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Four-dimensional Yang-Mills theory formulated through an action on twistor space has a larger gauge
symmetry than the usual formulation, which in previous work was shown to allow a simple gauge
transformation between textbook perturbation theory and the Cachazo-Svrček-Witten rules. In this paper
we study nonsupersymmetric twistor Yang-Mills theory at loop level using the background field method.
For an appropriate partial quantum field gauge choice it is shown that the calculation of the effective
action is equivalent to (the twistor lift of) the calculation in ordinary Yang-Mills theory in the Chalmers
and Siegel formulation to all orders in perturbation theory. A direct consequence is that the twistor version
of Yang-Mills theory is just as renormalizable in this particular gauge. As applications an explicit
calculation of the Yang-Mills beta function and some preliminary investigations into using the formalism
to calculate S-matrix elements at loop level are presented. In principle the technique described in this
paper generates consistent quantum completions of the Cachazo-Svrček-Witten rules. However, by
inherent limitations of the partial gauge choice employed here, this offers in its current form mainly
simplifications for tree-level forestry. The method is expected to be applicable to a wide class of four-
dimensional gauge theories.
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I. INTRODUCTION

Even more than 50 years after its introduction, Yang-
Mills theories in four space-time dimensions continue to be
a fascinating and rich area of research. Applications range
from the very physical in the standard model to the very
theoretical in the study of geometric invariants of (four)
manifolds. However, it is fair to say that they are, in some
sense, not very well understood. Their nonperturbative
behavior for instance is not under analytic control. The
only known exceptions to this involve either less space-
time dimensions or supersymmetry, in other words, in
situations where there is an extra underlying symmetry to
exploit. In addition, also the perturbative behavior of Yang-
Mills theory for the calculation of scattering amplitudes is
a very active area of research still because of its computa-
tional complexity when using standard methods even at
tree level, especially when large numbers of external par-
ticles are involved. That is not to say these scattering
amplitudes are not interesting: in order to discover new
physics at LHC for instance one needs a good quantitative
control of the ‘‘old’’ physics contained in these amplitudes.
However, for the strong force for instance the coupling
constant is not parametrically small in the region of
interest and one needs to calculate loop corrections which
is prohibitively complex when using ordinary Feynman
diagrams. Then one has to resort to other calculational
methods.

However, there are several results in the literature which
show that even ordinary perturbation theory based on the
nonsupersymmetric space-time Yang-Mills action misses
part of an underlying structure of the theory. The first of
these is the classic result of Parke and Taylor [1] that a

particular class of amplitudes have a simple expression at
tree level. These are the amplitudes which involve two
gluons of one, and arbitrarily many gluons of the opposite
helicity. This result was related to a construction on twistor
space by Nair [2]. The connection between perturbative
amplitudes and twistor space was further elaborated upon
by Witten [3], who showed that it can be extended at least
to all tree-level amplitudes. In addition, he also speculated
that these results could be derived from an underlying
topological string theory which should be equivalent to
N � 4 super Yang-Mills (SYM) theory. Note that
Witten’s twistor-string proposal can be understood as an
attempt to answer the question of why some results in
perturbative Yang-Mills theory like the Parke-Taylor am-
plitude are so simple.

This inspired a lot of activity in the past few years, which
up to now has mainly focused on obtaining new calcula-
tional techniques for scattering amplitudes. Two outstand-
ing developments here are the recursive techniques of
Britto et al. [4] and the Feynman-like rules of Cachazo,
Svrček, and Witten (CSW) [5]. Both these techniques
rearrange the ordinary perturbative expansion of Yang-
Mills theories into something much more simple. A natural
physical explanation for this possibility is that there is
some underlying symmetry in the problem which is not
manifest in the usual Yang-Mills Lagrangian. In previous
work [6–8] this natural conjecture was confirmed by con-
structing explicitly an action on twistor space with a (lin-
ear) gauge symmetry which is larger than the ordinary
gauge symmetry. In [7,8] it was shown that both the
CSW rules and textbook perturbation theory can be ob-
tained as Feynman rules for the twistor action [9].

In related work, Mansfield [10] obtained an action which
reproduces the CSW rules on shell by a nonlinear and
nonlocal canonical field transformation from the light-*Rutger.Boels@maths.ox.ac.uk
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cone formulation of four-dimensional Yang-Mills. It is
expected that field transformation is exactly the space-
time equivalent of the twistor gauge transformation of
[8]. In this article we provide some evidence for this claim;
a full treatment will appear elsewhere. In more physical
terms, from a space-time point of view we conjecture the
twistor action provides the right auxiliary fields to linearize
a specific nonlinear space-time symmetry and is in that
sense a ‘‘superfield’’ formulation [11].

A remaining open problem in all this is extending the
analysis to loop level. Ordinary textbook perturbation the-
ory is fine, but in straightforwardly applying the CSW rules
to loop level [12], one encounters problems as at one loop
the diagrams generically only reproduce the cut-
constructible pieces of amplitudes. This is a problem, in
particular, for nonsupersymmetric gauge theories, where
amplitudes are known to involve more than just cut-
constructible parts. Recently some interesting light was
shed on this in [13], although a full understanding is still
lacking. From the view of twistor Yang-Mills theory, how-
ever, we seem to have a gauge theory which interpolates
between a well-defined and a not-so-well-defined pertur-
bation theory. In this article the twistor action will be
quantized in a gauge close to, but not equivalent to,
space-time gauge where all the divergences are simply
four dimensional. In this gauge the regularization and
renormalization properties will be shown to reduce to
standard space-time problems, which can be resolved by
standard techniques. This is part of the main message of
this paper: standard four-dimensional field theory tech-
niques extend to Yang-Mills theories on twistor space.

This article is structured as follows: We will begin by
giving a brief review and clarification of the twistor action
approach to Yang-Mills theory and point out some of its
more salient features. After this the background field
method will be set up, with the quantum field in the
background field version of the space-time gauge. This
will lead to specific Feynman rules which can then be
identified with the space-time Yang-Mills rules derived
from the Chalmers and Siegel action. Put differently, the
calculation shows that the space-time quantum effective
action can be lifted to twistor space by a simple lifting
prescription. In particular, the � function calculation, per-
formed explicitly in an appendix for the Chalmers and
Siegel action, lifts directly, as well as renormalizability
arguments. The next section contains some investigations
into using the formalism to calculate scattering amplitudes.
In an appendix an alternative gauge for obtaining CSW
rules is constructed.

In this article dotted and undotted Greek letters from the
beginning of the alphabet indicate spinor indices. Our
spinor conventions are ! � � � !��� � !������, � �
� � � _�� _� � � _�� _��

_� _�. We normalize the isomorphism
between the cotangent bundle and the spin bundles such
that g�� �

1
2 ���� _� _�, where (symbolically) � � � _�, � �

� _�. Furthermore, fields on twistor space are denoted by
Roman symbols, while space-time fields are bold.
Quantum and background fields will be denoted by lower
and upper case letters, respectively. Finally, we normalize
the natural volume form on a CP1 such that it includes a
factor of 1

2�i .

II. TWISTOR YANG-MILLS THEORY

In this section the twistor formulation of Yang-Mills
theory will be reviewed and clarified. Although this is
not immediately obvious from the exposition here, what
is discussed in this section is a Euclidean, off shell version
of the Penrose-Ward correspondence and the interested
reader is referred to [14] for an introduction to twistor
space useful from the point of view of this paper.

