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We construct N � 1 supersymmetry in 4� 2 dimensions compatible with the theoretical framework of
2T physics field theory and its gauge symmetries. The fields are arranged into 4� 2-dimensional chiral
and vector supermultiplets, and their interactions are uniquely fixed by supersymmetry (SUSY) and 2T-
physics gauge symmetries. Many 3� 1 spacetimes emerge from 4� 2 by gauge fixing. Gauge degrees of
freedom are eliminated as one comes down from 4� 2 to 3� 1 dimensions without any remnants of
Kaluza-Klein modes. In a special gauge, the remaining physical degrees of freedom, and their inter-
actions, coincide with ordinary N � 1 supersymmetric field theory in 3� 1 dimensions. In this gauge,
SUSY in 4� 2 is interpreted as superconformal symmetry SU�2; 2j1� in 3� 1 dimensions. Furthermore,
the underlying 4� 2 structure imposes some interesting restrictions on the emergent 3� 1 SUSY field
theory, which could be considered as part of the predictions of 2T-physics. One of these is the absence of
the troublesome renormalizable CP violating F ? F terms. This is good for curing the strong CP violation
problem of QCD. An additional feature is that the superpotential is required to have no dimensionful
parameters. To induce phase transitions, such as SUSY or electroweak symmetry breaking, a coupling to
the dilaton is needed. This suggests a common origin of phase transitions that is driven by the vacuum
value of the dilaton and needs to be understood in a cosmological scenario as part of a unified theory that
includes the coupling of supergravity to matter. Another interesting aspect of the proposed theory is the
possibility to utilize the inherent 2T gauge symmetry to explore dual versions of the N � 1 theory in 3� 1
dimensions, such as the minimal supersymmetric standard model (MSSM) and its duals. This is expected
to reveal nonperturbative aspects of ordinary 1T field theory.
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I. 2T-PHYSICS FIELD THEORY

Two-time physics (2T physics) [1–15] is a unification
approach for usual one time physics (1T physics) through
higher dimensions that includes one extra timelike and one
extra spacelike dimension. This unification is distinctly
different from Kaluza-Klein theory because in the reduc-
tion from d� 2 to �d� 1� � 1 dimensions there are no
Kaluza-Klein towers of states. Instead, in the end result of
the reduction one finds a variety of �d� 1� � 1 emerging
spacetimes embedded in the same d� 2 spacetime, result-
ing in a family of 1T-physics systems in �d� 1� � 1
dimensions, with different dynamics from each other (i.e.
different Hamiltonians), obeying duality-type relationships
among themselves.

Furthermore, each 1T system in the family is a holo-
graphic image of the same parent system in d� 2 dimen-
sions and has hidden symmetries that reflect the global
symmetries of the parent theory. These hidden symmetries,
and the dualities, are reflections of the hidden extra dimen-
sions. Such properties of 2T physics are summarized with
some examples in Fig. 1 of Ref. [13].

The essential ingredient underlying 2T physics is the
basic gauge symmetry Sp�2; R� acting on phase space
XM; PM [1]. The role of Sp�2; R� is most easily explained
in the worldline description of particles. In that context it is
a generalization of the 1-parameter gauge symmetry of
worldline � reparametrization to a 3-parameter non-
Abelian Sp�2; R� gauge symmetry acting on phase space.
This gauge symmetry requires the particle to live in a

target spacetime with two timelike directions, so the 2T
feature is an outcome of the gauge symmetry rather than
being an input by hand.

The extra 2 parameters in the gauge symmetry are able
to remove 2 degrees of freedom from target spacetime in
many possible ways. Through such gauge fixing one can
then find many possible embeddings of phase space in
�d� 1� � 1 dimensions into d� 2 dimensions. So, a given
d� 2-dimensional 2T theory descends, through Sp�2; R�
gauge fixing, down to a family of holographic 1T images in
�d� 1� � 1 dimensions. All images are gauge equivalent
(or dual) to each other, while each one is also gauge
equivalent to the same parent 2T theory in d� 2 dimen-
sions. However, the various images have differing 1T-
physics interpretations because of the different definitions
of ‘‘time’’ and ‘‘Hamiltonian’’ inherent in the phase space
embeddings of �d� 1� � 1 in d� 2. The rich web of
dualities among the emerging 1T-physics systems is the
surprising unifying power of the 2T-physics approach.

2T physics includes all cases of particles moving in all
possible background fields [3]. It also describes particles
with spin [2] or with target space supersymmetry, by
appropriate generalizations of Sp�2; R� [4,5,7]. In all such
cases one finds unified families of 1T-physics systems that
emerge from a unifying parent theory directly defined in
d� 2 dimensions. So, 2T physics appears to be sufficiently
general to be able to accommodate all 1T-physics systems
as members of families of holographic images, with each
family representing some higher system with 1� 1 extra
dimensions.
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The discussion in the present paper is at the level of 2T
field theory. To make the paper self-contained we have
included Appendix A to give some details for how one goes
from Sp�2; R� gauge symmetry on the worldline to 2T field
theory with its own 2T gauge symmetries.

Recently, a field theoretic description of 2T physics has
been established and applied to the standard model of
particles and forces [13]. In the field theoretic 4� 2 stan-
dard model (SM), the type of phenomena such as hidden
symmetries, duality, holography, and emergent spacetimes
are also present owing to a newly discovered 2T gauge
symmetry in field theory which is actually a consequence
of the gauge symmetry Sp�2; R� on the worldline [12,13].
This is briefly explained in the case of scalar field in
Appendix A along with brief comments on the quantiza-
tion of the field theory. For the time being only one of the
field theoretic images, namely, the ‘‘massless relativistic
particle’’ gauge (see footnote 8) noted as the first item in
Table I in Appendix A, has been studied in the field theory
context. This 3� 1 holographic image of the 4� 2 SM
coincides with the well-known 3� 1 SM and improves
some of its properties as discussed in detail in [13].

In particular, some attractive features of the emergent
SM include a new solution of the long-standing strong CP
problem in QCD without an axion and novel ideas on the
origins of mass as briefly reiterated below. These features
emerge from the underlying 4� 2 structure which imposes
some interesting restrictions on the emergent 3� 1 stan-
dard model. Such properties of field theory in 3� 1 di-
mensions [more generally �d� 1� � 1] could be
considered as part of the predictions of 2T physics.

The goal of the present paper is to formulate the general
supersymmetric version of 2T-physics field theory in 4� 2
dimensions, for fields of spins 0, 1

2 , 1 with N � 1 super-
symmetry (SUSY). This will be a starting point for physi-
cal applications in the form of the supersymmetric version
of the SM in 4� 2 dimensions, as well as for general-
izations to higher N � 2, 4, 8, supersymmetric 2T-physics

field theory, which will be presented in future papers. A
summary of our results for N � 1 SUSY has appeared as a
short letter [15].

In the following, we briefly summarize the essential
features of 2T field theory which will be the structure on
which we will impose N � 1 supersymmetry in the com-
ing sections.

The field theory in 4� 2 dimensions with fields of spins
0, 1

2 , 1 describes a set of SO(4,2) vectors AaM�X� labeled
with M � SO�4; 2� vector, and a � the adjoint representa-
tion of a Yang-Mills gauge group G [for example, G �
SU�3� � SU�2� � U�1� for the standard model, G �
SO�10� for grand unification]; scalars Hi�X�, labeled by
an internal symmetry index i � 1; 2; � � � (a collection of
irreducible representations of G); left- or right-handed
spinors  IL��X�;  

~I
R _��X� in the 4, 4� representations of

SU�2; 2� � SO�4; 2�, labeled with � � 1, 2, 3, 4, and _� �
1, 2, 3, 4, and internal symmetry indices I � 1; 2; � � � and
~I � 1; 2; � � � (again, a collection of irreducible representa-
tions of G).

The generic 2T-physics Lagrangian has the form of a
Yang-Mills theory in 4� 2 dimensions (G-covariant de-
rivatives). But it contains 4� 2 spacetime features shown
explicitly in the Lagrangian below, which are needed to
impose the underlying Sp�2; R� gauge symmetry and the
related 2T-physics gauge symmetries. For a summary of
how these concepts are derived from Sp�2; R� the reader
can consult Appendix A. The origin of the 2T-physics
gauge symmetry in field theory is more fully explained in
[12,13].

We emphasize the basic important fact that the equations
of motion that follow from the Lagrangian below impose
the Sp�2; R� gauge singlet conditions X2 � X � P � P2 �
0 [or OSp�nj2� gauge singlet conditions for a field with
spin n=2], but now including also interactions [13]. The
field theory Lagrangian with these properties has the gen-
eral form (see Appendix A)

 

L �
�
��X2�f�DMHiyDMHig � 2�0�X2�HiyHi � ��X2�

�
i
2
� � ILX �D IL � � ILD

 
�X IL� �

i
2
� � ~I

R
�XD ~IR �

� ~I
R

�D
 

X ~IR�

�

� ��X2�fyi~II � ILX ~IRHi � �y
i~I
I �
�H�i � ~I

R
�X ILg � ��X

2�

�
�

1

4
FaMNF

MN
a � V�H;H�;��

�

�
1

2
��X2�@M�@M�� �0�X2��2

�
: (1.1)

The left arrow on D
 

M means that the covariant derivative
acts on the field on its left � LD

 

M 	 DM
� L. The distinctive

spacetime features in 4� 2 dimensions include the delta
function ��X2� and its derivative �0�X2� that impose X2 �
XMXM � 0 (see footnote 6), the kinetic terms of fermions
that include the factors X �D, �XD, and Yukawa couplings
proportional to yi~II , yi~II that include the factors X or �X,
where X 	 �MXM, �D � ��MDM etc., with 4� 4 gamma
matrices �M, ��M in the 4, 4� spinor bases of SU�2; 2� �

SO�4; 2�. Our notation for gamma matrices for SO�4; 2� �
SU�2; 2� is given in Appendix B.

This Lagrangian is not invariant under translation of XM

but is invariant under the spacetime rotations SO(4,2). In
fact, it has precisely the right spacetime, and gauge invari-
ance, properties for the 4� 2 field theory to yield the usual
3� 1 field theory. The reduction from 4� 2 dimensions
XM to 3� 1 dimensions x� is obtained via gauge fixing
(see footnote 8). The emergent 3� 1 field theory is invari-
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ant under translations of x� and Lorentz transformations
SO(3,1). These Poincaré symmetries are included in
SO(4,2) that takes the nonlinear form of conformal trans-
formations in the emergent 3� 1-dimensional spacetime
x�. The emergent 3� 1 theory contains just the right fields
as functions of x�: all extra degrees of freedom disappear
without leaving behind any Kaluza-Klein type modes or
extra components of the vector and spinor fields in the
extra 1� 1 dimensions. Furthermore, the emergent field
theory has the usual kinetic terms and Yukawa couplings in
3� 1-dimensional Minkowski space [13].

As in the last line of the Lagrangian, one may also
include an additional SO(4,2) scalar, the dilaton ��X�,
classified as a singlet under the group G. The dilaton is
not optional if the action is written in d� 2 dimensions
(see [13]), as it appears in overall factors �2�d�4�=d�2,
�d�4=d�2 multiplying the Yang-Mills kinetic term and
Yukawa terms, respectively, in order to achieve the 2T-
gauge symmetry of the action. In 4� 2 dimensions (d �
4) these factors reduce to 1, but the dilaton can still couple
to the scalars H in the potential V�H;H�;��.

The 2T-physics field theory above is applied to construct
the standard model in 4� 2 dimensions by choosing the
gauge group G � SU�3� � SU�2� � U�1� and including
the usual matter representations for the Higgs bosons,
quarks, and leptons (including right-handed neutrinos in
singlets of G), but now as fields in 4� 2 dimensions. As
explained in [13] this theory descends to the usual standard
model in 3� 1 dimensions.

When we apply the 4� 2 approach to construct the
standard model, almost all of the usual terms of the 3�
1-dimensional standard model emerge from the 4� 2 field
theory above, except for two notable exceptions that play
an important physical role. Namely,

(i) There is no way to generate a renormalizable term in
the emergent 3� 1 theory that is analogous to the P
and CP-violating term �F��F��"���� that is pos-
sible in a purely 1T-physics approach in 3� 1 di-
mensions.1 The absence of � in the emergent
standard model is due to the fact that the Levi-
Civita symbol in 4� 2 dimensions has 6 indices
rather than 4, and also due to the combination of

2T gauge symmetry as well as Yang-Mills gauge
symmetry. The absence of this CP-violating term
in 2T physics is of crucial importance in the axion-
less resolution of the strong CP violation problem of
QCD [13].

(ii) The 2T-gauge symmetry requires the potential
V�H;H�;�� to be purely quartic, i.e. no mass terms
are permitted. Then the emergent 3� 1 theory can-
not have mass terms for the scalars and is automati-
cally invariant under scale transformations. This
makes the mass generation with the Higgs mecha-
nism less straightforward since the tachyonic mass
term is not allowed. However, by taking the Higgs
potential of the form V��; H� � �

4 �H
yH � �2�2�2

we obtain the breaking of the electroweak symmetry
by the Higgs doublet hHi driven by the vacuum
expectation value of the dilaton h�i, thus relating
the two phase transitions to each other. In this way
the 4� 2 formulation of the standard model pro-
vides an appealing deeper physical basis for mass.2

Having established that 2T physics field theory introdu-
ces new phenomenologically relevant constraints, it would
be of great interest to find out whether the SUSY version is
also constrained in phenomenologically significant ways.
This is especially relevant in view of the upcoming experi-
mental activities at the LHC starting in 2008. It would be
interesting to formulate experimental signatures that could
distinguish 2T-physics versions of SUSY from others, due
to some extra constraints rooted in the structures of 4� 2
dimensions. The first step towards this goal is the formu-
lation of SUSY in 2T-physics field theory which we present
in this paper. We will establish the transformation rules for
2T-physics N � 1 SUSY in 4� 2 dimensions, which are
different than a straightforward higher-dimensional SUSY,
and will build the general SUSY Lagrangian for fields with
spins 0, 1

2 , 1, with any Yang-Mills gauge groupG, and with
any representations.

The plan of the paper is as follows. Section II gives a
quick outline of the paper for the reader who is interested in
seeing the results without the technical details. So, in
Sec. II we give a summary of our results for the general

1Actually there appears as if there would be a topological term
of the form

R
d6X"M1M2M3M4M5M6Tr�FM1M2

FM3M4
FM5M6

� whose
density is a total divergence for any Yang-Mills gauge group G.
Such a term could descend to 3� 1 dimensions �F��F��"����

with an effective �
 F�
0�0 . However, it can be shown that this �

is 2T gauge dependent and is gauge fixed to zero in the process
of descending from 4� 2 to 3� 1 dimensions. This and other
possible sources of the � term are discussed and eliminated in
[13]. In this sense, the 2T gauge symmetry plays a similar role to
the Peccei-Quinn symmetry in eliminating the topological term.
But one must realize that the 2T gauge symmetry is introduced
for other more fundamental reasons and also it is not a global
symmetry. Hence, unlike the Peccei-Quinn symmetry it does not
lead to an axion.

2As argued in [13], the dilaton-driven electroweak phase
transition makes a lot more sense conceptually than the usual
approach in which the electroweak phase transition is an isolated
phenomenon. This is because the Higgs vacuum expectation
value fills all space everywhere in the Universe. This is a hard
concept to swallow without relating it to the evolution of the
Universe, which then requires the participation of gravity. In the
2T-physics version of the SM, the Higgs hHi has to be driven by
the dilaton h�i which is a member of the gravity multiplet, so an
essential part of the physics of the standard model becomes
intimately related to the physics of gravity and all of its other
consequences. In particular a relation is established to other
phase transitions that are expected to be dilaton driven in the
evolution of the Universe, such as the vacuum selection process
in string theory, and perhaps even to inflation that is driven by a
scalar field which could be the dilaton.
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N � 1 supersymmetric action for a coupled system of spin
0, 1

2 , 1 fields. We give the SUSY transformation laws that
have many new features and derive the conserved SUSY
current for the fully interacting system. These fields are
arranged into N � 1 chiral and vector multiplets of SUSY
in 4� 2 dimensions, consistent with the gauge symmetries
of 2T physics, and with the gauge symmetries of a Yang-
Mills group. In Sec. III we deal with the chiral multiplet by
itself, discuss the SUSY symmetry in detail, and derive the
conserved SUSY current. In Sec. IV we discuss the vector
multiplet by itself in detail. In Sec. V we couple chiral
multiplets with vector multiplets and find the unique ac-
tion, supersymmetry transformation, and conserved cur-
rent, justifying the outline in Sec. II. Finally, in Sec. VI we
conclude with some comments and point out future
directions.

