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The most general covariant gauge fixing Lagrangian is considered for a spin-two gauge theory in the
context of the Faddeev-Popov procedure. In general, five parameters characterize this gauge fixing.
Certain limiting values for these parameters give rise to a spin-two propagator that is either traceless or
transverse, but for no values of these parameters is this propagator simultaneously traceless and transverse.
Having a traceless-transverse propagator ensures that only the physical degrees of freedom associated
with the tensor field propagate, and hence it is analogous to the Landau gauge in electrodynamics. To
obtain such a traceless-transverse propagator, a gauge fixing Lagrangian which is not quadratic must be
employed; this sort of gauge fixing Lagrangian is not encountered in the usual Faddeev-Popov procedure.
It is shown that when this nonquadratic gauge fixing Lagrangian is used, two fermionic and one bosonic
ghosts arise. As a simple application we discuss the energy-momentum tensor of the gravitational field at
finite temperature.
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I. INTRODUCTION

The quantum mechanical path integral provides a useful
way of quantizing gauge field theories as the contributions
of superfluous gauge degrees of freedom to physical pro-
cess can be canceled by the contribution of ‘‘ghost’’ fields
without breaking general covariance [1–4]. A degree of
arbitrariness in this procedure occurs, as one must at the
outset choose a particular ‘‘gauge fixing’’ Lagrangian,
although physical quantities are necessarily independent
of this choice.

A spin-one field A�, even when it is not a gauge field
(i.e. it is a ‘‘Proca field’’), satisfies the transversality con-
dition

 @ � A � 0; (1)

so that it has only the three degrees of freedom normally
associated with spin-one. In order to restrict the propagat-
ing degrees of freedom to those that are physical, it is often
convenient that the propagator for a spin-one gauge field
D���k� is also taken to be transverse so that

 k�D���k� � 0: (2)

This condition is satisfied in the so-called ‘‘Landau gauge’’
in which the quadratic gauge fixing Lagrangian

 L gf � �
1

2�
�@ � A�2 (3)

is used and the limit �! 0 is taken.
A spin-two field is associated with a symmetric tensor

field h��; in order for it to have five independent degrees of
freedom it must be both traceless and transverse

 ���h�� � 0 ���� � diag�� �����; (4)

 @�h�� � 0: (5)

When this field h�� becomes a gauge field and self-
coupled to its own energy-momentum tensor, it is identi-
fied with the graviton [5]. It is often convenient to use a
‘‘traceless-transverse (TT) propagator’’ DTT

��;���k� which
satisfies

 ���DTT
��;���k� � 0; (6)

 k�DTT
��;���k� � 0: (7)

In Refs. [6–8], such a gauge proves to be quite useful when
dealing with the thermal properties of the gravitational
field. In this paper we explain how such a propagator arises
when using the path integral quantization.

We begin by examining the Faddeev-Popov procedure
for quantizing gauge theories using a more transparent
matrix analogue for illustrative purpose. We then apply
this procedure to a spin-two gauge field, using the most
general covariant quadratic gauge fixing Lagrangian pos-
sible. We show how a traceless propagator [satisfying (6)]
and a transverse propagator [satisfying (7)] can occur,
while it is impossible to obtain a propagator that satisfies
both Eqs. (6) and (7).

Next, the Faddeev-Popov procedure is generalized to
accommodate a nonquadratic gauge fixing Lagrangian. It
is shown how such a Lagrangian can be used to give rise to
DTT
��;�� satisfying Eqs. (6) and (7). Three ghost fields occur

in this procedure, two fermionic and one bosonic. In the
last section, we calculate the leading temperature correc-
tions to the energy-momentum tensor and confirm that the
result, which has been previously obtained, is gauge
invariant.
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II. THE FADDEEV-POPOV PROCEDURE AND
COVARIANT GAUGE FIXING FOR SPIN-TWO

If we consider the standard integral

 Z �
Z

d ~h exp�� ~hTM
�

~h� �
�n=2

det1=2M
�

; (8)

where ~h is an n-dimensional vector, it is understood that all
eigenvalues of the matrix M

�
are positive definite. If there

exists a matrix A
�

�0� such that

 M
�
A
�

�0� ~� � 0 (9)

for any given vector ~�, then M
�

has vanishing eigenvalues

and Eq. (8) is ill defined. The Faddeev-Popov [3,9] proce-
dure for ascribing a meaning to Eq. (8) when this problem
arises involves first inserting