A. Some twistor geometry

As usual, four-dimensional space-time arises in the
twistor program as the space of holomorphic lines em-
bedded in CP30. The prime indicates the removal of a
CP1, which is necessary mathematically to obtain interest-
ing cohomology as CP3 is compact, and physically to
obtain a notion of a point at ‘‘infinity’’ which is needed
to define scattering amplitudes. Consider homogeneous
coordinates �!�;� _�� for a point in CP30 where � and _�
run from 1 to 2. Then a holomorphic line corresponds to an
embedding equation

 !� � x� _�� _�: (1)

Note that this equation makes sense since the symmetry
group of twistor space contains naturally two SL�2;C�
subgroups which can and will be identified with the chiral
components of the complexified Lorentz group. In order
for this equation to be solved for x a reality condition is
needed. In this paper we will be interested in Euclidean
signature for which Euclidean spinor conjugation is
needed,

 

d�1

�2

� �
�
� ��2

��1

� �
: (2)

The main difference to the Lorentzian conjugation is the
absence of the application of the parity operator which
interchanges spin bundles. In Euclidean signature there is
a unique point x associated to every pair !;�,

 x� _� �

�
!��̂ _� � !̂�� _�

��̂

�
: (3)

This equation exposes twistor space for Euclidean signa-
ture space-time as a CP1 fiber bundle over space with the
above equation furnishing the needed projection, which
will be denoted by p.

In the following explicit coordinates x� _�,� _�, �̂ _� will be
used to parametrize the twistor space. This choice leads to
a basis of antiholomorphic one-forms,
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 �e 0 �
�̂ _�d�̂ _�

���̂�2
; �e� �

dx� _��̂ _�

���̂�
; (4)

which is naturally dual to a set of �0; 1� vectors,

 

�@ 0 � ���̂�� _�
@
@�̂ _�

; �@� � � _� @
@x� _� : (5)

With the above basis of one-forms, one-form fields A can
be expanded as

 A � �e�A� � �e0A0: (6)

Note that A� and A0 have holomorphic weight�1 and�2,
respectively, compared to the original weight of A. In the
following the word ‘‘weight’’ will always refer to holo-
morphic weight.

B. Lifting fields to twistor space

One of the successes of the twistor program has always
been the fact that on shell fields, including self-dual fields,
correspond to certain cohomology classes on twistor space.
However, here we will be interested in lifting off- shell
fields from space-time to twistor space, clarifying the
procedure first employed in [6]. The objective is to lift
Yang-Mills theory, such as captured in the Chalmers and
Siegel action

 SCS � tr
Z
d4x

1

2
B _� _�F

_� _��A	 �
1

4
tr
Z
d4xB _� _�B _� _� (7)

from Euclidean space-time to twistor space. First of all, the
self-dual two-form B lifts as

 B _� _� �
Z
CP1

dkH�1B0H� _�� _�: (8)

Here dk is the natural weightless volume form on CP1 and
B0 is the zeroth component of a weight minus 4, antiholo-
morphic form. Antiholomorphic n-forms will be denoted
by �0; n�. H is a holomorphic frame of the gauge bundle
over p�1�x� such that the covariant derivative of it vanishes
on the sphere, �@AHjp�1�x� � 0. This covariant derivative
involves a connection of the Riemann sphere which is
always trivial in perturbation theory [15]. Denote this
connection [or more precisely, its �0; 1� part] as A0. With
this input the Chalmers and Siegel action becomes

 SCS � tr
Z
d4xdk

1

2
B0HF _� _��x��A	H

�1� _�� _�

�
1

4
tr
Z
d4xdk1dk2H�1

1 B�1�0 H1H�1
2 B�2�0 H2��1�2�

2:

(9)

Now we would like to lift the gauge field A� to twistor
space. We already know from basic twistor theory (see [14]
for instance) that it is represented by a weight 0 �0; 1� form,
say A, which is the pullback of the space-time connection
to the twistor space. If this form is �@ closed, then it

corresponds to an antiself-dual connection on space-time.
The curvature of this form naturally splits into a curvature
tensor involving only space directions, say F�� � � �@� �
A�; �@� � A�	 and two curvature tensors with one leg along
the fiber F0� � � �@0 � A0; �@� � A�	. Since there is no
physical interpretation of the latter curvature and since
we want A to be just the pullback of the physical space-
time connection, it will be set to zero: we will study gauge
connections on twistor space such that F0� vanishes. As
this is a weight 3 operator, the condition it vanishes can be
added to the action with a Lagrange multiplier of weight
�3,

 S� �
1

2

Z
d4xdkB�F0�: (10)

This constraint also gives a neat way of lifting the vector
potential A: For calculational ease, let F0� act on a field in
the fundamental,

 F0�� � �� �@A�0; � �@A��	�: (11)

Since A0 is pure gauge, it can be always be gauged away.
This is implemented through the use of the holomorphic
frames H. We arrive at

 F0�� � �@0�H
�1� �@� � A��H�H

�1�: (12)

The constraint sets this quantity to be zero. The quantity in
brackets is then a holomorphic function of weight one and
therefore

 H�1� �@� � A��H � A� _��x�� _� (13)

for some vector field A� _� which is only a function of x.
This can easily be inverted to give

 A � _��x� �
Z

dkH�1� �@� � A��H
�̂ _�

��̂
: (14)

In the same way as above, we easily derive

 ���F���x;�� � HF�A	 _� _��x�H
�1� _�� _�: (15)

With this expression taken into account and the constraint
in (10) added, the action (9) becomes
 

S �
1

2

Z
d4xdkB0� �@

�A� � gA
�A��

� B�� �@�A0 � �@0A� � g�A�; A0	�

�
1

4

Z
d4xdk1dk2H

�1
1 B0��1�H1H

�1
2 B0��2�


H2��1�2�
2��1�2�

2: (16)

This action has a clear geometrical expression on twistor
space, as the fields A0, A�, B0, and B� can naturally be
combined into antiholomorphic one-forms A and B of
weight 0 and �4, respectively,
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S�A;B	 �
1

2

Z
PT
D3Z ^ B ^ � �@A� A ^ A�

�
1

4

Z
PT


M
PT

trH�1
1 B1H1 ^H

�1
2 B2H2

^D3Z1 ^D
3Z2; (17)

where PT is projective twistor space CP30 with a space-
time point removed, PT
 MPT � f�Z1; Z2� 2 PT


PTjp�Z1� � p�Z2�g with p the projection map and sub-
script 1 or 2 denotes dependence on Z1 or Z2. This form of
the action is the restriction to the N � 0 fields of the
N � 4 form of the twistor Yang-Mills action as studied in
[7,8] and this action appeared in this form first in [6],
although there only the twistor lift of B was studied. The
‘‘BF’’ part of the above action was also studied in [16,17].

C. Gauge invariances

The twistor action is invariant under

 A! A� �@A	; B! B� g�B;		 � �@A!; (18)

which can either be verified explicitly or inferred directly
from the N � 4 formulation. Here 	 and ! are functions
on projective twistor space of weight 0 and �4, respec-
tively. This apparently innocuous remark is actually very
important: 	 is a function of 6 real variables, instead of the
usual 4. Hence this formulation of Yang-Mills theory has
more gauge symmetry than the usual one. It is the existence
of this symmetry which is the underlying physical reason
for the existence of maximal helicity violating (MHV)
methods in general. For instance, the Parke-Taylor formula
(and its supersymmetric analogs) can be viewed as a con-
sequence of this symmetry, as shown in [8].

Note that in the ‘‘lifting picture’’ the gauge symmetries
have quite dissimilar origins: the gauge symmetry in A is in
effect space-time gauge symmetry� gauge symmetry on
the P1 for A0 and A� separately, but since F0� vanishes,
this can be enlarged to the symmetry group above. The
gauge invariance in B0 is a consequence of some leeway in
the ‘‘lifting’’ formula. The full gauge symmetry in B is
actually the most interesting since it is a direct conse-
quence of ‘‘quantizing with constraints’’: when one quan-
tizes a theory with constraints, in a real sense also the
momentum conjugate to the constraint must be eliminated.
This is familiar from the usual setup of gauge theories as
explained in, for instance [18], as this leads to the usual
gauge-fixing procedure. The gauge symmetry associated to
B in the above action is generated by F0� and gauge fixing
this in the usual manner is therefore the right procedure by
the same calculation as for the ordinary gauge symmetry.

