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We construct a sigma model in two dimensions with Galilean symmetry in flat target space similar to
the sigma model of the critical string theory with Lorentz symmetry in 10 flat spacetime dimensions. This
is motivated by the works of Gomis and Ooguri [J. Math. Phys. (N.Y.) 42, 3127 (2001)] and Danielsson
et al. [J. High Energy Phys. 10 (2000) 020; J. High Energy Phys. 03 (2001) 041.]. Our theory is much
simpler than their theory and does not assume a compact coordinate. This nonrelativistic string theory has
a bosonic matter �� conformal field theory with the conformal weight of � as 1. It is natural to identify
time as a linear combination of � and �� through an explicit realization of the Galilean boost symmetry.
The angle between � and �� parametrizes one parameter family of selection sectors. These selection
sectors are responsible for having a nonrelativistic dispersion relation without a nontrivial topology in the
nonrelativistic setup, which is one of the major differences from the previous works of Gomis and Ooguri
and of Danielsson and co-workers. This simple theory is the nonrelativistic analogue of the critical string
theory, and there are many different avenues ahead to be investigated. We mention a possible consistent
generalization of this theory with different conformal weights for the �� conformal field theory. We also
mention supersymmetric generalizations of these theories.
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I. INTRODUCTION

String theory is a prime candidate for a quantum theory
of gravity and is widely studied with the relativistic target
space symmetry. A starting point at the perturbative level is
the Polyakov action with flat target spacetime with Lorentz
symmetry as its global symmetry. Open strings by them-
selves are not consistent as they can join end points to-
gether and turn into closed strings. But recently it has been
realized that, in a small part of its moduli space, string
theory can have only open strings without closed strings
[1,2]. These theories opened up new possibilities to study
the nature of string theory without complication of gravity.
It has been a fascinating subject by itself revealing many
novel properties including a space and time noncom-
mutativity.

Further studies revealed that it is also possible to have a
closed string theory with a different target space symmetry.
That target space symmetry is Galilean symmetry, and it
was named nonrelativistic closed string theory [3].
Strikingly, this nonrelativistic string theory has a world
sheet description [3] as well as a target space description
[4,5].1 The world sheet action is simple, but the analysis of
these papers heavily relied on the original relativistic de-
scription with an assumption of a compact coordinate in

order to preserve the effect of the Neveu-Schwarz-Neveu-
Schwarz (NSNS) B field. Despite its strong connection to
the original theory, the world sheet description attracts
much attention (see, e.g., [7]). We will start to investigate
this world sheet theory with some modifications of the
action and of the target space topology. These modifica-
tions are considered, and are partially justified, in Sec. II.

The purpose of this paper is to propose a simpler world
sheet action for the nonrelativistic string theory of Gomis
and Ooguri [3] and of Danielsson et al. [4,5], and to study
its properties. In this paper we investigate a basic bosonic
sigma model with flat spatial coordinates and with a matter
�� conformal field theory (CFT) replacing time and one of
the spatial coordinates of the Polyakov action, similarly to
the CFT of [3–5]. The main differences in our model are
(i) there is no compact coordinate in our description, and
(ii) there are no terms other than the �� CFT action. On the
way of developing this theory, we realize that it is possible
to have a one-parameter family of selection sectors which
parametrize the target-space time coordinate. Each sector
in this family is represented by a different linear combina-
tion of � and ��. We explicitly construct the Galilean boost
transformation with this generalized time coordinate. We
construct the general vertex operators following the work
of Gomis and Ooguri [3]. We propose a spacetime inter-
pretation for the �� CFT, and we also find some restric-
tions on the parameters in the ground state vertex operator.
We explicitly quantize the theory with the ‘‘old covariant
quantization’’ (OCQ) scheme and also with Becchi-Rouet-
Stora-Tyupin (BRST) quantization. We calculate some
correlation functions and demonstrate the consistency of
the theory by checking the modular invariance. The ��
zero modes play a crucial role in the spacetime interpreta-
tion. These are the contents of Sec. III.

*bskim@socrates.berkeley.edu
1The nonrelativistic nature is interesting from several aspects.

Here is one: whereas the complete fundamental description of
string theory is yet to be clarified, it has been put forward that a
fully nonperturbative definition of noncritical M theory in 2� 1
dimensions can be written in terms of a nonrelativistic Fermi
liquid [6]. We will return to this point in Sec. V, where we try to
justify a consideration of string theory with the nonrelativistic
setup.
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We then proceed to generalize this theory by allowing
more general conformal weights for the �� fields (in the
bosonic string theory). If we want to have a target space
interpretation, there is only a finite range of the allowed
conformal weights of these fields. It seems that these
theories are the nonrelativistic analogues of the noncritical
string theories. These are interesting because these theories
can shed light on the (relativistic) noncritical string theo-
ries. We discuss these theories in Sec. IV and present some
immediate observations.

We conclude in Sec. V, where we explain some impli-
cations of this bosonic nonrelativistic string theory. We
also mention a supersymmetric generalization of this the-
ory. Some justifications for considering the string theory in
the nonrelativistic setup are also presented.

II. REVIEW AND SETUP THE STARTING POINT

It is interesting to look briefly at some earlier develop-
ments regarding the low energy limit of open string theory
associated with a large magnetic B field (i.e., the spatial
components of the NSNS 2-form field) or a critical electric
B field. We therefore start with a review of noncommuta-
tive open string (NCOS), open membrane (OM), and non-
relativistic closed string (NRCS) theories. We further
motivate the study of our nonrelativistic string action.
The ultimate justification, though, comes when we quan-
tize and check the one loop consistency of our nonrelativ-
istic string theory at the end of Sec. III. If familiar with
those theories, readers are encouraged to jump to Sec. III.

Before we proceed, we recall that, in contrast to NCOS,
the effective description of the low energy limit associated
with a large value of the magnetic B field is captured by
noncommutative Yang-Mills (NCYM) theory with a space
noncommutativity [8].

A low energy limit of open string theory related to a
critical electric B field is not a field theory but a consistent
open string theory formulated on a noncommutative space-
time (NCOS) with all the massive excitations of the open
string in it [1,2]. This can be understood by thinking about
the open string as a dipole whose end points carry opposite
charges [1]. Then, open strings stretched along the direc-
tion of the B field are energetically favored. At the critical
value of the electric B field, the energy stored in tension is
almost balanced by the electric energy of the stretched
string, and the effective tension of the open string goes
to 0. In the low energy limit, we cannot ignore these light
degrees of freedom, the open strings. On the other hand,
strings on the brane cannot turn into closed strings, because
it will cost a lot of energy. Effectively, this theory is the
theory of open strings, and the underlying spacetime is
noncommutative (NCOS) [1].