 1 �
Z

d ~�	�F
�
� ~h� A

�

�0� ~�� � ~p� det�F
�
A
�

�0�� (10)

into Eq. (8), and then making the change of variable

 

~h! ~h� A
�

�0� ~�; (11)

leaving us with

 Z �
Z

d ~�
Z

d ~h	�F
�

~h� ~p� det�F
�
A
�

�0�� exp�� ~hTM
�

~h�;

(12)

where we have used Eq. (9). If now a factor of

 1 � ��n=2
Z

d ~pe
� ~pTN

�
~p
det1=2�N

�
� (13)

were inserted into Eq. (12), then we would be left with
 

Z � ��n=2
Z

d ~�
Z

d ~h det�F
�
A
�

�0��det1=2�N
�
�

	 exp
� ~hT�M
�
� F
�

TN
�
F
�
� ~h�: (14)

Exponentiating the determinants occurring in Eq. (14) us-
ing Grassmann ‘‘ghost’’ fields leads to
 

Z � ��n=2
Z

d ~�
Z

d ~h
Z

d~�c
Z

d ~c
Z

d ~k exp
�~�cF
�
A
�

�0� ~c

� ~kTN
�

~k� ~hT�M
�
� F
�

TN
�
F
�
� ~h�: (15)

The Faddeev-Popov ghosts are ~c and ~�c; ~k is a Nielsen-
Kallosh ghost [2,10,11]. The ‘‘infinity’’ occurring in
Eq. (8) as a result of detM

�
vanishing now is parametrized

by the integral over the ‘‘gauge function’’ ~� which can be
absorbed into a normalization factor.

For a spin-two gauge field, we take the second order
term in the Einstein-Hilbert action to be the classical action
so that

 S � �
Z

ddx�h��M��;��h
���; (16)

where in momentum space
 

M��;�� �
k2

2

�
1

2
������� � ������� � ������

�

�
1

4

k�k���� � k�k���� � k�k����

� k�k����� �
1

2

k�k���� � k�k�����: (17)

This is invariant under the gauge transformation

 	h�� � @��� � @��� � A�0�����
�; (18)

where A�0���� � ���@� � ���@�. The most general cova-
riant ‘‘gauge fixing’’ condition is

 F
�

~h � F���h��

�

�
1

�
k��

�� �
1



�k�	�� � k

�	��� �
1

�
k�k�k�

k2

�
h��;

(19)

so that the ‘‘gauge fixing’’ Lagrangian is

 L gf � �h��F���N�
F

��h��; (20)

where the ‘‘Nielsen-Kallosh’’ factor is

 N�
 � ���
 � 

k�k


k2 : (21)

In the special case when �! 1, � � 1, and 
 � 0 this
general class of gauges reduces to the one considered in
[12] where the spin-two propagator was considered in
various limits of the gauge parameters.

Upon introducing
 

T1
��;�� � ������ � ������; (22a)

T2
��;�� � ������; (22b)

T3
��;�� �

1

k2 �k�k���� � k�k����� � ��$ ��; (22c)

T4
��;�� �

1

k2 �k�k���� � k�k�����; (22d)

T5
��;�� �

1

k4 �k�k�k�k��; (22e)

then Eq. (20) becomes
 

Lgf � �h��
�
�� 


�2 T2
��;�� �

�


2 T
3
��;��

�
�� 

�

�
2



�

1

�

�
T4
��;��

�

�
�� 

�

�
4



�

1

�

�
�

4



2

�
T5
��;��

�
k2h��: (23)

The propagator for the spin-two field with this gauge fixing

F. T. BRANDT, J. FRENKEL, AND D. G. C. MCKEON PHYSICAL REVIEW D 76, 105029 (2007)

105029-2



Lagrangian is given by D��;�
:
 

D��;�
�M�
;�� � F�;�
N
�	F	;��� �

1
2�	

�
�	

�
� � 	

�
�	

�
��

� ����
��: (24)

Explicit calculation leads in d dimensions to

 D��;���k� �
1

k2

X5

i�1

CiTi��;��; (25)

where
 

C1 � 1; (26a)

C2 � �
2

d� 2
; (26b)

C3 �

�

2

4�
� 1

�
; (26c)

C4 �
2

d� 2

�
1�


�
��
� �� � ���� 
�

�
; (26d)

