g4Nc
�1 


�
2

Q�3Q2

i

8�2

X
K�

�
Q2

�
2�1� x�1� x��

x�1� x�
�� ln�x�1� x�Q2	e
�� �

�1� 2x�2

2x�1� x�

�
� �k2

0 � k
2
1�

1� 2x
2x�1� x�

�

	
g4Nc
�1 


�
2

Q�3Q2

i

8�2

X
K�
Q2

�
2�1� x�1� x��

x�1� x�
�� ln�x�1� x�Q2	e
�� �

�1� 2x�2

2x�1� x�

�

! �
ig4Nc


�
1 

�
2 Q

2

4�2Q�2Q2

�
A�Q2; Q�� �

1

4Q�
X
K�

1

x�1� x�
� ln�Q2	e
� � 1

�
; (36)
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where we have usedQ 	 k0 � k1. Note that the last term inside parentheses of the first equality, which depends on the k’s
individually, vanishes after summation on K� because the summand is odd under x! �1� x�. We recall that the bubble
contribution from the right triangle diagram is identical to this,

 �Bubble
4R

	 �Bubble
4L

: (37)

The dimensional regularization evaluation of the bubble integral (32) is very simple (recall Q� > 0),

 �Bubble
4L

	 �
ig4Nc
�1 


�
2

2�Q�Q2

X
K�

Z dK

�2��d
1

Q�K��Q� � K��
Q2�2Q� � K�� � K �Q�2K� �Q��

�K� xQ�2 � x�1� x�Q2

	
ig4Nc
�1 


�
2 Q

2

4�2Q�2Q2

X
K�

��1� d=2�

�4���d�2�=2

�x�1� x�Q2��d�2�=2

Q�x�1� x�
�1� x�1� x�� �

ig4Nc
�1 

�
2 Q

2

4�2Q�2Q2

X
K�

1� x�1� x�
Q�x�1� x�

�

�
��1� d=2�

�4���d�2�=2
� ln�x�1� x�Q2�

�
�
ig4Nc


�
1 

�
2 Q

2

4�2Q�2Q2

X
K�

1� x�1� x�
Q�x�1� x�

�� ln�x�1� x�Q2	e
��

	 �
ig4Nc


�
1 

�
2 Q

2

4�2Q�2Q2

X
K�
�A�Q2; Q�� � ln�Q2	e
� � 2�: (38)

We see that the dim-reg evaluation does not show the
second term in square brackets of the 	 evaluation. We
shall see later that this term would spoil the cancellation of
infrared divergences and should in fact be absent. So we
identify it as a term to be canceled by a counterterm.

The rest of each triangle diagram involves all three
propagators, but in F the factor K� is replaced by
�m2K�=2p��p� � K�� for the left triangle and by
�m2K�=2q��q� � K�� for the right triangle. Thus the
two numerators are replaced as follows:
 

2�p� � K��F ! �
m2K�

p�
�Q2�2Q� � K��

� K �Q�2K� �Q��� � �p� � K��

�
Q2
k

Q�
�K2�2K� �Q��

� K �Q�2Q� � K���; (39)

 

�2�q� � K��F !
m2K�

q�
�Q2�2Q� � K��

�K �Q�2K� �Q��� � �q� � K��

�
Q2
k

Q�
�K2�2K� �Q��

�K �Q�2Q� � K���: (40)

The integration over K�, K is evaluated in Appendixes A
and B. The K� integration restricts the range of K� to two
distinct regions for each triangle diagram. Then the trans-
verse integrand can have three distinct numerators, 1, K2,
and K �Q. In the notation of the appendixes we then have
for the left triangle

 

�Rest
4L
	 �

g4Nc
�1 

�
2

�Q�Q2

Z p�

0

dK�

K��K� �Q��

�
�
m2K�

p�
�Q2�2Q� � K��I1

L � �2K
� �Q��I1

L�K �Q��

� �p� � K��
Q2
k

Q�
��2K� �Q��I1

L�K
2� � �2Q� � K��I1

L�K �Q��

�

�
g4Nc
�1 


�
2

�Q�Q2

Z 0

�Q�

dK�

K��K� �Q��

�
�
m2K�

p�
�Q2�2Q� � K��I2

L � �2K
� �Q��I2

L�K �Q��

� �p� � K��
Q2
k

Q�
��2K� �Q��I2

L�K
2� � �2Q� � K��I2

L�K �Q��

�
: (41)

We have written theK� sums as continuous integrals, because inspection of the tables of asymptotics in Appendix B shows
that the potential divergences due to the factors 1=K��K� �Q�� are absent: The singularity at K� 	 0 is integrable
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because the coefficient of 1=K� is continuous through K� 	 0 and the continuum limit of the sum leads to the principal
value prescription The singularity at K� 	 �Q� is integrable because the coefficient of 1=�K� �Q�� vanishes as K� !
�Q�. However, these integrals do have some residual 	 dependence. Equations (B6) and (B8) of Appendix B show that

 I1
L�K

2� 
 Î1
L�K

2� �
i

8��p� � K��
ln�m2	e
�; (42)

 I2
L�K

2� 
 Î2
L�K

2� �
i

8��p� � K��
K� �Q�

Q�
ln�m2	e
�; (43)

where the notation X̂ signifies that 	e
 in X is replaced by 1=m2. Then, with this same notation, we can write