It turns out that this phenomenon is more general and
can be extended to the M5 brane theory with a critical
electric 3-form field in M theory. The tension of a mem-
brane stretched along the directions of the electric 3-form

field is very light and cannot be ignored in the low energy
limit. This theory is OM theory [9]. And theS dual of (5�
1) dimensional NCOS theory in type IIB is open D1 brane
theory on NS5 brane in type IIB. With T duality we can get
open Dp brane theories on the NS5 brane. These theories
are a large class of 6 dimensional nongravitational theories
with light open D-branes among their excitations, which
have near critical Ramond-Ramond (RR) gauge fields of
different ranks [9].

When the spatial coordinate along a critical electric B
field is compactified on a circle in NCOS theory, there are
finite closed string states with the positive winding number
which do not decouple from the open string spectrum [10].
From these observations the authors [3,4] tried to under-
stand the low energy limit of closed string theories with a
compact coordinate in the presence of a background NSNS
electric B field. They end up having a NRCS and II A/B
wound and wrapped theories. For the latter case, neither a
critical electric B field nor D-branes were necessary to
have nonrelativistic dispersion relation in the low energy
limit [4]. They also consider a low energy limit of critical
RR fields and found Galilean invariant Dp brane solutions.
It is useful to look at those a little further to motivate the
current work.

Gomis and Ooguri [3] developed a world sheet descrip-
tion of the nonrelativistic closed string theory by taking a
consistent low energy limit of the relativistic string theory.
This limit is typically related to a critical value of an
electric component of a background NSNS B field in order
to cancel divergences which arise when one takes the low
energy limit. A spatial coordinate along the electric B field
should be compact to obtain nontrivial physical states.
Otherwise the background B field can be gauged away
without changing string spectra. Winding modes from
this compact coordinate were important to obtain the non-
relativistic energy dispersion relation, and the winding
number multiplied by compactified radius had a role of
mass. The resulting action of the low energy limit was
written as

 SGO �
Z d2z

2�

�
� �@�� ��@ ��

�
1

4�0eff

@� �@ ���
1

�0eff

@Xi �@Xi

�
; (1)

where � � X0 � X1, �� � �X0 � X1, and �, �� are com-
muting auxiliary fields which were introduced as Lagrange
multipliers through the process of taking the low energy
limit. The index i of the fields Xi runs from 2 to 9 and �0eff
is an effective string ‘‘slope’’ related to the compactifica-
tion radius.

Interestingly, at the same time Gomis and Ooguri pub-
lished their paper, Danielsson et al. [4] provided a com-
plementary description of this nonrelativistic string theory.
It was motivated by the observation that if there is a
compact coordinate ‘‘NCOS’’ D strings can emit wound
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strings into the bulk [10]. Furthermore, through T duality
along the compact coordinate, it was possible to identify
NCOS theory with the discrete light-cone quantization
description of the IIA string theory. The authors showed
that one can define a meaningful ‘‘NCOS’’ limit of the IIA/
B closed string theory, a theory of closed strings with
positive winding modes, as long as there is a compact
dimension. This theory provides a spacetime description
of the string theory with the nonrelativistic energy momen-
tum relation, which is called ‘‘wound IIA/B’’ theory.

From the world sheet formulation [3] a 4-point scatter-
ing amplitude was calculated, and it revealed that there
exist instantaneous Newtonian gravitational interactions
whose origin could not be explained. Subsequently
Danielsson et al. further investigated this issue and pro-
vided the origin of these interactions as massless gravitons
[5]. Actually massless gravitons are not dynamical degrees
of freedom in the nonrelativistic string point of view. They
are subleading contributions from a zero winding sector of
the nonrelativistic string theory. When Gomis and Ooguri
derived the low energy limit, they had a term �

R d2z
2� �

� 2�0
1�2��0B�

��� in their action which is responsible for the
subleading contributions. They then took the strict low
energy limit which removed these subleading contribu-
tions. Even though this term was absent, the world sheet
formulation was powerful enough to produce correct in-
stantaneous gravitational interactions [3]. Thus we will not
consider a similar term in our action.

The term
R d2z

2� �
1

4�0eff
@� �@ ��� in the world sheet action (1)

can also be safely ignored without changing the physical
spectrum of the nonrelativistic string [5]. For the nonrela-
tivistic closed string spectrum, Danielsson et al. showed
that this term is just a leftover after removing a divergent
contribution when one takes the low energy limit. For the
nonrelativistic open string spectrum, they explicitly
showed that this term actually does not change the spec-
trum at all. Thus we will consider an action without a
similar term. Gomis and Ooguri kept this term, which gives
a constant contribution to the nonrelativistic energy, in
order to provide a precise connection of the nonrelativistic
string spectrum to the NCOS spectrum.

These explain our starting point. If we follow the steps
explained above, the remaining parts of the Gomis-Ooguri
action are very simple and look very familiar. It is nothing
but the conventional �� CFT with the conformal weights
of � and � as 1 and 0, respectively. Now it is time to start
with the simple action with �� CFT and X CFTs and to
study its properties. While we proceed, we encounter many
surprises.

III. ‘‘CRITICAL’’ NONRELATIVISTIC BOSONIC
STRING THEORY

We start with a bosonic string theory action with a
commuting �� CFT in addition to the spatial Xi CFT, in

conformal gauge.

 S0 �
Z d2z

2�
�� �@�� ��@ ���

1

�0
@Xi �@Xi � bg �@cg

� �bg@ �cg�; (2)

where i runs from 1 to 24 for Xi CFTs. The commuting
matter �� CFT has conformal weights h��� � 1 and
h��� � 0. The central charge of the commuting �� CFT
is 2. The anticommuting ghost CFT, whose central charge
is �26, has weights h�bg� � 2 and h�cg� � �1, as usual.
To be anomaly free the total central charge of the whole
system should be 0, and we need 24 spatial coordinates as
indicated above. We will consider the cases with general �
and corresponding d, and present a table for these theories
in the next section. The case presented in this section, with
� � 1, is rather special, and we will refer to it as critical
nonrelativistic string theory.

We briefly comment on the commuting �� CFT [11,12]
with � � 1. The operator product expansions (OPEs) of
these fields are given by

 ��z1���z2� �
1

z12
; ��z1���z2� � �

1

z12
: (3)

The antiholomorphic fields satisfy similar OPEs. The mode
expansions and hermiticity properties are

 ��z� �
X1

n��1

�n
zn
; �yn � ��n; (4)

 ��z� �
X1

n��1

�n
zn�1 ; �yn � ���n: (5)

The holomorphic energy momentum tensor and its mode
expansion are

 T�z� � �@� �
X1

n��1

Ln
zn�2 ;

Ln �
X1

m��1

�n�m�:�n�m�m::

(6)

Importantly, the normal-ordering constant turns out to be 0
for this critical case with � � 1.