C5 � �

2

�
�

1

�� 

��
��2


��
� �� � ���� 
��2

�
2

d� 2

�d� 3���
� 2�� � 2
�
��
� �� � ���� 
�

: (26e)

For comparison, we note that the analogous propagator for
a spin-one gauge field when using the gauge fixing
Lagrangian �Lgf � �

1
2� �@ � A�

2 is

 

�
�k2��� �

�
1�

1

�

�
k�k�

�
�1

�

�
�
���
k2 � �1� ��

k�k�
k4

�
� D��: (27)

This inverse D�� is transverse (i.e. it satisfies k�D�� � 0)
in the limit �! 0, even though �Lgf is ill defined in this
limit. It is interesting to consider the possibility of D��;��

being transverse. From Eq. (25) it follows that
 

k�D��;�� �
1

k2

�
�k���� � k������C1 �C3�

� k�����C2 �C4�

�
k�k�k�
k2 �2C3 �C4 �C5�

�
: (28)

From Eqs. (26) we find that
 

C1�C3�

2

4�
; (29a)

C2�C4�
2

d�2


�
��
��������
�

; (29b)

2C3�C4�C5��

2

2�
�


�


��
��������
��2

	

�
�2
�
��


�
2
��
��������d
��

d�2

�
;

(29c)

these all vanish if 
 � 0 for all values of �, �, �, and 
 . If

 � 0, then

 ���D��;���k�j
�0 � �
2

d� 2

1

k2

�
��� �

k�k�

k2

�
(30)

showing that D��;�� cannot be simultaneously traceless
and transverse with Lgf given by (20), irrespective of the
values of �, �, �, and 
 .

In general, from Eq. (25) it follows that

 

���D��;���k� �
1

k2

�
�2C1 � dC2 �C4����

� �4C3 � dC4 �C5�
k�k�
k2

�
; (31)

from Eqs. (26) it follows that

 

2C1 � dC2 �C4 � �
1

k2

2

d� 2

��
� 2��
��
� �� � ���� 
�

;

(32a)

4C3 � dC4 �C5 �
1

k2

1


��
� �� � ���� 
��2

	

�
��
��2

�� 

�

2�
d� 2

�
� 2��

	 ���
� �� � ���� d
��
�
: (32b)

Thus if � � 0, we find that D��;�� satisfies the traceless
condition of Eq. (6) for all values of 
, �, �, and 
 ; if � �
0 then

 

D��;���k�j��0 �
1

k2 �P��P���P��P��� �

2

4k4�

	

�
k�k����� k�k����� k�k����

� k�k�����
4

k2 k�k�k�k�

�
�

2

�d� 2�k2

	

�
���� 2

k�k�
k2

��
���� 2

k�k�
k2

�

�
2

k6
k�k�k�k�; (33)

where

 P�� � ��� �
k�k�
k2 : (34)

We note that in Eqs. (26) the limits �! 0 and 
! 0 do
not commute and we have found that the former limit leads
to a traceless propagator that is not transverse while the
latter limit leads to a transverse propagator that is not
traceless.
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The DeDonder propagator [5,13]

 D�����k� �
1

k2

�
������ � ������ �

2

d� 2
������

�

(35)

is recovered if � � 1, 
 � 0, � � 
 � �4� � 2, or � �
1, 
 � 0, � � �
 � �2, � � 1.

III. NONQUADRATIC GAUGE FIXING AND THE
TRANSVERSE-TRACELESS GAUGE

We start by observing that with

 L gf � �
1

�
�@�h

����@�h�� � @�h
�
�� (36)

then the sum of the classical and gauge fixing Lagrangian
contains the operator

 W��;�� � B��B�� � B��B�� � 2B��B��;

B�� � ���k2 �

�
1�

1

�

�
k�k�;

(37)

so that if W��;�
D����
;�� �
����;�� then

 D�����;�� �
1

2k2

�
P���P

�
�� � P

�
��P

�
�� �

2

d� 1
P���P

�
��

�
;

(38)

where P��� � ��� � �1� ��k�k�=k
2. As �! 0, from

Eq. (38) it follows that

 k�D���0�
���� � ���D���0�

���� � 0: (39)

However, Eq. (36) is not of the form of Eq. (20) and hence
the Faddeev-Popov procedure must be modified to accom-
modate such a nonquadratic gauge fixing Lagrangian,
which is needed if a transverse-traceless propagator is to
arise.