 �Rest
�L
	 �̂Rest

�L
�
ig4Nc


�
1 

�
2

8�2Q�Q2

Q2
k

Q�

�Z p�

0

dK��2K� �Q��
K��K� �Q��

�
Z 0

�Q�

dK��2K� �Q��
K�Q�

�
ln�m2	e
�

	 �̂Rest
�L
�
ig4Nc
�1 


�
2

8�2Q�Q2

Q2
k

Q�

�
�
Z p�

0

dK��2K� �Q��
Q��K� �Q��

�
Z p�

�Q�
�

dK��2K� �Q��
K�Q�

�
ln�m2	e
�

	 �̂Rest
�L
�
ig4Nc


�
1 

�
2 Q

�

4�2Q�Q2

�
ln
p� �Q�

Q�
� ln

p�

Q�
� 2

�
ln�m2	e
�; (44)

where the line through the integral sign on the second line
denotes a principal value prescription. Incidentally, these
three lines show explicitly the infrared divergence cancel-
lation sketched above, for the 	 dependence.

Finally we quote the complete left triangle diagram:

 

��L
	 �̂Rest

�L
�
ig4Nc


�
1 

�
2

4�2Q�Q2

�
Q�

�
ln
p� �Q�

Q�

� ln
p�

Q�
� 2

�
ln�m2	e
�

�
Q2

Q�
�A� ln�Q2	e
� � 2�

�
Q2

Q�

�
1

4Q�
X
K�

1

x�1� x�
� 1

��
: (45)

The last term in braces is absent in dim-reg. Note that the
top line is finite in the infrared (continuous K�). A similar
result corresponding to the Feynman diagram on the right
side of Fig. 3 may be obtained either directly or from
Eq. (45) by the substitution [27], p! q�Qk. Note that
the only on-shell value of Q� > 0 is q� � p�, so q� �
Q� 	 p�. In this case, the right triangle contribution is

precisely the same as the left triangle contribution:

 ��L
	 ��L

on-shell: (46)

We shall also have use for a slight rearrangement of (45)
where we use Q2 	 Q2 � 2Q�Q�:

 

��L
	 �̂Rest

�L
�
ig4Nc
�1 


�
2

4�2Q�Q2

�
Q�

��
ln
p� �Q�

Q�
� ln

p�

Q�

�

� ln�m2	e
� � 2A� 2 ln
Q2

m2 � 4
�

�
Q2

Q�

�
A� ln�Q2	e
� � 2

�

�
Q2

Q�

�
1

4Q�
X
K�

1

x�1� x�
� 1

��
: (47)

At this point we give the triangle combined with the wave
function renormalization factors

P
�Zi � 1�=2 associated

with the three external legs:
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��L
�

1

2
MSE �

1

2
�Z2�p� � Z2�p�Q� � 2�

2ig2
�1 

�
2 Q

�

Q�Q2

	 �̂Rest
�L
�
ig4Nc


�
1 

�
2

4�2Q2Q�2

�
�Q�Q�

�
�

�
ln
p� �Q�

Q�
� ln

p�

Q�

�
ln�m2	e
� � 2 ln

Q2

m2 � 4�
11

6
lnfQ2	e
g �

67

18

�
X

0<K�<p�

1

K�
ln
K�2m2	e
�1

p��p� � K��
�

X
0<K�<p��Q�

1

K�
ln

K�2m2	e
�1

�p� �Q���p� �Q� � K��
�A�Q2; Q��

�

�Q2

�
1

2
A�Q2; Q�� �

25

12
� 2

�
�Q2

�
1

4Q�
X

�Q�<K�<0

1

x�1� x�
� 1

��

! �̂Rest
�L
�
ig4Nc
�1 


�
2

4�2Q2Q�2

�
�Q�Q�

�
2 ln

Q2

m2 � 4�
X

0<K�<p�

1

K�
ln

K�2e
p��p� � K��

�
X

0<K�<p��Q�

1

K�
ln

K�2e
�p� �Q���p� �Q� � K��

� 2
X

0<K�<Q�

1

K�
ln
K��Q� � K��Q2

m2Q�2 �
11

6
lnfQ2	e
g �

67

18

�

�Q2

�
1

2
A�Q2; Q�� �

1

12

�
�Q2

�
1

4Q�
X

�Q�<K�<0

1

x�1� x�
� 1

��

! �̂Rest
�L
�
ig4Nc


�
1 

�
2

4�2Q2Q�2

�
�Q�Q�

�
�

11

6
lnfQ2	e
g �

67

18
� 2 ln

Q2

m2 � 4�
2�2

3
�

X
0<K�<Q�

2

K�
ln

m2K�Q�e

Q2p��p� �Q��

� ln
p�

Q�
� ln2 p

�

Q�
� ln

p� �Q�

Q�
� ln2 p

� �Q�

Q�

�
�
Q2

2
A�Q2; Q�� �

Q2

12
�Q2

�
1

4Q�
X

�Q�<K�<0

1

x�1� x�
� 1

��
:

(48)

Arrows indicate that some finite K� sums have been replaced by integrals and evaluated. We see that the ultraviolet
divergence is that of asymptotic freedom in the first group of terms multiplying Q�. In the last line there is still 	
dependence in A that will be canceled by a term from the box diagram [see Eq. (54)]. Also there are uncanceled infrared
divergences in the last two lines. In dimensional regularization, the last term multiplying Q2 is absent, and also the
�Q2=12 in the last line is absent:

 

