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The saddle points of a Lagrangian due to Efetov are analyzed. This Lagrangian was originally proposed
as a tool for calculating systematic corrections to the Bethe approximation, a mean-field approximation
which is important in statistical mechanics, glasses, coding theory, and combinatorial optimization.
Detailed analysis shows that the trivial saddle point generates a sum over geometries reminiscent of
dynamically triangulated quantum gravity, which suggests new possibilities to design sums over
geometries for the specific purpose of obtaining improved mean-field approximations to D-dimensional
theories. In the case of the Efetov theory, the dominant geometries are locally treelike, and the sum over
geometries diverges in a way that is similar to quantum gravity’s divergence when all topologies are
included. Expertise from the field of dynamically triangulated quantum gravity about sums over
geometries may be able to remedy these defects and fulfill the Efetov theory’s original promise. The
other saddle points of the Efetov Lagrangian are also analyzed; the Hessian at these points is nonnormal
and pseudo-Hermitian, which is unusual for bosonic theories. The standard formula for Gaussian integrals
is generalized to nonnormal kernels.
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I. INTRODUCTION

Modern physics often struggles with geometry. Zero
dimensional and ‘‘infinite dimensional’’ systems are the
simplest to analyze, precisely because in such systems the
effects of dimension and distance are grossly simplified. In
this paper we will restrict our attention to the more realistic
and challenging scenario: a finite number of dimensionsD.
In this scenario physicists typically choose ground states—
saddle points—that are spatially uniform, which means
that we are pretending that the system ‘‘almost’’ lacks
spatial structure. Geometrical information is later added
back into perturbative calculations via the bare Green’s
function. This program of mean-field theory fails when the
number of dimensions is small, and in disordered and
complex systems often must be augmented with replicas
and replica symmetry breaking [1]. It would be desirable to
find a systematic perturbative expansion which incorpo-
rates geometrical effects nonperturbatively; in the zeroth-
order approximation. Such a theory would include incom-
plete geometrical information in the lowest order, and
would systematically improve its geometrical accuracy at
higher orders.

One very tempting possibility is to design an expansion
whose zeroth order is the Bethe approximation [2]. Bethe
required that if a spin residing at node a is removed then
the spins on neighbors of a will be uncorrelated [3,4]. On a
tree his approximation is exact; thus its physical meaning
consists of including complete information about nearest
neighbors, but leaving out the effects of loops, i.e. possi-
bilities to make round trips without retracing one’s steps.
When treating low-dimensional, disordered, or frustrated

systems, the Bethe approximation gives notable improve-
ments over mean-field theory [1]. It is equivalent to using
the replica method without breaking replica symmetry and
has a hierarchy of simple generalizations which are equiva-
lent to successive levels of replica symmetry breaking [1].

A systematic expansion of corrections to the Bethe
approximation would adjust for the difference between
the correct D-dimensional geometry and a tree. Several
authors have proposed improvement schemes based on
higher correlated moments [5], effects of nearby spins on
one another [6,7], or ‘‘generalized loops’’ moving around
the correct geometry [8,9]. All of these schemes involve an
exponentially large number of corrections, as is typical in
perturbative calculations. Less typically, in no formalism
has anyone identified a small parameter whose powers can
be used to justify truncating the corrections. The crucial
problem for the Bethe approximation today is that of
finding a small parameter which controls its corrections.

In 1990 Efetov [10] proposed a new formalism for
calculating corrections to the Bethe approximation. Much
more recently Parisi and Slanina [11] worked out certain
details of applying the new scheme to a D-dimensional
geometry. The advantage of Efetov’s formalism is that it
uses the standard mathematical machinery of saddle point
approximations, while the geometrical details of the Bethe
approximation and its corrections have somehow been
hidden in a clever choice of Lagrangian. These authors
claimed that the new Efetov Lagrangian:

(i) reproduces the Bethe approximation as the zeroth
order of a saddle point approximation;

(ii) is able to reproduce the partition function of any
statistical model with two-body interactions, via
suitable choices of the Efetov Lagrangian’s parame-
ters. For example, the Efetov Lagrangian can repro-
duce any Potts model, including the Ising model, as
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well as any lattice gauge theory. It is important to
keep firmly in mind the distinction between the
Efetov Lagrangian itself and the ‘‘target the-
ory’’—the model which the Efetov Lagrangian is
being tuned to reproduce, accompanied by a com-
plete specification of the geometry.

The second assertion, giving the Efetov theory’s physical
meaning, was based on a saddle point expansion around the
trivial saddle point. The first assertion, giving the connec-
tion with the Bethe approximation, was based on a saddle
point expansion around a different, nontrivial, saddle point
[12].

In this paper, Sec. II questions Efetov, Parisi, and
Slanina’s second assertion, that the Efetov Lagrangian
can replicate the partition function of any target theory. It
reports that while they are correct that one of the correc-
tions to the trivial saddle point is the target theory’s parti-
tion function, this correction is only one of many. The other
(newly discovered) corrections dominate over the target
partition function, contain two or more spins for each spin
in the original target theory, and correspond to a sum over
geometries reminiscent of dynamically triangulated quan-
tum gravity [13–15], but without the restriction to sim-
plexes having triangular faces. Even though the target
theory which the Efetov Lagrangian is trying to replicate
lives on a cubic lattice withD dimensions and N nodes, the
dominant corrections to the trivial saddle point live on
random geometries with many nodes and no specific di-
mension. The dominant random geometries are locally
treelike, which perhaps explains why the Bethe approxi-
mation emerges from the nontrivial saddle points.

This is a very illuminating result. It reveals that improv-
ing on mean-field theory in D dimensions is a matter of
defining an appropriate sum over geometries (preferably
using an integral formulation), and analyzing it with tech-
niques from statistical mechanics and quantum gravity. If
the relative importance of D-dimensional lattice geome-
tries vs others can be tuned smoothly, then a mean-field
theory with systematic corrections can be developed [16].
Assuming that smooth reweighting can arrive at a regime
where treelike geometries dominate, the mean-field theory
would likely be governed by the Bethe approximation.
Even if smooth reweighting is not possible, any nontrivial
saddle points will offer an approximate mean-field theory
with systematic corrections as long as lattice geometries
are dominant.