In Appendix A, we briefly explain how a field theoretical
formulation arises from the underlying worldline descrip-
tion of 2T physics and Sp(2,R) gauge symmetry on the
worldline. In particualr, how the 2T gauge symmetry
which is essential to restrict the form of 2T field theory
action is obtained and how one does gauge fixing to obtain
usual 1T field theory. In Appendix B we provide technical
details on gamma matrices for SO(4,2). In Appendix C we
derive some Fierz identities that are used in the proof of
SUSY including interactions. In Appendix D we discuss
the closure of the SUSY algebra into the supergroup
SU�2; 2j1� when the fields are on shell, and into a larger
algebra when the fields are off shell.

II. N � 1 SUSY IN 2T PHYSICS AND SUMMARY
OF RESULTS

In this section we will provide a summary of our results.
In the following sections, we will show how each piece in
the action and the SUSY transformations arise step by step.

To some extent the well-known 3� 1 SUSY structures
are a guide toward the 4� 2 SUSY structures, since after
all the 3� 1 chiral supermultiplet and vector supermulti-
plet should emerge as the end result of the 2T-physics
gauge fixing. Therefore, the spin 0, 1

2 , 1 fields are members
of the chiral and vector supermultiplets in the 4� 2 2T-
physics SUSY theory.

The chiral supermultiplet �’; L; F�i in 4� 2 dimen-
sions contains a set of SO(4,2) scalars ’i�X�, left-handed
spinors  iL��X� in the 4 representation of SU�2; 2� �
SO�4; 2�, labeled with � � 1, 2, 3, 4, and auxiliary com-
plex scalar fields Fi�X�, all labeled by an internal symme-
try index i � 1; 2; 3; � � � of a gauge symmetry group G.
The internal symmetry index i is used here generically to
denote any collection of several irreducible representations
of G.

The vector supermultiplet �AM; �L; B�a contains fields
that carry SO(4,2) spacetime indices required by their spin.
Thus the spin-1 AaM�X� is the Yang-Mills gauge field, the
spin- 1

2 �
a
�L�X� is the gaugino, and the spin-0 Ba�X� is the

auxiliary field.3 They are all labeled by a which belongs to
the adjoint representation of the gauge symmetry group G.

The SUSY transformations of the chiral and vector
multiplets that leave the action invariant will be discussed
below after we make some remarks about the significance
of various terms in the action (2.3). To simplify our nota-
tion we will suppress the groupG indices i, a in parts of the
discussion in this paper and make it explicit when it is
necessary for clarity.

A. Lagrangian

In what follows, we use mostly left-handed spinors but
also find it convenient at times to use right-handed spinors
as the charge conjugates of left-handed ones. The left-
handed spinor  L��X�, in the 4 representation of SU(2,2),
is labeled with � � 1, 2, 3, 4 while the right-handed spinor
 R _��X�, in the 4 representation of SU(2,2), is labeled with
� � 1, 2, 3, 4. One may also construct an 8-component
spinor of SO(4,2) with a Majorana condition such that  L
together with  R make up the 8 components of

  �
 L
 R

� �
and because of the Majorana condition,  R and  L are
related to each other. One could rewrite all right-handed
spinors as left-handed ones by charge conjugation which is
given by

  R 	 C � TL � C	T� L��; or � L � �� R�TC: (2.1)

Using these definitions we can also write the following
relations that are equivalent to Eq. (2.1):

  L � �C � TR; or � R � � L�
TC: (2.2)

Our SO(4,2) gamma matrix notation in the Weyl basis,
which includes explicit forms of the antisymmetric charge
conjugation matrix C � �1 � �2, and the symmetric
SU(2,2) metric 	 � �i�1 � 1 used to construct the contra-
variant � 
L � �� L�

y	�
 � � �L� _�	
_�
, are explained in

detail in Appendix B.
To satisfy the gauge symmetries of 2T physics discussed

in [13], each one of the spin 0, 1
2 , 1 fields can occur only in

the form of the Lagrangian of Eq. (1.1). On this structure
we now impose SUSY whose details are described in the
following sections. It turns out that the general theory of
the N � 1 chiral multiplet coupled to the N � 1 vector
multiplet gets organized as follows:

 L � Lchiral � Lvector � Lint � Ldilaton: (2.3)

The vector multiplet �AM; �L; B�a with its self-interactions

3The auxiliary field is usually called the D-term in 3� 1
SUSY, but we use here the letter B to avoid confusion with
the symbol for covariant derivative D.
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is described by
 

Lvector � ��X2�

�
�

1

4
FaMNF

MN
a

�
i
2
� ��aLX �D�aL � ��aLD

 
�X �aL� �

1

2
BaBa

�
: (2.4)

The chiral multiplet �’; L; F�i, with its self-interactions
are described by

 

Lchiral � ��X2�

�
�DM’

iyDM’i

�
i
2
� � iLX �D iL � � iLD

 
�X iL� � FyiFi

�

�
@W
@’i

Fi �
i
2
 iL�C �X� jL

@2W
@’i@’j

�
� H:c:

�
� 2�0�X2�’iy’i: (2.5)

Some of the interactions of the chiral multiplet with the
gauge multiplet already appear through the gauge cova-
riant derivativesDM’i andDM iL. Additional interactions
of the vector and chiral multiplets occur also through the
auxiliary fields Ba and the gaugino �aL as follows:

 

Lint � ��X2�f�’yi�ta�
j
i’jB

a � 
’yi�ta�
j
i � jL�

T�C �X��aLg

� H:c:; (2.6)

where �, 
will be uniquely determined by SUSY. Finally,
a sketchy description of the dilaton is given by

 

Ldilaton � f�
1
2��X

2�@M�@M�� �0�X2��2

� superpartners of �

� ��X2�f�aB
a�2 � V��; ’�g: (2.7)

We note the following points on the structure of the
Lagrangian:

(1) The W�’� in Lchiral is the holomorphic superpoten-
tial consisting of any combination of G-invariant
cubic polynomials constructed from the ’i (and
excludes the ’iy)

 

W�’� � yijk’i’j’k;

yijk � constants compatible with G symmetry:

(2.8)

The purely cubic form of W�’� leads to a purely
quartic potential energy for the scalars after the
auxiliary fields Fi and Ba are eliminated through
their equations of motion. A purely quartic potential

is required by the 2T gauge symmetry even without
SUSY.

(2) The �X in the Yukawa couplings � iL�T �

�C �X� jL
@2W
@’i@’j

or 
�’yta L�T�C �X��aL is consistent

with the SU�2; 2� � SO�4; 2� group theory property
�4� 4�antisymmetric � 6, namely, two left-handed fer-
mions must be coupled to the vector XM to give an
SO(4,2) invariant. The �X insertion is also required
for the 2T-gauge invariance of the Yukawa cou-
plings, as discussed in [13].

(3) SUSY requires that the dimensionless constants �,

 are all determined in terms of the gauge coupling
constants g for each subgroup in G as follows4:

 � � g; 
 �
���
2
p
g: (2.9)

The only parameters that are not fixed by the sym-
metries are the Yang-Mills coupling constants g,
and the Yukawa couplings yijk which are restricted
by invariance under G-symmetry, namely,

 

@W
@’i
�ta’�i � 0: (2.10)

(4) As in the nonsupersymmetric case discussed in the
previous section, in the SUSY 2T-physics theory
there is no way to write down a term in 4� 2
dimensions that will reduce to the CP-violating
term �F��F��"

���� that is possible in 3� 1 di-
mensions in the context of purely 1T physics. The
absence of this CP-violating term is of crucial im-
portance in the axionless resolution of the strongCP
violation problem of QCD suggested in [13], and
which generalizes to the supersymmetric case in this
paper

(5) Now we turn to the dilaton term Ldilaton. As men-
tioned above, the superpotential W�’� is restricted
by supersymmetry to be purely cubic in ’. So for
driving the spontaneous breakdown of the G sym-
metry the same way as in the nonsupersymmetric
case (as in footnote 2), as well as for inducing soft
supersymmetry breaking through the Fayet-
Illiopoulos type of term �a�2Ba, it would be desir-
able to couple the dilaton � to the chiral and vector
multiplets by having interactions of the form
V��; ’� and �a � 0 for U(1) gauge subgroups.
However, we have not yet included the superpart-
ners of the dilaton because this is still under devel-
opment in the 2T-physics context, so we are not yet

4There is a separate gauge coupling g for each subgroup in G,
so there are separate �, 
 proportional to the g for each such
subgroup.
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in a position to discuss the SUSY constraints on the
desired couplings. So in this paper we will not be
able to comment in detail on the dilaton-driven
electroweak or SUSY phase transition. However,
we point out that in agreement with footnote 2 this
is again a consistent message from 2T physics,
namely, that the physics of the standard model, in
particular, the electroweak phase transition that gen-
erates mass, is not decoupled from the physics of the
gravitational interactions in a complete unified the-
ory of all the forces. The full theory may be attained
by further pursuing these hints provided by the 2T-
physics formulation of the standard model.

B. SUSY transformations

We now summarize the properties of the SUSY trans-
formations for the chiral and vector multiplets that leave
invariant the action S �

R
d6xL based on the above

Lagrangian. The supersymmetry transformation for the
chiral multiplet is [in the following "R 	 C �"TL and �"R �
�"L�TC, and similarly for �R or  R, as in Eqs. (2.1) and
(2.2)]

 

�"’i �
�

�"R �X iL � X2

�
�

1

2
�"R �D iL �

1

2

@2W�

@’yi@’yj
� jL"L

�
ig

2
���
2
p � �"L�aL � ��aL"L��ta’�i

��
; (2.11)

 �" iL � i�DM’i���
M"R� � iFi"L; (2.12)

 �" � jL � i �"R ��M�DM’�
yi � i �"LF

yi; (2.13)

 �"Fi � �"L�X �D� �X �D� 2�� iL � i
���
2
p
g� �"LX�aR��ta’�i:

(2.14)

The supersymmetry transformation for the vector multiplet
is

 

�"AaM �
�
�

1���
2
p �"L�M �X�aL � X

2

�
1

2
���
2
p �"L�MN�DN�aL�

�
ig
4
� �"L�M 

i
R��t

a’�i

��
� H:c:; (2.15)

 �"�aL � i
1

2
���
2
p FaMN��

MN"L� �
1���
2
p Ba"L; (2.16)

 �" ��aL � i
1

2
���
2
p � �"L�MN�FaMN �

1���
2
p �"LB; (2.17)

 �"Ba �
i���
2
p �"L�X �D� �X �D� 2���aL � H:c: (2.18)

These SUSY transformations have some parallels to naive
SUSY transformations that one may attempt to write down
as a direct generalization from 3� 1 to 4� 2 dimensions.
However, there are many features that are completely
different.5 These include the insertions that involve X �
XM�M or �X � XM ��M, the terms proportional to X2, and
the terms proportional to derivative terms involving
�X �D� 2�. These are off shell SUSY transformations
that include interactions and leave invariant the off shell
action. The free field limit of our transformations (i.e.
W � 0 and g � 0) taken on shell [i.e. terms proportional
to X2 and �X �D� 2� set to zero] agrees with previous
work which was considered for on shell free fields without
an action principle [16].

Despite all of the changes compared to naive SUSY, this
SUSY symmetry provides a representation of the super-
group SU�2; 2j1�. This is signaled by the fact that all terms
are covariant under the bosonic subgroup SU(2,2), while
the complex fermionic parameter "L and its conjugate �"L
are in the 4, 4� representations of SU(2,2), as would be
expected for SU�2; 2j1�.

The closure of these SUSY transformations is discussed
in Appendix D in the case of the pure chiral multiplet (i.e.
gauge coupling g � 0). The commutator of two SUSY
transformations closes to the bosonic part SU�2; 2� �
U�1� 
 SU�2; 2j1� when the fields are on shell. More gen-
erally, when the fields are off shell the closure includes also
a U(1) outside of SU�2; 2j1� and a 2T-physics gauge trans-
formation, both of which are also gauge symmetries of the
action.

When reduced to 3� 1 dimensions by choosing a gauge
as prescribed in footnote 8, the SU�2; 2j1� transformations
give nonlinear off shell realization of superconformal sym-
metry in 3� 1 dimensions.

C. Conserved supercurrent

The Lagrangian in Eq. (2.3) transforms into a total
divergence under the SUSY transformations (in the ab-
sence of the dilaton). Applying Noether’s theorem we

5Once we notice the parallels, part of the structure can be
understood from SU(2,2) group theory. For example, consider
the gamma matrix structures �X, etc. sandwiched between fermi-
ons, which are absent in 3� 1 dimensions. �"R �X iL is a SU(2,2)
scalar since �"R and  iL are both in the 4 representation of
SU(2,2), and the product 4� 4 � 6� 10 shows that when we
couple the 6 to the SO�4; 2� � SU�2; 2� vector XM through the
gamma matrices, we obtain a scalar.
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compute the conserved SUSY current. The details are
shown step by step in Secs. III, IV, and V. The result is

 

JML � ��X2�

�
DK�XN’i���KN�M � 	MN�K� iR

�
@W
@’j

XN�MN iL

�
1

2
���
2
p FaKLXN��

KLN ��M � 	NM�KL��La

�
ig���

2
p ’i�ta’y�iXN�MN�La

�
; (2.19)

where the first line comes from Lchiral, the second from
Lvector, and the third from Lint. The Hermitian conjugate of
JML can be written as the right-handed counterpart of the
above JMR � C� �JML �

T (see Appendix B for Hermitian and
charge conjugation properties)

 

JMR � ��X2�

�
DK�XN’yi�� ��

KN ��M � 	MN ��K� iL

�
@W�

@’�j
XN ��MN jR

�
1

2
���
2
p FaKLXN� ��

KLN�M � 	NM ��KL��Ra

�
ig���

2
p ’yi�ta’�iXN ��MN�Ra

�
: (2.20)

Using the equations of motion that follow from the action
(2.3) we can verify that this SUSY current is conserved

 @MJML �X� � @MJMR �X� � 0: (2.21)

The conservation of the current amounts also to a proof of
SUSY for the theory of Eq. (2.3) that supplies the equations
of motion.

In the rest of the paper we provide the details of the
theory summarized above.

III. CHIRAL SUPERMULTIPLET IN 2T PHYSICS

The chiral multiplet �’; L; F�i is defined in terms of
left-handed spinors. As noted in Eqs. (2.1) and (2.2), right-
handed spinors  R are treated as the charge conjugates of
left-handed spinors. Hence, for each i, there are only 4
independent complex fermionic components � L��i. If one
would like to introduce right-handed independent fermions
 R, one may do so by introducing more � L�i with different
values of i since these are equivalent to the  R under
charge conjugation. It is evident that the formalism in the
form �’; L; F�i, with a range of values for i, includes all
possible chiral supermultiplets (left or right) that may be
needed in various applications.

A. Interacting action for chiral supermultiplets

Independent of SUSY, the free field part of the action is
determined by the field theoretic formulation of 2T physics
given in [13]

 

S0 �
Z
d6X��X2�

�
1

2
�’y@2’� @2’y’� � FyF

�
i
2
� � LX �@ L � � L@

 
�X L�

�
; (3.1)

where X 	 XM�M, �@ � ��M@M, etc. By using the
Hermiticity property

 �i � 1L�M ��N � � � ��K 2L�
y � i � 2L���K� � � � ���N�

� �� ��M� 1L; (3.2)

which is explained in Eqs. (B27)–(B32), it is easily verified
that this action is Hermitian.

The delta function6 in the volume element d6X��X2� as
well as the given structure of the kinetic terms are required
by global SO�4; 2� � SU�2; 2� and local 2T-physics gauge
symmetries [13]. The gauge symmetry is responsible for
eliminating ghosts and thinning out the field degrees of
freedom from 4� 2 to 3� 1 dimensions holographically
without any residual Kaluza-Klein type excitations. It is
also responsible for the unifying features of 2T physics as a
structure above 1T physics through various definitions of
time in the embeddings of 3� 1 dimensions in 4� 2
dimensions (see Fig. 1 in [13]).

It will be convenient to rewrite the scalar part of the free
action by doing an integration by parts so that it contains
only first order derivatives. The result is7

 S0�’;F� �
Z
d6X

�
��X2���@M’

y@M’� FyF�

� 2�0�X2�’y’
�
: (3.3)

The term that contains 2�0�X2�with a specific coefficient is
an outcome of the 2T-physics gauge symmetry. Similarly,
the fermion term is invariant under a separate 2T-physics
gauge symmetry [13]. It may also be integrated by parts.