��L
�

1

2
MSE �

1

2
�Z2�p� � Z2�p�Q� � 2�

2ig2
�1 

�
2 Q

�

Q�Q2

! �̂Rest
�L
�
ig4Nc


�
1 

�
2

4�2Q2Q�2

�
�Q�Q�

�
�

11

6
lnfQ2	e
g �

67

18
� 2 ln

Q2

m2 � 4�
2�2

3
�

X
0<K�<Q�

2

K�
ln

m2K�Q�e

Q2p��p� �Q��

� ln
p�

Q�
� ln2 p

�

Q�
� ln

p� �Q�

Q�
� ln2 p

� �Q�

Q�

�
�
Q2

2
A�Q2; Q��

�
dim-reg: (49)

We shall assume that dimensional regularization is correct,
in which case the worldsheet-friendly 	 regularization
counterterms must be included which produce the contri-
bution

 �C:T: 	
ig4Nc


�
1 

�
2

4�2Q2Q�2

�
�
Q2

12

�Q2

�
1

4Q�
X

�Q�<K�<0

1

x�1� x�
� 1

��
(50)

 	
ig4Nc


�
1 

�
2

4�2Q2Q�2

�
2Q�Q�

�
1

4

X
�Q�<K�<0

�
1

K� �Q�
�

1

K�

�

� 1
�
�Q2

�
1

4

X
�Q�<K�<0

�
1

K� �Q�
�

1

K�

�
�

13

12

��
:

(51)

This will be a challenge for the worldsheet formalism to
reproduce locally in view of the 1=K� terms. We shall
return to this in the concluding section.
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V. BOX DIAGRAM

Finally we turn to the box diagram drawn in Fig. 4. The factors in the numerator of the box integrand can be written

 

�4�p� � K���q� � K��K��K� �Q�� 	 �m2 � �p� Kk�
2��m2 � �q� Kk�

2� � �m2 � �p� Kk�
2�
m2�p� � K��
p� � q�

� �m2 � �q� Kk�2�
m2�q� � K��
p� � q�

(52)

which shows that the box integration can be reduced to bubblelike and trianglelike integrations.

 �� 	 �4g4Nc
�1 

�
2

Z d4K

�2��4
e�	�K�k0�

2

�
m2�q� � K��

�p� � q��K��K� �Q��K2�K �Q�2�m2 � �p� Kk�
2�

�
m2�p� � K��

�p� � q��K��K� �Q��K2�K �Q�2�m2 � �q� Kk�
2�
�

1

K��K� �Q��K2�K �Q�2

�
: (53)

The last term in square brackets of (53) is the integrand of a
bubble diagram, whose evaluation is similar to that of the
corresponding term in the triangle diagram. The result is,
for Q� > 0 and 	� 0,

 

�Bubble
� 	

ig4Nc

�
1 

�
2

4�2Q�3

X
K�

1

x�1� x�
lnfx�1� x�Q2	e
g

	
ig4Nc
�1 


�
2

4�2Q�2 A�Q2; Q�� (54)

with 0< x 	 �K�=Q� < 1. We see that half of this con-

tribution precisely cancels the A term in the last line of
(48) or (49). The other half cancels the corresponding term
for a triangle vertex on the right of the four-branion graph.

The rest of the box diagram is given by two triangle
integrands whose K� and K integrations are given in
Appendix A. Since these contributions are finite in the
ultraviolet, we may set 	 	 0 in them:

 �rest
� 	 �rest

�L
� �rest

�R
; (55)

 ��L

 �

4g4Nc
�1 

�
2 m

2

2��p� � q��

� X
0<K�<p�

�q� � K��I1
L

K��K� �Q��

�
X

�Q�<K�<0

�q� � K��I2
L

K��K� �Q��

�
; (56)

 

��R

 �

4g4Nc

�
1 

�
2 m

2

2��p� � q��

� X
�Q�<K�<0

�p� � K��I2
R

K��K� �Q��

�
X

�q�<K�<�Q�

�p� � K��I1
R

K��K� �Q��

�
: (57)

By consulting the asymptotics tables of Appendix B, we
see that there are infrared divergences that prevent imme-
diately converting these sums to integrals over K�.
However, we can neatly extract the divergent structure by
removing the asymptotic forms from each of the I’s. This
can be done in many ways. Introducing a parameter �, we
define

 I1
L 
 �I1

L��� � �
i�Q� � K��

8�p�Q�Q2 ln
Q4p�2

m2Q2
k
K�2 ; (58)

FIG. 4. Box Feynman diagram contributing to the four-point
amplitude. The arrows show the direction of color flow, and p, q
are incoming momenta.
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I2
L 
 �I2

L��� � �
i�Q� � K��

8�p�Q�Q2 ln
Q4p�2

m2Q2
k
K�2 �

i�Q� � K��

8�Q�p�Q2

� ln
Q2p�2

m2Q���K��
�

iK�

8�Q��p� �Q��Q2

� ln
Q2�p� �Q��2

m2Q��K� �Q��
; (59)

 I1
R 
 �I1

R��� � �
iK�

8��q� �Q��Q�Q2

� ln
Q4�q� �Q��2

m2Q2
k
�K� �Q��2

; (60)

 

I2
R 
 �I2

R��� � �
iK�

8��q� �Q��Q�Q2 ln
Q4�q� �Q��2

m2Q2
k
�K� �Q��2

�
iK�

8�Q��q� �Q��Q2 ln
Q2�q� �Q��2

m2Q��K� �Q��

�
i�Q� � K��

8�Q��q�Q2�
ln

Q2q�2

m2Q���K��
; (61)

where we have used �X to denote the part of X that leads to
IR finite integrals over K�. Notice that in the cases I2