We begin by inserting two factors of ‘‘1’’ into Eq. (8);
these are

 

1 �
Z

d ~�1	�F
�
� ~h� �A

�
~�1� � ~p� det��F

�
A
�

�0��; (40a)

1 �
Z

d ~�2	�G
�
� ~h� �A

�
~�2� � ~q� det��G

�
A
�

�0��; (40b)

as well as another ‘‘1’’ of the form

 1 � ��n
Z

d ~pd ~qe
��1=�� ~pTN

�
~q
det�N

�
=��: (41)

This leads to

 

Z � ��n
Z

d ~�1d ~�2

Z
d ~h det��F

�
A
�

�0�� det��G
�
A
�

�0�� det
�N
�

�

�

	 exp
�
� ~hTM

�

~h�
1

�

F
�
� ~h� �A

�

�0� ~�1��
T

	 N
�

G
�
� ~h� �A

�

�0� ~�2��

�
: (42)

We now make the shift ~h! ~h� �A
�
~�1 in Eq. (42) and let

~� � ~�2 � ~�1 so that by Eq. (9)

 Z �
�
�
�

�
n Z

d ~�1

Z
d ~�

Z
d ~h det�F

�
A
�

�0�� det�G
�
A
�

�0�� det�N
�
�

	 exp
�
� ~hT

�
M
�
�

1

�
F
�

TN
�
G
�

�
~h� ~hTF

�

TN
�
G
�
A
�

�0� ~�
�
:

(43)

Dropping the infinite normalization factors in Eq. (39) and
making the shift

 

~h! ~h�
1

2

�
M
�
�

1

�
F
�

TN
�
G
�

�
�1
�F
�

TN
�
G
�
A
�

�0�� ~� (44)

to diagonalize the exponential in Eq. (43) in ~h and ~�, we
obtain

 

Z �
Z

d ~�
Z

d ~h det�F
�
A
�

�0�� det�G
�
A
�

�0�� det�N
�
�

	 exp
�
� ~hT

�
M
�
�

1

�
F
�

TN
�
G
�

�
~h

�
1

4
~�T�A
�

�0�TG
�

TN
�

TF
�
�

�
M
�
�

1

�
F
�

TN
�
G
�

�
�1

	 �F
�

TN
�
G
�
A
�

�0�� ~�
�
: (45)

[We are assuming that F
�

,G
�

,N
�

, and A
�

�0� are all independent

of ~h so that no Jacobian arises as a result of the change of
variable in Eq. (44).]

If now we take

 

~h TF
�

TN
�
G
�

~h � h��FT��;�N
�
G
;��h

�� (46)

with

 

FT��;� � g1���@� � ���@�; (47a)

G
;�� � g2���@
 � ��
@�; (47b)

N�
 � ��
; (47c)

then inverting the quadratic form M
�
� 1

�F�
TN
�
G
�

leaves us

with the coefficients in Eq. (25) being
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C1 � 1; (48a)

C2 � �2
�g2� g1�

2� 2�g1� 1��g2� 1��

�d� 1��g2� g1�
2� 2�d� 2��g1� 1��g2� 1��

;

(48b)

C3 � �� 1; (48c)

C4 � 2
�g2� g1�

2� 
4�g1� 1��g2� 1� � g1� g2� 2��

�d� 1��g2� g1�
2� 2�d� 2��g1� 1��g2� 1��

;

(48d)

C5 � 
�d� 1��g2� g1�
2� 2�d� 2��g1� 1��g2� 1����1

	 f4�
�g1 � g2��d� 4� � �2g1g2� 1��d� 3�

� �g2
1� g

2
2��d� 1�� � 2�d� 2�
�g1� g2�

2

��2�4�g1� 1��g2� 1� � 1��g: (48e)

From these expressions we see that the limits g2 ! g1 and
�! 0 do not commute. If we take the limit �! 0, with
g2 � g1, the propagator becomes independent of g1 and
g2, and we obtain the transverse and traceless propagator.
On the other hand, if we set g2 � g1, the resulting propa-
gator is not transverse and traceless even for � � 0. This is
another verification of the impossibility of obtaining the
transverse and traceless propagator using the quadratic
gauge fixing where g1 � g2. This general gauge fixing
also can be used to find the DeDonder propagator of
Eq. (35) by taking g1 � g2 � �1=2 and � � 1. It is also
interesting to note that for d � 2, and arbitrary values of
g1, g2, and �, Eqs. (48) are well defined while the
DeDonder propagator of Eq. (35) is not.