6Some useful properties of the delta function
include @

@XM ��X
2� � 2XM�

0�X2�, X � @@X ��X
2� � 2X2�0�X2� �

�2��X2�, and @2��X2� � 2�d� 2��0�X2� � 4X2�00�X2� �

2�d� 2��0�X2�. Here �0�u�, �00�u� are the derivatives of the delta
function with respect to its argument u � X2. So we have used
u�0�u� � ���u� and u�00�u� � �2�0�u� as the properties of the
delta function of a single variable u to arrive at the above
expressions. These are to be understood in the sense of distri-
butions under integration with smooth functions.

7An intermediate step in deriving Eq. (3.3) has the second term
in the form

R
d6X�0�X2�X � @�’y’�. This differs from the ver-

sion in Eq. (3.3) by a total derivative.
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After using �M �X � �X ��M � 2XM, and �0�X2�X �X �
X2�0�X2� � ���X2�, it takes the form

 S0� � � i
Z
d6X��X2� � L�X �@� �X � @� 2�� L: (3.4)

By using the relation �MNXM@N � X �@� X � @ this may be
rewritten further in the spin-orbit coupling form

 S0� � � �i
Z
d6X��X2� � L

�
1

2i
�MNLMN � 2

�
 L; (3.5)

where LMN is the SO(4,2) orbital angular momentum

 LMN � �i�XM@N � XN@M�: (3.6)

The free field equations are derived by extremizing the
action in Eq. (3.1)–(3.5) while treating carefully the delta
function as in footnote 6. The result is [13]

 �@2’�X2�0 � 0; ��X � @� 1�’�X2�0 � 0;

�F�X2�0 � 0;
(3.7)

 �X �@ L�X2�0 � 0; ��X � @� 2� L�X2�0 � 0; (3.8)

plus their complex conjugates. Accordingly, when the
fields are on shell, they are homogeneous with a specific
degree of homogeneity, namely, under rescaling they give
’�tX� � t�1’�X� and  L�tX� � t�2 L�X�. However,
when the fields are off shell they are not restricted to be
homogeneous. We emphasize that our supersymmetry
transformations given below are constructed off shell with-
out homogeneity restrictions on any of the fields
�’; L; F�i.

With an appropriate holographic embedding of 3� 1
dimensions in 4� 2 dimensions as shown in the footnote,8

the on shell equations above are equivalent to free relativ-
istic massless fields in 3� 1 dimensions [13].

The general interaction among chiral supermultiplets,
which we will show to be supersymmetric directly in 4� 2
dimensions is given by

 

Sint �
Z
d6X��X2�

��
@W
@’i

Fi �
i
2
� � R�iX� L�j

@2W
@’i@’j

�

� H:c:
�
; (3.9)

where W�’� is any cubic superpotential constructed from
the scalars ’i, i � 1; 2; 3; � � � , with any desired internal
symmetry group G.

The structure of Sint is similar to the SUSY formalism in
3� 1 dimensions, except for the fact that the Yukawa
coupling in 4� 2 dimensions involves the factor �X in the
expression � � R�i �X� L�j � � L��i�C �X��
� L
�j. Taking
into account that �C �X��
 is antisymmetric in ��$ 
�,
and that the fermions anticommute, this factor is symmet-
ric under the interchange of i and j and is consistent with
the symmetric @2W

@’i@’j
.

As in 3� 1 dimensions, the auxiliary fields Fi can be
solved from the equations of motion

 

Fyi � �
@W
@’i
� �3yijk’j’k;

Fi � �
�
@W
@’i

�
�
� �3y�ijk’

yj’yk;

(3.10)

and inserted back into the action, so that Stotal � S0 � Sint

can be expressed only in terms of the dynamical fields
�’; L�i in 4� 2 dimensions. The effective scalar potential
energy ‘‘F-term’’ in the supersymmetric 4� 2 action is
then VF�’;’y� � j

@W
@’i
j2, just like 3� 1 dimensions.

However, to discuss the SUSY properties of the action, it
is more convenient to keep the Fi off shell in the actions S0,
Sint as written above. We will see that unlike 3� 1 dimen-
sions, S0, Sint are not separately supersymmetric in 4� 2
dimensions, but after reducing the theory to 3� 1 dimen-
sions, the mixing term will drop and the 4� 2-dimensional
supersymmetry will reduce to ordinary 3� 1 superconfor-
mal symmetry.

Renormalizability of 2T-physics field theory in 4� 2
dimensions is determined by the renormalizability of the
equivalent 1T field theory in 3� 1 dimensions in the 2T-
physics gauge described in footnote 8. Hence renormaliz-
ability restricts W to be at the most cubic in 3� 1 as well
as 4� 2 dimensions. Furthermore, the 2T-physics gauge
symmetries discussed in [13] require that S0 � Sint cannot
have any dimensionful couplings or mass terms in 4� 2
dimensions. Hence VF�’;’

y� � j @W@’i
j2 must be purely

quartic, or W must be purely cubic, which is also what is
required by supersymmetry.

8The ‘‘relativistic particle gauge’’ that provides one of the
embeddings of 3� 1 dimensions in 4� 2 dimensions is given as
follows. We choose a lightcone-type basis in 4� 2 dimensions
so that the flat metric takes the form ds2 � dXMdXN	MN �
�2dX�

0
dX�

0
� dX�dX�	��, where 	��, with �, � � 0, 1, 2, 3

is the Minkowski metric and X�
0
� 1��

2
p �X00 � X10 � are the light-

cone coordinates for the extra space X10 and time X00 dimen-
sions. Furthermore we choose the following parametrization
X�

0
� �, X�

0
� ��, X� � �x�, which defines the emergent

3� 1-dimensional spacetime x� as embedded in 4� 2. The
inverse relation is � � X�

0

, � � X�
0

X�
0 , x� � X�

X�
0 . This provides

one of the many possible embeddings of 3� 1 dimensions in
4� 2 dimensions. In this paper we will mainly use the 3� 1
spacetime embedding given above. This embedding, first dis-
cussed by Dirac [17], was useful to express the usual standard
model of particles and forces as a gauge fixed form of 2T physics
[13]. Therefore, the same 3� 1 embedding will connect the
supersymmetric standard model in 3� 1 dimensions to the
supersymmetric formulation of 2T physics in 4� 2 dimensions.
In addition to the embedding described above there are many
other embeddings of 3� 1 in 4� 2. Such embeddings corre-
sponds to Sp�2; R� gauge choices in the underlying 2T-physics
worldline theory and lead to a variety of 1T-physics dynamical
systems as summarized in Fig. 1 of Ref. [13].
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As in the case of the nonsupersymmetric standard model
discussed in [13], this cubic restriction on W will require
that we include a supermultiplet that includes the dilaton �
as part of the fields in our theory so that we can generalize
to W�’;��. This would be used to drive the spontaneous
breakdown of the electroweak SU�2� � U�1� gauge sym-
metry, as demanded by phenomenology. This point is
elaborated in more detail in the comments following
Eq. (2.3).

B. Supersymmetry transformations

SUSY transformations in 2T physics in 4� 2 dimen-
sions with N supersymmetries were formulated for the 2T
superparticle on the worldline [4,5]. These form the super-
group SU�2; 2jN� as the global symmetry of the super-
particle, and therefore this is the supersymmetry in the
field theory version in 4� 2 dimensions. Here we concen-
trate on N � 1 supersymmetry with the supergroup
SU�2; 2j1�. The fermionic parameter "L is a left-handed
spinor (just like  L) in the 4 representation of SU(2,2). We
also note the right-handed charge conjugate "R � C �"TL
which is not independent of "L ( just like  R), and classified
as the 4 of SU(2,2)

We introduce the SUSY transformations of the chiral
multiplet �’; L; F�i off shell

 �"’i � �"R �X iL �
1
2X

2 �"R� �@ iL �U
y
ij 

j
R� � �

1
"’i;

(3.11)

 �" iL � i�@’i�"R � iFi"L; (3.12)

 �"Fi � �"L�X �@� �X � @� 2�� iL � �1
"Fi: (3.13)

The additional pieces �1
"’i, �1

"Fi [given in Eq. (2.11) and
(2.14) and explained in Sec. V] are proportional to the
gauge coupling constants g and are needed when vector
supermultiplets are coupled to chiral supermultiplets. In
this section we assume the chiral supermultiplets on their
own, so we will take �1

"’ijg�0 � �1
"Fijg�0 � 0. In the

absence of interactions among the chiral multiplets the
coefficient Uyij is also absent, but with interactions we
will see that Uyij must satisfy Uyij �

@2W�

@’yi@’yj
� 3!y�ijk’

yk

where W�’� will turn out to be the superpotential of
Eqs. (2.8) and (2.10). The last line may be rewritten as
�"Fi � � �"L�

1
2i�

MNLMN � 2� iL � �
1
"Fi as in Eqs. (3.4)

and (3.5).
There are some parallels and some differences between

these 4� 2 SUSY transformations and the familiar ones in

3� 1 dimensions. In particular, the terms proportional to
X2 and �X � @� 2� in �"’i and �"Fi, respectively, have no
parallels in 3� 1 dimensions, as noted following
Eq. (2.18).

The transformation of the Hermitian conjugate fields
�’�; � L; F��i is derived from above by using the
Hermiticity properties of gamma matrices given in
Eqs. (B27)–(B32)

 �"’yi � � iLX"R �
1
2X

2� � iL@
 
�Uij � Ri�"R � �1

"’yi;

(3.14)

 �" � iL � i �"R� �@’
yi� � i �"LF

yi; (3.15)

 �"Fyi � � � iL�@
 

�X��@ � X� 2��"L � �1
"Fyi: (3.16)

The transformation of the charge conjugate fields
�’�;  R; F

��i, in terms of  iR instead of � iL, are obtained
by using the properties given in Eqs. (B42)–(B47)

 �"’
yi � �"LX 

i
R �

1
2X

2 �"L�@ 
i
R �U

ij iL� � �
1
"’
yi;

(3.17)

 �" iR � �i� �@’
yi�"L � iFyi"R; (3.18)

 �"Fyi � �"R� �X@� �X � @� 2�� iR � �
1
"Fyi: (3.19)

The last line may be rewritten as �"Fyi �
� �"R�

1
2i

��MNLMN � 2� iR � �
1
"Fyi.

We will first show that the free action S0 is invariant off
shell in the absence of interactions provided the matrix U,
Uy is dropped in the transformation rules (3.11)–(3.19).
When Sint is included we will show that, unlike SUSY in
3� 1 dimensions, S0, Sint cannot be made separately in-
variant. However, by including the U;Uy terms in the
transformation rules (3.11)–(3.19), the total action Schiral

tot �
S0 � Sint will be invariant off shell in 4� 2 dimensions.

We begin with the free action in the form of Eqs. (3.3)–
(3.5). Its variation is

 

�"S0 �
Z
d6X����X2�@M’y@M��"’� � 2�0�X2�’y�"’

� ��X2�fi��" � L��X �@� �X � @� 2�� L

� Fy��"F�g� � H:c: (3.20)

Inserting the SUSY transformation given above we get
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�"S0 �
Z
d6X

�
���X2�@M’y@M

�
�"R �X L �

1

2
X2 �"R� �@ iL �U� R�

�
� 2�0�X2�’y

�
�"R �X L �

1

2
X2 �"R� �@ L �U� R�

�

� i��X2��i �"R� �@’y� � i �"LFy��X �@� �X � @� 2�� L � ��X2�Fy �"L�X �@� �X � @� 2�� L

�
� H:c: (3.21)

In the first line, after using the properties X2��X2� � 0 and X2�0�X2� � ���X2�, the terms containing X2 simplify to
��X2��X � @� 1�’y �"R� �@ iL �U

�
ij 

j
R�. In the last two lines, the terms proportional to Fy �"L cancel each other. The

surviving terms from all lines take the form of a total divergence plus a term proportional to U, Uy as follows:

 �"S0 �
Z
d6Xf@M���X

2�VM0 � � ��X
2���X � @� 1�’yi�U�ij �"R 

j
R�g � H:c: � 0: (3.22)

Hence, in the free theory, by dropping the U, Uy terms in
the transformation laws, and dropping the total divergence
with proper boundary conditions, we have demonstrated
that we have a supersymmetric action �"S0 � 0. Here VM0
is given by9

 

VM0 � �"Rf��@
M’y� �X� ��M�X � @� 1�’y

� �@’yX ��M � XM� �@’y�g L (3.23)

 � �"Rf ��
M’yi � ��MNKXN@K’yig iL: (3.24)

Now using the generalized Noether’s theorem we obtain
the part of the conserved current �JMR �0 coming from the
free action S0

 �" R�J
M
R �0 � H:c: �

�
@L

@�@M’�
�"’� � � L

@L

@�@M � L�

�
@L

@�@MF�
�"F� ��X2�VM0

�
� H:c:;

(3.25)

where the last term is obtained from the total divergence in
Eq. (3.22). For consistency of this computation we must
use again the form of the action in Eqs. (3.3)–(3.5). Noting
that @L

@�@M � L�
� @L

@�@MF�
� 0, only the first and last terms con-

tribute. This gives the current which we write in several
equivalent forms

 

�"R�J
M
R �0 � ��X2� �"R� �@’

yX ��M � XM� �@’y�

� ��M�X � @� 1�’y� L (3.26)

 � ��X2� �"R�� ��MPQXP@Q’
y � @M� �X’y�� L (3.27)

 � ��X2� �"R� ��
QP ��M � 	MP ��Q� L@Q�XP’y� (3.28)

 � ��X2� �"R

�
1

2i
� ��MPQLPQ’y� ��

M � @M� �X’y�
�
 L:

(3.29)

One can check explicitly that this current is conserved
when we use the equations of motion for the free action.

Now we turn to the interaction term Sint in Eq. (3.9) and
investigate its transformation properties under SUSY for
any W. Inserting the transformation rules above we get
after some simplifications

9The various terms in Eq. (3.27) contribute to the various terms
in Eq. (3.21) as follows. The subscripts in f� � �gn denote terms
that should be combined together for the same n

 @M����X2��@M’y� �"R �X6  L� � f���X2�@M’y@M� �"R �X6  L�g1

� f�2�0�X2��X � @’y� �"R �X6  Lg2

� f���X2��@2’y� �"R �X6  Lg6;

 

@M���X
2� �"R ��M��X � @� 1�’y� L�

� f�0�X2�2�X � @� 1�’y �"R �X6  Lg2

� f��X2���X � @� 1�’y� �"R �@6  Lg4

� f��X2� �"R��X � @� 2�� �@6 ’y�� Lg7;

 

@M����X
2� �"R� �@6 ’

yX6 ��M� L�

� f���X2��� �"R� �@6 ’
y�X6 �@6 � L�g3 � f��X

2�� �"R�@
2’y� �X6 � Lg6

� f�2��X2�� �"R��X � @� 2� �@6 ’y�� Lg7;

 @M���X2�XM �"R� �@6 ’y� L� � f��X2�� �"R� �@6 ’y���X � @� 2� L��g5

� f��X2� �"R��X � @� 2� �@6 ’y� Lg7:

The sum of these terms give the �"S0 in Eq. (3.21) after
cancelling the Fy �"L terms as follows:
 

�"S0 �
Z
d6X�f���X2�@M’y@M� �"R �X6  L�g1

� f2�0�X2�’y ��"RX6  Lg2 � f��X
2��X � @� 1�’y ��"R@6  Lg4

� ��X2� �"R �@6 ’y�fX6 �@6 g3 � f�X � @� 2�g5� L� � H:c:
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�"Sint �
Z
d6X��X2�

��
@W
@’i

�"L�X �@� �X � @� 2�� iL:

�
@
@’i

�
@W
@’j

�
@M’i �"L�M �X� L�j

�

�
i
2
� Li�TC �X Lj���"L�TC �X Lk

�
@3W

@’i@’j@’k

�

� H:c:
�
: (3.30)

One of the crucial observations here is the gamma matrix
identities for SU�2; 2� � SO�4; 2�

 

1
8 ��

MN��

��MN�


� � 1
4��


�
� � ����

: (3.31)

Using this identity, and the fact that C �X is an antisymmet-
ric matrix, we see that the @3W

@’i@’j@’k
term drops out due to a

Fierz identity proven in Appendix C. Then �"Sint takes the
form of a total divergence plus a term proportional to @W

@’j
,

@W�

@’�j , as follows:
 

�"Sint �
Z
d6X

�
@M���X

2�VM1 �

� ��X2�
@W�

@’�j
�"R�X � @� 2� jR�

�
� H:c:; (3.32)

where

 VM1 � �
@W�

@’�j
�"R� ��

MX� jR: (3.33)

So, in the presence of the U, Uy terms in the transforma-
tion laws, neither S0 nor Sint on their own are invariant.
However, the terms proportional to U, Uy, in Eq. (3.22)
combine to a total divergence with the terms proportional
to @W

@’j
, @W

�

@’�j in Eq. (3.32), in the form @M���X2�VM2 � H:c:�,

with

 VM2 � XM
@W�

@’�j
�"R 

j
R; (3.34)

provided

 Uij �
@2W
@’i@’j

; Uyij �
@2W�

@’�i@’�j
; (3.35)

and

 Uij’j � 2
@W
@’i

; Uyij’
�j � 2

@W�

@’�i
: (3.36)

These conditions require W�’� to be a purely cubic, but
otherwise arbitrary, function in the scalar fields ’i. Thus
only in the case of a cubic superpotential

 W�’� � yijk’i’j’k; (3.37)

with arbitrary dimensionless constants yijk which should
be made compatible with other desired symmetries, we get

a total divergence for the SUSY variation of the total action
by putting together Eqs. (3.24), (3.33), and (3.34),

 �"Schiral
tot �

Z
d6X@M���X2��VM0 � V

M
1 � V

M
2 �� � H:c:;

(3.38)

which implies that the total action is supersymmetric
�"�S0 � Sint� � 0 off shell.