The same procedure as employed here for the gluon can
be extended readily to spin-0 and spin- 1

2 fields in an
obvious fashion. The lifting of these fields will entail
separate new gauge invariances. One wants to require full
gauge invariance with respect to these as this is necessary

to allow an invertible field transformation. Requiring this
leads to additional towers of B2-like terms in the action
through the Noether procedure. These will generate, in
gauge which will be discussed in the next section, addi-
tional towers of MHV-like vertices and amplitudes as was
shown in [8].

D. Quantization generalities

Standard path-integral quantization of the twistor ver-
sion of Yang-Mills theory will involve a gauge choice as
this is needed to invert the kinetic operator. In this section
some general aspects of this will be explored. Before the
consequences of gauge invariance will be explored it is
perhaps useful to point out some features which are appar-
ent in this form of the action. First of all the mass dimen-
sion of the fields as counted by space-time derivatives are
rather odd, as they are

 �A0	 � 0; �A�	 � 1; �B0	 � 2; �BA	 � 2:

(19)

The vanishing dimension of the field A0 is worrying as one
expects this will lead to infinite series of possible counter-
terms. Very naively, this action is not power-counting
renormalizable. However, it is also clear the quadratic
part of this action is definitely not canonical and involves
the fiber coordinates, which makes power counting non-
standard. This is related to a second comment: although an
action on a six-dimensional space is studied for a four-
dimensional theory, one does not expect Kaluza-Klein
modes, since that argument requires a canonical six-
dimensional kinetic term. Thirdly, this action is nonlocal.
However, the nonlocality is restricted to the CP1 fiber, not
on space-time, so this is not a problem provided this
remains true in perturbation theory.

1. Space-time gauge

The gauge invariance of the action can be exploited in
multiple ways. The same techniques as in [7,8] also apply
here. In particular, when restricted to a gauge in which

 

�@ y0a0 � 0; �@y0b0 � 0; (20)

the above action reduces down to the Chalmers and Siegel
form of the nonsupersymmetric Yang-Mills action, which
is perturbatively equivalent to the usual one. This gauge
will be referred to as ‘‘space-time gauge.’’ Note that it does
not fix the complete gauge symmetry contained in (18).
The residual gauge symmetry is exactly the usual space-
time one, which of course has to be fixed further in order to
quantize the theory. Any ordinary gauge choice will do for
this. The calculation in [7] will not be reproduced here, as it
is an obvious specialization of the argument in Sec. III. In
effect this article extends the above observation to a gen-
eral class of gauges. Note that this particular gauge was, in
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effect, also studied in [17] in the context of the self-dual
theory.

As the action reduces to the usual space-time action in a
particular partial gauge (and the associated ghosts can be
shown to decouple), it should be obvious that path-integral
quantization of this theory is perfectly fine in this gauge:
here it is just the usual quantization and every perturbative
calculation can therefore be reproduced using the twistor
action to all orders in perturbation theory. The real question
is if the same holds true in other gauges. Put differently, the
question is whether the extra symmetry found in our for-
mulation of Yang-Mills at tree level is in some way anoma-
lous. More precisely, the question is whether physical
quantities like scattering amplitudes are invariant under
the extra gauge symmetry.

2. On quantization in CSW gauge

In addition, as the Queen Mary group has shown [12],
the most straightforward application of the Cachazo-
Svrček-Witten [5] rules already does calculate some
loop-level effects: these rules can be used at the one-loop
level to calculate the cut-constructible parts of scattering
amplitudes. As shown explicitly in [8] these CSW rules can
be derived directly from the twistor action by changing
gauge to the axial (space-cone) like gauge

 
�A� � 0; 
�B� � 0; (21)

which we will call CSW gauge. Here 
 is an arbitrary
spinor, normalized such that 

̂ � 1. That the CSW rules
can be derived in this way is a possibility which is clear
from the original article [5]: the twistor action in the N �
4 case can also be obtained as the reduction to single trace
terms of the conjectured effective action of Witten’s
twistor-string theory. Hence the original derivation of the
rules applies here and this is fleshed out in [8]. Therefore
there are already two gauges in which our twistor formu-
lation makes some sense at loop level: we have full con-
sistency for the space-time gauge and partial consistency
(at least self-consistency) for the CSW gauge.

However, the CSW rules do not calculate full amplitudes
in nonsupersymmetric Yang-Mills theories. A particular
example of this drawback is the amplitudes with all hel-
icities equal. These are zero at tree level for all pure Yang-
Mills theories and vanish at loop level for supersymmetric
ones. If one picks a preferred helicity for the MHV ampli-
tudes used in the CSW rules, say the set which is ‘‘mostly
minus,’’ then it is obvious there is no one-loop diagram
which has only minus on the external legs, although there
are diagrams for ‘‘only’’ plus [19]. In the approach of
Mansfield these missing diagrams are thought to be gen-
erated by a Jacobian factor which appears if the canonical
transformation is regulated properly. This scenario was
supported by the calculations in [13] where a modified,
noncanonical transformation was employed. This however
invalidates the equivalence theorem and calculating ampli-

tudes should then be done by combining contributions
from many different sources.

In the twistor action approach a nontrivial Jacobian
might translate to a partly anomalous gauge symmetry:
the lifting formulas only guarantee space-time gauge sym-
metry, but nothing beyond that. A more mundane expla-
nation would be the fact that there are regularization issues
when one tries to quantize the twistor action at loop level in
the CSW gauge. The most natural regularization treats the
six-dimensional twistor space as �4� 2�� � 2: one per-
forms a half-Fourier transform with respect to the space-
time directions and employs dimensional regularization
there. However, this already encounters several problems.
It is well known in four dimensions for instance that axial
gauges need careful regulating [20] since Fourier trans-
forms of

 �
1


�� _�p� _�
(22)

are ill defined and a pole prescription is necessary. This
problem afflicts the twistor action, since in CSW gauge the
propagators can be shown to behave like :A0B0: � ��
�p�

p2 ,

and this delta function is obtained as

 ��
�p� � �@0
1


�p
: (23)

A drawback of implementing the Mandelstam-Leibbrandt
regulating prescription is that it leads to very large alge-
braic complexity. In addition, there is the usual problem
using chiral indices in any dimensional regularization
scheme. In a supersymmetric theory one would rely on
dimensional reduction to keep all the spinor algebra in four
dimensions. This is however known to be in grave danger
of being inconsistent (nonunitary) in nonsupersymmetric
theories which leads to the inclusion of � scalars.
Furthermore, as we are regulating a gauge theory, Pauli-
Villars is flawed as this would break gauge invariance,
apart from the nongeneric form mass terms on twistor
space take.

In Appendix A a gauge condition equivalent to the CSW
gauge at tree level is constructed using ’t Hooft’s trick
which has slightly better loop behavior, but which remains
problematic for basically the same reasons indicated
above.

III. BACKGROUND FIELD METHOD FOR
TWISTOR YANG-MILLS

The existence of the CSW rules and their loop-level
application suggests a trick: If one is given a gauge theory
with two gauges, one of which is well defined at loop level
and one which makes results most transparent, the obvious
game to play is the quantization of this theory using the
background field method. Within this method the quantum
effective action is calculated by integrating over the quan-
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tum field, and when interpreted as the generating func-
tional of 1 particle irreducible (1PI) diagrams, this can be
used to calculate S-matrix elements for the background
fields. As pointed out in [21] in the context of four-
dimensional field theory, one can put the background field
into a different gauge than the quantum field. As our action
is very close to the four-dimensional one, it is reasonable to
expect the same trick can be performed here. Hence in this
paper the twistor Yang-Mills action will be studied with the
quantum field in the background field version of the space-
time gauge. Then some properties of the S-matrix will be
studied if the background field is put into the CSW gauge.
A very important product of the analysis is the study of
renormalization properties of our action. Actually, this was
the original reason to study background field formulations,
both in the literature as for us. In particular a background
field calculation will also easily yield the � function of the
theory, and it is this purpose for which the background field
method is usually employed.