A. Galilean invariance and selection sectors

Galilean invariance of the nonrelativistic world sheet
action was pointed out first in [3] and written explicitly
in [5] with a particular time coordinate given by tGO �
1��
2
p ��� ���. Actually, there exists a generalized Galilean

invariance in the action (2) which has generalized time t �
p��z� � q ����z� � cos�����z� � sin��� ����z�, where p �
cos��� and q � sin���. The Galilean boost transformation
can be written in the following way
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 Xi ! Xi �
vi

2

�����
�0
p
�p��z� � q ��� �z��;

�! ��
vi�����
�0
p p@Xi �

vivi
4
p@�p��z� � q ����z��;

��! ���
vi�����
�0
p q �@Xi �

vivi
4
q �@�p��z� � q ����z��;

(7)

where vi is the Galilean boost parameter. We can easily
show that the above action is invariant up to total deriva-
tives under this generalized Galilean boost transformation.
And because the fields � and �� do not transform at all,
there exist an infinite number of ‘‘selection sectors’’ pa-
rametrized by a ‘‘selection time’’ t � cos�����z� �
sin��� ����z� for the nonrelativistic string theory. As long
as one belongs to one specific sector one will never escape
from that sector with combinations of Galilean transfor-
mations. Nonrelativistic closed string theory [3] and
wound string theory [4,5] deal with a special selection
sector with tGO �

1��
2
p ��� ��� which corresponds to the

case � � �2n� 1
4�� for any integer n.

In addition to this Galilean boost invariance, the action
(2) is also invariant under SO�8� rotations acting on the
spatial coordinates Xi, and under overall spacetime trans-
lations given by

 Xi ! Xi � ai; �! �� a�; ��! ��� a ��; (8)

where ai, a�, and a �� are constants.

B. Vertex operators

Following Gomis and Ooguri [3] we will start with a
ground state vertex operator V0 acting on the SL�2; C�
invariant vacuum.

 V0�k
�; k ��; ki; z; �z� � g:eik

���ik �� ���ip0
R
z ��iq0

R
�z ���iki�Xi :;

(9)

where k�, k ��, and ki represent overall continuous momenta
along coordinates �, ��, and Xi, respectively.

The OPEs of the vertex operator V0 with the fields� and
� are

 ��z1�V0�k�; k
��; ki; z2; �z2� � �

ik�

z12
V0�k�; k

��; ki; z2; �z2�;

(10)

 ��z1�V0�k
�; k ��; ki; z2; �z2� � ip

0 ln�z12�V0�k
�; k ��; ki; z2; �z2�:

(11)

From the first equation we can read off the fact that the
state corresponding to the vertex operator
V0�k

�; k ��; ki; z; �z� is an eigenstate of the zero mode �0 of
the field ��z�, and the eigenvalue is ik�. Similarly, the
vertex operator has eigenvalue ik �� with respect to the
zero mode of the field ����z�.

We can calculate the conformal weight of the vertex
operator V0�k

�; k ��; ki; z; �z� using OPE with the energy
momentum tensor

 Tmatter�z1�V0�k
�; k ��; ki; z2; �z2�

�
��
0

4 k
iki � k

�p0�

z2
12

V0�k
�; k ��; ki; z; �z� � � � � ; (12)

where Tmatter�z1� � TX�z1� � T���z1�. Thus the ground
state vertex operator has the following conformal weights
for left and right moving sectors:

 �h0; ~h0� �

�
�0

4
kiki � k

�p0;
�0

4
kiki � k

��q0
�
: (13)

To be a physical vertex operator we need to have �h0; ~h0� �
�1; 1�. Thus there is a constraint to be imposed on all the
physical operators,

 k�p0 � k ��q0: (14)

Even though the commuting �� CFT is described by the
first order formulation, it actually gives us zero-mode
contributions through an integral form of the field � in
the exponent of the vertex operator. These are related to the
overall motion of these nonrelativistic string states after we
change fields � and �� into time and space in target
spacetime.

As we already constructed the ground state vertex op-
erator, it is relatively easy to construct first excited vertex
operators, which can be written2

 

Ve�k�; k
��; ki; z; �z� � g:eMN@XM �@XN

� eik
���ik �� ���ip0

R
z ��iq0

R
�z �b�iki�Xi :;

(15)

with

 @XM � �@�; �; �2=�0�1=2@Xi�; (16)

 

�@XN � � �@ ��; ��; �2=�0�1=2 �@Xj�: (17)

Note that @XM and �@XN have conformal weights �1; 0� and
�0; 1�, respectively. So the overall conformal weights of the
first excited vertex operators are

 �he; ~he� �
�
�0

4
kiki � k

�p0 � 1;
�0

4
kiki � k

��q0 � 1
�
:

(18)

For this vertex to be physical we need to impose conditions
�he; ~he� � �1; 1�. This gives us a familiar nonrelativistic
dispersion relation as we will see later. Higher excited
vertex operators can also be constructed in a similar way.

2Covariant notation here is only for convenience and
compactness.
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C. OCQ

In the old covariant quantization scheme we can just
forget about the ghosts, and can restrict to a smaller physi-
cal Hilbert space so that the missing equations of motion of
the energy momentum tensor hold for matrix elements.
Resulting requirements for the physical states j i can be
written as [12]

 �Lmatter
n � a�n;0�j i � 0 for n 	 0; (19)

 h jLmatter
n j 0i � hLmatter

�n  j 0i � 0 for n < 0: (20)

Here a � �1. This normal-ordering constant comes from
the ghost contribution only because bosonic matter ��
CFT with � � 1 has the vanishing normal-ordering
constant.

1. Ground state

The ground state is denoted by jV0i,
 

jV0i � V0�k
�; k ��; ki; z � 0; �z � 0�j0; 0iXi 
 j0i�� �� ��

� j0; kiiXi 
 j0; k�; k ��i�� �� ��: (21)

Norm of this ground state is given by
 

hV0�k2�jV0�k1�i � �2��
26�24�ki2 � k

i
1���k

�
2 � k

�
1 �

� ��k ��
2 � k

��
1 �: (22)

The first physical state condition can be evaluated to give
us the result

 �LX0 � L
��
0 � 1�jV0i �

�
�0

4
kiki � k

�p0 � 1
�
jV0i � 0:

(23)

When we evaluate the �� CFT part, we cannot just ignore
the term involved with the zero modes in L��0 because a
divergent contribution from the vertex operator renders it
finite.3 For this ground state to be physical, the condition
�0
4 k

iki � k
�p0 � 1 should be imposed. And there is a simi-

lar condition from antiholomorphic sector as �0
4 k

iki �
k ��q0 � 1. This is consistent with the previous result (12)
that the conformal weight of the vertex operator should be
�h; ~h� � �1; 1� to become a physical vertex operator.