The fact that the superpotential W�’� is purely cubic,
and therefore the F-term of the potential VF � j@W=@’ij2

is purely quartic, is in agreement with what we should have
expected on the basis of the 2T-gauge symmetry, even
without supersymmetry, as discussed in [12,13]. How-
ever, it is interesting that by demanding supersymmetry
we also arrive independently at the same conclusion that
only purely quartic interactions are admitted in the field
theoretic formulation of 2T-physic in 4� 2 dimensions.
This automatically implies a renormalizable field theory as
easily seen from the perspective of 3� 1 dimensions.

Since the total divergence is not trivial, the conserved
current gets contributions from both S0 and Sint and is
given by

 �" R�J
M
R �

chiral � �"R��J
M
R �0 � ��X

2��VM1 � V
M
2 ��; (3.39)

where �"R�J
M
R �0 is given in Eq. (3.26). Hence the super-

current is
 

�JMR �
chiral � ��X2�

�
� ��QP ��M � 	MP ��Q� iL@Q�XP’yi�

�
@W�

@’�j
XN ��MN jR

�
: (3.40)

By using the equations of motion for the self interacting
chiral multiplets that follow from �S0 � Sint�, one can
verify that the full SUSY current constructed above is
conserved

 @M�J
M
R �total � 0: (3.41)

IV. VECTOR SUPERMULTIPLET IN 2T PHYSICS

We now turn to the vector supermultiplet �AM; �L; B�a in
the adjoint representation of the Yang-Mills gauge groupG
and at first examine it by itself without coupling it to the
chiral supermultiplet.

We begin with an action of the following form suggested
by 2T-physics field theory for any Yang-Mills type gauge
theory in 4� 2 dimensions [13]
 

Lvector � ��X2�

�
�

1

4
FaMNF

MN
a �

1

2
BaBa

�
i
2
� ��aLX �D�aL � ��aLD �X�aL�

�
: (4.1)

This action is invariant under 2T-physics gauge symme-
tries and has just the right structure to get reduced to a
gauge theory in 3� 1 dimensions when gauge fixed as
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described in footnote 8, without any Kaluza-Klein left-
overs. In this form Ba could be integrated out and set equal
to zero through its equations of motion. But after coupling
to the chiral multiplet, integrating out the auxiliary field Ba

in the interacting theory will give rise to the so-called
D-term which is a ’4 interaction for the scalar fields in
the chiral multiplet.

We now propose the following supersymmetry trans-
formations in 4� 2 dimensions:
 

�"AaM � f�2b �"L�M �X�aL � bX
2 �"L�MNDN�aL � �

1AaMg

� H:c:; (4.2)

 �"�aL � ib�FaMN��
MN"L� � ia�Ba"L; (4.3)

 �" ��aL � ib� �"L�MN�FaMN � ia �"LB; (4.4)

 �"Ba � a �"L�X �D� �X �D� 2���aL � H:c: (4.5)

Here a and b are complex numbers whose values remain
arbitrary until they are fixed later when we include inter-
action with chiral multiplets [see (5.16)]. Also, �1AaM as
given in Eq. (2.15) is an additional piece that arises only
when chiral multiplets are coupled to vector multiplets and
is determined later in Eq. (5.23) for the coupled theory.
When vector supermultiplets are considered in isolation, as
in this section, the extra term vanishes ��1AaM� ! 0; how-
ever, we will include it in part of the computation for later
use.

The transformation of the gaugino �aL is similar to
ordinary supersymmetry transformation in 3� 1 dimen-
sion while the transformation of the auxiliary field Ba is
similar to the transformation law of F in the chiral multi-
plet except that here Ba is Hermitian. The first term in the
transformation of AaM also resembles the one in 3� 1
dimensions except that there is a �X inserted between �M
and �aL which breaks translation symmetry in 4� 2 di-
mensions. This insertion is required by the 2T-physics
structures and has just the correct form such that the
SUSY transformations in 4� 2 dimensions reduce to ordi-
nary superconformal transformations in 3� 1 dimensions
when one fixes the 2T gauge symmetry as described in
footnote 8.

Transformation of the action is

 �"L � ��X2�Ba��"Ba� � ��X2�FMNa DM��"AaN� (4.6)

 �
i
2
��X2����" ��aL��X �D�D

 
�X��aL� � H:c: (4.7)

 � i��X2�fabc��"A
a
M�

��bL�MN�cLXN: (4.8)

The last term i��X2�fabc��"AaM� ��bL�MN�cLXN vanishes by
itself, partly due to X2��X2� � 0 and partly because of the
nontrivial Fierz rearrangement identity proven in
Appendix C that follows the form of Eq. (3.31). The first

term in line (4.6) proportional to ��"Ba�which we define as
��"L�1 gives

 ��"L�1 � a��X2�B �"L�X �D� �X �D� 2���L � H:c:

(4.9)

In the second term in line (4.6) proportional to �"AaN,
which we define as ��"L�2, we first collect a total derivative
(suppressing the adjoint index a for less clutter)
 

��"L�2 � f�@Mf��X
2�FMN�"ANg

� ��X2��DMF
MN���"AN�

� �0�X2�2XMFMN��"AN�g (4.10)

and then insert �"A
a
N in the remainder. After using

X2��X2� � 0 and X2�0�X2� � ���X2�, we obtain
 

��"L�2 � f@Mf���X2�FMN�"ANg � 2b��X2��DMFMN�

� � �"L�N �X�aL � H:c:� � 2b�XMFMN�

� ���X2�� �"L�NPDP�L� � 2�0�X2� �"L�NP�aLX
P�

� �0�X2�2XNFNM��1AaM�g: (4.11)

Note that since ��1AaM� is proportional to X2 it survives
only when multiplied by �0�X2�. This term will be dropped
in this section since it is present only when there is cou-
pling to chiral multiplets; it will be taken into account later
in Eq. (5.22).

The term in line (4.7) proportional to �" ��aL which we
define as ��"L�3 takes the form
 

��"L�3 � �
1
2��X

2��b �"L��MNF
MN� � a �"LB�

� �X �D�L �D
 

�X�L� � H:c: (4.12)

We do an integration by parts to change the covariant
derivative hitting on �L to covariant derivative hitting on
FMN and change the covariant derivative hitting on B to
covariant derivative hitting on �L, and in this process
collect a total divergence

 

��"L�3 � f@M��
1
2a��X

2�B �"L�M �X�L �
1
2b��X

2 �"L�

� ��NPF
NP�X ��M�L�

� ��X2�aB �"L�X �D� �X �D� 2���L

� ��X2�b �"L��MNFMN��PQD
 P
XQ�L

� 2b��X2� �"L��MNFMN��Lg � H:c: (4.13)

This is further developed with some gamma matrix algebra

 �MN�PQ � �MNPQ � f	NP�MQ � 	MP�NQ � 	MQ�NP

� 	NQ�MPg � f	NP	MQ � 	MP	NQg;

(4.14)
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and simplifications due to the Bianchi identity
�MNPQ�D

PFMN� � 0.
Combining all the terms we find a total divergence after

cancellations

 

��"L�1 � ��"L�2 � ��"L�3

� @M���X
2�� �"LV

M
L � �"RV

M
R �

vector�; (4.15)

where �"LVML is

 � �"LVM�vector � f�FMN�� �"LAN� �
1
2aB �"L�M �X�L

� 1
2bF

PQ �"L�PQX ��M�L

� 2b�XQFQP� �"L�MP�Lg; (4.16)

and similarly for �"RVMR (obtained by replacing left $
right) which is the Hermitian conjugate of �"LVML (verified
via the formulas in Appendix B).

Hence we have shown that the Lagrangian (4.1) is
symmetric under the given SUSY transformations for any
complex numbers a and b. This means that in the trans-
formation rules (4.2), (4.3), (4.4), and (4.5) we can replace
a"L by an independent SUSY parameter b"L, so that the
SUSY symmetry of the Lagrangian (4.1) is actually twice
as large. However, we will see that we will have to fix a and
b relative to each other when there is interaction with chiral
multiplets [see Eq. (5.16)].

Noether’s theorem for the theory with only vector super-
multiplets in Eq. (4.1) gives the following supercurrent:
 

� �"LJ
M
L �

vector �
@L

@�@MAN�
�� �"LAN� � ��"

��L�
@L

@�@M ��L�

� ��X2�� �"LV
M
L �

vector (4.17)

and similarly for � �"RJMR �
vector. The part @L

@�@MAN�
�� �"LAN� �

�FMN�� �"LAN� cancels against an equal term in �"LV
M
vector

of Eq. (4.16). The part ��" ��L�
@L

@�@M ��L�
� ��X2���" ��L��

�i2 �MX�L� gives
 

��" ��L�
@L

@�@M ��L�
� ��X2�

�
�

1

2
bFPQ �"L�PQ�M �X�L

�
a
2
B �"L�M �X�L

�
: (4.18)

The piece proportional to a cancels against an equal term
in �"LV

M
vector. After these simplifications we are left with the

following terms proportional only to b �"L:
 

� �"LJ
M
L �

vector � ��X2�f�1
2bFPQ �"L�PQ��M �X� X ��M��L

� 2b�XQFQP� �"L�MP�Lg: (4.19)

By using gamma matrix identities (4.14) and (B2)–(B6) it
is convenient to bring this to the following alternative

forms:

 � �"LJML �
vector � b��X2�FPQXN �"L��PQNM

� 2	MP�Q ��N��L (4.20)

 � b��X2�FPQXN �"L��PQN ��M � 	NM�PQ

� 2	MP	NQ��L: (4.21)

The form in the last line makes it easy to check that this
current is conserved @M� �"LJML �

vector � 0 as follows. After
using some of the equations of motion, in particular
XNFMN � 0 and10 �X �D� 2��L � 0 plus the Bianchi
identity D�MFPQ� � 0, the divergence of the current be-
comes proportional to the remaining equations of motion
X �D�aL and DMFaMQ as follows:

 @M� �"LJML �
vector � ��X2�fFPQ �"L�PQX �D�L

� 2 �"L�QN�LXN�D
MFMQ�g

� sources: (4.22)

In the absence of coupling between the vector and chiral
multiplets the sources in the equations of motion are

 X �D�aL � 0; DMFaMQ � gfabc� ��bL�QP�cL�X
P: (4.23)

Therefore, we obtain

 

@M� �"LJML �
vector���X2�2fabcXNXP �"L�QN�aL ��bL�QP�cL� 0;

(4.24)

where in the last step we have used the Fierz identity (C2)
in Appendix C which is valid only in special dimensions
[in particular valid for SO(4,2)]. Hence, the pure vector-
multiplet current is conserved by itself, @M�JML �

vector � 0.
The conservation of the current amounts also to a proof of
SUSY for the theory of Eq. (4.1) that supplies the equations
of motion.

The Hermitian conjugate of this conserved current can
be written as the right-handed current (see Appendix B for
Hermitian and charge conjugation properties of gamma
matrices)

 � �"RJ
M
R �

vector � b���X2�XNF
a
PQ �"R� ��

PQN�M

� 	NM ��PQ��aR: (4.25)

Here we have dropped the term proportional to XNFMN

10From XNFaMN � 0 it follows that �X �D� 2�FaMN � 0. This
is needed, along with the other equations, to prove Eq. (4.22).
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since the current can be modified by terms proportional to
the equations of motion, and one of them happens to be
XNF

MN � 0. The corresponding term should then be
dropped also from �"LJ

M
L in Eq. (4.21).

Although we do not discuss it in detail, it is worth
mentioning that the currents �JML ; J

M
R �

vector are invariant
under the 2T-gauge transformations [13] for the fields
�AaM; �

a
R; B

a�, and therefore they are gauge invariant physi-
cal observables from the point of view of all the gauge
symmetries.

V. SUPERSYMMETRIC 2T PHYSICS WITH FIELDS
OF SPINS 0, 1

2 , 1

The next step is to couple chiral supermultiplets
�’; L; F�i minimally to vector supermultiplets
��L; AM; B�a to describe gauge interactions. This requires
more than promoting the ordinary derivatives to covariant
derivatives, namely, more interaction terms also need to be
added (the �,
 terms) as in the full action in Eqs. (2.3) and
(2.6). Once SUSY is achieved we will calculate the full
conserved supercurrent for the coupled theory.

The full SUSY transformation rules for the chiral mul-
tiplet are the gauge-covariantized versions of those given in
Eqs. (3.11)–(3.19), but including also the nonzero extra
terms ��1

"F; �1
"’� which will be determined below in

Eqs. (5.6) and (5.24). Similarly, the SUSY transformation
rules for the vector multiplet are those given in Eqs. (2.15)–
(4.5) but with the extra nonzero term �1

"A which is deter-
mined below in Eq. (5.23).

We will see that the parameters �, 
, a, b will be fully
fixed [see Eq. (5.16)]. Eventually when we construct su-
pergravity in the 2T formalism, the dilaton and its partners
will also contribute to the transformation rules and restrict
the possible parameters such as � and V��; ’� which
appear in Ldilaton. In this section the dilaton and its partners
will be neglected, so we will assume the case with Ldilaton

set to zero. With all these points taken into account, the full
SUSY transformation rules will be shown to be those given
in Eqs. (2.11)–(2.18).

Thus we consider the full Lagrangian of Eq. (2.3), with-
out a dilaton � written in three pieces L � Lvector �
Lchiral � Lint. Here Lvector is identical to Eq. (4.1), Lchiral

is the gauge-covariantized version of S0 � Sint of
Eqs. (3.3), (3.4), and (3.9), and Lint is the expression given
in Eq. (2.6). The full SUSY variation of the parts Lvector �
Lchiral is almost identical to the variations discussed in the
previous sections for the uncoupled multiplets, except for
replacing all derivatives by covariant derivatives in Lchiral,
and taking into account extra terms that appear as follows:

(1) Varying AM that occurs in the covariant derivatives
�"Lchiral !

@Lchiral

@AaM
��"AaM�.

(2) The effect of the extra �1
"F term �"Lchiral !

�@Lchiral

@Fi
�1
"Fi � H:c:�.

(3) New terms that arise in �"Lchiral due to changing of

orders of noncommuting covariant derivatives.11

(4) The effect of the extra �1
"’; �

1
"A terms in the varia-

tion of �"�Lvector � Lchiral�. We leave these for last
because they are both proportional to X2 so they
drop out in most terms due to the overall ��X2� in
the Lagrangian. They can contribute only through
the variation of the kinetic terms and through the
terms in the action proportional to �0�X2�.

Hence, for �"�Lvector � Lchiral� we can use the results of
the previous sections plus the extra modifications listed
above, and then add the full variation of the coupling term
�"Lint. So, the computation is organized as follows:

 �"L � @M�� �"LVML � �"RVMR �
chiral � � �"LVML � �"RVMR �

vector�

(5.1)

 � �"Lextra
1�2�3 � �"Lint � �"Lextra

4 : (5.2)

In the second line the subscripts indicate the variations that
correspond to the items listed above. The first line is the
total divergence results of Eqs. (3.38) and (4.15), where
�VML;R�

vector are identical to Eq. (4.16), while �VML;R�
chiral is

given in Eq. (3.41) except for replacing all derivatives by
covariant derivatives.