As it stands Efetov’s theory does not fulfill its promise:
lattice geometries do not dominate. Moreover, the sum
over geometries grows factorially with the volume, not
exponentially, and is therefore in need of regularization.
This is a familiar problem from quantum gravity and string
theory [13,14], where almost universally the sums over
geometries with different topologies diverge, and is a
sign of a nonextensive entropy [17]. See [18] for a recent

discussion of the link between nonextensive entropy, string
theory, and replica symmetry breaking in frustrated
systems.

Sometimes a failed (divergent) theory is a success, if it
points the way to other better theories, or gives physical
insight into a problem—this is the motivation for contin-
ued research in quantum gravity and strings. The Efetov
theory is a similar sort of success: it suggests that a
similar sum over geometries, suitably regularized using
expertise from quantum gravity and string theory, could
provide a systematic scheme for improving on the Bethe
approximation.

The key technical question is whether a suitable regu-
larization can be found. Efetov’s theory considers only
discrete geometries; therefore, a lattice cutoff is useless.
Alternative regularizations like those found in dynamically
triangulated quantum gravity may be useful. Topological
regularizations [13,14] have found some success especially
in 1� 1 dimensions—these restrict the sum over geome-
tries to planar geometries (topological spheres with no
holes), or tori (a single hole), etc. More recently, another
restriction on the sum over geometries—causal dynamical
triangulations—has been shown to successfully regularize
quantum gravity [15]. There is good reason to hope that
physicists in quantum gravity and string theory, armed with
their expertise in designing and analyzing sums over ge-
ometries, could find a sum over geometries suitable for
calculating corrections to the Bethe approximation. They
now have the possibility of making a direct and immediate
impact on low energy physics, i.e. condensed matter
theory.

In other words, the discovery that the Efetov theory is a
sum over geometries suggests that the Bethe approxima-
tion—the most powerful mean-field theory in existence—
is best understood from a perspective where geometry is
not predetermined or static, but a physical variable. From
this perspective, the Bethe approximation is the low energy
limit of some—as yet unknown—sum over geometries
similar to those found in quantum gravity. Perhaps the
historical development of the Bethe approximation via
heuristic arguments was both fortuitous and accidental;
perhaps future physicists will find that rigorous derivation
of the Bethe approximation is an exercise in quantum
gravity. In my opinion, this new perspective is the most
important contribution of the present paper. For a parallel
perspective, see Benedetti and Loll’s recent argument that
averaging over geometries may improve the analysis of
critical behavior in D dimensions by removing lattice
artifacts [19,20].

Section III turns to the nontrivial saddle points—the
ones producing the Bethe approximation and its perturba-
tive corrections. Where Efetov, Parisi, and Slanina concen-
trated on developing the perturbation theory around the
saddle points, here the focus is on a full characterization of
the saddle points themselves. Section III begins by show-
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ing for the first time how to integrate out the exact sym-
metries of the Efetov Lagrangian, a challenge which Parisi
and Slanina had noted but not solved. It next works out the
details of the saddle points and their Hessian, giving spe-
cial attention to a novel mathematical challenge which was
not discussed by Efetov, Parisi, and Slanina: their theory’s
Hessian and bare Green’s function are nonnormal, meaning
that �H;Hy� � 0 [21]. Such matrices have distinct sets of
right and left eigenvectors, and do not obey many of the
usual theorems from linear algebra. In particular, the right
eigenvectors are not orthogonal to each other, and the same
applies to the left eigenvectors. Nonnormal matrices have
been of particular scientific interest in describing nonequi-
librium and chaotic phenomena [22] and also dissipation
[23,24], but I am not aware of any previous discussion of
nonnormal bosonic field theory. Lastly, Sec. IV summa-
rizes the principal contributions of this paper and discusses
possibilities for further research.

II. THE TRIVIAL SADDLE POINT IS A SUM OVER
GEOMETRIES

Efetov, Parisi, and Slanina discuss a class of target
theories T:

(i) The geometry is described by a graph G, with V
nodes and L links.

(ii) Degrees of freedom reside on nodes of G.
(iii) The interactions are restricted to pairwise (two-

body) interactions.
Efetov, Parisi, and Slanina propose a field theory which

they claim reproduces the partition function ZT of any such
target theory T. More specifically, they claim that ZT is
equal to

 Q � ��V
�

ln
Z
d d � eL0��L1 � ln

Z
d d � eL0

�
: (1)

If the target theory inhabits a D-dimensional cubic
lattice, the Efetov Lagrangian [25] is

 L � L0 � �L1

� �
X
vds1s2

� vds1
 vds2

���1�s1s2

� �
X
vs

�s�d vds � v�d̂;ds: (2)

The complex variables  are link variables which live at
each edge on the graph. They are completely specified by
three indices: the position v, the direction d of the link, and
the spin index s. These  variables are the actual degrees of
freedom in the Efetov model, and are completely distinct
from the degrees of freedom of the target theory, which are
encoded in the sums over the spin index s. � is a matrix
describing the interaction between two spin degrees of
freedom in the target theory; for the Ising model �s1s2

�

exp��s1s2�. Similarly, �s is a factor encoding the magnetic
field. The notation v� d̂ used in Eq. (2) specifies a par-

ticular neighbor of vertex v: namely, the one which is
reached by going along the d axis in the negative direction.
The notation adopted here assumes that the target theory
lives on a cubic lattice, but suitable notations can be easily
found for other target theories.