From these physical conditions we have nontrivial rela-
tions between the parameters in the vertex operator. The
arbitrary looking parameters, p0 and q0, in the vertex
operator are uniquely fixed by the overall momenta k�,
k ��, and ki as follows:

 p0 �
1

k�

�
�0

4
kiki � 1

�
; q0 �

1

k ��

�
�0

4
kiki � 1

�
: (24)

Or we can view these equations as equations of k� and k ��

in terms of p0, q0 and transverse momenta. This viewpoint
will give us a more familiar dispersion relation of the
nonrelativistic string.

To have a nonrelativistic dispersion relation, we need to
take into account the selection time, t � p�� q �� �
cos����� sin��� ��. And we need to introduce another
coordinate x which can be written as x � �q�� p �� �
� sin����� cos��� ��. Then we have

 � � cos���t� sin���x; �� � sin���t� cos���x:

(25)

From the action Eq. (2) it is clear that � and �� are
conjugate variables of � and ��. So we can identify the
energy and momentum as follows:

 

�
2�
� cos���Pt � sin���Px;

��
2�
� sin���Pt � cos���Px:

(26)

If one picks up eigenvalues for both sides one will have the
equations i�0 � cos���pt � sin���px and i ��0 �
sin���pt � cos���px. With the eigenvalues �0 � �ik�

and ��0 � �ik
�� given in Eq. (10) we can get

 pt � cos���k� � sin���k ��; (27)

 px � � sin���k� � cos���k ��: (28)

So the energy can be decided by the momenta k�, k �� and
the selection parameter �. At first glance, these expres-
sions look a little bit strange but we can reexpress these
results in terms of other parameters using the constraint
given by equation pp0 � qq0.4

3This divergent contribution of the ground state vertex opera-
tor presents in the critical string theory and is nothing new. In our
case it is important to keep this divergent contribution in mind
because of the first order form of the energy momentum tensor.
We can check explicitly that this is consistent with the observa-
tions given in the previous subsection.

4This part is a little subtle. After changing fields from �� to t
and x, we need to examine the ground state vertex operator in
terms of these new variables. Concentrating on zero modes we
have

 exp�ipt�t� i�pp
0 logz� qq0 log�z�� � ipx�x� i�qp

0 logz

� pq0 log�z���: (29)

To be consistent we need to impose one of the following
conditions. (a) pp0 � qq0. Then pt �

1
pp0 �

�0
4 k

iki � 1� and px �
0. (b) qp0 � �pq0. Then pt � 0 and px �

p0

p �
�0
4 k

iki � 1�.
Effectively the �� zero modes are mapped into one bosonic
coordinate and its momentum. What about the other coordinate?
I think it is hidden somewhere because if there is only t
coordinate, the central charges do not match after changing
variables. It will be interesting to investigate further along this
line. One can consider the coordinate x as a compact coordinate
by introducing winding modes for � and �� fields. It remains to
be seen whether this compact coordinate can make the hidden
coordinate visible or not. In the main body we will follow with
the first condition.
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Then the results are

 pt �
1

pp0

�
�0

4
kiki � 1

�
; px � 0: (30)

Surely we are familiar with the first expression. The mass
of the nonrelativistic particle corresponding to this vertex
operator is given by the selection sector parameter and the
parameter p0 in the vertex operator. This energy spectrum
has the same structure as that of Gomis and Ooguri [3] if
one identifies the mass of the particle with !R=2

 �GO �
!R
2�0
�

2

!R

�
�0

4
kiki � 1

�
; (31)

where ! and R are the winding number and the radius of
the compact coordinate. Note that the first term in Eq. (31),
which is constant, comes from the tension of the winding
string and is related to the term proportional to @� �@ �� ,
which we ignored. They need a compact coordinate to have
nonzero result on the energy spectrum and energy is cru-
cially related to the positive winding number of the com-
pact coordinate.

2. First excited states

The first excited states can be constructed with the
corresponding vertex operator

 jVei � Ve�k
�; k ��; ki; z � 0; �z � 0��j0; 0iXi 
 j0i�� �� ���

(32)

 � �eM �N�
M
�1 ��N�1��j0; kiiXi 
 j0; k�; k ��i�� �b ���: (33)

Where the index M runs �, �, and i, and the index �N runs
��, ��, and �i. Thus eM�M�1 � ��1e� � ��1e� � �i�1ei.
Again the notation is for convenience.

These states should satisfy the physical state conditions
�Lm0 � 1�jVei � 0 and � �Lm0 � 1�jVei � 0 and we have

 

�0

4
kiki � k�p0 � 0;

�0

4
kiki � k

��q0 � 0: (34)

And there are other nontrivial conditions we need to im-
pose for these states, Lm1 jVei � 0 for the holomorphic part
and similarly �Lm1 jVei � 0 for the antiholomorphic part.
Concentrating on the holomorphic part we can get

 Lm1 jVei � �k
MeM �N ��N�1�jVei � 0; (35)

where

 kM � �p0; k�; ��0=2�1=2ki�; eM � �e�; e�; ei�: (36)

Thus we have conditions kMeM � p0e� � k�e� �
��0=2�1=2kiei � 0 for general �N

There is a spurious state at this level,

 Lm�1jV0i � lM�M�1jV0i

� ��k���1 � p0��1 � ��0=2�1=2ki�i�1�jV0i;

(37)

where

 lM � ��k
�;�p0; ��0=2�1=2ki�;

�M�1 � ���1; ��1; �i�1�:
(38)

From the observation kM�eM �N � lM ��N � AM �lN� � 0, and
with the conditions kMAM � ��N �kN � 0, we can check that
this spurious state Lm�1jV0i is actually physical and null. To
derive this result we use the fact kMlM � 0, which is a
direct consequence of the first physical state condition
(34). These nontrivial equations reveal the equivalent rela-
tion

 eM �N  eM �N � lM ��N � AM �lN; with

kMAM � ��N �kN � 0:
(39)

These equations for the equivalence relation are similar to
the relativistic string theory. From this observation we can
conclude that this nonrelativistic string theory has the same
number of degrees of freedom with the corresponding
relativistic string theory.