The three items in �"Lextra
1�2�3 give the following contri-

butions:

 �"L
extra
1�2�3 � ��X2�g��"A

a
M���i’

ytaD
$

M’

� XN � L�NMta L� (5.3)

 � ��X2���1
"F
yi�

�
Fi �

@W�

@’�i

�
� H:c: (5.4)

 � i
g
2
��X2��FMN’�i �"L���MNX� 2�MXN� iR � H:c:

(5.5)

It is evident that ��1
"Fyi� must be chosen to cancel terms

proportional to Fi coming from varying the coupling term
�"Lint. The only new contribution proportional to Fi is the
variation of  in the coupling term �"Lint given explicitly
below. As will be verified below, this fixes uniquely the
extra piece in the SUSY transformation of Fi, Fyi as

 ��1
"F
yi� � i
�"TL�C �X��aL��’

yta�i: (5.6)

11The terms proportional to �DM;DN� 
 FMN can be obtained
by going over the computations in footnote 9 and replacing
covariant derivatives in all appropriate places. The terms that
arise from commuting covariant derivatives has the form
��X2���DM;DN�’

y�i �"R�
1
2

��MN �X� ��MXN� Li � H:c:, where we
replace �DM;DN�’

y � ig�’yFMN�
i. To obtain the expression in

Eq. (5.5) we prefer to use the Hermitian conjugate version of this
expression �ig��X2��FMN’�i � iL��

1
2X�MN � �MXN�"R �

H:c:, where we have used Eqs. (B28), and then use the
Majorana properties of Eqs. (B38)–(B40), to rewrite it in the
form �ig��X2��FMN’�i �"L�

1
2 � MNX� �MXN� iR � H:c:
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Inserting this ��1
"F
yi� and ��"AaM� from Eq. (4.2) into

�"L
extra
1�2�3 we obtain

 �"L
extra
1�2�3 � �2bg��X2�f�i� �"L�M �X�aL��’

ytaDM’�

� � �"L�MN�aL�� � L�PMta L�XNXPg � H:c:

(5.7)

 � ��X2�i
�"TL�C �X��aL��’
yta�i

�
Fi �

@W�

@’�i

�
� H:c:

(5.8)

 � i
g
2
��X2� �"L���MNX� 2�MXN� iR�FMN’�i � H:c:

(5.9)
Next we compute �"Lint by varying Eq. (2.6)

 �"Lint � ���X2�f��’yta’� � �a�2���"B
a�

� ��"’
yta’�B

a � H:c:g (5.10)
 

� 
��X2�f��"’y�ta�� L�T�C �X��aL�

� ’yta���" L�T�C �X��aL� � ��" ��aL�X Rta’g

� H:c: (5.11)

We insert the ��" ��aL� in Eq. (4.4) and �"’
yi, �" iL in

Eqs. (3.11)–(3.19) with gauge covariant derivatives replac-
ing ordinary derivatives. After dropping the terms
X2��X2� � 0 we obtain
 

�"Lint � ���X2�fa�’yta’�� �"L��MNXMDN � 2��aL�

� Ba� �"LX iR��ta’�ig � H:c: (5.12)
 

� 
��X2�f� �"LX Rta�i� TiL�C �X��aL�

� i�’ytaDM’� �"L�M �X�aL

� i�’yta�iFi�"
T
L�C �X��aL�ibF

a
MN� �"L�MNX iR��ta’�i

� iaBa� �"LX 
i
R��ta’�ig � H:c: (5.13)

Note that the terms proportional to Fi, that appear in
Eqs. (5.8) and the third line of Eq. (5.13), cancel by the
choice of ��1

"F
yi� of Eq. (5.6) as anticipated. To cancel

some of the other terms in the sum �"L
extra
chiral � �"Lint we fix

the unknown coefficients �;
; a; b as follows:
(i) � � �i
a, cancels terms proportional to Ba that

appear in the last lines of Eqs. (5.12) and (5.13).
(ii) 
b � g

2 , cancels partially terms proportional to
FaMN that appear in Eqs. (5.9) and (5.13). The left-
over is

 ig��X2�� �"L�M iR��FMN’�iX
N � H:c: (5.14)

(iii) 
 � 4bg, cancels partially terms proportional to
�’ytaDM’� that appear in Eqs. (5.7) and (5.13).
The leftover is �2ibg��X2��
� �"L�M �X�aL�DM�’yta’� which can be rewritten in
the following form by using the gamma matrix
identities �M �X � �MNXN � XM

 

� 2ibg��X2��DM�’yta’�� �"L�MN�aL�X
N

� � �"L�aL���X �D� 2��’yta’��

� 2� �"L�
a
L��’

yta’��: (5.15)

Furthermore, using the same 4bg � 
, the charge
conjugation property  R � C � TL, and a Fierz iden-
tity, we cancel the terms of the form �"� �  XX that
appear in (5.7) and (5.13).

(iv) 2�a � 4ibg, cancels the terms of the form
�’yta’�� �"L�

a
L� that appear in the first line of

Eq. (5.12) and the last line of Eq. (5.15)
From these conditions the unknown coefficients are

completely fixed as a � �i
��������
1=2

p
, b � �0

��������
1=8

p
,� � ��0

g, 
 � �0
���
2
p
g. The �, �0 signs can be absorbed by a

redefinition of the signs of �, Bwherever they appear in the
Lagrangian and transformation rules. Therefore it is suffi-
ciently general to choose one set of signs for these coef-
ficients, thus we settle with the upper signs

 a � i
1���
2
p ; b �

1

2
���
2
p ; � � g; 
 �

���
2
p
g

(5.16)

to agree with conventions in the case of 3� 1 dimensions.
The remaining terms that have not canceled so far come

from the first line of Eq. (5.12), the first and second lines of
Eq. (5.15), the remainder in Eq. (5.14), and the term
proportional to @W�

@’�i in Eq. (5.8). These are collected below

after inserting the constants above

 �"Lextra
1�2�3 � �"Lint (5.17)

 �
ig���

2
p ��X2���’yta’�� �"L�MNXMDN�aL�� � H:c: (5.18)

 

�
ig���

2
p ��X2��DM�’

yta’�� �"L�MN�
a
L�X

N

� � �"L�aL���X �D� 2��’yta’��� � H:c: (5.19)

 � ig��X2�� �"L�M iR��FMN’�iX
N � H:c: (5.20)

 � i
���
2
p
g��X2��’yta�i

@W�

@’�i
�"TL�C �X��aL� � H:c: (5.21)

The last term vanishes because W� is gauge invariant,
which requires �’yta�i @W

�

@’�i � 0 as in Eq. (2.10).

The remaining terms assemble into a total divergence
plus terms that are proportional to the subset of equations
of motion that imply homogeneity conditions on the fields
��X �D� 2��’yta’�� and FMNXN . These would vanish by
the (homogeneity) subset of equations of motion on mass
shell. However, off-mass shell they can be canceled by
additional pieces �1

"’i, �1
"AaM in the SUSY transformation
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of ’, AaM, by taking �1
"’i, �1

"A
a
M to be proportional to X2.

These extra pieces generally drop out in most terms in the
SUSY variation of the Lagrangian due to X2��X2� � 0 but
survive in some of the kinetic terms and the terms that
contain �0�X2�. The �1

"’i, �1
"AaM variation of the

Lagrangian �"�Lvector � Lchiral� are also proportional to
the subset of equations of motion ��X �D� 2��’yta’��
or FMNXN , as follows:
 

�"Lextra
4 � 2�0�X2��XNFNMa ��1

"AaM

� 2�0�X2���X �D� 1�’yi��1
"’i � H:c: (5.22)

Therefore, we can add the extra pieces �1
"’i, �1

"AaM to the
variation of ’i, AaM to cancel the terms noted above. So we
choose

 �1
"A

a
M � �i

g
4
X2� �"L�M 

i
R��ta’�i � H:c:; (5.23)

 �1
"’i � �i

g

2
���
2
p X2� �"L�aL � ��L"L��ta’�i: (5.24)

Then we obtain the following expression

 �"L
extra
1�2�3 � �"Lint � �"L

extra
4 (5.25)

 

�
ig���

2
p ��X2���’yta’�� �"L�MNXMDN�aL�

�DM�’
yta’�� �"L�MN�

a
L�X

N� � H:c: (5.26)

 � @M���X
2�� �"LV

M
L � �"LV

M
R �

int�: (5.27)

In the final form we see that we have obtained a total
divergence, with �"L�V

M
L �

int and its Hermitian conjugate
�"R�V

M
R �

int given by

 �" L�VML �
int � �

ig���
2
p ��X2��’yta’�� �"L�MNXN�aL�; (5.28)

 �" R�V
M
R �

int �
ig���

2
p ��X2��’yta’�� �"R ��MNXN�

a
R�: (5.29)

We have shown that under the SUSY transformations the
total Lagrangian (in the absence of the dilaton) transforms
into a total divergence. Using the form of the divergence
given in (5.27), and the previous pieces in the total diver-
gence noted in Eq. (5.1), we compute the conserved SUSY
current by applying Noether’s theorem. The result is given
by Eqs. (2.19) and (2.20).

a. Conservation of the supercurrent

In this section, we prove the conservation of the super-
current obtained above. For clarity, we separate the super-
current into pieces and calculate one by one

 �JMR �
total � f�JMR �

chiral � �JMR �
vector � �JMR �

intg; (5.30)

 

�JMR �
chiral � ��X2�

�
DK�XN’yi�� ��

KN ��M � 	MN ��K� iL

�
@W�

@’�j
XN ��MN jR

�
; (5.31)

 �JMR �
vector � ��X2�

1

2
���
2
p fFaKLXN� ��

KLN�M

� 	NM ��KL��Rag; (5.32)

 �JMR �
int � ��X2�

�
�
ig���

2
p ’yi�ta’�i ��

MN�RaXN

�
: (5.33)

By using the equations of motion that follow from (2.3) one
can check explicitly that this current is conserved as fol-
lows. We first drop terms that vanish because of the homo-
geneity conditions for on shell fields. Then we get
 

@M�J
M
R �

chiral �

�
�D’yiX �D iL � �D

2’yi� �X iL

�
�g
2
�FMN’

y�i�MN iL �
@Wy

@’yi
�XD iR

�
@2Wy

@’yi@’yj
�D’yjX iR

�
; (5.34)

 @M�JMR �
vector �

�
�

1���
2
p DM�FaMP�XN ��PN�Ra

�
1

2
���
2
p FPQa ��PQ �XD�Ra

�
; (5.35)

 @M�J
M
R �

int �

�
�
ig���

2
p @N�’

yi�ta’�i� ��
MN�RaXM

�
ig���

2
p ’yi�ta’�i �XD�Ra

� 2
ig���

2
p ’yi�ta’�i�Ra

�
: (5.36)

Next we use the equations of motion to verify the conser-
vation of the current. All of the following equations, and
their Hermitian conjugates, should be multiplied by ��X2�,
so they are required to be satisfied only at X2 � 0

 �X �D� 1�’i � �X �D� 2�Fi � �X �D� 2�Ba

� XNFaNM � 0; (5.37)

 �X �D� 2� iR � �X �D� 2��aR � 0; (5.38)
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D2’yi �
@2W
@’i@’j

Fj �
i
2

� RjC �X Lk
@3W

@’i@’j@’k

� g�’yB�i �
���
2
p
g� � Lta�iX�aR � 0; (5.39)

 

�DMF
MN�a � ifabc ��Lb�MN�LcXM � ig’

ytaD
$

N’

� gXM � L�MNta L � 0; (5.40)

 i �XD iR � i �X Lj
@2W
@’i@’j

�
���
2
p
g�’yta �X�aL�

i � 0; (5.41)

 Ba � g’yi�ta’�i � 0; Fi �
@Wy

@’yi
� 0; (5.42)

 i �XD�aR �
���
2
p
g’yi�ta �X L�i � 0: (5.43)

The first two equations impose homogeneity conditions on
the fields, while the others control the dynamics. In the
absence of the interaction given by Lint, we had already
proven that �JMR �

chiral and �JMR �
vector were conserved. In the

presence of the interaction Lint the surviving terms come
from the sources in the equations of motion provided by
Lint. Indeed we find

 @M�J
M
R �

chiral � source �interaction with vector multiplet from Lint� (5.44)

 � ��X2�

�
i
���
2
p
g �D’yiX��R’�i � g�’yB�i �X iL �

���
2
p
g� � LX�R�i �X iL �

�g
2
�FMN’y�i�MN �X iL

�
(5.45)

 

� ��X2�

�
�i

���
2
p
gXMDN’yi�MN��R’�i � i

���
2
p
g�X �D’yi���R’�i � g�’yta�i��g’yi�ta’�i� �X iL

�
���
2
p
g� � LX�R�

i �X iL �
�ig

2
�FMN’

y�i�MN �X iL

�
; (5.46)

where we have used the Fierz identity of Eq. (C1), the gauge invariance ofW�’� as given in Eq. (2.10), and the equations of
motion to substitute for Ba.

For the supercurrent arising from vector multiplet a similar argument gives

 @M�JMR �
vector � source �interaction with chiral multiplet from Lint� (5.47)

 � ��X2�

�
1���
2
p �ig’ytaD

$

P’� gXM � L�MPt
a L�XN ��PN�Ra �

ig
2
FPQa ��PQ’

yi�ta �X L�i

�
; (5.48)

where we have used the Fierz identity of Eq. (C2). Inserting these results in Eqs. (5.34), (5.35), and (5.36) to construct
@M�JMR �

total as the sum of these, and cancelling terms due to the relation

 ��X2�

� ���
2
p
g� � LX�R�i �X iL �

1���
2
p gXM � L�MPt

a LXN ��PN�Ra

�
� 0; (5.49)

which follows from the Fierz identity in Eq. (C1), we get
 

@M�JMR �
total � ��X2�

�
�i

���
2
p
g�DN’yi��ta’�i�XM�MN�aR� �

ig���
2
p ��’yta�iD

$

N’i��XM ��MN�aR�

�
ig���

2
p @N�’

yi�ta’�i��XM ��MN�aR�
�
� 0; (5.50)

which is seen to sum up to zero. This proves the conser-
vation of the total supercurrent.

VI. PHYSICS CONSEQUENCES AND FUTURE
DIRECTIONS

In this paper we have explicitly constructed N � 1
supersymmetric field theory with fields of spin 0, 1

2 , 1 in

4� 2 dimensions, which is compatible with the theoretical
framework of 2T field theory and its gauge symmetries.

This represents another significant step in demonstrating
that 2T physics is sufficiently general to encompass all
possible physical phenomena in 1T physics. The impor-
tance of this is in the fact that 2T physics unifies many 1T-
physics systems with different dynamics in different
spacetimes (so different meanings of time and Hamil-

SUPERSYMMETRIC FIELD THEORY IN TWO-TIME PHYSICS PHYSICAL REVIEW D 76, 105028 (2007)

105028-17



tonian). By further pursuing this concept in the context of
supersymmetry we expect to obtain dually related 3�
1-dimensional supersymmetric field theories. This could
be used both as a tool to perform possibly nonperturbative
computations in supersymmetric 3� 1 field theory, as well
as a new avenue to investigate what is meant by ‘‘space-
time’’ and ‘‘unification.’’

The 4� 2 supersymmetry transformation is given here
off shell and is shown to leave invariant the action with all
consistent interactions included. The SUSY transforma-
tions are different from higher-dimensional N � 1 super-
symmetry transformations one would write down in 4� 2
dimensions naively. If we specialize to the on shell and
noninteracting version of our equations, we find agreement
with previous work [16] which was done at the level of
equations of motion without an action and only for free
fields. Despite the differences, the SUSY algebra, com-
bined with the SU�2; 2� � SO�4; 2� global symmetry of
any 2T field theory, close to form the Lie superalgebra of
SU�2; 2j1� for on shell fields, including interactions. We
checked this explicitly for the chiral multiplet as shown in
Appendix D, but we believe it to be true for the full
interacting theory. However, for off shell fields the closure
involves a tower of additional 2T gauge transformations.

The coupling of chiral and vector multiplets is studied
and is uniquely fixed by the supersymmetry algebra. But
unlike ordinary 1T supersymmetry, the supersymmetry for
2T field theory requires the superpotential in the theory to
be purely cubic, which is consistent with what is required
by 2T gauge symmetry. In the framework of 2T field theory
dimensionful parameters are not permitted by the 2T-gauge
symmetry. Therefore, to induce soft supersymmetry break-
ing it is desirable to couple the dilaton whose vacuum
expectation value plays the role of the desired dimension-
ful parameter. To maintain SUSY, the superpartners of the
dilaton should also be included.

After fixing the 2T gauge symmetry in a particular gauge
as mentioned in footnote 8, the 4� 2 supersymmetry
transformation SU�2; 2j1� reduces to the nonlinear super-
conformal transformation of the corresponding massless
fields in 3� 1 dimensions.