L;R

when both endpoints give divergences, we have multiplied
the corresponding asymptotic forms by factors that are
unity at the corresponding endpoint and vanish at the
opposite endpoint. We included the corresponding factors
in I1

L;R for reasons of continuity. Symmetric summation
about the interior singular point shows that the �I���’s are
free of IR divergences for all �. The case � 	 1 separates
the divergent pieces of each �I. However, we shall hereafter

choose � 	 0, to keep subsequent expressions as simple as
possible. Then we define �I 
 �I�0�:

 ��L

 ���L

�
ig4Nc


�
1 

�
2 m

2

4�2�p� � q��Q�Q2

�

�
�

X
�Q�<K�<0

�q� � K��
K�p�

ln
Q2p�2

m2Q���K��

�
X

�Q�<K�<0

�q� � K��
�K� �Q���p� �Q��

� ln
Q2�p� �Q��2

m2Q��K� �Q��

�
(62)

 ! ���L
�

ig4Nc
�1 

�
2 m

2

4�2�p� � q��Q�Q2

�

�
�q� � p��Q�

p��p� �Q��

X
0<K�<Q�

1

K�
ln
Q2p��p� �Q��

m2Q�K�

�
2q�p� � �q� � p��Q�

p��p� �Q��
ln

p�

p� �Q�
X

0<K�<Q�

1

K�

�
Q�

p�
ln
Q2p�2

m2Q�2 �
Q�

p� �Q�
ln
Q2�p� �Q��2

m2Q�2

�
:

(63)

We can combine the left box, half of the box bubble, the
left triangle, wave function, and half the gluon self-energy.
For the last three contributions we use (49); that is, we are
including the necessary counterterm (51). Remembering
that on shell, Q� 	 �Q�m2=�2p��p� �Q���, we find

 

�L 
 ��L
�

1

2
MSE �

1

2
�Z2�p� � Z2�p�Q� � 2�

2ig2
�1 

�
2 Q

�

Q�Q2 � ��L
�

1

2
�Bubble

�

! �̂Rest
�L
� ���L

�
ig4Nc


�
1 

�
2 Q

�

4�2Q2Q�

�
�

11

6
lnfQ2	e
g �

67

18
� 2 ln

Q2

m2 � 4�
2�2

3
� ln

p�

Q�
� ln2 p

�

Q�
� ln

p� �Q�

Q�

� ln2 p
� �Q�

Q�

�
�

ig4Nc
�1 

�
2 m

2

4�2�p� � q��Q�Q2

�
�
Q�

p�
ln
Q2p�2

m2Q�2 �
Q�

p� �Q�
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Q2�p� �Q��2

m2Q�2

�

�
ig4Nc
�1 


�
2 m

2

4�2Q2p��p� �Q��

�
1�

2q�p� � �q� � p��Q�

Q��p� � q��
ln

p�

p� �Q�

� X
0<K�<Q�

1

K�

! �̂Rest
�L
� ���L

�
ig4Nc


�
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�
2 Q

�

4�2Q2Q�

�
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Q2
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2�2

3
� ln

p�

Q�
� ln2 p

�

Q�
� ln

p� �Q�

Q�
� ln2 p

� �Q�

Q�

�

�
ig4Nc
�1 


�
2 m

2

4�2�p� � q��Q�Q2

�
�
Q�

p�
ln
Q2p�2

m2Q�2 �
Q�

p� �Q�
ln
Q2�p� �Q��2

m2Q�2

�

� �Tree g
2Nc

4�2

��
1�

q�2 � p�2

q�2 � p�2 ln
p�

q�

� X
0<K�<Q�

1

K�
�

1

2

�
�

11

6
lnfQ2	e
g

��
: (64)

In the final form, we have displayed the ultraviolet and uncanceled infrared divergences in the last line as a multiple of the
tree amplitude. The amplitude �R can be computed directly, but it is more simply obtained from �L through the
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substitutions p� ! q� �Q�, q� ! p� �Q�. But on shell we have Q� 	 q� � p�, so in fact �R 	 �L. Thus

 �1-loop 	 �L � �R 	 2�L 	 �Finite � �Tree g
2Nc

4�2

�
2
�
1�

q�2 � p�2

q�2 � p�2 ln
p�

q�

� X
0<K�<Q�

1

K�
�

11

6
lnfQ2	e
g

�
: (65)

The sign and magnitude of the ultraviolet divergent term agree exactly with asymptotic freedom. We shall see that, in its
contribution to probabilities, the infrared divergences will be canceled by contributions from soft gluon bremsstrahlung.
For this purpose, we need to add the tree contribution and square the result.

 

jAElasticj2 � j�Tree � �Finitej2
��������1� 2

g2Nc
4�2

�
p�2 � q�2

q�2 � p�2 ln
q�

p�
� 1

� X
0<K�<Q�

1

K�
�

11

6
lnfQ2	e
g

��������
2

� j�Tree � �Finitej2
�

1� 2
g2Nc
4�2

�
p�2 � q�2

q�2 � p�2 ln
q�2

p�2 � 2
� X

0<K�<Q�

1

K�
�

11

3
lnfQ2	e
g

�
: (66)

VI. SOFT BREMSSTRAHLUNG AND
PROBABILITIES

Soft gluon emission or absorption from scattered bran-
ions is dominated by the diagrams where the emitted or
absorbed gluon is directly attached to external lines. In the
context of large Nc we only need to sum coherently the two
diagrams where the gluon is attached to neighboring lines,
i.e. either emission between the two outgoing branions or
absorption between the incoming branions. In the first case
we simply multiply the amplitude for the core process by
the factor

 � g
k � �

k�

�
p� �Q�

�p�Q� � k
�

q� �Q�

�q�Q� � k

�

	 2gk � �
�

�p� �Q��2

k�2m2 � k2�p� �Q��2

�
�q� �Q��2

k�2m2 � k2�q� �Q��2

�


 2gk � �
�

1

A� k2 �
1

B� k2

�
; (67)

the relative minus sign arising because the two branions in
the final state have opposite color. Here A 	
m2k�2=�p� �Q��2 and B 	 m2k�2=�q� �Q��2. The
probability for gluon emission is given by squaring the
amplitude, summing over color and gluon spin, and inte-
grating over k, k� in a small window about zero.
 