The determinants in Eq. (45) can all be exponentiated

using Grassmann quantities ~c, ~�c, ~b, ~�b, ~k, and ~�k, so that

 

Z �
Z

d ~�
Z

d ~h
Z

d ~cd~�c
Z

d ~bd ~�b
Z

d ~kd~�k

	 exp
�
� ~hT

�
M
�
�

1

�
FTN
�
G
�

�
~h� ~�b�F

�
A
�

�0�� ~b

� ~�c�G
�
A
�

�0�� ~c� ~�kN
�

~k�
1

4
~�T�A
�

�0�TG
�

TN
�

TF
�
�

	

�
M
�
�

1

�
F
�

TN
�
G
�

�
�1
�F
�

TN
�
G
�
A
�

�0�� ~�
�

(49)

up to a normalization factor.
The gauge fixing of Eq. (36) corresponds to g2 � �1,

g1 ! 0, and � � �. In this case, the determinant
det�G

�
A
�

�0�� � 0 and hence the ghost Lagrangian

~�b�G
�
A
�

�0�� ~b itself possess a gauge invariance ~b!

~b� B
�

�0� ~!, where ~! is a Grassmann gauge function.

Following the Faddeev-Popov procedure, we find that

 Z
d ~bd ~�b exp
� ~�b�G

�
A
�

�0�� ~b� �
Z

d ~bd ~�b
Z

d ~
d ~�

Z

d ~H

	 exp
� ~�b�G
�
A
�

�0� � �
�

T�
�

�
�
� ~b

� ~

�

T��
�
B
�

�0�� ~

�
� ~H

T
�
�

~H �;

(50)

where ~
 and ~�
 are complex Faddeev-Popov ghosts and ~H
is a real Nielsen-Kallosh ghost (with neither of these being
Grassmann). We will not consider this gauge fixing further
in order to avoid having to introduce these ‘‘ghosts of
ghosts.’’

The field ~� appearing in Eq. (49) is a nontrivial prop-
agating field that has no analogue in the usual Faddeev-
Popov procedure. The propagator for ~� with the gauge
fixing chosen to be Eqs. (47) and the gauge transformation
given by (18) is
 

D��
� �k� �

1

�
1

k4

�
��� �

��
1�

1

4�g1 � 1��g2 � 1�

�

�
1

8�
d� 1

d� 2

�
1

g1 � 1
�

1

g2 � 1

�
2
�
k�k�

k2

�
: (51)

Upon performing the functional integrals over the fields
~�, ~h, ~�c, ~c, and ~�b, ~b (taking N

�
� 1) in (49) we find that

 

Z � det�1=2

�
M
�
�

1

�
F
�

TG
�

�
det�F

�
A
�

�0�� det�G
�
A
�

�0��

	 det�1=2

�
�A
�

�0�TG
�

TF
�
�

�
M
�
�

1

�
F
�

TG
�

�
�1
�F
�

TG
�
A
�

�0��

�
:

(52)

With Eqs. (18) and (47) these determinants become
 

Z�
�
�

3�g1�g2�
2�4��g1�1��g2�1�

�4��5
�det@2�10

�
�1=2

	

�
2�g1�1��det@2�4�
2�g1�1��det@2�4

�

	

�
16

�5�g1�1�2�g2�1�2

3�g1�g2�
2�4��g1�1��g2�1�

�det@2�8
�
�1=2

;

(53)

which reduces to

 Z � �det@2��1: (54)

This indicates that there are in fact just two bosonic de-
grees of freedom, as the contribution of a single scalar
degree of freedom is

 

Z
d�e�@

2� � �det@2��1=2: (55)

These two degrees of freedom are of course the transverse
polarizations of the free graviton. The free energy is thus
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given by [14]

 � TV logZ�0� � ��T�

� 2V
Z d3k

�2��3

�
j ~kj
2
� T log�1� e��k=T��

�
;

(56)

the factor of two coming from the two degrees of freedom.
We first note that in Eq. (54) all dependence on the gauge

parameters has vanished. We also see that from Eq. (53) all
determinants in Eq. (52) are nonzero.