The emergent 3� 1 SUSY field theory in this gauge is
in most respects similar to standard SUSY field theory.
However, there are some interesting additional constraints
from the 4� 2 structure which would not be present in the
general 3� 1 SUSY theory. One of these is the banishing
of the troublesome renormalizable CP violating terms
[18,19] of the type �"����Tr�F��F���. This is good for
solving the strong CP violation problem in QCD without
an axion. This property of the emergent 3� 1 theory al-
ready occurs in the nonsupersymmetric 2T field theory as
described in [13], and continues to be true also in the
supersymmetric case.

Recalling also that the superpotential can only be purely
cubic, we see that phase transitions like supersymmetry

breaking and electroweak breaking need to be driven by the
dilaton vacuum expectation value, and hence according to
2T physics such phase transitions must be intimately re-
lated to the physics of the supergravity multiplet. The fact
that these phenomena are not allowed to be independent of
each other makes the 2T-physics approach physically more
appealing as described in footnote 2.

It appears that to investigate phenomenological conse-
quences of SUSY in the context of 2T physics, we will
need to construct the 2T formulation of supergravity which
includes the dilaton and its couplings to matter along with
the graviton. This is one of our immediate projects. We will
then be in a position to describe a 2T version of the
minimal supersymmetric standard model (MSSM), or its
extensions, including the dilaton. The new restrictions
imposed on it by 2T physics, and the corresponding phe-
nomenological consequences, could be of great interest for
phenomenological predictions at the LHC.

Generalization to extended supersymmetry with N � 2,
4, 8 is another research direction which is straightforward
and will be discussed in a following paper. This would
proceed by constructing the higher N theories from N � 1
blocks discussed generally in this paper. In this way the 2T
gauge symmetry is maintained while the higherN structure
puts more severe symmetry restrictions on the theory. The
higher N theories in 4� 2 dimensions will then become
laboratories for investigating nonperturbative phenomena
both from the point of view of the new 2T vistas as well as
from the point of view of earlier nonperturbative studies.
The latter would include studies such as the N � 2
Seiberg-Witten solution [20] or the N � 4 AdS-CFT phe-
nomena [21], but now directly in 4� 2 dimensions.

There are two ways to quantize the theory. First, solving
the kinematical equations at the classical level as described
in Appendix A, the theory can be quantized in the usual
way in 1T-physics field theory. This would yield a variety
of dual supersymmetric quantum field theories, which is
related to one another under duality transformations of the
type described in [22]. This should be valid at least at the
level of tree diagrams and most likely also at higher loops.
An alternative and maybe safer way to quantize the field
theory is to quantize directly in 4� 2 dimensions and then
solve the kinematic equations as Ward-type identities for
the covariantly quantized theory, thus arriving at the vari-
ous dual versions directly in the quantum theory. The
quantization of 2T-physics field theory directly in 4� 2
dimensions is still under development. This involves the
path integral approach, taking into account the 2T-physics
gauge symmetries discussed in Appendix A, and the cor-
responding Faddeev-Popov ghosts. More on this effort will
be reported in future publications.

Ultimately, the main impact of the 2T point of view is
likely to be along the ideas described in the first paragraph
of this section, so we emphasize this again: In coming
down to 3� 1 dimensions there are a variety of spacetimes
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that can be obtained through the gauge fixing of the 2T
gauge symmetry, and this is expected to generate a web of
dual supersymmetric field theories one of which is the
well-known 3� 1-dimensional chiral multiplets coupled
to the vector multiplets. We expect that nonperturbative
information can be obtained from such dualities. The
methods for performing this research will be discussed in
another paper [22].
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APPENDIX A: FROM SP�2; R�WORLDLINE
GAUGE SYMMETRY TO 2T FIELD THEORY

In this appendix we briefly outline the SP�2; R� gauge
symmetry in the worldline particle formalism and explain
its relation to the field theoretic action principle of Eq. (1.1)
and the 2T gauge symmetry at the field theory level. In
particular we want to clarify the origin of the delta function
��X2� that appears as part of the volume element in the
action principle. These issues have been explained in detail
in other papers [12,13], and the brief outline in this appen-
dix is an attempt to make the present paper self contained.

The idea of a fundamental SP�2; R� gauge symmetry
begins by noting that position and momentum appear at
an equal footing in the commutation rules of quantum
mechanics, or the Poisson brackets of classical mechanics,
as well as in initial boundary conditions, before a particular
system (Hamiltonian) is specified. The SP�2; R� symmetry
is part of canonical transformations that leave the symplec-
tic form dXMPM invariant. 2T physics arises by requiring
that this position-momentum Sp�2; R� global symmetry is
promoted to a gauge symmetry on the worldline that holds
at any instant, and for all motions.

It is useful to first consider the worldline description of a
1T massless scalar particle in Minkowski space described
by a worldline action of the form

 S �
Z
d�
�

_x�p� �
e
2
p�p�	

��
�
;

where 	�� is the Minkowski metric. This action has a
�-reparametrization symmetry on the worldline which is
sufficient to remove the negative norm states in the theory.
2T physics starts from generalizing this parametrization
symmetry to Sp�2; R� gauge symmetry on the worldline.
The Sp�2; R� gauge symmetry is just sufficient and neces-
sary for the existence of two timelike dimensions and
removing all ghost states. Further generalizations of this
approach to higher groups and/or higher timelike dimen-
sions does not seem to work for a variety of reasons to be
explained elsewhere, so 2T physics seems to be special.

The free spinless massless particle in 1T physics above,
as well as a host of other dynamical systems involving the
spinless particle in 1T physics, are all described and unified
by the following action in the 2T-physics formulation:

 S �
Z
d�
�

_X � P�
1

2
Aij���Qij�X;P�

�
: (A1)

Here Aij��� � Aji��� with i � 1, 2 is a symmetric matrix
that describes the three gauge fields for Sp�2; R� The three
charges Qij�X;P� are required to satisfy the algebra of
Sp�2; R� under Poisson brackets. Then this action is invari-
ant under the following local Sp�2; R� transformations:

 �!X
M �

1

2
!ij���fXM;Qij�X;P�g �

1

2
!ij���

@Qij

@PM
; (A2)

 �!PM �
1

2
!ij���fPM;Qij�X;P�g � �

1

2
!ij���

@Qij

@XM
;

(A3)

 �!Aij � D�!ij � @�!ij � Aik!
kj �!i

kA
kj; (A4)

where indices are raised/lowered with the completely anti-
symmetric Levi-Civita symbol "ij which is the Sp�2; R�
metric.

There are an infinite set of Qij�X;P�’s that satisfy the
required Sp�2; R� Lie algebra under Poisson brackets as
shown in [3]. The general case for Qij�X;P� allows for all
possible background fields in which the spinless particle
can propagate.

The simplest form of Qij�X;P� occurs for the flat back-
ground metric 	MN used to construct dot products

 Q11 �
1
2X � X; Q12 �

1
4�X � P� P � X�;

Q22 �
1
2P � P:

(A5)

At the outset 	MN is allowed to have any signature, but the
signature is later fixed by the gauge invariance of the
physical sector and by unitarity as described in the next
paragraph. This example of Qij�X;P�’s is just the tip of an
‘‘iceberg’’ in the realm of 2T physics. Most (but not all) of
the 2T physics discussion to date is based on this simplest
and manageable case, which is rather rich in content. The
construction of the 2T-physics version of the standard
model [13] as a field theory in 4� 2 dimensions, as well
as the supersymmetric generalizations of 2T-field theory
that we discuss in this paper and in [15] are also done in the
context of this simplest Qij�X;P� in the flat background.

The equations of motion for the gauge field Aij require
that all Sp�2; R� charges Qij�X;P� � 0 must vanish in the
physical sector. This simply means that the physical sector
is that part of phase space �XM; PM� which is gauge invari-
ant under Sp�2; R�. It is easy to see that a flat metric 	MN
with signature for 0 or 1 timelike dimensions gives only
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trivial solutions to X2 � P2 � X � P � 0 in the classical
case. So, the highly symmetric Sp�2; R� invariant motions
cannot be realized in a spacetime with zero or one timelike
dimensions. Nontrivial Sp�2; R� invariant classical solu-
tions are possible only if spacetime has two timelike
dimensions, or more. However, with more than two time-
like dimensions there is not enough gauge symmetry to
remove ghosts. Hence there can be no more and no less
than two timelike dimensions for correct description of
physics with the action in Eq. (A1). The same result holds
true for the general Qij�X;P�. So the two timelike dimen-
sions is an output of the Sp�2; R� gauge symmetry; it is not
an arbitrary input.

Examining further the possible gauge choices, one finds
that the highly symmetric motions that satisfy Qij�X;P� �
0 in d� 2 dimensions are effectively motions in one fewer
time as well as one fewer space dimensions, resulting in an
effective spacetime in �d� 1� � 1 dimensions with a
single timelike dimension. Hence the physical sector is in
agreement with the description of phenomena as formu-
lated in 1T physics. Furthermore, the theory is unitary and
satisfies causality.

The big payoff in 2T physics is the surprising fact that a
given set of Qij�X;P�, such as those in Eq. (A5), produce
many 1T-physics systems upon gauge fixing. An example
is provided by the particle systems listed in Table I which
emerge just from the special example with Qij�X;P� �
�X2; P2; X � P�. These systems are in different �d� 1� � 1
spacetimes with one time, with the same total dimension d.
They describe spinless particles with or without mass,
freely moving or subject to various forces, in curved or
flat spacetimes. The ‘‘etc.’’ is included because there are a
few more known cases of gauge choices, and also because
the complete set of emergent systems has not yet been
classified. For some recent details on these solutions see
Tables 1,2,3 in [22].

Such results in 2T physics describe relationships be-
tween these systems akin to dualities, with parameters
such as mass, coupling strength, curvature, etc. that emerge
as moduli in the embedding of phase space in �d� 1� � 1
dimensions into phase space in d� 2 dimensions.
Furthermore the formalism reveals a hidden symmetry
SO�d; 2� in all of these systems, which is just the global
symmetry SO�d; 2� of the flat background metric 	MN .

Although the results above relate to a simple example of
Qij�X;P�, they are sufficient to make the point that 1T
physics is incomplete since it is not equipped to predict
such new phenomena that emerge as natural outcomes
from 2T physics. These predicted phenomena can be veri-
fied both by computation within 1T physics and by experi-
mentation, showing the predictive power of 2T physics and
its status as a unifying structure above 1T physics.

One way to promote the worldline theory to field theory
is to do covariant first quantization by imposing the con-
straints Qij�X;P� on physical states

 X2j�i � 0; P2j�i � 0; �X � P� P � X�j�i � 0;

(A6)

and interpret the wave function in position space �̂�X� �
hXj�i as a field that satisfies the covariant quantization
conditions [11,13]. Since momentum is represented as a
derivative in position space hXjPM � �i@MhXj, the free
field (before interactions) must satisfy the following equa-
tions:

 X2�̂�X� � 0; @M@
M�̂�X� � 0;

XM@M�̂�X� � @M�X
M�̂�X�� � 0:

(A7)

One can also find a unique self-interaction consistent with
extending the Sp�2; R� gauge transformations in the pres-
ence of interactions. This was done most clearly by im-
plementing covariant quantization in the BRST formalism
in a way analogous to string field theory including inter-
actions [12], leading to the interacting action given below,
as described in detail in [12,13]. It turns out that the first
and last equations in (A7) are not modified, but the Klein-
Gordon type equation in the middle gets modified with a
source term on the right-hand side involving interactions
whose details are uniquely fixed by the BRST approach
[12] or by the 2T gauge symmetry [13] discussed below.

The field �̂�X� that satisfies the equations in (A7) is a
general superposition of the physical states that are gauge
invariant under Sp�2; R� including interactions. The gen-
eral solution of the first equation is

 �̂�X� � ��X2���X�; (A8)

where ��X� (without the hat )̂ is any function of XM which
is not singular at X2 � 0. This delta function, coming from
one of the Sp�2; R� conditions, is the origin of the delta
function that appears in the action in Eq. (1.1). The remain-
ing equations become the following conditions on ��X�

TABLE I. Particle systems that emerge in �d� 1� � 1 dimen-
sions from gauge fixing and solving two constraints X2 � X �
P � 0 in d� 2 dimensions.

Massless relativistic particle in Minkowski spacetime
Massive relativistic particle in Minkowski spacetime
Massive particle in nonrelativistic spacetime
Nonrelativistic particle in the �=r potential

(H-atom, celestial mechanics)
Harmonic oscillator in d� 2 space dims, with

mass � another dimension
Particle in the AdSd�n � Sn spacetimes, n � 0; 1; � � � ; �d� 2�
Particle in the R� Sd�1 spacetime
Particle in any maximally symmetric spacetime
Particle in the Robertson-Walker cosmological spacetimes
Particle in the cosmological constant spacetime
Particle in any conformally flat spacetime
Particle in a spacetime with a general function ��x�,

including singularities etc.
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[rather than �̂�X�]
 

��X2�

�
X �@�

d�2

2

�
�� 0;

��X2�

�
@M@M��

@V���
@�

�
�4�0�X2�

�
X �@�

d�2

2

�
�� 0;

(A9)

where the self-interaction is determined uniquely up to the
overall coupling constant � as mentioned above

 V��� � �
d� 2

2d
��2d=d�2�: (A10)

Equations of motion that are equivalent to these are
derived from the following action

 S��� �
Z
dd�2X��X2�

�
1

2
�@2�� V���

�
: (A11)

After an integration by parts, this action may also be
written as
 

S��� �
Z
dd�2X

�
��X2�

�
�

1

2
@M�@M�� V���

�

� �0�X2��2

�
: (A12)

As it turns out this action has local symmetries which are
evident already from the general solution �̂�X� �
��X2���X�. Namely, physics should not change under
the transformation

 ��X� ! ��X� � X2��X� (A13)

for arbitrary ��X�, since the physical state �̂�X� remains
unchanged due to the property of the delta function
X2��X2� � 0. Indeed it is argued in [13] that this symmetry
is valid for the theory in Eq. (A11) and is the underlying
reason for the uniqueness of the interaction given in
Eq. (A10).

The action as well the gauge symmetry Eq. (A13) was
extended to all fields with spin 0, 1=2 and 1 in [13]. In the
case of spinning fields, in particular, for fermions, the
gauge transformations Eq. (A13) were generalized to in-
clude a kappa-type fermionic symmetry. Such generalized
symmetries were called the 2T-gauge symmetry in 2T-
physics field theory. This gauge symmetry can be used to
eliminate parts of all these fields proportional to X2, as well
as parts of the field components (e.g. fermions in higher
dimensions) as gauge degrees of freedom, such that the
remaining degrees of freedom are in agreement with phys-
ics in 3� 1 dimensions.

It was shown in [13] that the standard model in 3� 1
dimensions emerges from such a field theory in 4� 2
dimensions after insuring that the SU�3� � SU�2� � U�1�
gauge bosons and quarks and lepton fields in 4� 2 dimen-
sions have been made part of the 4� 2 theory.

The reduction from 4� 2 dimensions to 3� 1 dimen-
sions involves two steps. The first is the elimination of
gauge degrees of freedom in the parts proportional to X2 by
using the 2T-gauge symmetries in field theory described in
Eq. (A13) and its generalization for every field. Generally
this step is SO(4,2) covariant. The second step is solving
two of the three equations in Eqs. (A8) and (A9) leaving
behind degrees of freedom in 3� 1 dimensions. The two
equations that are solved explicitly, namely X2 � 0 and the
homogeneity condition �X � @� d�2

2 �� � 0 do not involve
interactions. We call these two equations the kinematic
equations, while the remaining one is called the dynamical
equation.

Solving the two kinematical equations can be done in a
way parallel to the gauge fixing and solving the X2 � X �
P � 0 constraints for the particle on the worldline as
indicated in Table I. This is the step that produces the
surprising variety of the 3� 1 systems as listed in
Table I. These systems are therefore unified by dualities
which amount to Sp�2; R� gauge transformations. The
same dualities emerge in field theory including interactions
as discussed in detail in [22].

The standard model in 3� 1 dimensions correspond to
the case of solving the kinematic equations along the lines
of the massless particle gauge, which is the first item in
Table I. The same 4� 2 theory has also all the other dual
versions in 3� 1 dimensions listed in Table I, leading to a
set of field theories that are dual to the standard model. The
methods for investigating these dualities has been initiated
in [22] and is expected to lead to some nonperturbative
insights in field theory.

Much of the discussion above is at the level of classical
field theory. After solving the kinematical equations at the
classical level, the theory can be quantized in the usual way
in 1T-physics field theory. This would yield a variety of
dual quantum field theories as in Table I, which may be
compared to one another under duality transformations of
the type described in [22]. This should be valid at least at
the level of tree diagrams and most likely also at higher
loops. However, there is some danger that the procedure of
first solving the kinematic equations at the classical level
may miss some subtleties. It is safer to first quantize the
field theory directly in d� 2 dimensions and then solve the
kinematic equations as Ward-type identities for the cova-
riantly quantized theory, thus arriving at the various dual
versions directly in the quantum theory. The quantization
of 2T-physics field theory directly in d� 2 dimensions is
still under development. This involves the path integral
approach, taking into account the 2T-physics gauge sym-
metries discussed above, and the corresponding Faddeev-
Popov ghosts. More on this effort will be reported in future
publications.