Since the twistor action reduces to the Chalmers and
Siegel formulation of Yang-Mills theory in ordinary space-
time gauge, as a suitable warm-up for the calculation about
to be presented one should therefore first treat that action in
the background field formalism. We refer the reader to
Appendix B for the details of that calculation. Below the
same procedure is performed for twistor Yang-Mills, which
is shown to reduce the calculation down to the space-time
one worked out in the Appendix.

Begin by splitting the fields ~A and ~B into a background
and quantum part

 

~A � A� a; ~B � B� b (24)

indicated by capital and lowercase letters, respectively.
The action will be expanded in quantum fields, ignoring
the terms linear in the quantum field as they will not
contribute to the quantum effective action which is the
generating functional of 1PI diagrams. Subsequently inte-
grating out the quantum field requires a gauge choice. As
the action is invariant under

 

~A! ~A� �@ ~A	 (25)

 

~B! B� � ~B;		 � �@A! (26)

there are two obvious choices one can make for the sym-
metry transformations of quantum and background field:
 

A! A� �@A	 A! A

B! B� �B;		 � �@A! B! B

a! a� �a;		 a! a� �@A�a	

b! b� �b;		 � �a;!	 b! b� �B� b;		 � �@A�a!:

(27)

The objective is to completely fix the second symmetry,
while keeping the first (referred to as background gauge

symmetry). As the quantum fields transform in the adjoint
under the background symmetry, writing elliptic gauge-
fixing conditions such as Lorenz gauge and the background
field version of space-time gauge (20) requires one to lift
the derivatives to covariant derivatives. In addition,
although its almost immaterial to our calculation, one
should promote the Lagrange multiplier to transform in
the adjoint of the background symmetry. Hence the ghost
and antighost will also transform in that adjoint by the
usual Becchi-Rouet-Stora-Tyutin (BRST) symmetry.

A. Gauge fixing the background field

The background version of space-time gauge (20) reads
 

�@y0 �H�A0	a0H�A0	
�1� � 0;

�@y0 �H�A0	b0H�A0	
�1� � 0:

(28)

Note that this gauge condition involves a choice of metric
on a CP1. These conditions are solvable since Yang-Mills
connections on a CP1 are trivial. We can therefore trans-
form to the frame where A0 is zero, solve the equations and
the transform back. Since both a0 and b0 are part of a one-
form on CP1 they are automatically �@ closed and by the
gauge condition co-closed in the frame where A0 is zero.
They are therefore harmonic. As a0 has weight zero and b0

has weight �4, there are no nontrivial harmonic forms a0

and there is a two-dimensional space of harmonic forms b0

by a standard cohomology calculation. Hence we obtain

 a0 � 0; b0 �
3Hb _� _��x�H

�1�̂ _��̂ _�

���̂�2
; (29)

where H are the holomorphic frames encountered before,
which are functionals of the background field A0�x;��.
This solution can be put back into the action. The field
b� is now a Lagrange multiplier for a very simple condi-
tion,

 � �@0 � A0�a� � 0: (30)

This can be solved in the same way as before, which yields

 a� � Ha� _��x�H
�1� _�: (31)

In the original derivation [7] the ghosts which came from
the space-time gauge fixing decoupled. In the present
context, due to the presence of a coupling to the back-
ground field in both the gauge-fixing condition (28) and the
symmetry transformations (of the symmetry we are trying
to fix), the argument is slightly more convoluted. First note
that we can still argue that the coupling of the quantum
fields to ghosts is off diagonal, so that these quantum fields
can safely be ignored. That leaves a possible one-loop
contribution to the effective action, since the diagonal
part of the ghost action takes the form

 � �c�x;��� �@0 � A0�
y� �@0 � A0�c�x; ��: (32)

The ghosts in this action however do not have a space-time
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kinetic term. This leads to a contribution to the effective
action which seems to diverge wildly since it is propor-
tional to

 

Z
d4p � ��4��0�: (33)

However, it is well known [22] that contributions like this
vanish in dimensional regularization, just like tadpoles.
Hence the ghosts which came from fixing space-time
gauge can safely be ignored in perturbation theory, as
long as dimensional regularization is employed. See also
the discussion in Sec. IV for a second reason why this
factor can safely be ignored.

B. Reduction to space-time fields

At this point it is clear that the quantum fields only live
on space-time and the calculation starts to become equiva-
lent to the calculation in Appendix B. In particular the
fields in a loop are now a standard four-dimensional vector
field and self-dual tensor field. This argument therefore
neatly avoids any regularization problems special to the
twistor space formulation. The quantum self-dual tensor
field b _� _� can be integrated out to yield

 

S�A;B; a; b	 � S�A;B	 �
1

4

Z
d4xF _� _��a	F

_� _��a	 �
3g
4

Z
d4xF _� _��a	

Z
dk��H�1� �@� � A��H�; a� _�	

� _��̂ _��̂ _�

���̂�2

�
9g2

16

Z
d4x

�Z
dk��H�1� �@� � A��H�; a� _�	

� _��̂ _��̂ _�

���̂�2

�
2
�

3g
4

Z
d4xa�_�a� _�

Z
dkH�1B0H� _�� _�: (34)

As a final step one can now use (13) to argue that the
coupling of quantum to background fields is the same as in
the Chalmers and Siegel Lagrangian (B11), since with this
argument in hand the � integrals can simply be performed.
Actually, this is the calculation which led to the derivation
of (13) in the first place.

The kinetic term for the quantum fields is just the
ordinary Yang-Mills one up to a nonperturbative term.
Therefore, dimensional regularization can be employed
as usual. We will employ the original ’t Hooft-Veltman
[23] scheme which keeps the fields outside the loop in 4
dimensions. A second remark is on the structure of the
vertices: every background field vertex involves an infinite
amount of A0 fields through the holomorphic frames. Note
that this is permitted since the mass dimension of A0 is
zero. As a final remark note that this theory is expected to
diverge no worse than Yang-Mills theory as the quantum
field is simply a gluon: in this particular background gauge
twistor Yang-Mills theory is therefore power counting
renormalizable. This in contrast to naive power counting
based on the mass dimension of the a0 field.

Another way of summarizing the above observation is
that in this particular background gauge the following
diagram commutes:

In a very real sense this result is also expected, since the
quantum effective action can always be calculated on
space-time for the Chalmers and Siegel action as a func-
tional of the space-time fields A�x� and B�x�. The method
outlined in the previous section allows one in principle to

lift any functional, so the part which is added in this section
is the top arrow.

Just as in the case described in [7] there is a residual
gauge symmetry. When the background field is also in the
space-time gauge these are those transformations for which
the transformation parameter 	 is a function of x only.
Putting the frames back in we arrive at

 	�x;�� � H	�x�H�1: (35)

Of course this can be checked by direct calculation, as
these are the transformations for which the gauge-covariant
Laplacian vanishes,

 � �@0 � A0�
y� �@0 � A0�	 � 0: (36)

What needs checking is whether or not the additional
gauge-fixing conditions break the carefully preserved
background gauge invariance. Below this is verified ex-
plicitly by imposing the background version of Lorenz
gauge on the background field.