In order to understand the physical content of this
Lagrangian, Efetov, Parisi, and Slanina performed a per-
turbative expansion around the  � � � 0 saddle point
[26]. Parisi and Slanina [11] stated that the perturbative
expansion around the trivial saddle point contains a
Feynman diagram exactly equal to the partition function
of the target theory plus diagrams equal to the ‘‘partition
function of the same model wrapped several times
around.’’ They expect that ‘‘in the thermodynamic limit
the wrapping is unessential’’ because the wrapped geome-
tries differ from the target geometry only at their
boundaries.

The main point of this section is to show that the
perturbative expansion around the trivial saddle point is
actually a sum over many geometries differing from the
target theory throughout their volumes, and to analyze the
physics of this sum. In fact Q is equal to

 

X1
r�1

�V�r�1�ZTr : (3)

The first contribution to this sum, ZT1 , is the desired parti-
tion function of the target theory T. However, there are also
infinitely many other contributions which cannot be ne-
glected: these terms ZTr are partition functions of theories
with r times as many vertices as the target theory. For
instance, if the target theory inhabits a graph with 100
vertices, then there will be terms with 200, 300, 400, etc.
vertices. The only way to remove the higher order terms is
to remove all loops from the graph inhabited by the target
theory, thus restricting oneself to working on trees.

To show that Q contains a sum over geometries, let us
work out the details of a particularly simple target theory
living on two nodes connected by three links, as shown in
Fig. 1(a). In this case the Efetov Lagrangian is
 

L � L0 � �L1

� �
X3

d�1

X
s1s2

� ds1
 ds2
���1�s1s2

� �
X
s

��1
s�d ds � �

2
s�d

� ds�: (4)

In the perturbative expansion L1 generates two vertices,
each with three legs. As illustrated in Fig. 1(b), the legs are
labeled; the first vertex has legs labeled a, b, and c while the
second vertex has legs labeled A, B, and C. The Efetov
Lagrangian’s bare propagator connects a with A, b with B,
or c with C. In the formulas corresponding to each
Feynman diagram, one puts a factor of �s1s2

for each
instance of the propagator, a �

P
s�

1
s for each instance of

the first vertex, and a �
P
s�

2
s for each instance of the

second vertex.
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ZT1 , the first order contribution to Eq. (1), contains one
instance of each vertex, and there is only one way to
connect the two, shown in Fig. 1(a). This graph is exactly
the same as the target theory’s geometry, so this first order
correction produces exactly the partition function of the
target theory. However, the second order correction ZT2
contains two instances of each vertex, and now one must
think a bit. There are �2!�3 possible ways of connecting
them; one factor of 2! can immediately be removed by
constructing spanning trees, as shown in Fig. 2(a). We now
have �2!�2 possible choices about how to connect the four
remaining pairs of legs; Figs. 2(b) and 2(c) show the two
second order diagrams. The first is a disconnected diagram
with symmetry factor 1=2, and is removed by the logarithm
in Eq. (1). The second diagram connects the two spanning
trees, contains four nodes instead of the two nodes present
in the original target theory, and has symmetry factor 3=2.

The third order contribution ZT3 can be found in a similar
fashion, by first constructing the spanning trees, and then
enumerating the �3!�2 possible ways of connecting the six
remaining pairs of legs. There are of course disconnected
geometries that are again removed by the logarithm.
However, there are also three topologically distinct fully
connected geometries, which are shown in Fig. 3 along
with their symmetry factors. The best way to figure out the

geometries and symmetry factors reliably is to do the
enumeration by hand.

Consider now evaluating ZTr for a theory inhabiting a
more complicated target graph with V nodes and L links.
Again we will start with rV vertices. Immediately we will
connect the vertices into r separate spanning trees. Each
spanning tree will contain V � 1 links, and will contain
also 2�L� V � 1� dangling legs which still need to be
connected. However, if the original target theory inhabits
a tree, then 2�L� V � 1� � 0 and the perturbation theory
stops here; all higher order diagrams are disconnected
spanning trees and are deleted by the logarithm in
Eq. (1). In this case Q is exactly equal to the partition
function of the target theory, precisely as predicted by
Efetov, Parisi, and Slanina.

However, if the target theory does not inhabit a tree,
there will be an additional phase of connecting the remain-
ing dangling legs, and thus tying the spanning trees to-
gether. This results in many other Feynman diagrams, each
corresponding to an alternative geometry, a different way
that the rV vertices could be connected together. The
logarithm in Eq. (1) removes disconnected geometries.
We now turn to an analysis of the resulting sum.

A. The dominant geometries

Which geometries dominate the sum? This question is
answered by summing their symmetry factors.
Section II A 1 argues that the sum of the symmetry factors
of all fully connected geometries of order r is approxi-
mately �r!�L�V . If the target theory inhabits a
D-dimensional lattice then L� V � �d� 1�V, so this
sum is rather large. For instance, on a 10	 10 lattice the
second contribution to Q, ZT2 , will be roughly �2!�100 times
as big as ZT1 , the partition function of the target theory. This
large factor is somewhat counterbalanced if the model has
a positive free energy density imposing a cost for adding
nodes. Nonetheless, because there are geometries with r
arbitrarily large, eventually the �r!�L�V growth will over-
whelm the free energy density. Put another way, the non-
extensive growth of the entropy overrides the extensive
growth of the free energy. In summary, large r geometries
completely dominate the sum.

FIG. 2. The second order geometries for our example. (a) the
spanning trees. (b) the disconnected geometry, weight 1=2.
(c) the connected geometry, weight 3=2.

FIG. 3. The third order geometries for our example. The
weights are 3 (a), 1 (b), and 1=3 (c).

FIG. 1. (a) a simple example target geometry; node 1 is a box,
node 2 a circle. (b) the two vertices in the perturbation theory for
this target geometry.
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The dominant geometries are locally treelike, in the
sense that the only nonbacktracking walks which return
to their starting point are infinitely long. This is obvious
from the discussion in Sec. II of how to enumerate geome-
tries, by first constructing r spanning trees and then con-
necting them in all possible ways. Each node lies on one of
the r different spanning trees. In order for a nonbacktrack-
ing walk to come back to its origin, it must necessarily step
off of the origin’s spanning tree. Once the walk is on a
different tree, each subsequent step will have a probability
of order r�1 of returning to the origin’s spanning tree.
Since large r geometries dominate, the average loop length
is infinitely large.