P 	 jAcorej
2
X

k�<kmax

Z
k2<�2

T �k
��
dk

4g2Nc
8�32k�

�
k2

�k2 � A�2

�
k2

�k2 � B�2
�

2k2

�k2 � A��k2 � B�

�
: (68)

The integrals are elementary:

 Z
k2<�2

T �k
��
dk

k2

�k2 � A��k2 � B�

	
�

B� A

�
B ln

�2
T � B
B

� A ln
�2
T � A
A

�
;

Z
k2<�2

T �k
��
dk

1

�k2 � A�2
	 �

�
ln

�2
T � A
A

�
�2
T

�2
T � A

�
:

(69)

Thus

 P 	 jAcorej
2 g

2Nc
4�2

X
k�<kmax

1

k�

�
A� B
A� B

ln
A��2

T � B�

B��2
T � A�

�
�2
T

�2
T � A

�
�2
T

�2
T � B

�
: (70)

Next we choose how to specify the resolutions. As dis-
cussed in [21] a nice choice is to limit the virtuality of the
two ‘‘jet’’ momenta p�Q� k and q�Q� k:

 � �p�Q� � k <�2; ��q�Q� � k < �2 (71)

 

! k2 <min
�
2k�

�2 � k�m2=2�p� �Q��
�p� �Q��

;

2k�
�2 � k�m2=2�q� �Q��

�q� �Q��

�
: (72)

We could choose the upper limit on k� independently of �
as long as it is less than the least of 2�p� �Q���2=m2,
2�q� �Q���2=m2. But for definiteness let us choose

 k� < kmax 
 min
�
�q� �Q��

�2

m2 ; �p
� �Q��

�2

m2

�
: (73)

With resolutions set, we now examine the small k� limit of
the probability summand. We have required �2

T 	 O�k��
and A;B 	 O�k�2�; we can neglect A, B in comparison to
�T so we find
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Summand�
1

k�

�
A� B
A� B

ln
A
B
� 2

�

	
1

k�

�
�p� �Q��2 � �q� �Q��2

�p� �Q��2 � �q� �Q��2

� ln
�p� �Q��2

�q� �Q��2
� 2

�
: (74)

Actually, since we are insisting that Q� > 0 the on-shell
condition is Q� 	 q� � p� with q� >p�. And we find
the simplification

 PBrem
IR � 2jAcorej

2

�
p�2 � q�2

q�2 � p�2 ln
q�2

p�2 � 2
�
g2Nc
4�2

X 1

k�
;

(75)

where we have added the absorption probability of an extra
soft gluon in the initial state, which accounts for the factor
of 2. Combining this result with the square of the elastic
amplitude, we see that the infrared divergence cancels.

VII. CONCLUDING REMARKS

In this article we have calculated physical on-shell
branion-branion scattering through one loop for the case
that the branions are Dirac fermions living on parallel 1-
branes. This work refines and completes a calculation
initiated in [17] by carrying out a careful treatment of the
on-shell limit including a proper definition of scattering
probabilities allowing for the emission and absorption of
extra soft gluons. The ambiguity of the on-shell limit found
in [17] came from attempting the continuous K� limit for
an unphysical off-shell quantity. This is therefore another
example of the novel aspects of light-cone gauge. In a
normal covariant gauge no infrared cutoff is needed
when computing off-shell quantities.

We worked on shell from the beginning in this paper, so
the entire calculation was actually quite different from that
carried out in [17]. Besides this, we also used the
worldsheet-friendly ultraviolet cutoff of [14,15,19–21]
rather than the one employed in [17]. By comparing our
results to those given by dimensional regularization we
were able to identify all the one-loop counterterms that
will be required for the construction of the light-cone
worldsheet description of this system. In this concluding
section we shall briefly indicate how the worldsheet for-
malism can handle these counterterms. But since there
remain some unresolved issues in the worldsheet construc-
tion with 1-brane sources, we stress that it is only illustra-
tive, and the final ‘‘best’’ solution may be quite different.

First of all, the counterterms for the self-energy dia-
grams are no different than those we required in [20,21].
There is of course the branion mass shift (16), which is
nothing but mass renormalization. There is some novelty in
the fact that the zero thickness of the 1-brane promotes a
single log divergence to a double log one, but that does not
change the fact that the shift is a Lorentz invariant constant,

and mass renormalization proceeds as usual. But there is
also a contribution to the self-energy calculation that is
‘‘tadpolelike’’ coming from the instantaneous longitudinal
gluon and that does not involve a propagating intermediate
state. This is just the term we associated with the added
semicircular contours:
 

�i�Instant 	 g2Nc
�
Z dK

�2��4
e�	�K�k0�

2

�

�
�2i�

X
0<K�<p�

1

K�2
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	 �
ig2Nc
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8�2	

X
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1

K�2

	 �
ig2Nc
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XM�1
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1
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	 �
ig2Nc
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6
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1

M
�O

�
1

M2

��

��
ig2Nc
�

48	�
�
ig2Nc
�

8�2	p�
: (76)

The second term has the right behavior to be absorbed in
mass renormalization. The first term is a divergent p�

independent shift in p�, the light-cone ‘‘energy’’ of the
branion. On the light-cone worldsheet it therefore has the
interpretation as a boundary energy or boundary ‘‘cosmo-
logical constant.’’ Again, such a term has already been
encountered in the gluon self-energy as discussed in
[20,21], and introduces no new problems for the light-
cone worldsheet.