This 2T-physics field theory formalism is the starting
point of our paper, as in Eq. (1.1), for generalizations to the
supersymmetric version of field theory in 4� 2
dimensions.
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APPENDIX B: GAMMA MATRICES FOR SO�d; 2�
AND SO�4; 2� � SU�2; 2�

We consider at first even dimensions d� 2 in general,
for a spacetime XM labeled by M, which forms the vector
basis of SO�d; 2�. There are two Weyl spinors labeled by �,
_�,

  L�;  R_�; (B1)

so there are two representations of gamma matrices ��M�
_

�

and � ��M�
_� in the left/right Weyl bases. The gamma matri-
ces must satisfy the anticommutation rules

 �M ��N � �N ��M � 2	MN; ��M�N � ��N�M � 2	MN;

(B2)

where 	MN is the SO�d; 2� metric with signature 	MN �
diag��;�;�;�; � � � ;��. Then the correctly normalized
SO�d; 2� generator JMN � LMN � SMN is represented on
the two spinors by the spin SMN � 1

2i�
MN or 1

2i
��MN where

 �MN � 1
2��

M ��N � �N ��M�;

��MN � 1
2�

��M�N � ��N�M�:
(B3)

Thus, when the M, N indices are different one gets �12 �

�1 ��2, etc. Similarly, antisymmetrized products of gamma
matrices applied on the two spinors are given by

 �MNK � 1
3��

MN ��K � �KM ��N � �NK ��M�; (B4)

 

��MNK � 1
3�

��MN�K � ��KM�N � ��NK�M�; (B5)

 �MNKL �
1
4��MNK�L � �NKL�M � �KLM�N

� �LMN�K�; etc: (B6)

Thus, when the M, N, K indices are different one gets
�123 � �1 ��2�3 and ��123 � ��1�2 ��3, etc.

An explicit form of SO�d; 2� gamma matrices �M in
even dimensions, labeled by M � 00, 10, � and � � 0, i
is given by
 

�00 � �i�1 � 1; �10 � �2 � 1;

�0 � 1� 1; �i � �3 � 
i;
(B7)

where 
i are the SO�d� 1� gamma matrices. The ��M are
the same as the �M for M � 00, 10, i, but for M � 0 � �
we have

 

�� 0 � ��0 � �1� 1: (B8)

It is useful to define a lightcone-type basis X�
0
� 1��

2
p �

�X00 � X10 � and the corresponding gamma matrices

 ��
0
�

1���
2
p ��00 � �10 � � �i

���
2
p
�� � 1: (B9)

In this basis the metric takes the form ds2 �

dXMdXN	MN � �2dX�
0
dX�

0
� dX�dX�	�� where

	�� is the Minkowski metric for SO�d; 1�. Explicitly we
write

 ��
0
�

0 �i
���
2
p

0 0

 !
; ��

0
�

0 0
�i

���
2
p

0

� �
;

�� �
�
� 0
0 �
�

� �
;

(B10)

 

���
0
�

0 �i
���
2
p

0 0

 !
; ���

0

�
0 0
�i

���
2
p

0

� �
;

��� �

� 0
0 �
�

� �
;

(B11)

where
 


� � �1; 
i�; �
� � ��1; 
i�; or 
� � ��1; 
i�;

�
� � �1; 
i�; (B12)

paying attention to the lower or upper � indices since the
SO�d; 1� metric is 	�� � diag��1; 1; 1; � � � ; 1�. It should
be emphasized that the 
�; �
� in ��� are switched relative
to ��. We can further write

 
1 � �1 � 1; 
2 � �2 � 1; 
r � �3 � �r;

(B13)

where the �r are the gamma matrices for SO�d� 3�. With
the explicit form of the gamma matrices above we have

 ��
0�0 �

�1 0
0 1

� �
; ��

0� � i
���
2
p 0 �
�

0 0

� �
; (B14)

 ��� �
�
�� 0
0 
��

� �
; ��

0� � i
���
2
p 0 0


� 0

� �
;

(B15)

similarly

 

���
0�0 �

�1 0
0 1

� �
; ���

0� � i
���
2
p 0 
�

0 0

� �
; (B16)

 

�� �� �

�� 0

0 �
��

� �
; ���

0� � i
���
2
p 0 0

�
� 0

� �
:

(B17)

Then X � XM�M, �X � XM ��M, 1
2 �MNJ

MN , 1
2

��MNJ
MN etc.

take explicit matrix forms, such as

 XM�M � �X
�0��

0
� X�

0
��

0
� X���

�
X� �
� i

���
2
p
X�

0

i
���
2
p
X�

0
�X�
�

 !
(B18)

and

ITZHAK BARS AND YUEH-CHENG KUO PHYSICAL REVIEW D 76, 105028 (2007)

105028-22



 

1

2
�MNJMN � ���

0�0J�
0�0 �

1

2
J����� � ��

0

� J�
0�

� ��
0

� J
�0� (B19)

 �
1
2 J�� �
�� � J�

0�0 �i
���
2
p

�
�J�
0�

i
���
2
p

�J�

0� 1
2 J��


�� � J�
0�0

 !
: (B20)

If we specialize to SO�4; 2� � SU�2; 2� with d� 2 � 6.
Then the �r are replaced just by the number 1 and then the

�, �
� are given in terms of the 2� 2 Pauli matrices
 


� � �1; ~��; �
� � ��1; ~��; or 
� � ��1; ~��;

�
� � �1; ~��: (B21)

1. Metric, Hermitian conjugation

To be specific we now specialize to SO�4; 2� � SU�2; 2�
with d� 2 � 6. The gamma matrices we have defined are
consistent with the metric 	 _�
 or 	� _
 in spinor space
given as follows:

 	 _�
 � �i�1 � 1 � �00 � ��00 ; 	� _
 � �00 � ��00 ;

(B22)

 

� 

L � � 

y
L� _�	 _�
 � � yL ��00 �
; (B23)

 

� 
_

L � � 

y
R��	

� _
 � � yR�00 �
_
: (B24)

The metric 	 has the following properties:
 

	 � �00 ; 	2 � �1; 	�1 � �	;

	T � 	; 	y � �	:
(B25)

We then note that
 

�00�M�00 �
00 10 0 i

�1 � 1; �2 � 1; �1� 1; �3 � �
i

 !

� � ��M�y: (B26)

From this we obtain the following properties:

 	�M	�1 � �� ��M�y and 	 ��M	�1 � �� ��M�y;

(B27)

 	�MN�	��1 � ���MN�y and 	 ��MN	�1 � �� ��MN�y;

(B28)

 	�MN�K	�1 � � ��K�MN�y and

	�K ��MN	�1 � ��MN ��K�y;
(B29)

 	�MNK	�1 � � ��MNK�y and 	 ��MNK	�1 � ��MNK�y:

(B30)

The second line is derived from the first line:
	��M ��N�	�1 � � ��M�y��N�y � ��N ��M�y which leads to
�	�M ��N� � ��	�N ��M�y. Similarly the third line is de-
rived from the first and second lines 	�MN�K	�1 �

����MN�y���� ��K�y� � � ��K�MN�y etc., while the fourth
line follows from the third. Note that the patterns of �, ��
on the left or right are not the same in each line. From these
we obtain the following properties of the matrices 	, 	�M,
	�MN, 	�MNK, etc. under Hermitian conjugation

 

	 � �	y; 	�M � �	 ��M�y; 	�MN � �	�MN�y;

	�MNK � ��	 ��MNK�y (B31)

and similarly for 	 ��M, 	 ��MN , 	 ��MNK, etc.
Using these properties of the metric we obtain the fol-

lowing Hermiticity properties for pairs of fermions:

 

� � 1L 2L�
y � � � 2L 1L;

� � 1L�M 2R�
y � � 2R

��M 1L;

� � 1L�M ��N 2L�
y � � � 2L�N ��M 1L;

� � 1L�MN 2L�
y � � � 2L�MN 1L

� � 1L�MN�K 2R�
y � � 2R

��K�MN 1L;

� � 1L�MNK 2R�
y � � � 2R�MNK 1L:

(B32)

These are used to verify the Hermiticity of the action,
transformation properties, and consistency of SU�2; 2j1�
group theoretical structures that appear in the text.

2. Charge conjugation, transposition, Majorana spinors

Next we define the charge conjugation matrix C for
SU�2; 2� by

 C � �1 � �2 � � ~C	; where ~C 	 C�00 � �1� i�2:

(B33)

It has the following properties:

 C � �1 � �2; C2 � 1; C�1 � C;

CT � �C; Cy � C:
(B34)

Then we see explicitly that

 C�M �
00 10 0 i

�1� i�2; �3 � i�2; �1 � �2; ��2 � i�2�i

� �
;
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which shows that C�M are all antisymmetric matrices.
Similarly, C ��M are also antisymmetric. Therefore we de-
rive the following properties:

 C�MC�1 � ��M�T; C ��MC�1 � � ��M�T;

 C�MNC�1 � �� ��MN�T; C ��MNC�1 � ���MN�T;

 C�MNKC�1 � ��MNK�T; C ��MNKC�1 � � ��MNK�T:

(B35)

The second and third lines are derived from the first line:
C��M ��N�C�1 � ��M�T� ��N�T � � ��N�M�T which leads to
�C�M ��N� � ��C ��N�M�T , etc. Note that the patterns of
�, �� on the left or right of each equation are not the
same in each line. From these we obtain the following
properties ofC�M,C�MN ,C�MNK etc. under transposition:

 �C�M�T � ��C�M�; �C�MN�T � �C ��MN�;

�C�MNK�T � �C�MNK�
(B36)

and similarly for C ��M, C ��MN , C ��MNK.
The charge conjugate spinor of a left-handed spinor

� L�� [a 4 of SU(2,2)] is a right-handed spinor which we
denote as � cR� _� [a 4 of SU(2,2)] and define it by

 � cR� _� � �C � TL� _� � C _�
� � TL�

 � �C��00 �T �L� _�

� � ~C �L� _�; (B37)

with ~C 	 �1� i�2. From this we extract � cR�
� �

� ~C� L� � � ~C L� which gives the following form after
multiplying both sides with ~C:

  L � � ~C� cR�
� � �C��00 �T� cR�

� � �C� � cR�
T: (B38)

So, for consistency with these equations, the charge con-
jugate spinors need to be defined with the following pat-
terns of chiralities and signs:

 � cR� � �C � TL�;  L � �C� � cR�
T; (B39)

 � cL� � ��C � TR�;  R � C� � cL�
T: (B40)

We now define a Majorana fermion for SO(4,2) as one
that satisfies the following condition:

  cL;R �
Majorana

�  L;R: (B41)

Then from the above definition of  cL;R we derive consis-
tently that a Majorana fermion has the following proper-
ties:

  R �
Majorana

C � TL; � L� �
Majorana

C � TR; (B42)

 

� R �
Majorana

� L�TC; � L �
Majorana

�� R�TC: (B43)

Using this and Eq. (B36) we now see the following per-
mutation properties of Majorana spinors when  1,  2 are
interchanged (treated as anticommuting Grassmann num-
bers). Thus we find � 1L�M 2R and � 1R

��M 2L are sym-
metric under the interchange of 1$ 2

 

� 1L�M 2R �
Majorana

�� 1R�
TC�M 2R (B44)

 � �� 2R�
TC�M 1R � � 2L�M 1R: (B45)

With similar manipulations we establish the following
properties under the interchange of 1$ 2 for Majorana
spinors. These follow from Eqs. (B35) and (B36)

 

for Majorana fermions only � 1L 2L � � � 2R 1R

� 1L�M 2R � � 2L�M 1R; � 1R
��M 2L � � 2R

��M 1L;

� 1L�M ��N 2L � � � 2R
��N�M 1R; � 1L�MN 2L � � 2R

��MN 1R

� 1L�MN�K 2R � � � 2L�K ��MN 1R; � 1R
��MN ��K 2L � � � 2R

��K�MN 1L;

� 1L�MNK 2R � � � 2L�MNK 1R; � 1R
��MNK 2L � � � 2R

��MNK 1L:

(B46)

Note that for the gamma matrices �M, �MNK the inter-
change 1$ 2 is symmetric or antisymmetric, but for the
gamma matrices 1, �MN the interchange 1$ 2 is neither
symmetric nor antisymmetric since left-handed fermions
are replaced by right-handed ones, and vice versa. These
properties are used to manipulate various terms in proving
the SUSY properties of the action and to check the con-
sistency of SU�2; 2j1� group theoretical structures that
appear in the text. In particular, from the third line above
we deduce the following properties of the fermion kinetic
term

 

i� � LX �D L� � LD
 

�X L� �
Majorana

�i� � R �XD R� � R �D
 

X R�:

(B47)

This agrees with the correct overall signs of the kinetic
terms for fermions of left/right chiralities.

3. 8-component SO(4,2) Majorana spinor

Although we prefer to use the 4-component left or right
SU�2; 2� � SO�4; 2� spinor notation in this paper, for com-
pleteness and for future reference we also discuss the 8-
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component spinor in this appendix. The left or right
SU�2; 2� � SO�4; 2� spinor can be rewritten as the 8-
component Majorana spinor of SO(4,2). To see this we
now introduce an 8-dimensional Majorana spinor  and its
conjugate � through the following definitions in which
 L,  R are related to each other as shown in Eqs. (B42)
and (B43)

  �
 L
 R

� �
; � � � yL;  

y
R�

	 0
0 	

� �
� � � L; � R�;

(B48)

  c �
0 �C
C 0

� � � TL
� TR

� �
�

Majorana
�

 L
 R

� �
�  : (B49)

Note that  satisfies the Majorana condition  c �  . We
can also write [see Eq. (B43)]

 

� �  Tc; with c � �
0 �C
C 0

� �
; cT � c:

(B50)

Then � 1

M1���Mn 2 take the form

 

� 1
M 2 � � � 1L; � 1R�
0 �M

��M 0

� �
 2L

 2R

� �
; (B51)

 

� 1

MN 2 � � � 1L; � 1R�

�MN 0
0 ��MN

� �
 2L

 2R

� �
; (B52)

etc. For 8-component Majorana spinors we obtain the
following permutation properties when  1,  2 are inter-
changed
 

� 1 2 � � 1L 2L � � 1R 2R

: �
Majorana

� � 2R 1R � � 2L 1L � � � 2 1; (B53)

 

� 1
M 2 � � 1L�M 2R � � 1R
��M 2L

: �
Majorana

� � 2L�M 1R � � 2R
��M 1L � � 2
M 1;

(B54)

 

� 1

MN 2 � � 1L�MN 2L � � 1R

��MN 2R

: �
Majorana

� � 2R
��MN 1R � � 2L�MN 1L

� � 2

MN 1; (B55)

 

� 1
MNK 2 � � 1L�MNK 2R � � 1R
��MNK 2L

: �
Majorana

� � 2L�MNK 1R � � 2R
��MNK 1L

� � � 2
MNK 1: (B56)

In summary, � i

M1���Mn j have the following symmetry or

antisymmetry properties under the interchange of i, j

 symmetric : � i�

M� j; � i�


MN� j;

antisymmetric: � i�1� j; � i�
MNK� j:
(B57)

We can also introduce an additional 8� 8 gamma ma-
trix

 
7 �
1 0
0 �1

� �
;

which anticommutes with the other six gamma matrices
f
7; 
Mg � 0, and construct 
7
M, 
7
MN and 
7 as the
additional traceless 8� 8 gamma matrices that complete
the set of all 8� 8 matrices. For these we have the follow-
ing permutation properties
 

� 1

7 2 � � 1L 2L � � 1R 2R

: �
Majorana

� � 2R 1R � � 2L 1L � � 2

7 1; (B58)

 

� 1
7
M 2 � � 1L�M 2R � � 1R
��M 2L

: �
Majorana

� � 2L�M 1R � � 2R
��M 1L

� � 2
7
M 1; (B59)

 

� 1

7
MN 2 � � 1L�MN 2L � � 1R

��MN 2R

: �
Majorana

� � 2R
��MN 1R � � 2L�MN 1L

� � � 2

7
MN 1: (B60)

In summary, � i

7
M1���Mn j have the following symmetry

or antisymmetry properties under the interchange of  i,  j

 symmetric : � i�
7� j; � i�
7
M� j;

antisymmetric: � i�

7
MN� j:

(B61)

The symmetry or antisymmetry properties given above
can be related to the properties of SO(5,2) gamma matrices
given by 
m � �
M; 
7�. Specifically we note the 8� 8
SO(5,2) gamma matrices c and c
mnk are symmetric while
c
m, c
mn are antisymmetric, where c is given in
Eq. (B44). This is easily understood by simple counting
of dimensions in spinor and vector spaces of SO(5,2). That
is, the symmetric products in spinor space gives �8� 8�s �
8�9
1�2 � 36, while for gamma matrices c � c
mnk we count
the same dimension, namely, 1� 7�6�5

1�2�3 � 36. Similarly for
the antisymmetric product in spinor space we have �8�
8�a �

8�7
1�2 � 28, while for c
m � c
mn we count the same

dimension, namely, 7� 7�6
1�2 � 28. From this we immedi-

ately conclude that the SO(5,2) gamma matrices have
definite symmetry properties, namely, c � c
mnk are sym-
metric and c
m � c
mn are antisymmetric. Taking into
account that � �  Tc [see Eq. (B44)], and an extra minus
sign due to the interchange of Grassmann numbers, we
obtain the permutation properties of fermion bilinears
� i�
m1���mn� j �  Ti �c


m1���mn� j under the interchange
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of  i,  j as follows:

 symmetric : � j�

m� i; � i�


mn� j;

antisymmetric: � i�1� j; � i�
mnk� j:
(B62)

These SO�5; 2� properties reduce to the SO(4,2) properties
for Majorana fermions as given in Eqs. (B57) and (B61) by
specializing the indices m � �M; 7�.