We can also analyze the energy dispersion relation for
the first excited state. The derivation is almost the same as
the previous subsection and the result is

 Ee �
kiki
2M

; where M �
2

�0
pp0 �

2

�0
cos���p0: (40)

This energy dispersion relation is exactly the same as that
of the known nonrelativistic particles.

D. BRST quantization

We already quantize the nonrelativistic bosonic string
theory with the OCQ method. But it is still interesting to
see the equivalence between the OCQ result and the BRST
quantization result.

We are given with the gauge-fixed action (2) and we will
closely follow [12]. The only difference comes from the
�� matter sector and we have the BRST transformations
concentrating on the holomorphic part

 �BXi � i�cg@Xi; �B� � i�cg@�;

�B� � i�cg@�; �Bbg � i��Tm � Tg�;

�Bcg � i�cg@cg:

(41)

BRST transformations for the �� matter CFT are nothing
but the conformal transformations. Tmatter � TX � T��,
where T�� is given above. And the energy momentum
tensor for the ghost part has a usual form Tg � �@bg�cg �
�g@�bgcg�. The BRST current and charge have the follow-
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ing forms:

 jB � cgTm �
1

2
:cgTg:�

3

2
@2cg; (42)

 QB �
1

2�i

I
dzjB�z� �

X1
n��1

�cgnLm�n � cgnL
g
�n� � cg0:

(43)

The OPE between the BRST current and the energy
momentum tensor are
 

jB�z1�jB�z2���
cm� 18

2z3
12

cg@2cg�z2��
cm� 18

4z2
12

cg@
2
2cg�z2�

�
cm� 26

12z12
cg@

3
2cg�z2�; (44)

 T�z1�jB�z2� �
cm � 26

2z4
12

cg�z2� �
1

z2
12

jB�z2� �
1

z12
@2jB�z2�:

(45)

From these equations we can read off the facts that the
BRST charge is nilpotent and the BRST current is a
conformal tensor only if the central charge of the matter
sector cm � 26.

The physical states of this nonrelativistic string theory
can be systematically constructed with the BRST coho-
mology using the nilpotent BRST operator Q2

B � 0. The
inner product of the states can be defined with the identi-
fications

 �iym � �i�m; �ym � ���m; �ym � ��m;

bygm � bg�m; cygm � cg�m:
(46)

The zero modes of the ghost fields force the inner product
of the ground state to have the form
 

hV 00�k2�j �cg0cg0jV
0
0�k1�i � i�2��26�24�ki2 � k

i
1�

� ��k�2 � k
�
1 ���k

��
2 � k

��
1 �; (47)

where jV00i � jV0i 
 j0ig denotes product of the matter
ground state with the ghost ground state. The cg0 and �cg0

insertions are necessary for nonzero results.
To get the physical ground state we need two conditions

 bg0jV 00i � 0; (48)

 QBjV 00i � 0: (49)

These imply L0jV 00i � fQB; bg0gjV00i � 0. This condition
with the antiholomorphic part actually gives us the same
mass shell conditions as the OCQ result given in Eq. (24).
There is no exact state at this level and the state jV 00i is a
BRST cohomology class which is physical.

At the first excited level there are �26� 2�2 states.

 jV 0ei � �e	 �
�
	
�1 ��
�1�jV

0
0i; (50)

where the index 	 includes i, �, �, cg, and bg, and the
index �
 includes i, ��, ��, �cg, and �bg. The norm of this
excited state for the holomorphic part is given by

 hV0ej �cg0cg0jV0ei � �e�MeM � e
�
bgebg � e

�
cgebg�

� hV 00j �cg0cg0jV
0
0i; (51)

where e�MeM � e�i ei � e
�
�e� � e

�
�e�, and the last expres-

sion hV 00j �cg0cg0jV00i is already evaluated in Eq. (47). The
antiholomorphic counter part also has a similar form.

The BRST invariant condition for this first excited state
can be analyzed independently for holomorphic and anti-
holomorphic sectors. Concentrating on the holomorphic
sector, we have
 

0 � QBjV
0
ei

� �cg�1f�
i
0ei � k

�e� � p
0e�g

� ebgf�0��1 � p
0��1 � k

���1g�jV
0
gi

� �cg�1k
MeM � egblM�

M
�1�jV

0
gi; (52)

where the detail calculation can be done with the same
procedure given in previous subsection. kM and lM are
given by the equations (36) and (38), respectively.
Because cg�1 and �M�1 are creation operators, the BRST
closed condition forces us to have

 kMeM � 0; ebg � 0: (53)

This is very similar to the relativistic case.
There is an additional zero norm state created by cg�1

and lM�M�1. A general state is of the same form as the first
excited state with different coefficients

 j i � �eM
0
�M�1 � e0bgbg�1 � e0cgcg�1�jV 0gi: (54)

The BRST exact state at this level is

 QBj i � �cg�1kMe0M � e
0
gblM�

M
�1�jV

0
gi: (55)

Thus the ghost state cg�1jV
0
0i is BRST exact, while the

‘‘polarization’’ has the following equivalence relation

 eM � eM � e0bgl
M: (56)

This is the same result as the OCQ given in the previous
section. So there are total �24�2 states in the first excited
level which is exactly the same as the physical spectra of
the relativistic closed string.

E. Scattering amplitudes with vertex operators

In this section we calculate various scattering ampli-
tudes with the ground state vertex operators following the
paper [3]. And we also show that the amplitudes factorize
properly into nonrelativistic string poles. The scattering
amplitude can be written
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 �Yn
s�1

V0s�zs�
�
�
Z
DXiD�D ��D�D ��e�S

�
Yn
s�1

V0�k
�
s ; k

��
s ; kis; zs; �zs�; (57)

where the action is given in Eq. (2) and the vertex operator
is given in Eq. (9).

These scattering amplitudes can be calculated with the
functional integral. The calculation for the quadratic Xi

part can be done with the Gaussian integral and the result is

the same as the one in [3,12]. The first order functional
integral can be evaluated with the Lagrangian (2) and the
extremum is given by

 ��z� �
X
s

�
ik�s
z� zs

; ��z� �
X
s

ip0s ln�z� zs�: (58)

Thus all the functional integrals can be trivially evaluated
and there are also the contributions from the various OPEs
between the vertex operators. The result can be given

 �Yn
s�1

Vgs�zs�
�
� gn

Y
s�t

�zs � zt�
�k�s p0t��zs � �zt�

�k ��
s q0t jzs � ztj

��0=2�kiskti : (59)

From this calculation it is straightforward to evaluate scattering amplitudes for any number of the ground state vertex
operator V0.