The branion-gluon vertex counterterm (51) looks more
problematic because of the nonpolynomial p� depen-
dence. It is helpful to rearrange it a little,

 �C:T: 	
ig4Nc


�
1 

�
2

4�2Q�2

�
�

1

12
�

�
1�

2Q�Q�

Q2

�

�

�
1

4Q�
X

�Q�<K�<0

1

x�1� x�
� 1

��
: (77)

Since this expression will be multiplied by eiQ�L and
integrated over Q, the Q independent terms will be pro-
portional to 	�L� 	 0 for the process we are analyzing
since L � 0. Thus we are left with the problem of repre-
senting

 

ig4Nc

�
1 

�
2 Q

�

4�2Q�Q2

� X
0<k�<Q�

1

k�
� 2

�
(78)

locally on the worldsheet. Although awkward looking,
there is a way to do it. First of all, a factor of 1=k� can
be produced by the insertion of a local worldsheet field,
call it ��; ��, at a point a distance k� from the boundary
of the strip representing the gluon propagator (see [11] in
connection with the representation of 1=p� factors in
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vertex functions). Then integrating this point across the
gluon strip reproduces the desired nonpolynomial terms. A
truly local prescription, however, should integrate the field
insertion point over the whole worldsheet, not just a single
time slice on a single propagator. So we need to arrange
things so that the integral over the whole worldsheet con-
tributes only at one time and only on the gluon propagator.
Again, there is precedent for this sort of effect in the way
the worldsheet can produce quartic vertices. Briefly, the
way this works is that one can introduce freely any number
of extra worldsheet fields �i which satisfy �i 	 0 on all
boundaries together with ghost fields �i, 
i such that the
path integral over them all gives unity. Denoting @=@� by 0,
then h�0ii 	 0 but h�0i��; ���

0
i��
0; �0�i / 	��� �0�. By at-

taching one of these extra fields to the branion-gluon
interaction point and another to the local field , the
contribution can be restricted in the desired way. We con-

tent ourselves here with this feasibility argument and leave
a definitive solution for future work, in which we hope to
resolve the other difficulties posed by the introduction of 1-
brane sources into the light-cone worldsheet formalism.
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APPENDIX A: TRIANGLE INTEGRALS WITHOUT
NUMERATOR FACTORS

In light-cone evaluations we always reserve the K�

integrations till last. Starting with the left triangle inte-
grand, we do the K� integral first:

 

Z dK�

2�
1

K2�K �Q�2�m2 � �p� Kk�2
	

i��p� � K����K��

2�p� � K���K2 � B���K�Q�2 � C�

�
i��Q� � K�����K���K� �Q��

2Q��p� � K����K0 �Q0�2 �D���K0�2 � C�
; (A1)

 B 	
m2K�2

p��p� � K��
; C 	

m2�K� �Q��2

�p� �Q���p� � K��
;

D 	 �K��K� �Q��
�
Q2

Q�2 �
m2

p��p� �Q��

�
	 �

K��K� �Q��

Q�2 Q2; K0 	 K�Q; Q0 	
Q� � K�

Q�
Q:

(A2)

Next the transverse momentum integral can be done after combining denominators with the Feynman trick:

 

Z d2K

4�2

Z 1

0
dx

1

��K� xQ�2 � x�1� x�Q2 � B�1� x� � Cx�2
	

1

4�

Z 1

0
dx

1
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Z d2K
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0
dx

1

��K0 � xQ0�2 � x�1� x�Q02 �Dx� C�1� x��2
	

1

4�

Z 1

0
dx

1

x�1� x�Q02 �Dx� C�1� x�
:

The x integral can be done by factoring the denominator:

 

Z 1

0
dx

1

ax�1� x� � bx� c�1� x�
	

1

a�r� � r��
ln
r��1� r��
�r��r� � 1�

; (A3)

 r� 	
1

2
�
b� c

2a
�

1

2a

���������������������������������������������������������������������
a2 � b2 � c2 � 2a�b� c� � 2bc

q
: (A4)

Let us denote the roots for a 	 Q2 and b 	 B, c 	 C by r� without primes, and the roots with a 	 Q02 and b 	 C, c 	 D
by r0�. Then

 IL 

Z d2KdK�

8�3

1

K2�K �Q�2�m2 � �p� Kk�2

	
1

8��p� � K��

�
i��p� � K����K��
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(A5)
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 ��p� � K����K��I1
L � ��Q

� � K�����K��I2
L;

(A6)

 I1
L 	

i

8��p� � K��Q2�r� � r��
ln
r��1� r��
�r��r� � 1�

; (A7)

 I2
L 	

iQ�

8��p� � K���K� �Q��Q2�r0� � r
0
��

� ln
r0��1� r

0
��

�r0��r
0
� � 1�

: (A8)

The K� integration of these results is infrared divergent for
K� near 0 and �Q�. The singular behavior for K� near
p� is integrable. To extract the infrared structure we
examine the behavior of IL near each of these dangerous
points.