The Bethe approximation is exact on trees, and a good
first approximation on geometries which are locally tree-
like. Perhaps this explains, on a physical level, why the
Efetov Lagrangian exhibits saddle points related to the
Bethe approximation.

1. Estimate of the connected symmetry factors

First of all, the nodes in a geometry are generated by an
exponential e�L1 ; the r instances of each node in the target
geometry are accompanied by a factor of �r!��1.
Connecting up all the nodes requires rL links, giving a
factor of �r!�L. Therefore the sum of all the order r sym-
metry factors (of both connected and disconnected geome-
tries) is �r!�L�V .

I now argue that the proportion of disconnected geome-
tries in this sum is very small. I write Cr for the sum of the
symmetry factors of the order r connected geometries, and
Dr for the sum of the disconnected symmetry factors. Thus
Cr � �r!�

L�V �Dr. Now the number of disconnected
geometries Dr is simply related to the numbers of con-
nected geometries at lower orders: D1 � 0, D2 �

1
2 �C1�

2,
D3 � C1C2 �

1
3! �C1�

3, D4 � C1C3 �
1
2 �C1�

2C2 �
1
4! 	

�C1�
4 � 1

2 �C2�
2, etc. I am not aware of any way to write a

closed form expression for the total value of Dr except in
the special case L � V, but its largest single part is the
C1Cr�1 term, which is smaller than �r!�L�V by a factor of
�1r�

L�V . All other contributions are much much smaller, of
order � 1

r�r�1��
L�V or less. Therefore, I conclude that if L�

V is large then the connected weights sum to approxi-
mately �r!�L�V .

2. Divergence of Efetov’s theory

The perturbative expansion around the trivial saddle
point diverges. I have already argued that if L� V is large
then the total number of order-r geometries is approxi-
mately �r!�L�V . Because the free energy density of each
geometry is bounded from above by a geometry-
independent value f, the partition function of each geome-
try is bounded from below by exp���rVf�. Since the
number of geometries �r!�L�V increases faster than expo-
nentially and each geometry gives a positive contribution,

the terms ZTr 
 �rV�r!�L�V exp���rVf� in the perturba-
tive expansion around the trivial saddle point increase
without bound, and the entire series diverges. The fact
that the individual terms in the series are all positive
provides strong evidence that not only the perturbative
expansion of Efetov’s theory diverges but also the theory
itself.

This divergence has nothing to do with the volume: it
occurs even when the target geometry has only a small
number L of links, in which case Efetov’s path integral
integrates over only a finite number of degrees of freedom.
Instead the divergence is a result of interaction terms in the
Efetov Lagrangian, much like the way that �4 theory
diverges if the interaction has the wrong sign. Unlike �4

theory, the interactions in Efetov’s theory are complicated
enough that the divergence is not easily visible unless one
expands perturbatively in the interaction constant and ob-
tains a sum over geometries. As we have seen, the pertur-
bative picture of the divergence is that the number of
geometries grows factorially, while their free energies
grow only exponentially.

Within the framework of the Efetov Lagrangian, the
only way to control the divergence is by treating target
geometries which have less than two loops or by setting
� � 0. Quantum gravity manifests a similar divergence,
but it has been regularized by constraining the sum over
geometries, either by fixing the topology [13,14] or via
causal dynamical triangulations [15].

B. Is the geometrical interpretation valid?

We have just established that the perturbative expansion
around the trivial saddle point diverges, which is standard,
since as a rule the perturbative expansions of nontrivial
field theories are only asymptotic. To be more precise
about asymptotic theories, their successive perturbative
corrections first decrease term by term but eventually start
increasing factorially, due to the perturbative expansion’s
neglect of nonanalytic features of the original path integral.
Nonetheless it is well known that the first few terms of an
asymptotic expansion can give a very good approximation
to the correct result.

There are several reasons to think that the Efetov
theory’s divergence is much more malignant, and to doubt
altogether the validity of perturbation theory around the
trivial saddle point:

(i) Unlike an asymptotic theory where the coefficients
of the perturbative contributions decrease for a while
before starting to diverge, this series exhibits expo-
nentially large coefficients already at the second
order. The second order contribution to the trivial
saddle point is approximately �� exp���f��V 	
�2!�L�V bigger than the first order contribution, so
that the small parameter � is counterbalanced by a
large geometrical factor. The free energy term
exp���f� is freely adjustable by additive contribu-
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tions to the Lagrangian, and therefore should not be
regarded as distinct from the perturbative parameter
�.

(ii) The coefficients increase not only factorially, but as
a factorial taken to a very large power: �r!�L�V .

(iii) Every order of the expansion contributes with the
same sign.

The geometrical interpretation of the Efetov Lagrangian—
including both its link with the target theory T and its
interpretation as a sum over geometries—rests on the
validity of this perturbative expansion. Since this is ques-
tionable, the geometrical interpretation must be taken with
a grain of salt. Probably the only way to rigorously justify a
connection between the Efetov Lagrangian and any target
theory will be to introduce some type of regularization to
the Efetov Lagrangian.

III. THE NONTRIVIAL SADDLE POINTS

The previous section discussed the physical meaning of
Efetov’s theory, which is based on the trivial saddle point.
This section turns to the nontrivial saddle points, which are
related to the Bethe approximation. Efetov, Parisi, and
Slanina have already devoted much ink to developing the
perturbation theory, in hopes that it will provide systematic
corrections to the Bethe approximation. The focus here is
on giving a full account of the saddle point structure,
including Goldstone bosons, complete enumeration of the
saddle points, computation of the Hessian and its eigen-
values, and the Hessian’s nonnormality.