The charge conjugation or Majorana properties de-
scribed in this appendix are used to verify the SU�2; 2j1�
group theoretical consistency of the fermion bilinears that
appear in the transformation laws and other structures
given in the text.

APPENDIX C: FIERZ IDENTITIES

In this appendix we prove the two Fierz identities

 ��X2�
@3W

@’i@’j@’k
� � Ri �X Lk�� �"R �X Lj� � 0 (C1)

and

 ��X2�fabc� �"L��M; �X��aL�� ��bL��
M; �X��cL� � 0: (C2)

We start with the gamma matrix identity of Eq. (3.31),
which allows us to write

 �� � Ri �X����
�� Lj����� �"R �X�
�



� Lk�
�

� �1
4�

� Ri �X Lk�� �"R �X Lj� �
1
8�

� Ri �X�MN Lk�

� � �"R �X�MN Lj�: (C3)

This equation is rearranged by moving the first term on the
right side to the left side. After multiplying both sides with
the totally symmetric @3W

@’i@’j@’k
and summing over i, j, kwe

derive

 

5

4

@3W
@’i@’j@’k

� � Ri �X Lk�� �"R �X Lj�

�
1

8

@3W
@’i@’j@’k

� � Ri �X�MN Lk�� �"R �X�MN Lj�: (C4)

We focus on the term � Ri �X�MN Lk on the right-hand side
which can be rewritten by using gamma matrix identities as
� Ri �X�MN Lk � XP � Ri��PMN � 	PM�N � 	PN�M� Lk.

The �PMN term can be rewritten as XP� Li�T�C�PMN� Lk
by using the charge conjugation property � Ri � � Li�TC.
We argue that the �PMN term can be dropped due to the
symmetric property of @3W

@’i@’j@’k
under the interchange of i

and k, the symmetric property of �C�PMN�
�
 under the

interchange of � and 
, and the antisymmetry under the
interchange of two fermions. The remaining terms on the
right-hand side take the form 1

8
@3W

@’i@’j@’k
� � RiX�M�N� Lk��

� �"RX
�M�N� Lj�. We drop the term proportional to X2 since

there is an overall ��X2�. Then we obtain the relation

 

5

4
��X2�

@3W
@’i@’j@’k

� � Ri �X Lk�� �"R �X Lj�

� �
1

2
��X2�

@3W
@’i@’j@’k

� � Ri �X Lk�� �"R �X Lj�: (C5)

Pulling all terms to the same side of the equation and
rearranging, we obtain the desired Fierz identity of
Eq. (C1).

Next we prove the Fierz identity of Eq. (C2) where
��M; �X� is defined as

 ��M; �X� 	 �M �X� X ��M � 2�MNXN: (C6)

We start again with the gamma matrix identity of Eq. (3.31)
to write
 

fabc� �"L��M; �X��aL�� ��bL��
M; �X��cL�

� fabc�
1
8�

��bL��M; �X��RQ�aL�� �"L��M; �X��RQ�cL�

� 1
4�

��bL��M; �X��aL�� �"L��M; �X��cL��: (C7)

The last term on the right side has the same form as the left
side, so the equation is rearranged as

 

3
4 fabc �"L��M; �X��aL ��bL��

M; �X��cL

� 1
8fabc�

��bL��M; �X��RQ�aL�� �"L��M; �X��RQ�cL�:

(C8)

By using gamma matrix identities (4.14), and setting X2

terms to zero since there is an overall ��X2�, the right-hand
side can be rewritten as

 

4
8 f

abc� ��bL�MNRQ�aL�� �"L�MPRQ�cL�XNX
P

� 4
8f
abc� ��bL��M; �X��aL�� �"L��M; �X��cL�: (C9)

The last term in Eq. (C9) is similar to the left side of
Eq. (C7), so they combine, and we are left with

 

1
4��X

2�fabc �"L��M; �X��aL ��bL��
M; �X��cL

� 4
8��X

2�fabcXNXP� ��bL�MNRQ�aL�� �"L�MPRQ�cL�:

(C10)

Next we use the fact that �M1M2M3M4 �
1
2"

M1M2M3M4M5M6 �M5M6
and we perform the sum

 

�
1

2

�
2
XNXP"MNRQM5M6"MPRQN5N6

�
3!

4
�N
�P�

M5
N5
�M6

N6�
XNXP:

(C11)

Here we drop the terms proportional to X2 since there is an
overall delta function ��X2�. Inserting this in Eq. (C10), we
find the right-hand side of (C10) looks the same as the left
side of (C10), but with the numerical coefficient �3=4 on
the right versus 1=4 on the left. Pulling all terms to the
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same side of Eq. (C10) we obtain the desired Fierz identity
of Eq. (C2).

APPENDIX D: OFF SHELL CLOSURE FOR
CHIRAL SUPERMULTIPLET

We now consider the closure of the SUSY transforma-
tions ��"1

�"2
� �"2

�"1
� applied on each field in the chiral

multiplet �’; L; F�i, in the absence of interactions with
the vector multiplet (i.e. g � 0), with each �" given in
Eqs. (3.11)–(3.13).

1. Closure for scalars

 ��"1
�"2�

’ � �"R�2 �X��"1�
 L� �

1
2X

2� �"R�2 �@��"1�
 L�

� �"R�2Uy��"1�
 R�� (D1)

 � fi �"R�2 ��MN"R1�XM@N’� i �"R�2"R1��X � @’�
1
2X

2@2’�

� i �"R�2 �X"L1�F�
1
2X

2i �"R�2 ��M"L1�@MF

� 1
2X

2i �"R�2"R1�UyFy �
1
2X

2i �"R�2 ��M"L1�Uy@M’g

(D2)

 

� f�1
2 �"R�2 ��MN"R1�LMN’� i �"R�2"R1�’

� i �"R�2"R1��X � @� 1�’� 1
2X

2i �"R�2"R1��@
2’�UyFy�g;

(D3)

where we have used

 �" R�2 ��M"L1� � 0 (D4)

from the second line to the third line.
From Appendix B, one can conclude that �"R�2�MN"R1�

and i �"R�2"R1� are imaginary numbers. These effective pa-
rameters in the first line of (D3) are interpreted as the
closure to the global bosonic subgroup SU�2; 2� � U�1� �
SU�2; 2j1�, where the U�1� is the so-called R-symmetry.
The second line of (D3) is proportional to the 2T-gauge
symmetry generators connected to the phase space con-
straints X � P and X2. So these terms in the closure are 2T-
gauge transformations of the scalar field [13]. If the field is

partially on shell by setting X2 � 0 and �X � @� 1�’ � 0,
to satisfy these constraints [derived as equations of motion
in Eq. (5.37)], then the closure for such fields is purely into
the bosonic subgroup of SU�2; 2j1�.

This makes it clear that for fields that satisfy the Sp�2; R�
gauge invariance conditions (i.e. partially on shell),
the closure is into SU�2; 2� � U�1� � SU�2; 2j1�. How-
ever, for general off shell fields the closure of two SUSY
transformations is into the global SU�2; 2� � U�1� �
SU�2; 2j1�, plus 2T-gauge transformations connected to
the underlying Sp�2; R� [13]. The same pattern is observed
for the other components of the chiral multiplet as follows.

2. Closure for auxiliary fields

The closure of the auxiliary field F works as usual,

 ��"1
�"2�

F � � �"R�2

�
1

2i
�MNLMN � 2

�
�"1�

 L (D5)

 

�

�
1

2
�"R�2�MN"L1�LMNF� 2i �"R�2"L1�F

� 2i �"R�2 ��M"R1�@M’�
1

2
�"R�2�MNP"L1�LMN@p’

�
1

2
�"R�2 ���M"R1�	

N�PLMN@p’
�

(D6)

 � �
1

2
�"R�2 ��MN"R1�LMNF� 2i �"R�2"R1�F; (D7)

where we have used (see Appendix B)

 �" R�2"R1� � �"R�2"L1�; (D8)

 �" R�2 ��MN"R1� � � �"R�2�MN"L1�: (D9)

The closure on F consists again of the global bosonic
subgroup SU�2; 2� � U�1� � SU�2; 2j1�.

3. Closure for spinors

To calculate the closure on the spinor, we use the follow-
ing Fierz identities which will be derived later in this
subsection:

 �" R�1 ��M L�M"R2� � �
3
2 �"R�1"R2� L �

1
4 �"R�1 ��MN"R2��MN L; (D10)

 

�"R�1 ��M�XM@N L��N"R2� � ��
1
4 �"R�1 ��MN"R2�XM@N L�

1
4 �"R�1"R2�X � @ L�

1
8 �"R�1 ��PRMN"R2��PRXM@N L

� 1
4 �"R�1 ��MR"R2��RXM@ L�

1
4 �"R�1 ��MN"R2�XM@N L�

1
4 �"R�1 ��PN"R2�X�P@N L

� 1
4 �"R�1 ��MN"R2�XM@N L�

1
8 �"R�1 ��MN"R2��MNX � @ L�

1
4 �"R�1"R2�X@ L�

1
4 �"R�1"R2�X � @ L�;

(D11)

 �" L�1 L"L2� � �
1
4 �"R�1"R2� L �

1
8�PR L �"R�1 ��PR"R2�; (D12)
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and
 

�"L�1�MN�XM@N L�"L2� � f
1
4 �"R�1 ��MN"R2��XM@N L� �

1
8 �"R�1 ��MNPR"R2��PR�XM@N L� �

1
4 �"R�1 ��MR"R2��

P
RXM@P L

� 1
4 �"R�1 ��MR"R2��

P
RXP@M L �

1
4 �"R�1"R2��

MNXM@N Lg: (D13)

Then we compute

 ��"1
�"2�

 L � i@���"1
’�"R2� � i��"1

F"L2� (D14)

 � fi �"R�1@� �X L �
1
2X

2� �@ L �U
y R��"R2� � i �"L�1��

MNXM@N � 2� L"R2�g: (D15)

This becomes

 � f�i �"R�1 ��M L�M"R2�� � �i �"R�1 ��M�XM@N L��
N"R2�� � ��i �"L�1�MNXM@N L"R2�� � �2i �"L�1 L"R2�� � �X� � X

2%�g:

(D16)

Here we note that everything of the form X� � X2% in the transformation of  L is a 2T-gauge transformation of the spinor
[13].

This can further be put into the form

 ��"1
�"2�

 L �
�
�

1

2
�"R�2 ��MN"R1�

�
LMN �

1

2i
�MN

�
 L �

i
2

�"R�2"R1� L

�
(D17)

 �

�
�
i
8

�"R�2 ��MN"R1��MN�X � @� 2� L �
3

4
i �"R�2"R1��X � @� 2� L � �X� � X2%�

�
(D18)

In this form, we see that the first bracket represents the
closure into the bosonic subgroup SU�2; 2� � U�1� �
SU�2; 2j1�, with the correct SU(2,2) generator �LMN �
1
2i�MN� for the spin 1=2 fermion. The second bracket is
again a 2T-gauge transformation since �X � @� 2� L is the
action of the Sp�2; R� generator X � P on the fermion [13].
For a partially on shell homogeneous field �X � @�
2� L � 0 that is Sp�2; R� gauge invariant [which is an
equation of motion at g � 0 as in Eq. (5.38)], the second
bracket drops out. Hence for Sp�2; R� gauge invariant fields
the closure is purely into the bosonic subgroup of
SU�2; 2j1�.

If we gauge fix the 2T gauge symmetry as in footnote 8,
the transformations become the familiar hidden supercon-
formal symmetry of N � 1 chiral multiplet.

4. Proof of the identities (D10)–(D13)

The first two identities are proved as follows. Using the
Fierz identity in Eq. (3.31), we can write

 �" R�1 ��M L�N"R2� � �
1
4 �"R�1 ��M�N"R2� L

� 1
8 �"R�1 ��M�PR�N"R2��PR L:

(D19)

Using the commutation relation � ��M;�PR� � 2	MP ��R �
2	MR ��P we change the order of ��M and �PR for the second
term on the right-hand side. After that, use ��M�N �
��MN � 	MN and (4.14), to get

 �" R�1 ��M L�N"R2� � f�
1
4 �"R�1 ��MN"R2� L �

1
4 �"R�1"R2�	MN L �

1
8 �"R�1 ��PRMN"R2��PR L �

1
4 �"R�1 ��PfM"R2��P

Ng L

� 1
8	

MN �"R�1 ��PR"R2��PR L �
1
4 �"R�1"R2��

MN Lg: (D20)

Then we can use (D20) to derive the first two identities

 �" R�1 ��M L�M"R2� � �
3
2 �"R�1"R2� L �

1
4 �"R�1 ��MN"R2��MN L;

and
 

�"R�1 ��M�XM@N L��
N"R2� � ��

1
4 �"R�1 ��MN"R2�XM@N L �

1
4 �"R�1"R2�X � @ L �

1
8 �"R�1 ��PRMN"R2��PRXM@N L

� 1
4 �"R�1 ��PM"R2��PNXM@N L �

1
4 �"R�1 ��PN"R2��MPXM@N L �

1
8 �"R�1 ��MN"R2��MNX � @ L

� 1
4 �"R�1"R2��

MNXM@N L� (D21)
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 � ��1
4 �"R�1 ��MN"R2�XM@N L �

1
4 �"R�1"R2�X � @ L �

1
8 �"R�1 ��PRMN"R2��PRXM@N L �

1
4 �"R�1 ��MR"R2��RXM@ L

� 1
4 �"R�1 ��MN"R2�XM@N L �

1
4 �"R�1 ��PN"R2�X�P@N L �

1
4 �"R�1 ��MN"R2�XM@N L �

1
8 �"R�1 ��MN"R2��MNX � @ L

� 1
4 �"R�1"R2�X@ L �

1
4 �"R�1"R2�X � @ L�: (D22)

On the other hand, using the Fierz identities (D8) and (D9) we can easily derive

 �" L�1 L"L2� � �
1
4 �"L�1"L2� L �

1
8�PR L �"L�1�PR"L2� (D23)

 � �1
4 �"R�1"R2� L �

1
8�PR L �"R�1 ��PR"R2�: (D24)

Now let us tackle the last identity. First, we use the Fierz identity,

 �" L�1�MN�XM@N L�"L2� (D25)

 � �1
4 �"L�1�MN"L2��XM@N L� �

1
8 �"L�1�MN�PR"L2��PR�XM@N L�: (D26)

Then we use (4.14) to get

 

�"L�1�MN�XM@N L�"L2� � f
1
4 �"R�1�MN"R2��XM@N L� �

1
8 �"L�1�MNPR"L2��PR�XM@N L� �

1
4 �"L�1�MR"L2��

P
RXM@P L

� 1
4 �"L�1�MR"L2��

P
RXP@M L �

1
4 �"L�1"L2��

MNXM@N Lg: (D27)

Finally, we use (D8) and (D9) to change left-handed spinors to the charge-conjugated right-handed spinors, and similarly

 �" L�1�MNPR"L2� � �i�MNPRQS �"L�1�QS"L2� (D28)

 � i�MNPRQS �"R�1 ��QS"R2� (D29)

 � �"R�1 ��MNPR"R2� (D30)

to obtain the last identity.
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