To evaluate the string poles we need to go a little bit further. The second exponent can be expressed

 k ��
s q0t �

tan��s�

tan��t�
k�s p0t � k�s p0t; (60)

where we use the relations k�p0 � k ��q0 given in (14), constraint pp0 � qq0 and �s � �t, which is guaranteed by the fact
that any two particles in different selection sectors cannot interact with each other with the Galilean transformations. Then
the n-point vertex scattering amplitude (59) can be simplified

 

�Yn
s�1

V0s�zs�
�
� gn

Y
s<t

jzs � ztj
�2k�s p0t�2k�t p

0
s��0kiskti � gn

Y
s<t

jzs � ztj
�2 cos����p0s�p0t��Es�Et����

0=2��kis�kit�
2�4; (61)

where we used the energy relation Es �
1

p0s cos��� �
�0
4 k

i
sksi �

1�. So we have the following closed string poles

 Es � Et �
�0
4 �k

i
s � kit�2 �m� 1

cos����p0s � p0t�
: (62)

This is the closed string spectrum of nonrelativistic string
theory, and can be identified with the general formula given
in [3] with appropriate modifications.

These scattering amplitudes also can be calculated with
the operator formulation, and these two results are equiva-
lent. Scattering amplitude for the excited states can also be
calculated without difficulty following the procedure given
here. We present a four vertex scattering amplitude for the
excited states in the Appendix. Because this nonrelativistic
theory is less symmetric and lacks covariant notation, the
expression for the scattering amplitude is quite
complicated.

F. One loop partition function

It is important to check the modular invariance of this
nonrelativistic string theory because a breakdown of the
modular invariance may be thought of as a global anomaly
of the reparametrization invariance in string theories. The
one loop partition function with a modulus � � �1 � i�2

on torus can be given in the operator language as

 Z��� � Tr�exp�2�i�1P� 2��2H��; (63)

where P � L0 � �L0 and H � L0 � �L0 �
1

24 �c� �c�.

There are three independent parts to be evaluated, the Xi

CFTs, the ghost bc CFT, and the matter �� CFT.
Contributions from the Xi CFTs and the ghost bc CFT
are well known [12]

 Ztot
X � V24Z24

X � V24��4�2�0�2�
�1=2j����j�2�24;

Zbc � j����j
4;

(64)

where Dedekind ���� function is given by ���� �
q1=24 Q1

n�1�1� q
n� with q � e2�i�.

A new contribution from the matter �� CFT can be
calculated similarly5

 

Z�� � V���q �q��2=24
Z dk�dk ��

�2��2
��k�p0 � k ��q0�

� q�k
�p0 �q�k

��q0
Y1

m��1

X1
Nm; �Nm�0

qmNm �qm �Nm

�
V��

2p0q0
��4�2�0�2�

�1=2j����j�2�2: (65)

The matter part of the partition function ZX � Z�� is the
same as that of the relativistic string theory up to the
volume factor. And the total partition function is

5The delta function is inserted because any physical state
needs this condition. When we evaluate the integral we only
integrated over the range 0 � k� � 1 without losing a general-
ity which can be achieved by adjusting p0.
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 Ztot �
V24V��
2p0q0

Z d2�

16�2�0�2
2

�Z24
X �: (66)

This shows that the nonrelativistic string theory is modular
invariant because the integrand d2�

�2
2

is modular invariant and

ZX � �4�
2�0�2�

�1=2j����j�2 is itself modular invariant.
The contributions from the excitations of the �� CFT in
the partition function are cancelled by those of the bc CFT.
The contributions from the zero modes of the �� CFT
actually contribute to the factor 1

�2
in order to ensure the

modular invariance.

G. Open string

For the open string, we can impose the boundary con-
dition Tzz � T�z �z at Imz � 0. The fields need to have the
conditions,

 @Xi � �@Xi; � � ��; � � �� at z � 0: (67)

Then the usual doubling trick to write the holomorphic and
antiholomorphic fields in the upper half-plane in terms of
holomorphic fields in the whole plane,

 ��z� � ����z0�; ��z� � ����z0�; Im�z� � 0; z0 � �z

(68)

The holomorphic energy momentum tensor should
match the antiholomorphic energy momentum tensor after
Galilean boost transformation at z � 0 for the open string
case. This imposes a condition p � q for the selection
sector, in which the nonrelativistic open string theory is
meaningful. Consequently there is a constraint p0 � q0 for
the open string vertex operator. We expect the rest of the
quantization procedure is similar to the closed string case
and is straightforward after the work of the closed string
theory.

IV. BOSONIC THEORY WITH GENERAL
COMMUTING �� CFT

After quantizing the critical case with � � 1 for the
nonrelativistic string, it is natural to ask if there are also
meaningful theories for the �� CFT with different confor-
mal weights. Thus we start with the bosonic string theory
action with a general commuting�� CFT in addition to the
spatial Xi CFT in conformal gauge.
 

S �
Z d2z

2�

�
� �@�� ��@ ���

1

�0
@Xi �@Xi

� bg �@�g � �bg@ �cg

�
; (69)

where i runs from 1 to d for Xi CFTs. The commuting
matter �� CFT has the conformal weights h��� � � and
h��� � 1� �. The anticommuting ghost bc CFT has the
weight h�bg� � 2 and h�cg� � �1.

For the general commuting �� CFT, the OPEs are given
by [11,12]

 ��z1���z2� �
1

z12
; ��z1���z2� � �

1

z12
: (70)

And the antiholomorphic fields satisfy the similar OPE.
The mode expansion and hermiticity property are

 ��z� �
X1

n��1

�n
zn��1���

; �yn � ��n; (71)

 ��z� �
X1

n��1

�n
zn��

; �yn � ���n: (72)

The holomorphic energy momentum tensor and its mode
expansion are

 T � �@���� �@���� �
X1

n��1

Ln
zn�2 ;

Ln �
X1

m��1

�n��m�:�n�m�m:� a�n;0;

(73)

where a � � ����1�
2 for the commuting bosons with peri-

odic boundary condition. For the interesting case � � 1,
this ordering constant vanishes as we saw in the previous
section.

The central charge of the commuting �� CFT is
2�6�2 � 6�� 1�. To have a consistent theory, central
charge from the matter CFTs (the Xi CFTs and the ��
CFT) should cancel the central charge �26 from the
reparametrization ghost bc CFT. Thus we can have the
following condition:

 d � 26� 2�6�2 � 6�� 1�: (74)

In Table I we present different � and d for the possible
consistent theories.