A. U�1� symmetries and Goldstone bosons

The Efetov Lagrangian, given in Eq. (2), possesses many
exact U�1� symmetries. Each of the links can be multiplied
by an overall phase:  vds !  vdse{�vd . There are L links,
but only V different linear combinations of the L phases
actually appear in the Efetov Lagrangian, one for each term
in L1; these linear combinations are the sums �v �P
d�vd ��v�d̂;d which obey the constraint

P
v�v � 0.

Therefore the Efetov Lagrangian has L� V � 1 exact
symmetries. There is a strict analogy to the following
integral with a single exact U�1� symmetry:

 

Z
d d � e�m � ��� � �2 : (5)

The exact symmetries create difficulties for the evalu-
ation of nontrivial saddle points. Goldstone bosons arise
from each of them due to spontaneous symmetry breaking.
Goldstone bosons, especially ones caused by exact sym-
metries, are invitations to integrate exactly, separately from
any saddle point approximation. Indeed, any attempt to
include a Goldstone boson in a saddle point approximation
will give an infinite result.

B. Exact integration

The exact U�1� symmetries may be integrated as fol-
lows:

(i) Factor out a phase ei� from each link. One does this
by changing to angular variables  vds � rvdse{�vds ,
adding �vd;s�0 to the other phases (�vd;s�0 !
�vd;s�0 ��vd;s�0), and factoring out the common
phase �vd;s�0. A Jacobian term

P
vds lnj vdsj must

be added to the Lagrangian.
(ii) Notice that the Lagrangian depends only on the

linear combinations �v �
P
d�vd;s�0 ��v�d̂;d;s�0,

and therefore integrate out the L� V � 1 other
linear combinations, which just multiplies Efetov’s
path integral by a constant Jacobian J � 1 and by
�2��L�V�1.

(iii) Impose the constraint
P
v�v � 0 by inserting a

delta function into Efetov’s path integral. Without
this constraint the � integrations would decouple
and the path integral would be exactly zero.

The final Lagrangian is

 L � �
X
vds1s2

 vds1
� vds2
���1�s1s2

�
X
vds

lnj vdsj

� �
X
vs

�se{�v�d vds � v�d̂;ds: (6)

The  ’s are in radial coordinates  vds � rvdse{�vds , and
�vd;s�0 � 0. There is some liberty to convert the  vd;s�0

components back to Cartesian coordinates. This simplifies
the perturbation theory but mutilates the Efetov theory’s
symmetry with respect to the spin index [27].

The presence in the action of e{�v , a complex transcen-
dental function, raises some concern about applying the
saddle point approximation to the � integrations. Unfor-
tunately exact integration of the � variables would add to
the Lagrangian a transcendental term of the formP
v lnf��

P
s�s�d vds � v�d̂;ds�, prohibiting further

progress.

C. The saddle points

As is usual when doing mean-field theory, we look for a
spatially uniform ground state; one that depends on neither
the site index v nor the direction index d. It is helpful to
first consider the saddle point equation obtained from the
final Lagrangian given in Eq. (6) but ignoring the loga-
rithm. We take the first derivative of the Lagrangian and
obtain

 

X
s2

 ̂�s2
���1�s1s2

� ��s1
 ̂D�1
s1

 ̂�Ds1
: (7)

The saddle point solutions scale with � as ��1=�2D�2�; if we
remove � and constrain  ̂ to be real then the saddle point
equation becomes the Bethe-Peierls approximation:
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  ̂ s2
�
X
s1

�s2s1
�s1
 ̂2D�1
s1

: (8)

I have set � to zero because this is the only spatially
uniform value which will satisfy the global constraint. On
the other hand, the Lagrangian’s first derivative with re-
spect to �v is {�

P
s�s ̂

2D
s ; not only nonzero but also

imaginary. The real part of the first derivative vanishes at
the nontrivial saddle points, but the imaginary part does
not. Perhaps this is OK, since the imaginary part contrib-
utes only a phase. As a consequence of this difficulty, �
will have a vacuum expectation value. However, the global
constraint on � removes the zero-momentum � mode from
the Hessian, so the vacuum expectation value has no influ-
ence on the perturbation theory.

Equation (7) is almost the same as the saddle point
equation which is obtained from the original Efetov
Lagrangian in Eq. (2). The difference is that the saddle
point equation before U�1� integration has a U�1� symme-
try which must be spontaneously broken by hand, while
after integration the phase of  ̂s�0 is constrained to be zero
and theU�1� symmetry is no longer present. Other than this
procedural detail, the two equations, and their solutions,
are exactly the same.

Equation (7) contains 2S equalities which must be sat-
isfied, where S is the number of values that the spin can
take. Since the imaginary part of  ̂s�0 is zero, there are
only 2S� 1 unknowns; one should not expect complex
solutions. On the other hand, real solutions are possible,
since in this case there are only S equalities and S un-
knowns. In particular, each of  ̂’s components, with the
exception of  ̂s�0, may have either a negative or positive
value. Some solutions of the Bethe approximation actually
do have negative values, even though this conflicts with the
physical reasoning leading up to the Bethe approximation,
in which  ̂s is understood as the value of a partition
function.

When the target theory is the Ising model, the Bethe
approximation has more than one solution. I discuss only
the ferromagnetic regime where �J > 0. Two nonzero real
solutions are present at all temperatures, one of which
gives a negative value to  ̂s�1. Below a critical temperature
two more solutions appear. As a general result for all target
theories on cubic lattices, these Bethe saddle points are not
local maxima of the Lagrangian. This may be verified by
examining the Lagrangian’s Hessian (see Sec. III D) at the
Bethe saddle points and noting that it has a positive eigen-
value corresponding to multiplications of the saddle point
solution  ̂ by a real constant. As a consequence, the states
corresponding to the Bethe saddle points are not stable;
they are not true ground states, and it is impossible to
define a valid perturbation theory around them. Efetov’s
original program for calculating corrections to the Bethe
approximation depended crucially on doing perturbation
theory around the Bethe saddle points; the nonexistence of

such a theory means that the Efetov Lagrangian is useless
for Efetov’s original goal, though perhaps quite useful for
showing a way forward via connections with quantum
gravity.