Residual gauge fixing in Lorenz gauge

The gauge one would like to impose on the quantum
field a is the usual background field version of the Lorenz
gauge,

 �@� � �A�; �a� � 0: (37)

However, it is not immediately obvious this is actually
invariant under the background symmetry, the right hand
side of (27). The problem is that the quantum field a� _��x�
does not transform nicely under this symmetry, whereas
the field a��x;�� does. In addition, the weights of the fields
are odd: since we want to write down a Lagrange multiplier
on space-time, it must be weightless from the point of view
of twistor space and this is difficult to achieve with two
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weight 1 fields. We must write down a term which is gauge
covariant under the background symmetry, a Lorentz sca-
lar, weightless and reduces to the Lorenz gauge if the
background field obeys the background gauge.

From the form of the effective vertices in the Yang-Mills
action (34) it follows that the thing to look for consists of
integrations over multiple spheres. This solves the weight-
less condition. The natural building block is of course the
background covariant derivative,

 

�@ � � �A��x;�1�; (38)

which transforms in the adjoint at �1 if and only if it acts
on something which transforms in the adjoint at �1. Since
this must be true locally, a functional of a��x;�2� needs to
be constructed which transforms as an adjoint field at �1.
This is naturally constructed by using link operators in
terms of holomorphic frames [� � �@� A0�

�1, see [6]]

 �
Z
CP1

dk2H1H�1
2 a��x;�2�H2H�1

1

�̂ _�

��̂
: (39)

This construction transforms in the adjoint of the back-
ground gauge symmetry at �1. If we therefore act on it
with the background covariant derivative, (38), and inte-
grate over �1 we obtain the desired background gauge
covariant gauge fixing term. Now we can rewrite that
term in terms of the field a� _��x�

 

Z �̂ _�
1

�1�̂1

�
� _�

1

@
@x� _� � g�A��x;�1�

�
�H1a� _��x�H�1

1 �x��:

(40)

Some further massaging gives

 �@� � �A�; �a��x�; (41)

with A given by (14). The point of this exercise is that
while the above term does not look background gauge
covariant, by its construction it is and in addition it is a
Lorentz scalar and weightless as required. Note that this
gauge condition involves the metric on R4.

C. Renormalization and a conjecture

Now we have all the ingredients to discuss the renor-
malization properties of the twistor action in the back-
ground space-time gauge. If we also impose the twistor
version of the background Lorenz gauge constructed above
to fix the residual gauge symmetry, the perturbation series
is completely well defined and by employing dimensional
regularization maintains Lorentz invariance and the space-
time part of the gauge invariance. A direct consequence of
the diagram in Sec. III B is therefore that the twistor action,
in this particular gauge, is therefore as renormalizable as
the Chalmers and Siegel action. Since that action reduces
to Yang-Mills theory by integrating out the B field, it is
expected that the Chalmers and Siegel action is renorma-
lizable. From the point of view of the twistor action, the

counterterms contain by the lifting formula an infinite
sequence of terms. As noted before, this possibility is a
consequence of the fact that the mass dimension of the field
A0 is zero. However, the calculation in the current section
shows that by background gauge invariance, only 3 towers
counterterms are nontrivial, since in the space-time action
only

 F�A	2 B2 BF�A	 (42)

counterterms are needed.
These terms have an intriguing structure from the twistor

point of view. Lorentz and space-time gauge invariance
only restrict the renormalization Z factors to

 A0 ! ZA0
AR0 ; B0 ! ZB0

B0 � �ZBAF�A	 _� _��
�̂ _��̂ _�

���̂�2
;

A� ! ZA�A
R
�; B� ! ZB�B

R
�; g! ZggR;

(43)

where a possible renormalization of B� by �
R
F0� has

been discarded since that term vanishes by the constraint. It
is easy to see that ZA0

� ZA� , since by gauge invariance,
these should appear on an equal footing in F0� and are
equal to the usual ZA renormalization constant. In addition,
it is also easy to see that the Feynman rules in the back-
ground gauge employed above do not generate contribu-
tions to B�F0�, so

 ZB�ZA � 1: (44)

The usual space-time gauge symmetry argument yields

 ZAZg � 1: (45)

We are therefore left with three independent renormaliza-
tion constants [24]

 ZA ZAB ZB0
: (46)

Three constants seems superfluous, since Yang-Mills the-
ory itself only needs one. This suggests that there are more
relations between the constants, which are not obvious in
the chosen set of gauge conditions. Of course, the same
question can be asked in the background approach to the
Chalmers and Siegel action itself. On a slightly speculative
note, we will conjecture one: we suspect that the BF term
never diverges. In other words,

 ZB0
�ZA � ZBA� � 1 �all loops?�: (47)

This is true at the one-loop level. Furthermore, in the
supersymmetric version of the twistor action, the BF
term is part of what seems to be an F term. The underlying
observation is that twistor space has a conformal symme-
try, so all terms contributing to the local term on twistor
space should be ‘‘conformal.’’ Note that the natural exten-
sion of the conjecture is the expectation that all local terms
on twistor space are in some definite sense protected from
quantum corrections. However, at this point this is nothing
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but a conjecture, which needs further checking. It would of
course already be nice to have a definite translation of the
usual supersymmetric nonrenormalization theorems into
twistor Yang-Mills language.

Using the calculation in Appendix B, it is clear that the
twistor Yang-Mills theory has a nonzero � function: scale
invariance is broken. Up to a field redefinition (the ZBA
term), it can be seen that the � function arises by compar-
ing the coefficient in front of the BF and B2 terms. In other
words, the beta function is related to the size of the twistor
CP1. This is also expected, as this can be related to the size
of the excised twistor line which corresponds to 1.
Removing this line breaks the symmetry group of the space
from the conformal down to the Poincaré group.

N � 4

The above analysis does have a nice interpretation in
N � 4 SYM where a background gauge calculation can
be set up just as in this article: if the quantum effects leave
supersymmetry unbroken, then the � function vanishes.
This follows from the observation that in the twistor for-
mulation of N � 4 theory [7] a and b are parts of the
same supermultiplet. They should therefore have the same
renormalization constant ZA if N � 4 supersymmetry is
unbroken by quantum effects. Therefore by (44)

 ZA � 1 �in N � 4� (48)

holds to all orders in perturbation theory. By (45)

 Zg � 1 �in N � 4� (49)

then follows, which in turn implies a perturbatively van-
ishing � function. Of course, the real technical difficulty in
this argument lies in proving the assumption that the
quantum effects do not break N � 4. By the close relation
of our techniques to space-time arguments this is fully
expected (including the usual caveat about the existence
of a supersymmetric regulator), but the background gauge
choice employed in this article does break manifest (linear)
N � 4 supersymmetry. This is probably comparable to
the way a Lorenz gauge in real Chern-Simons theory
introduces dependency on a metric.

IV. TOWARDS YANG-MILLS S-MATRIX

In ordinary Yang-Mills the background field method can
be used to calculate S-matrix elements with the back-
ground field in a different gauge than the quantum field
[21,25]. This observation is based on the fact that the
quantum effective action obeys

 ��A	 � ~��Â; A	jÂ�A: (50)

In ordinary Yang-Mills theory, the left-hand side of this
equation is the quantum effective action calculated in the
background field method, while the right-hand side is the
effective action of the theory defined by shifting the quan-

tum field, basically undoing (24). This equation is derived
from the observation that the only difference for the cal-
culation of the effective action between the background
field path integral and the usual path integral is the fact that
they employ a Legendre transform with different sources:
the background field integral has a source Ja, while the
usual path integral has a source J�~a� A�. The background
fields in the right-hand side will then appear solely in the
gauge-fixing part of the action. As the S-matrix is inde-
pendent of the gauge-fixing functional, it is independent of
the background field gauge choice, which can be checked
explicitly. This is of course nothing but the statement that
physical states correspond to BRST cohomology. We ex-
pect that the same proof can in principle be used in the
twistor action in a general background gauge.