We present the immediate observations on these possible
consistent nonrelativistic string theories, which have
Galilean symmetry mentioned in the previous section
with the corresponding rotational invariance, SO�d�.
First, there exist only a finite range of conformal weight
�1 � � � 2 to have a space and time interpretation for the
theories with the general �� CFT. The maximum number
of the spatial coordinates excluding the �� CFT is 27 for

TABLE I. Table for the possible consistent bosonic string
theories with the �� CFT with integer and half integer confor-
mal weights. The conformal weight �, the central charge, and the
number of the spatial dimensions of the target space are pre-
sented. ‘‘� � �’’ represents the case with the ‘‘negative number’’
spatial dimensions.

� � � � 2 3=2 1 1=2 0 �1=2 �1 � � �

c�� c�� > 26 26 11 2 �1 2 11 26 c�� > 26
d � � � 0 15 24 27 24 15 0 � � �
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the case of � � 1=2. This is a rather special case, and is
worthy of further investigation.

Second, as we increase �, the central charge of �� CFT
decreases until c�� � �1 for � � 1=2 and then it in-
creases. Usually two different conformal weights corre-
spond to the same central charge and the same number of
spatial coordinates. We already considered the critical case
of � � 1. The � � 0 case seems to be exactly the same as
the critical case if we change the role of � and �, except
possibly different space and time interpretations.

Third, there are two possible theories with only the ��
CFT and the bgcg CFT without spatial coordinates. We
would like to call these ‘‘topological theories.’’ These
topological theories have only the zero modes correspond-
ing to spacetime coordinates and momenta without any
excitations. There are some curious facts in these theories
as we mention at the end of this subsection.

Fourth, it will be interesting to understand the theories
with half integer conformal weight fields. At first glance, it
seems that there is no possible interpretation of time in
target space because the fields with half integer conformal
weight do not give us zero modes. But as is well known, it
is required to have two different sectors, NS and R sectors,
for the half integer conformal weight fields. These fields
are very similar to the superconformal ghost fields. Of
course there we need be careful with the continuous zero
modes in order to have spacetime interpretations.

These nonrelativistic string theories are very similar to
the critical case except the zero modes of the �� CFT.
Establishing zero modes will be a challenge for these
theories, but we think these problem could be solved
with spectral flow. Generally noncritical relativistic string
theories are hard to understand. In some sense, these
theories are ‘‘noncritical.’’ If we understand these theories
better, we may have more insights for the relativistic
counterpart.

Unification of the first order CFTs

There is a curiosity about a unification of the first order
CFTs. The bosonic�� CFT and the ghost bgcg CFT can be
unified in bigger multiplets, ‘‘grand multiplets,’’ v and w
with new field �gh which carries the conformal weight, the
U(1) ghost charge, and the U(1) matter charge

 v � ���ghbg; w � cg ��gh�:

If one investigates these grand multiplets a little further,
one can read off that �gh is anticommuting field with the
conformal weight �� �g, the matter U(1) charge �1, and
the ghost number 1. v is a commuting multiplet with the
conformal weight �� 1=2, the U(1) matter charge�1, and
the ghost number 0, whereas w is an anticommuting mul-
tiplet with the conformal weight 1� �, the U(1) matter
charge 0, and the ghost number 1.

With these observations we can rewrite the bosonic
string action in a very simple form for the holomorphic part

 Svw �
Z d2z

2�
d�gh�v �@w� �

Z d2z
2�
�� �@�� bg �@cg�:

Here we did not gauge the field �gh as indicated in the
usual derivative @.

For the cases of � � 2 and of � � �1 mentioned as
‘‘topological’’ theories, only the �� CFT and the bc CFT
are present. It will be interesting to investigate these theo-
ries further. There are only the zero modes without any
oscillator excitations.

V. CONCLUSION

In this paper we investigate a new possibility of string
theory with Galilean symmetry as a global symmetry. The
action has the matter �� CFT in addition to the usual X
CFTs and the ghost bgcg CFT in the conformal gauge. This
Galilean symmetry is realized by the combinations of
simplest theories, �� CFT and X CFTs. We quantize this
theory in an elementary fashion. We would like to say that
this theory has the full-fledged form of a string theory and
is at the same level as the perturbative relativistic string
theory described by the Polyakov action. We think there
are many different avenues ahead to be investigated.

Why do we consider the nonrelativistic string theories?
First, the complete fundamental M-theory and string the-
ory formulations are not available yet. Recently a non-
perturbative formulation of noncritical M theory using a
nonrelativistic setup has been put forward [6]. It seems to
us that it is important to investigate other possibilities6 and
to construct explicit examples, which will provide insights
into the issues to be solved in the relativistic string theory.
In this spirit, this nonrelativistic string theory provides an
example of a full bosonic string theory similar to the
relativistic bosonic string theory in many aspects. In this
nonrelativistic setup, it is possible to ask questions related
to the nature of string theory even without the complication
of gravity. Second, it is possible that diffeomorphism in-
variance and Lorentz invariance can emerge at a special
point of the moduli space of less symmetric theories such
as the nonrelativistic theories (e.g., [14,15]). Third, even
though there are many string theories with broken Lorentz
symmetries such as lightlike linear dilaton theory, there
were not so many attempts to understand these theories
with emphasis on their manifest symmetries from the
starting point.7

6Lorentz violating effects in string theory is very interesting
and there are a lot of efforts to investigate them. For example,
see, e.g., [13].

7We thank Professor Petr Hořava for pointing out this to us.
This is actually one of the strong motivations for the current
work.
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Here is an another motivation. There is evidence which
suggests that time is rather different from space in string
theory. ‘‘Emergent spaces’’ in string theory is not hard to
find in the literature, while ‘‘emergent time’’ poses many
challenges for current understanding of quantum theory
(e.g., [16]). As a specific example without the complica-
tions of gravity, we can contrast ‘‘Noncommutative open
string theory’’ (NCOS), which is a string theory with all the
massive excitations of the open string in it, and ‘‘non-
commutative Yang-Mills theory’’ (NCYM), which is a
field theory. These two theories are related to consistent
low energy limits of the relativistic string theory with
D-branes in the presence of NSNS B field with an electric
and a magnetic component, respectively. This nonrelativ-
istic string theory is different from the relativistic string
theory by having the �� fields instead of the X0 and X1

fields, and it provides an example which treats time and
space in a different footing.