1. Additional saddle points resulting from the logarithm

If one does not ignore the logarithm in the final
Lagrangian shown in Eq. (6), the resulting saddle point
equation is not quite the Bethe-Peierls approximation any
more:

  ̂ s2
�
X
s1

�s2s1

�
��s1

 ̂2D�1
s1

�
1

2
 ̂�1
s1

�
: (9)

When �1=�D�1� is very small, Eq. (9) exhibits all the
Bethe solutions from Eq. (8), plus four more in the par-
ticular case of the Ising model. As �1=�D�1� is increased, the
saddle points change continuously and no new ones appear.
The stability of each saddle point remains the same as well,
except at large �. Finally at � 
 0:1 all of the solutions
disappear. The Bethe saddle points all scale as ��1=�2D�2�,
so at these saddle points the last term in Eq. (9) is of order
�1=�D�1� and can be neglected, and the corresponding term
in the Hessian is also very small. Therefore, all the Bethe
saddle points are unstable.

We turn to the other four saddle points, in the limit of
small �1=�D�1�. The extra saddle points all disrupt the
balance between the two terms in the original Bethe ap-
proximation, so that either  ̂s or ��s ̂

2D�1
s is negligible.

As a result these saddle points have no relation to the Bethe

approximation. Two of them have  ̂s�0 � � ̂s�1 ���������������������������������
�e�J � e��J�=2

p
. These zero-magnetization solutions are

notable both because they do not depend on the magnetic
field at all and because the � solution is stable. The �
solution is not stable. There are also two ferromagnetic
saddle points where one component scales as ��1=�2D�2�

and the other scales as �1=�2D�2�. These are both unstable.
One intriguing aspect of saddle points is their depen-

dence on coordinate transformations. The extra term in
Eq. (9) is entirely due to a transformation from Cartesian
coordinates to angular coordinates. The same term could
be removed again by transforming from r to w � r2. If one
wanted to preserve the Bethe approximation while playing
such games, one would need to introduce a term which
would not disturb the ��1=�D�1� scaling of the solutions.
Therefore the coordinate transformation would have to
depend on �.

D. The Hessian

Evaluation of a saddle point and its corrections starts
with computing the Hessian (second derivative) of the
Lagrangian at that saddle point. The inverse of the
Hessian will be the bare Green’s function used in pertur-
bative corrections to the saddle point, while a Gaussian
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integral incorporating the Hessian will determine the
saddle point’s weight.

Because we have removed the U�1� symmetries, we
begin using the following degrees of freedom explicitly:
~ � � ~r; ~�; ~��. The following rescaling simplifies the

Lagrangian’s form around the saddle point:  s �  ̂s�1�
rs=�s� exp�{�s=�s�, where �s � �1=2

s  ̂Ds . We also rescale
�! �=j ~�j. In these rescaled variables, the Lagrangian is
 

�
X
vds1s2

 ̂s1
 ̂s2
���1�s1s2

�1� rvds1
=�s1
��1� rvds2

=�s2
�

	 exp�{�vds1
=�s1

� {�vds2
=�s2
�

� �
X
vs

�2
se{�v=j ~�j�d�1� rvds=�s��1� rv�d̂;ds=�s�

	 exp�{�vds=�s � {�v�d̂;ds=�s�

�
X
vds

�ln ̂s � lnj1� rvds=�sj�: (10)

The Hessian is found by extracting all the second order
terms from the Lagrangian, and is
 

Hrr � �2A	v1v2
	d1d2

� �	s1s2
	v1v2

�1� 	d1d2
�

� ��2
s1
	s1s2

	v1v2
	d1d2

� �	s1s2
�ST � S� S2�;

H�� � �2PA�1� 	s1s2
�P	v1v2

	d1d2

� 2��� as1
�P	s1s2

	v1v2
	d1d2

� �P	v1v2
�1� 	d1d2

� � �P�ST � S� S2�;

H�� � �H���T � ��P�̂s2
�	v1v2

� S�;

H�� � ��	v1v2
;

Hr� � �H�r�T

� {�P	v1v2
�1� 	d1d2

� � {�P�ST � S� S2�;

H�r � �Hr��T � {��̂s�	v1v2
� S�:

(11)

In the above equations 	s1s2
is the Kronecker delta func-

tion, S is the stepping matrix Sv1d1;v2d2
� 	v1;v2�d̂2

, S2 is
the two-step matrix S2;v1d1;v2d2

� �1� 	d1d2
�	v1�d̂1;v2�d̂2

,

A is As1s2
� ��1=2

s1
��1=2
s2

 ̂1�D
s1

 ̂1�D
s2
���1�s1s2

, a is as1
�

��1
s1
 ̂1�2D
s1

P
s2�s1

 ̂s2
���1�s1s2

, and P is the projection op-
erator Ps1s2

� 	s1s2
�1� 	0s1

�. One must keep in mind the
global constraint on �, and also that A, a, and � all scale
with various powers of �.

In the zero-momentum sector the Hessian is consider-
ably simplified:
 

Hrr � �2A	d1d2
� 2�	s1s2

�2� 	d1d2
� � ��2

s1
	s1s2

	d1d2
;

H�� � �2PA�1� 	s1s2
�P	d1d2

� 2as1
P	s1s2

	d1d2
: (12)

E. The Hessian is nonnormal and pseudo-Hermitian

The degrees of freedom break into two classifications: ~�
and ~�, which are always accompanied by a factor of {, and ~r

which occurs alone. Broken into these sectors, the Hessian
has the form

 H �
�

 �
�T �

�
; (13)

where 
 and � are real and Hermitian and � is imaginary
but not Hermitian. Therefore, H’s determinant is always
real, and H itself is neither Hermitian nor anti-Hermitian.