Note that it is already clear from the formulas in the
previous section that even low-point Green’s functions
calculated using the background field method contain ver-
tices with a large number of fields in any other gauge than
space-time gauge. Two-point functions for instance here
calculate already infinite towers of effective vertices. These
towers disappear in the case where the background field
obeys the space-time gauge condition. It can be taken
however as a clear indication that it might be possible to
calculate large classes of effective vertices with a few
simple diagrams.

A. Background field in CSW gauge

As indicated before, the background field will be put
into CSW gauge, as then at tree level just the MHV formal-
ism is obtained [8]. Although one could calculate in prin-
ciple with a Lorenz gauge quantum field, in this case it is
more convenient to employ the light-cone formalism for
the quantum field. The convenience stems from the fact
that the space-time projection of the background field in
CSW gauge obeys

 
� _�A� _� � 0: (51)

The origin of the arbitrary spinor  is elucidated below.
This equation follows from Eq. (13), since evaluating that
equation on � �  gives

 
� _�A� _� � 
� _��H�1��@� _�H���: (52)

Recall that the holomorphic frames are defined to be the
solution to �@AHjp�1�x� � 0. Solving this equation however
requires a boundary condition, in this case the value of the
holomorphic frame at a base point. We pick this point to be
 and normalize H�� � 1. From this short observation
Eq. (51) follows.

The combination  _�
� forms a null vector in four-
dimensional space-time, therefore the above result exhibits
the close link between the twistor CSW and space-time
light-cone gauge. Since the projection of the background
field to space-time gauge which couples to the quantum
field obeys a light-cone gauge condition, it is natural to
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impose light-cone gauge on the quantum field as well. In
the following for calculational ease the spinor direction
indicated by 
 and  will be denoted by 1 and _1, respec-
tively. So for arbitrary spinors m�; n _�,

 m� � m1
� �m2
̂�; n _� � n1 _� � n2̂
_�: (53)

The light-cone gauge condition on the quantum field there-
fore becomes

 a 2 _2 � 0: (54)

In light-cone coordinates, it is natural to study the physical
fields A2 _1 and A1 _2. By Eq. (13), it follows that the Yang-
Mills field on space-time splits into two series of fields on
twistor space in the CSW gauge. Roughly we have

 A2 _1 � a0 � �a0a0� � � � � ; (55)

 A1 _2 � b0�a0 � �a0a0� � � � ��; (56)

where the second equality follows by the field equation.

B. Self-dual sector

In space-time Yang-Mills it is known that the truncation
to just the BF part of the Chalmers and Siegel action

generates exactly one series of amplitudes, at one loop:
the amplitudes with all helicities equal. This is precisely
the series of amplitudes which appear to be projected out in
the MHV formalism, and as a first consistency check one
would like to know if these are nonzero in this approach.
The background coupled action follows by the same
method as employed in the previous section,

 

S�A;B; a; b	 � S�A;B	 �
1

2

Z
d4xB _� _��a	F

_� _��a	

�
g
4

Z
d4xfabcBa

_� _�
a _�;b
� a� _�;c

�
g
4

Z
d4xfabcba_� _�

Af _�;b
� a� _�g;c: (57)

Here the fields B and A denote the space-time projection of
the twistor fields A and B. These fields are put in the CSW
gauge. Hence the complete tree-level perturbation theory is
automatically trivial, as there are no more vertices what-
soever. As argued above, it is convenient to impose a2 _2 � 0
on the quantum field. Writing out the components of the
action yields,

 

S�A;B; a; b	 � S�A;B	 �
1

2

�Z
��b _1 _1@2 _2a1 _2� � b _2 _2�@1 _1a2 _1 � @2 _1a1 _1 � �a1 _1; a2 _1	� � b _1 _2�@1 _2a2 _1 � @2 _1a1 _2 � @2 _2a1 _1

� �a1 _2; a2 _1	� �
1

2
B _2 _2�a1 _1; a2 _1	 � B _1 _2��a1 _2; a2 _1	� �

1

2
b _2 _2��A1 _1; a2 _1	 � �A2 _1; a1 _1	�

� b _1 _2��A1 _2; a2 _1	 � �A2 _1; a1 _2	�

�
: (58)

Now, following similar steps as in [26], the fields b1 _1, B1 _1
can be integrated out. The last field can be integrated out
because there are no quantum corrections for this field.
Note that this is equivalent to studying the field equation
for the twistor field B0 and evaluating the resulting equa-
tion on � � ̂. The quantum field will then decouple. This
will set 
̂�a��̂� � 0, which is exactly A1 _2. The obtained
solutions are

 A 1 _2 � 0; a1 _2 � 0: (59)

With these solutions there are no more quantum correc-
tions for B _1 _2, and the only place b _1 _2 features is now in the
kinetic term. Therefore these can be integrated out exactly,
and

 a 1 _1 � p1 _2
��a2 _1 � p2 _2

��; A1 _1 � p1 _2
��A2 _1 � p2 _2

��

(60)

is obtained. Again, integrating out B _1 _2 can also be per-
formed by studying the field equation for the twistor field
B0 and evaluating this on � � a� b̂. As the left-hand
side of the field equation is proportional to � _�� _� by the
constraint, all components of this equation should vanish
separately.

The obtained solutions can be plugged into the remain-
ing parts of the action and with the definition b _2 _2 � � the
following result
 

S � S�A;B	 � tr
Z
�� ���

1

2
���@� _2

��; @�_2
��	�

�
1

2
���@� _2�; @�_2

��	� �
1

2
�B _2 _2�@� _2

��; @�_2
��	� (61)

is obtained. Here the full background action is retained. In
other words, the solutions to the field equations are only
used for the background fields coupling to the quantum
field. This is possible here because the background fields B
whose field equations are needed only appear in the clas-
sical action. Several things follow from this action. First of
all, it can be checked there are no higher than one-loop
diagrams. Second, with the background field in CSW
gauge the only quantum effects in this theory arise as a
field determinant. Third, no loops with external B’s will be
generated as there are simply no diagrams for pure loops
and there are also no tree-level vertices which could give
external B’s by dressing. If the background field was put in
‘‘space-time� light-cone’’ gauge and treated in the light-
cone formalism as well, this is diagrammatically simply
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what is obtained from using only MHV three (3) vertices as
building blocks. In the present setup the calculation is
slightly different, as will be illustrated below.

1. Four-point all-plus amplitude

It is instructive to study the four-point all-plus amplitude
calculated in the above framework. Since A2 _1 can be
expanded in terms of a0 twistor fields, there are in principle
3 different contributions. These can be diagrammatically
represented by diagrams with the same topology as in the
ordinary light-cone case. Within dimensional regulariza-
tion, the bubble contributions vanish, which leaves the box
and the triangles. The box diagram can easily be seen to be
equivalent to the light-cone calculation. Therefore we will
only need the expansion of A2 _1 to second order,

 A 2 _1 � 
�̂ _�A� _� � H�̂��
�̂ _�@� _��H�1�̂� (62)

 � �a0� � �a0�
2 � � � � : (63)

One easy way this computation can be done is by an
expansion of the frames H,
 

H�̂� � 1�
Z
CP1

a0��1�

̂�1

̂
�1

�
Z
�CP1�2

a0��1�a0��2�

�̂�1���1�2�

̂
�2

� � � � ; (64)

which leads after some algebra to
 

A2 _1 � Az�p�

� ĥi
�
a0�q1�


q1
� �
p�

a0�q1�a0�q2�

�
q1��
q1
q2��
q2�

� � � �

�
: (65)

Here the obvious momentum constraint has been sup-
pressed. Indeed, inserting the external field normalizations
and performing all the sphere integrals using the delta
functions shows explicitly that the calculation of the tri-
angles is also exactly equivalent to the light-cone calcula-
tion, diagram by diagram. Hence it follows that the correct
scattering amplitudes are reproduced (see, e.g., [13]).
Moreover, expressions of the type displayed above [espe-
cially (65)] are very closely related to the light-cone ap-
proach to MHV diagrams advocated by [10]. Actually the
coefficients found by Ettle and Morris [27] can all be
reproduced by an extension of the above argument. This
will be discussed elsewhere.