Consider first K� � 0 from the positive side. Then B�
0 and r� ! 1, r� � 1� B=�Q2 � C�, r� ! �C=Q2, 1�
r� ! �Q

2 � C�=Q2, Q2 � C! Q2 �m2Q�2=p��p� �
Q�� 	 Q2 �Q2

k
	 Q2, and

 IL �
i

8�p�Q2 ln
Q4p�2

m2Q2
k
K�2 for K� ! 0�: (A9)

It is simple to check that IL 	 O�1� as K� ! p�. Next we
consider K� � 0 from below. Then D� 0, r0� ! 0, r0� !
�A� C�=A, and

 IL �
i

8�p�Q2 ln
Q2Q�

Q2
k
��K��

for K� ! 0�: (A10)

Finally, we consider K� ��Q�. In this case, D�
Q2�K� �Q��=Q�, C�m2�K� �Q��2=�p� �Q��2,
so r0� � 1� C=D, r0� � �D=Q02, so
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8��p� �Q��Q2 ln
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m2Q��K� �Q��

for K� ! �Q�: (A11)

Turning now to the right triangle integrand, we do the K�

integral first:

 

Z dK�

2�
1

K2�K �Q�2�m2 � �q� Kk�2

	
i��q� � K�����Q� � K��

2�q� � K���K2 � �B���K�Q�2 � �C�

�
i��Q� � K�����K����K��

2Q��q� � K����K�Q0�2 � �D��K2 � �B�
;

(A12)

 

�B 	
m2K�2

q��q� � K��
;

�C 	
m2�K� �Q��2

�q� �Q���q� � K��
;

�D 	 �K��K� �Q��
�
Q2

Q�2 �
m2

q��q� �Q��

�

	 �
K��K� �Q��

Q�2 Q2 	 D;

Q0 	 �
K�

Q�
Q:

(A13)

Next the transverse momentum integrals are given by (A3)
with appropriate substitutions, and the x integral by (A4).
Let us denote the roots for a 	 Q2 and b 	 �B, c 	 �C by
�r� without primes, and the roots with a 	 Q02 and b 	 �C,
c 	 �D by �r0�. Then
 

IR 

Z d2KdK�

8�3

1

K2�K �Q�2�m2 � �q� Kk�2�

	
1

8��q� � K��

�
i��q� � K�����K� �Q��

Q2��r� � �r��

� ln
�r��1� �r��
��r���r� � 1�

�
i��Q� � K�����K����K��

Q�Q02��r0� � �r0��

� ln
�r0��1� �r0��
��r0���r

0
� � 1�

�
(A14)

 


 ��q� � K�����K� �Q��I1
R

� ��Q� � K�����K��I2
R; (A15)

 

I1
R 	

i

8��q� � K��Q2��r� � �r��
ln

�r��1� �r��
��r�� �r� � 1�

;

� q� <K� <�Q�; (A16)

 

I2
R 	

iQ�

8��q� � K����K��Q2��r0� � �r0��
ln

�r0��1� �r0��
��r0�� �r0� � 1�

;

�Q� <K� < 0: (A17)

Again, the K� integration is infrared divergent forK� near
0 and �Q�. The singular behavior for K� near �q� is
integrable. To extract the infrared structure we examine the
behavior of IR near each of these dangerous points.

Consider first K� ��Q� from the negative side. Then
�C� 0 and �r� ! �Q2 � �B�=Q2, �r� � 1� �B=Q2, �r� !
� �C=�Q2 � �B�, 1� r� ! 1, Q2 � �B! Q2, and
 

IR �
i

8��q� �Q��Q2 ln
Q4�q� �Q��2

m2Q2
k
�K� �Q��2

for K� �Q� ! 0�: (A18)
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It is simple to check that IR 	 O�1� as K� ! �q�.
Next we consider K� ��Q� from above. Then �D� 0,
r0� ! 0, r0� ! �Q

2 � �B�=Q 2, and
 

IR �
i

8��q� �Q��Q2 ln
Q2Q�

Q2
k
�K� �Q��

for K� �Q� ! 0�: (A19)

Finally, we consider K� � 0� . In this case, �D�
�Q2K�=Q�, �B�m2K�2=q�2, so �r0� � 1� �B= �D, r0� �
� �D=Q02, so

 IR �
i

8�q�Q2 ln
Q2q�2

m2Q���K��
for K� ! 0�: (A20)

We have remarked in the text that right triangle integrals
can be obtained from left triangle integrals through the
substitutions p! q�Q, q! p�Q. In the context of
the integrals in this section which have left K� integration
unperformed, we see by direct inspection that
I1;2
R �q

�; K�� 	 I1;2
L �q

� �Q�;�K� �Q��. Note in this
context that the range �q� <K� < 0 can be expressed
as �Q� <�K� �Q� < q� �Q�, analogous to the
range �Q� <K� < p�.

APPENDIX B: TRIANGLE INTEGRALS WITH
NUMERATOR FACTORS

Some of the triangle integrals we need contain numera-
tor factors involving K�, K2, or K �Q. In the text we have
shown how to replace K� factors with polynomials in K�

together with canceled propagator terms, which have the
structure of bubble diagrams, explicitly evaluated in the
text. Once the numerators are free of K� factors, the K�

integration is done by contours, leaving denominators
which are quadratic in K. We can then replace numerator
factors of K2 or K �Q with functions of K� times the
integrals of the previous section plus integrals with only
one denominator. We evaluate these one denominator in-
tegrals in this section. Since they are log divergent in the
UV we give both delta-regulator and dimensional-
regulator forms of the answers.