We will conclude with a few comments and future
directions. This theory seems to be very similar to the
relativistic string theory in many aspects. The total degrees
of freedom of this nonrelativistic string theory are the same
as those of the relativistic string theory, because all the
excited degrees of freedom are the same. The consistency
conditions of the two dimensional conformal field theory
put strong constraints on the spectrum of the nonrelativistic
theory, which suppress the excitations of the�� CFT in the
physical spectrum. Differences between the relativistic
string and the nonrelativistic string are related to the zero
modes and their interpretations. The zero modes of the ��
CFT are very important for the modular invariance. By the
way, the conventional �� CFT has a U(1) symmetry. On
the other hand, we want to have �� zero modes in the
ground state vertex operator in order to have a space and
time interpretation. Thus this U(1) symmetry is broken.
Related facts for the zero modes of the superconformal
�g�g CFT were already considered in [17] long ago.

Even though we started with the �� CFT and X CFTs,
we are able to identify the time of the target space as a
linear combination of � and �� through the explicit Galilean
boost transformation. There is a parameter of selection
sectors which is responsible for the nontrivial dispersion
relation. While we change the variables from �� to time t
and space x in target space, we encounter a peculiar fact
that space x is actually hidden and only time t is visible, as
explained in the main text. It will be interesting to check
whether it is possible to make space x be visible by
including winding modes in this theory by compactifying
the coordinate x similarly to the case of Gomis and Ooguri.

There are other possibly consistent string theories with
�� of different conformal weights. We have a viewpoint
that these theories are the nonrelativistic analogues of
noncritical string theories. And the analysis seems rather
involved because it is not clear how to put �� fields
explicitly in the vertex operator for these zero modes to

give the spacetime interpretations. We think that spectral
flow can have a role for this analysis.

We are currently investigating the supersymmetric gen-
eralizations of this nonrelativistic string theory. For the
critical case with 8 spatial coordinates, we have anticom-
muting bc CFT in addition to the usual  i; i � 2; . . . ; 9
CFTs. They all have identical conformal weights 1=2.
Naively we can change fields from bc to  0 and  1 and
we could get an SO�9; 1� symmetry in the fermionic sector.
But this is too naive and there is no transformation which
maps from bc to the other  i’s. Quantization seems to be
straightforward at least for the critical case. And there also
exist similar noncritical supersymmetric generalizations
for the noncritical nonrelativistic string theories. It turns
out that there is an infinite range of possible consistent
string theories for this nonrelativistic setup. We hope to
report this progress in the near future. It will also be
interesting to investigate the connection between these
theories and supercritical string theories [18,19].
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earlier works related to NRCS as a reading assignment for
his class, for valuable comments and ideas along the way to
develop this theory and related area, and for comments on
the draft. I also thank Professor Ashvin Vishwanath for
discussions related to string theory in the nonrelativistic
setup. This work was supported in part by the Center of
Theoretical Physics at UC Berkeley, and in part by the
Director, Office of Science, Office of High Energy and
Nuclear Physics, of the U.S. Department of Energy under
Contract No. DE-AC02-05CH11231.

APPENDIX: SCATTERING AMPLITUDE FOR
EXCITED VERTEX OPERATORS

The scattering amplitude for the 4 excited state vertex
operators can be expressed as
 �Yn

s�1

Ves�zs�
�
�
Z
DXiD�D ��D�D ��e�Sb

�
Yn
s�1

Ve�k
�
s ; k

��
s ; kis; zs; �zs�; (A1)

where the action is again given in (2) and the vertex
operator is given in (15).

It will be very convenient to evaluate this functional
integration using the technique given in [12], which eval-
uates the exponential factors first at the minimum of each
field. The minimum of each field is again given by Eq. (58).
With these minimum values we can change variables from
@xM to qM which will be given explicitly below. And we
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write down everything in terms of these new variables.
After that we have the following scattering amplitude

 gn
Y
s�t

�zs � zt��k
�
s p0t� �zs � �zt��k

��
s q0t jzs

� ztj��
0=2�kiskti

�Yn
s�1

esM �N�v
M
s � qMs �� �vNs � �qNs �

�
; (A2)

where

 qMs � @XMs � vMs ; �qMs � �@XMs � �vMs ; (A3)

 vMs �
X
t�s

pMs
zs � zt

with

pMs � �ik
�
s ;�ip0s;�i��0=2�1=2kis�;

(A4)

 �v N
s �

X
t�s

�pNs
�zs � �zt

with

�pMs � �ik
��
s ;�iq0s;�i��0=2�1=2kjs�:

(A5)

We still need to evaluate the expectation value of qM and
�qM. These are given by the sum over all contractions. The
only nonvanishing two contractions are given by

 hq�s q
�
t i � hq

�
s q

�
t i �

1� �st
�zs � zt�

2 ;

h �q�s �q�t i � h �q
�
s �q�t i �

1� �st
��zs � �zt�

2 ;

(A6)

 hqisq
j
t i � hq

j
sqiti �

�1� �st��
ij

�zs � zt�
2 ;

h �qis �qjt i � h �q
j
s �qiti �

�1� �st��
ij

��zs � �zt�
2 :

(A7)

Rather than evaluating this general scattering amplitude
we can evaluate one specific example with polarization
e1
� ��e

2
� ��
e3
@Xi �@Xje

4
@Xk �@Xl

for the 4 excited state vertex opera-

tors as an illustration. The expectation value can be eval-
uated straightforwardly and we have the following
expression without polarization factor which will be intro-
duced later:

 

4

�02
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�
1 ��v

�
2 � q

�
2 ��v
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3 � q@X

i

3 ��v
@Xk
4 � q@X

k
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��
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��
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3 �� �v
�@Xl
4 � �q �@Xl

4 �i

�

��X
s�1
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��X
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�
�

1

�z1 � z2�
2

���X
u�3
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z3 � zu

��X
v�4

kkv
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�
�
�ik � 2=�0

�z3 � z4�
2

���X
s�1

ik ��
s

�z1 � �zs

��X
t�2

�iq0t
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�
1

��z1 � �z2�
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���X
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�
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�

�
4

�02
A� ��� ��i �jk�l

1 :

Thus the scattering amplitude can be summarized as using the result given in (61)

 hVe� ��
�z1�Ve� ��

�z2�Veij�z3�Vekl�z4�i � g4�e1
� ��e

2
� ��
e3
@Xi �@Xje

4
@Xk �@Xl

� A� ��� ��i �jk�l
1 �

Y
s<t

jzs � ztj�2k�s p0t�2k�t p
0
s��0kiskti : (A8)

The scattering amplitudes with both ground state vertex operators and first excited vertex operators can be evaluated in a
straightforward manner with the procedure given in this Appendix.
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