2. Towards the off shell all-plus vertex

From the setup described above, all the all-plus ampli-
tudes should follow from Eq. (61). Hence these amplitudes
are generated by a determinant. This is in the spirit of [13].
One of the aims of the present work was to see if it were
possible to calculate complete vertices in the twistor quan-

tum effective action. One of the goals would be to elucidate
the twistor structure of the one-loop amplitudes. In par-
ticular, as all-plus amplitudes localize on lines in twistor
space [28], it is natural to expect in a twistor action formal-
ism that there exists an off shell local vertex in the quantum
effective action which reproduces those amplitudes.
Remarkably, this is very easy to write down in a CSW
gauge as it can be verified that [29]

 ��1��a0	 �
Z
d4x

Z
�CP1�2

@� _�K21�@
�
_�
�a0��1�@

_�
�K12@

� _��a0��2�

(66)

reproduces the known answer as a local vertex. Here

 K12 � � �@0 � a0�
�1
12 (67)

is the full Green’s function on the CP1 sphere. Note this
can never be invariant under the full twistor space gauge
symmetry as this expression vanishes in space-time gauge.
It is therefore perhaps best interpreted as an effective
vertex in a gauge-fixed formalism. Unfortunately, apart
from the indirect argument that the self-dual Yang-Mills
theory generates all-plus amplitudes, we were unable to
connect the above vertex to the calculation of the ampli-
tudes directly.

Note, however, that the vertex can be promoted to a
quantity invariant under space-time gauge transformations.
Promoting derivatives to full covariant derivatives using
Eq. (14) would lead to unwanted contributions to the
scattering amplitudes, as there would be more a0 fields
floating around. In contrast, note that

 

~A� _� �
Z �̂ _�a�

��̂
(68)

transforms like a space-time connection under gauge trans-
formations on twistor space which only depend on space-
time:

 � ~A� _� �
Z �̂ _�� �@�f�x� � �a�; f�x�	�

��̂
� @� _�f� � ~A� _�; f	:

(69)

Using this new covariant derivative a vertex invariant under
space-time gauge transformations can be devised. We do
not know if the extra contributions generated by the
‘‘tilde’’ covariant derivatives control any scattering ampli-
tude: they most definitely do no generate the four-point
���� amplitudes [28]. Furthermore, these amplitudes
would not be generated within the self-dual theory. It is
interesting to note that the structure of the all-plus ampli-
tudes also arises in other contexts [30].

C. Full theory

The same method as in the self-dual sector can in
principle be applied to the complete theory. A full treat-
ment will be deferred to future work, but it is possible to
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predict the result: by this stage it is natural to expect that it
amounts to taking light-cone Yang-Mills theory, induce a
separation between background and quantum field and
apply a twistor lift to the background fields only, keeping
these in CSW gauge. The tree-level results should be given
by just the MHV rules, as we can use the solution to the
background field equations only for the background fields
coupling to the loops, leaving the tree-level action intact.
Denoting � and � helicity fields by C and �C for back-
ground and c and �c for quantum fields we obtain schemati-
cally (for the one-loop calculation)
 

SC�A;B	 � Slight cone�c; �c	 � c�cC� c�c �C�cc �C� �c �c C

� �c �c CC� cc �C �C�c�c �C C: (70)

Here C and �C are given by

 C � A1 _2�x�; �C � A2 _1�x�; (71)

which can be lifted straight to twistor space in the CSW
gauge. Interestingly, this decouples the two terms of (14).
This is also expected, as the linearized A on shell shows
explicitly one term is one and the other the other helicity.
Now it can easily be checked that one of these contains at
least one A� which gets turned into a b0 by the field
equation, while the other only contains A0 fields. As the
action for background fields only generates MHV dia-
grams at tree level, it is easy to see that the Feynman rules
derived for the action above will then generate loop dia-
grams for both the all � and all � amplitudes at the same
time: one follows from combining what are simply the
MHV 3-vertices (the one with the external A�) knotted
into a loop, dressed with MHV trees. The other one then
follows as a straight field determinant, without any for-
estry. Note that this is a neat realization of both separate
scenarios sketched in [13] within one framework. Actually
it is easy to see that applying Mansfield’s canonical field
transformation to only the background fields in Eq. (70)
will realize this scenario. We conjecture this constitutes a
full quantum completion of the CSW formalism.

Of course, many things have to be checked far more
explicitly than was done here. However, as we saw in the
previous subsection, at least in principle we can follow the
same steps needed to make the formalism run. One large
caveat in all of the above is that we have not regulated the
action very carefully since the light-cone formalism oper-
ates strictly in 4 dimensions and it would be useful to do
this properly. However, these problems are again just
space-time ones. One obvious way around them is to write
a 4� 2�-dimensional Yang-Mills action and apply lifting
only to the four-dimensional degrees of freedom in the
spirit of a dimensional reduction.

V. DISCUSSION

In this exploratory article we have shown that there is a
class of gauges in which the twistor action formulation of

Yang-Mills theory makes sense as a quantum theory in the
usual perturbative approach. A partial gauge fixing shows
that the quantum effective action of twistor Yang-Mills in
this gauge is equivalent to the twistor lift of the quantum
effective action of the Chalmers and Siegel action calcu-
lated in the background field approach. In particular the
divergence structure is the same and in this class of gauges
twistor Yang-Mills is as renormalizable as ordinary Yang-
Mills in the Chalmers and Siegel formulation. Although it
is fully expected that formulation is equivalent to ordinary
Yang-Mills at the quantum level, this is not completely
obvious. In particular it would be nice to have a renorma-
lizability proof for the Chalmers and Siegel action, which
should be a straightforward extension of results in the
literature. In addition a full proof of unitarity would be
nice, although again this is expected to hold by the close
relationship between the perturbation series of twistor
Yang-Mills and the space-time version exposed here. We
also have formulated a conjecture on the nondivergence
within perturbation theory of local terms in the twistor
action based on the twistor structure and a counting argu-
ment. This certainly deserves some further study.
Unfortunately, apart from the indirect argument that the
self-dual Yang-Mills theory generates all all-plus ampli-
tudes, we were unable to connect the above vertex to the
calculation of the amplitudes directly.

An obvious question remains as to what other gauge
choices within the twistor framework are possible and/or
interesting. In particular one would like to move away from
the space-time oriented background gauge employed here
and move toward more twistorial ones. The probably most
well-behaved gauge of all for instance, the ‘‘generalized
Lorenz’’ gauge ( �@ya � 0 � �@yb), is a natural possibility
to consider. Besides choosing a metric on CP3, this re-
quires however a better understanding of twistor propaga-
tors beyond the half-Fourier transform technique employed
up to now and, in particular, their regularization at loop
level. It would also still be interesting to find a way to make
sense of CSW gauge directly, although there it remains a
problem to see how to make systematic sense of the
divergence structure. There are indications however that
techniques currently being employed in the light-cone
approach to MHV diagrams also should be applicable here.

The background field method as presented in this article
can quite readily be employed in any theory for which a
twistor action description is available. The general lifting
procedure in the form described in this article is actually
applicable to large classes of four-dimensional gauge theo-
ries, among which N � 4 SYM [7] and the full standard
model [8]. Of course, in the latter case one would also like
to have a better understanding of CSW gauge results. This
is under study.

One research direction which might be interesting from
this article is the question of twistor geometry within the
context of renormalization: is there a natural geometric
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twistor interpretation of renormalization? In the twistor-
string context, the Yang-Mills coupling constant is related
to the size of the CP1 instantons in the disconnected
prescription. This suggests that the natural direction to
look for ‘‘renormalization geometry’’ is actually the non-
projective twistor space C4. However, based on the results
in this article it is not yet quite obvious how this might be
achieved.