We now consider the situation in which the spin-two
field is no longer a free-field due to the self-interactions.
The path integral to be considered then is not in the form of
Eq. (8); we now must examine

 ZI �
Z

d ~h exp
� ~hTM
�

~h�SI� ~h��; (57)

where SI� ~h� is at least cubic in ~h. The argument of the
exponential in Eq. (57) is now invariant under a trans-
formation

 

~h! � ~h� ~! � ~h� �A
�
� ~h� ~!�O� ~!2�; (58)

where ~! is arbitrary and A
�
� ~h� now depends on ~h, with

A
�
� ~h� � A

�

�0� �O� ~h�. Factors of ‘‘1’’ are now inserted into

Eq. (57), using Eqs. (40) with � ~h� ~! replacing ~h� �A
�

�0� ~�,

and keeping Eq. (41). Thus in place of Eq. (43) we obtain
(up to a normalization factor)

 ZI �
Z

d ~�
Z

d ~h det�F
�
A
�
� ~h�� det�G

�
A
�
� ~h�� det�N

�
�

	 exp
�
� ~hTM

�

~h�SI� ~h� �
1

�
~hTF
�

TN
�
G
�
� ~h��

�
; (59)

where � ~h�� � �� ~h��2
���1

1
� ~h� �A

�

�0�� ~�2 � ~�1�. The shift

of Eq. (44) can again be used to diagonalize the terms
appearing in the argument of the exponential in (59) that
are quadratic in ~h and ~�, but this shift also induces extra
vertices involving the field ~�, as Eq. (44) is not of the form
of a gauge transformation. However, as has been noted
above, the gauge fixing of Eq. (47) results in �M� �
1
�F�

TN
�
G
�
��1 being traceless and transverse as �! 0, so

that the shift � 1
2 �M�

� 1
�F�

TN
�
G
�
��1�F

�

TN
�
G
�
A
�

�0�� ~� appear-

ing in Eq. (47a) is formally of order �. Keeping in mind
that the propagator for the field ~� in Eq. (51) has contri-
butions of order 1=� and 1=�2 (though the latter disap-
pears if 1=�g1 � 1� � 1=�g2 � 1� � 0), we see that as
�! 0 the contribution of these extra vertices is reduced.

IV. DISCUSSION

We have examined the most general covariant quadratic
gauge fixing Lagrangians for a spin-two gauge field and
have shown that none of them can be used to obtain the
transverse-traceless propagator for this field. Nonquadratic
gauge fixing Lagrangians can, however, be used to obtain
this propagator, and we have shown that their systematic
introduction results in an unconventional ghost contribu-
tion to the effective action. In a different context
Drummond and Shore have also considered nonquadratic
gauge fixing Lagrangians [15,16].

It would be worth to derive the Ward-Takahashi-
Slavnov-Taylor [17–21] and Becchi-Rouet-Stora-Tyutin
[22] identities when these nonquadratic gauge fixing
Lagrangians are used and to verify them by explicit calcu-
lation of loop diagrams. As a first step towards the calcu-
lation of more involved perturbative quantities, one may
consider the one-loop contributions to the thermal energy-
momentum tensor. Since this result is known in the usual
formulation of thermal gravity [6,7], one can verify the
consistence of the nonquadratic gauge fixing approach in a
specific scenario such that the interactions cannot be
neglected.

The general relation between the one-graviton function
��� and the energy-momentum tensor T�� is such that

 ��� �
	�

	h��
� �

1

2

�������
�g
p

T��; (60)

where � is the one-loop thermal effective action. In Fig. 1
we show the lowest order diagrams which contribute to
���. In order to compute these diagrams we need the

FIG. 1. Diagrams which contribute to the thermal one-graviton
function. The dashed and dash-dotted lines represent the ghost
fields b and c, respectively. The wavy lines represent the � field
and the curly lines represent gravitons.
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propagators, derived in the previous sections, as well as the
interaction vertices. Let us first consider the diagram (a) in
Fig. 1. The ghost-graviton vertices can be obtained from

the gauge-invariant completion of the quantity� ~�b�F
�
A
�

�0�� ~b

[see Eq. (49)] so that A
�

�0� is replaced by

 A��� � g��@� � g��@� � �@�g���

� ���@� � ���@� � h��@� � h��@� � �@�h���:

(61)