After integration over K� there are four distinct trans-
verse integrals to do: the left and right triangle integrals
and for each of these, two distinct regions of K�. For each
of these four transverse integrals there can be three numer-
ators: 1, K2, K �Q. We adopt the notation I1;2

L;R�X� with X
symbolizing the numerator. In the previous section we
evaluated all of the I1;2

L;R�1� 
 I1;2
L;R.

The one denominator integrals have the general form

 

Z d2K

�2��2
1

�K� L�2 � Z
!

Z d2K

�2��2
e�	�K�k0�

2

�K�L�2 � Z
	-reg (B1)

 !
Z ddK

�2��d
1

�K� L�2 � Z
dim -reg (B2)

with 	 and dimensional regularization, respectively. In the first case we have

 

Z d2K

�2��2
e�	�K�k0�

2

�K� L�2 � Z
	
Z 1

0
dT

Z d2K

�2��2
e�	�K�k0�

2�T��K�L�2�Z� 	
1

4�

Z 1
0

dT
T � 	

exp
�
�TZ�

T	
T � 	

�L� k0�
2

�
:

(B3)

The second term in the exponent is O�	� for all T and the
divergence as 	! 0 is only logarithmic, so this term is
negligible for 	� 0. In the limit these integrals are there-
fore independent of L and k0.
 Z d2K

�2��2
e�	�K�k0�

2

�K� L�2 � Z
�

1

4�

Z 1
0

dT
T � 	

e�TZ

��
1

4�
ln�Z	e
�: (B4)

In dim-reg, we have simply
 Z ddK

�2��d
1

�K� L�2 � Z
	

��1� d=2�

�4��d=2Z�d�2�=2

�
1

4�

�
��1� d=2�

�4���d�2�=2
� lnZ

�
!

�
1

4�
ln�Z	e
� (B5)

with the correspondence (20). We see that the two regula-
rizations exactly agree for these integrals.

It remains to obtain the eight distinct integrals with
nontrivial numerators.

 I1
L�K

2� 	 �BI1
L � I

1
L�K

2 � B�

	 �BI1
L �

i
8��p� � K��

ln�C	e
�; (B6)

 

I1
L�K �Q� 	

1

2
I1
L��K�Q�

2 � C� K2 � B�

�
1

2
�B� C�Q2�I1

L

	
1

2
�B� C�Q2�I1

L

�
i

16��p� � K��
ln�B=C�; (B7)
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 I2
L�K

2� 	 I2
L�K

02 � 2K0 �Q� �Q2I2
L

	 �

�
K�C

K� �Q�
�
K�

Q�
Q2 �

Q�D
K� �Q�

�
I2
L

�
i

8��p� � K��

�
K� �Q�

Q�
ln�D	e
� � ln

C
D

�
;

(B8)

 I2
L�K �Q� 	

�
Q2 K

� �Q�

2Q�
�
Q��C�D�
2�K� �Q��

�
I2
L

�
i

16��p� � K��
ln
C
D
; (B9)

 I1
R�K

2� 	 � �BI1
R �

i
8��q� � K��

ln� �C	e
�; (B10)

 

I1
R�K �Q� 	

1

2
� �B� �C�Q2�I1

R�
i

16��q� �K��
ln� �B= �C�;

(B11)

 I2
R�K

2� 	 � �BI2
R �

iK�

8�Q��q� � K��
ln�D	e
�; (B12)

 I2
R�K �Q� 	 �

Q�

2K�

�
�B�D�

K�2

Q�2Q
2

�
I2
R

�
i

16��q� � K��
ln

�B
D
: (B13)

These results are used in the evaluation of not only the
triangle diagrams themselves, but also trianglelike inte-
grals that contribute to the box diagrams. They must still
be integrated overK�, for which there are several potential
divergences when K� ! p�, 0,�Q�,�q�. The behavior
at these points is tabulated in Figs. 5 and 6. The points p�

and �q� cause no difficulty. This is because K2 is always
multiplied by p� � K� or q� � K� whenever it occurs in
the left or right triangle diagram, respectively. The points 0
and �Q� can cause infrared divergences. However, the
integrals contributing to the actual triangle diagrams turn
out to be convergent. As we discuss in the text, there are
some residual infrared divergences in the trianglelike in-
tegrals contributing to the box diagram. Inspection of these
tables easily allows their extraction.

Finally, we have remarked several times in the text
that right triangle integrals can be obtained from left
triangle integrals through the substitutions p! q�Q,
q! p�Q. In the context of the integrals in these appen-

FIG. 5. Asymptotic behavior of the left triangle K� integrands near singular points.
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dixes, which have left K� integration unperformed, we see
by direct inspection that I1;2

R �q
�; K�� 	 I1;2

L �q
� �

Q�;�K� �Q��. Note in this context that the range
�q� <K� < 0 can be expressed as �Q� <�K� �
Q� < q� �Q�, analogous to the range �Q� <K� <
p�. There are similar relations between the other integrals.
All together we have

 I1;2
R �q

�; K�� 	 I1;2
L �q

� �Q�;�K� �Q��; (B14)

 

I1;2
R ��K�Q�

2��q�;K�� 	 I1;2
L �K

2��q� �Q�;�K� �Q��;

(B15)

 

I1;2
R ���K�Q� �Q��q

�; K��

	 I1;2
L �K �Q��q

� �Q�;�K� �Q��: (B16)

After the K� integrals have been performed, these rela-
tions just produce the general substitution rule quoted
above.
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