Any matrix in this form is also nonnormal unless 
� �
��, which translates to HrrHr� �Hr�H�� � Hr�H��

for the case at hand [28]. This equality is not verified, so
in fact the Hessian is nonnormal at the nontrivial saddle
points [29].

The Efetov Lagrangian’s nonnormality results from
treating the underlying geometry as a directed rather than
undirected graph. Any theory without a simple symmetry
between  and � will have a nonnormal Hessian. Even a
free field theory L � � D � is nonnormal if �D;DT� � 0.

Within the class of nonnormal matrices, the Hessian is
specifically a pseudo-Hermitian matrix [30], which means
that the Hermitian conjugate of H has a special relation to
H itself: H � CHyC�1. In our case C is the conjugation
matrix

 

�
1 0
0 �1

�
:

As a consequence of the pseudo-Hermitian property, if the
set of eigenvectors of H is complete then all the eigenval-
ues of H either are real or occur in complex conjugate
pairs, and C maps the right eigenvectors to the left eigen-
vectors [23].

If the target theory possesses translational invariance,
then the Efetov Lagrangian shares the same symmetry. In
this case the Hessian commutes with the translation matrix,
and decouples into sectors corresponding to each value
of the momentum. Because the Hessian’s nonnormality is
a symptom of spatial structure, the Hessian’s zero-
momentum sector is normal, as seen in Eq. (12).

1. The nonnormal saddle point integral

When using the saddle point approximation, the weight
of each saddle point is determined by a product of several
quantities, among which is the Gaussian integral

 

Z
d ~ exp

�
1

2
~ H ~ 

�
: (14)

Switching to a momentum basis, one obtains a product of
Gaussian integrals which have exactly the same form as
integral (14). The zero-momentum integral is normal, but
the other integrals are nonnormal.

I am not aware of any published way to do this integral
exactly when, as in our case, H is nonnormal. The standard
results for Gaussian integrals cover only cases where either
 is a Grassman variable or else  is a scalar variable and
H is a normal matrix. In the second case a suitable change
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of variables will factorize integral (14) into a multiple of
many one-dimensional Gaussian integrals. The integral is
then equal to �2��B=2 exp�� 1

2 Tr�ln�H�� � �2��B=2	

�det��H���1=2 if H is negative definite, and diverges oth-
erwise. In contrast, because our Hessian is nonnormal, its
eigenvectors are not orthogonal, and there is no change of
variables that will cause integral (14) to factorize.

Theorem: IfH is symmetric and negative definite and its
eigenvectors are complete and contained in the matrix W,
then

 

Z
d ~ exp

�
1

2
~ H ~ 

�
� ��1��e{!

�2��B=2

det��H�1=2
; (15)

where wi are the eigenvalues of W, � � 1
4

P
i�sign�wi� �

1�2, and ! �
P
iphase�wi�.

Proof: H has the decomposition H � W�W�1, where �
is the diagonal matrix composed of H’s eigenvalues. We
change coordinates  ! W , obtaining ��1�� det�W�	R
d ~ exp�12

~ WyW� ~ �. Now imagine doing the individual
integrals one by one, completing the square each time. This
process of completing the squares is mathematically
equivalent to computing the LU decomposition of
WyW�. LU decomposition means factoring a matrix into
two matrices L and U, where L is zero above the diagonal,
U is zero below the diagonal, and the diagonal elements of
L are equal to one [21]. If the LU decomposition exists
then it is unique. After completing the squares, the ith
integration converges if Re�Uii�< 0. The result of all the
integrations is ��1�� det�W��2��B=2�

Q
i �Uii�

�1=2. The
product of �U’s diagonal elements is just the determinant
of �WyW�, giving formula (15).

The last step is to establish that the LU decomposition
exists and that Re�Uii�< 0 by constructing L and U more
explicitly. WyW is positive definite and therefore has a
Cholesky decomposition WyW � GyG, where G is zero
below the diagonal and its diagonal elements are real and
positive [21]. Defining the matrix gij � 	ijG�1

ii , we obtain
WyW� � Gygg�1G�. Therefore the LU decomposition
exists: L � Gyg and U � g�1G�. The diagonal elements
of U are G2

ii�i, so the integral exists if H is negative
definite. Q.E.D.

Lemma: If H has the form given in Eq. (13), is negative
definite, and its eigenvectors are complete, then

 

Z
d ~ exp

�
1

2
~ H ~ 

�
� �

�2��B=2

det�H�1=2
: (16)

In this case the Gaussian integral must be real becauseR
d ~ is symmetric under the transformation ~ ! C ~ ,

which reverses the sign of the imaginary part of ~ H ~ .
The only possible values for the phase are �1. If H is
normal then the ambiguity in sign is correctly resolved by
taking the absolute value of det�H�1=2, and it seems likely
that the same applies to nonnormal H.

This theorem does not address the possibility that
Eq. (14) might converge even if one or more eigenvalues
of H is zero or positive, since it does not exclude the
possibility of using a set of coordinates other than  !
W . If H is in the form of Eq. (13) then convergence is
assured as long as 
 and � are both negative definite.
Whether violation of this condition ensures divergence
remains to be seen. Of course divergence is assured if the
zero-momentum Hessian is not negative definite.