In this way, both the propagator and the interaction vertex
can be read from the Lagrangian density

 � �b��FA�
�
�b

�: (62)

Using Eq. (47a), we obtain
 

�b��F
�
A
�
���b

� � �b�
�2g1 � 1�@�@� � 	
�
�@

2�b�

� �b�
g1�2@�h��@� � @��@�h���� � @�h��@�

� @�h��@� � @��@�h����b�: (63)

Let us now associate momenta p1, p2, and p3, in momen-
tum space, respectively, to the graviton field h��, to �b�, and
to b�. This yields the following interaction vertex for the b
ghost:
 

V��;��
b �p1; p2; p3� �

g1

2
�2p�2p

�
3 �

�� � p�2p
�
1�

���

�
1

2
�p2 � p3������ � p

�
2 p

�
3�

��

� p�2 p
�
1�

��� � ��$ ��: (64)

In the diagrams of Fig. 1 the momenta are such that p1 � 0
and p2 � �p3 � p so that

 V��;��
b �0; p;�p� � �

���

2

�2g1 � 1�p�p� � p2����

�
���

2

�2g1 � 1�p�p� � p2����:

(65)

When we contract with the ghost propagator, which is
given by the inverse of the first term in Eq. (63), we obtain

 V��;��
b �0; p;�p�
�2g1 � 1�p�p� � ���p2��1

� �1
2��

��	�� � ���	��� � ����: (66)

The same can be done with the diagram (b) in Fig. 1, which
is associated with the ghost field c, so that

 V��;��
c �0; p;�p�
�2g2 � 1�p�p� � ���p2��1 � ����:

(67)

We now have to integrate these expressions over dd�1p and
sum over the Matsubara frequencies p0 � 2�nT. Then,

the dimensionally regularized integral will yield a zero
result for both ghost loops.

Let us now consider the contribution of the � field. The
vertex in the diagram (c) in Fig. 1 is the sum of two types of
contributions. The first contribution comes from the order
h terms when we replace ~A�0� in Eq. (49) by the Eq. (61).
This type of contribution will also yield an expression for
the integrand which is proportional to ���. Indeed, as in
the case of the ghost fields b and c, the only relevant part of
the interaction vertex is the one which has a zero momen-
tum external graviton, so that the order h terms in A will
yield a contribution proportional to the inverse of the
propagator. Therefore, this part of the interaction will not
contribute to the energy-momentum tensor.

The second part of the interaction between the � and h
fields arises when the cubic term in the interaction
Lagrangian is modified by the shift given by (44). In order
to compute this contribution we employ the known expres-
sion for the three graviton vertex [23] and contract two of
its external legs with the operator on the right-hand side of
(44). Finally, contracting the resulting expression with the
� propagator in (51) we have obtained

 

�d� 3��g1 � g2�
2

�d� 1��g1 � g2�
2 � 2��d� 2��g1 � 1��g2 � 1�

p�p�

p2 :

(68)

The last diagram in Fig. 1 has the usual interaction
vertex contracted with the general propagator given by
Eqs. (25) and (48). A straightforward calculation yields
(we have employed the symbolic computer package HIP

[24])
 

�d� 3��d� 2�
�d� 1��g1� g2�
2� 2�d�g1� 1��g2� 1��

2
�d� 1��g1� g2�
2� 2��d� 2��g1� 1��g2� 1��

	
p�p�

p2 : (69)

Adding the two previous expressions, we obtain

 

d�d� 3�

2

p�p�

p2 : (70)

All the gauge parameter dependence has been canceled in
the final expression for the integrand of the one point
function and the result agrees with the known result in
the DeDonder gauge. Of course this gauge independent
result is expected for a physical quantity like the energy-
momentum tensor. This rather simple calculation indicates
that the interactions can be taken into account consistently
in the double gauge fixing formulation. Since this calcu-
lation has been done without restricting the values of the
gauge parameters �, g1, and g2, it also holds in the par-
ticular case of the TT graviton propagator. The combina-
tion of the expressions (68) and (69) yielding the gauge-
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invariant result shows how the modes associated with the �
and h fields combine to produce the correct result.

Another interesting application of the TT gauge can be
made to study the thermal loop-corrections to the free-
energy in quantum gravity. This would allow for a simple
and physical analysis of the Jeans-like instabilities which
develop at nonzero temperature. Work on this topic is in
progress.
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