One can pursue a perturbative strategy, dividing H’s real
part R which is Hermitian from its imaginary part I, and
treating I as a perturbation:

 H �
�

 �
�T �

�
� R� I; R �

�

 0
0 �

�
;

I �
�

0 �
�T 0

�
;

(17)

 

Z
d ~ exp

�
1

2
~ H ~ 

�
�

��������exp
�
1

2

d

d~l

 I 


d

d~l

�

	
Z
d ~ exp

�
1

2
~ R ~ � ~ 
 ~l

���������~l�0
:

(18)

Clearly the remaining integral diverges unlessR is negative
definite. Summing all orders in perturbation theory, we
obtain
 

�2��B=2 exp
�
�

1

2
Tr�ln�R�

�

	 exp
�
�

1

2
Tr
�
�
X
t

1

t
��IR�1�t

��


 �2��B=2 exp
�
�

1

2
Tr�ln�H�

�
: (19)

This is exactly the same result that one obtains rigorously
via diagonalization when H is normal and negative defi-
nite, except that all nonperturbative information has been
lost. The perturbation theory suggests that convergence
depends on the spectrum of R, while we know that if H
is normal then convergence depends on H, not R. If, as in
our case,H is not normal, then perturbation theory gives no
indication about whether there might be finite nonpertur-
bative corrections to Eq. (19), or even of the conditions for
divergence or convergence. There is reason to be suspi-
cious of Eq. (19), since at most of the Efetov theory’s
saddle points the perturbation is not small.

F. Spectra

As I have already mentioned, all but one of the Efetov
theory’s nontrivial saddle points have at least one positive
eigenvalue in their zero-momentum sector and are there-
fore guaranteed to diverge. The single negative definite
saddle point has a magnetization of exactly zero, does
not respond to an external magnetic field, and is not a
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solution of the Bethe approximation. This saddle point is
negative definite at all momenta, ensuring that integral (14)
converges.

The spectra of the saddle points which satisfy the Bethe
equation all scale linearly with �. Therefore, the bare
Green’s function at the Bethe saddle points scales as ��1.
Since the perturbative vertices are proportional to �, any
perturbative diagram with more lines than vertices will
diverge proportionally to a negative power of �.

There are two saddle points which are constant with
respect to �, including the stable saddle point. Their spec-
tra are constant with respect to �, as are the bare Green’s
functions. Therefore perturbative corrections are con-
trolled by the small parameter �, with one power of � for
each vertex.

There are also saddle points where one component
scales as ��1=�2D�2� and the other scales as �1=�2D�2�.
The scaling behavior of their spectra is harder to analyze,
but there are eigenvalues in the zero-momentum sector
which scale with ��D=�D�1�, as well as ones that scale
with �D=�D�1�.

G. The free energy density

The free energy density, neglecting both constants and
perturbative corrections, and assuming that the Hessian is
negative definite, is

 

�f � lnj ~�j �D lnj�0j � 2D
X
s

lnj�sj

�
1

2V
Tr ln��H� � �D� 1��j ~�j2: (20)

If the saddle point is dominated by a specific number of
vertices, then the partition function is equal to � to some
power and the free energy density f is proportional to log�.
This is the case for the unconditionally stable saddle point,
where � and H are proportional to 1, which means that it
does not involve any vertices at all, much like the trivial
saddle point. On the other hand, the free energy density at
the Bethe saddle points, if the Hessian were negative
definite, would be dominated by the last term in Eq. (20).
This term scales as ��1=�D�1�, so these saddle points are
superpositions of many different geometries.

H. Reliability of the computations

Some of the results reported here were obtained non-
analytically, through a code which computes the saddle
points and their Hessians and eigenvalues. The tempera-
ture, magnetic field, coupling constant, number of dimen-
sions, and lattice size can all be specified. Many automated
tests are built into the code, including computation of the
Hessian three different ways. If the reader wants to repro-
duce or check these results, the code is available under the

GNU public license and may be downloaded from my Web
site [33].

IV. CONCLUSIONS AND FURTHER CHALLENGES

The most exciting result of this paper is that sums over
geometries may be the appropriate tool for understanding
and improving mean-field theory in D dimensions, and, in
particular, for developing systematic corrections to the
Bethe approximation. There is considerable room for de-
signing various sums over geometries in which the lattice
geometries are already dominant or else can be smoothly
reweighted to be dominant. If possible, the sums should be
finite, be formulated as integrals, and have nontrivial
saddle points which are local maxima of the Lagrangian.
In this case they would define interesting mean-field theo-
ries with systematic corrections. In order to obtain correc-
tions to the Bethe approximation, one would hope to find
an ensemble which allows a smooth reweighting, without
phase transitions, between lattice and treelike geometries.
Quantum gravity and string theory may provide exactly the
expertise needed to construct the needed ensemble.

The Efetov theory is, to my knowledge, the first example
of a bosonic theory with a nonnormal Hessian and Green’s
function. Nonnormal field theories hold some promise for
studying nonergodic and nonequilibrium behavior [22],
and for the study of dissipation in quantum systems
[23,24]. This paper proves for the first time the value of
Gaussian integrals with nonnormal kernels, which is a
prerequisite for the development of saddle point approx-
imations and perturbation theory. It also opens a host of
questions:

(i) What are the necessary and sufficient conditions for
convergence of a Gaussian integral with a nonnormal
kernel? Can the phases and signs in Eqs. (15) and
(16) be simplified? Integrals with kernels in the form
given by Eq. (13) are particularly important because
this is the most general form for bosonic Lagrangians
that contain no complex constants.

(ii) It is well known that nonnormal matrices are not
fully characterized by their eigenvalues. For in-
stance, their spectra can be exceedingly sensitive
to small perturbations, and their powers may show a
transient behavior which grows much faster than
powers of the largest eigenvalue. Pseudospectra,
plots of how the spectrum would vary under small
perturbations of the matrix, are recognized as show-
ing much additional information [22]. Do these
issues manifest themselves in the structure of per-
turbative corrections to a nonnormal saddle point?

(iii) What is the physical meaning of Feynman dia-
grams in a nonnormal theory where propagators
are extremely sensitive to perturbations? Does
self-energy still have a meaning?

This paper also contributes a more detailed analysis of
the Efetov theory, culminating in the discovery that it is
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actually a sum over geometries, and also in strong evidence
that it is divergent and in need of regularization, probably
similar to regularizations in quantum gravity. Even without
regularization, its interpretation as a sum of treelike ge-
ometries argues that further attention should be given to the
� integrations. If some way were found to do these inte-
grals nonperturbatively, perhaps the Efetov theory would
yield saddle points which are more satisfactory.
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