Another interesting avenue to pursue concerns questions
of integrability: it is known that the self-dual Yang-Mills
equations are in a real sense integrable; see, e.g., [31]. In
fact, the transform to twistor space can in some sense be
viewed as an explicit transformation to the free theory (the
‘‘action/angle’’ variables) underlying the integrability. The
twistor action approach to full Yang-Mills can then be
understood as a perturbation around the self-dual, inte-
grable sector. It is a very interesting question to what extent
techniques employed in the study of classical integrable
systems may be imported to the full theory.

However, the most important point to take from this
article is that there is a clear indication that at least part
of the structure which makes Yang-Mills perturbation the-
ory at tree level so simple extends to loop level in a
consistent way. The goal is that exploiting this observation
at a much deeper level than here leads to a better under-
standing of Yang-Mills theory, both perturbatively and
nonperturbatively. The study of perturbation theory in
this paper is intended to be a stepping stone in that direc-
tion, although even in this form it does apparently furnish a
completely regularized, well-behaved, off shell quantum
completion of the MHV formalism. This of course needs
further work. One of the things to aim for is for instance
(analogs of) Witten’s twistor space localization arguments
as these make precise what kind of ‘‘hidden’’ structure
perturbation theory might have. It would be very interest-
ing to see how these arise within the twistor action frame-
work as this seems to be a natural starting point to try to
derive them. This carries the great promise of being able to
calculate complete generating functionals of loop ampli-
tudes, similar to how MHV amplitudes are used at tree
level. We hope to come back to this issue in future work.
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Note added in proof.—After this paper was submitted to
the archive, two other preprints appeared which also deal
with the problem of quantum completions of the CSW
rules for nonsupersymmetric Yang-Mills theory [33,34].

Both of these propose a more direct solution to the problem
and use Mansfield’s canonical transformation technique.
By the results in this article, especially Sec. IV, this is very
closely related to the twistor approach.

APPENDIX A: AN ALTERNATIVE CSW-LIKE
GAUGE

In four-dimensional quantum field theory one can use
’t Hooft’s trick to ‘‘square’’ the gauge condition and arrive
at a family of gauge fixings. The normal gauge-fixing
condition and ghost terms follow from the BRST variation
of the gauge-fixing fermion,

 Sgauge fix � QBRST� �cG�; (A1)

where G is the gauge condition to be imposed and �c is the
antighost for which �Q �c � � with � the Lagrange multi-
plier field. This is replaced by

 Sgauge fix � QBRST

�
�cG�

�
2

�c�
�
: (A2)

Integrating out the Lagrange multiplier from the resulting
action gives

 Sgauge fix �
1

2�
G2 � ghosts: (A3)

In the context of the twistor action this is slightly difficult
as the gauge conditions have weight: 
�a� for instance has
weight 1 if 
 is weightless. Therefore, squaring this con-
dition does not make sense as an integral on the projective
space. However, one can easily normalize the gauge-fixing
vector 
 to have weight 0:

 
� !
 _��̂ _�

��̂

�: (A4)

Here  _� and 
� are two constant spinors which taken
together form a lightlike vector on space-time. In the
main text of this article  arose as the base point of the
holomorphic frame H. With this redefinition of 
 one can
now square the gauge-fixing condition for A. In the limit �
is taken to zero this gauge reduces to the CSW gauge
employed in [8].

One can now calculate the propagators in this gauge in
the standard way. It is expected when also 
B � 0 that in
the limit �! 0 the CSW propagators are recovered. This
turns out to be untrue, surprisingly. Instead, one needs to
impose

 �̂ � @
@x� _� b

� � 0 (A5)

to obtain the same CSW propagators in the limit �! 0. In
addition one obtains

 :B�A0: �
p̂�

���̂�p2 : (A6)

At tree level the gauge constructed in this Appendix is
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equivalent to the CSW gauge. At loop level, however, there
is now a ghost term and a host of nonzero diagrams
connected to the vertex in the Chern-Simons part of the
action. These seem unattractive, however, since their de-
pendence on � indicates that propagators connecting to a
loop can contribute loop momentum factors. In addition, it
is hard to see how these contributions could lead to the all-
plus helicity amplitudes which are missing in the CSW
rules.

APPENDIX B: BACKGROUND FIELD
CALCULATION FOR THE CHALMERS AND

SIEGEL ACTION

In this Appendix we briefly describe a background field
calculation for Yang-Mills theory as formulated as the
BF-like Chalmers and Siegel action. This Appendix took
some inspiration from a calculation in actual BF theory in
4 dimensions from [32], although both our action and the
technique applied are different.

Yang-Mills theory can be formulated as an action with
an ‘‘auxiliary’’ self-dual tensor field cB��,

 S �
1

2
tr
Z
d4x

�
Ba

_� _�
F _� _�
a �

1

2
Ba

_� _�
B _� _�
a

�
; (B1)

where F is the self-dual part of the Yang-Mills curvature:

 F _� _� �
1

2
���F� _�� _�: (B2)

In particular, F _� _� is a symmetric tensor. The normalization
of this term is chosen to have

 F� _�� _� � ���F _� _� � � _� _�F��; (B3)

which is nothing but the usual observation that the curva-
ture splits naturally in self- and antiself-dual parts in spinor
coordinates. Note that, in the Abelian case, integrating out
A yields the electromagnetic dual action. Integrating out B
from the above action yields the usual Yang-Mills action
up to the topological term. More specifically, if just A
fields are inserted into the path integral, it is clear that
the VEV calculated in this way will be just the standard
Yang-Mills answer (perturbatively). In particular, the �
function of this theory should be the same. Below we
will show this explicitly through the background field
method. Note that the path integral contains an integration

over a self-dual auxiliary field and a standard gauge field.
Hence we do not expect anomalies to arise from the path-
integral measure.

1. Setup

Split the fields into a background and quantum part

 

~A � A� a; ~B � B� b (B4)

indicated by capital letters and lowercase letters, respec-
tively. We are going to calculate the quantum effective
action by integrating out b; a in perturbation theory. As
the action is invariant under

 

~A! ~A� dg~A	; (B5)

 

~B! ~B� g�~B; 		 (B6)

there are two obvious (disjoint) choices one can make for
the symmetry transformations of quantum and background
field:
 

A! A� dgA	 A! A

B! B� g�B; 		 B! B

a! a� g�a; 		 a! a� dg�A�a�	

b! b� g�b; 		 b! b� g�B� b; 		:

(B7)

The objective in a background field calculation is to fix
symmetry number two and keep explicit symmetry number
one. One might be tempted to impose Lorenz gauge. As the
quantum field a transforms in the adjoint of the back-
ground field transformation, a pure Lorenz gauge would
break the background symmetry. This is easily remedied
by the background gauge condition:

 @�a� � g�A�; a�	 � 0: (B8)

This gauge condition transforms in the adjoint of the
background gauge transformation, so including this condi-
tion with a Lagrange multiplier which also transforms in
the adjoint, a nice invariant term can be constructed.
Following the usual steps we insert the split (B4) and the
appropriate gauge fixing and ghost terms into the action,
discard the linear terms as only 1PI diagrams contribute to
the quantum effective action, and obtain

 

S�A� a;B� b	 � S�A;B	 � S�a;b	 �
g
4

Z
d4xfabcBa

_� _�
a _�;b
� a� _�;c �

g
4

Z
d4xfabcba_� _�

Af _�;b
� a� _�g;c

�
1

2�
��@�a�;a�2 � 2gfabc�@�a�;a�Ab

�a�;c � g2fabcfaefAb
�a�;cAe

�a�;f� � �cD� �� ~D
� � a��c: (B9)

Note that the ghosts inherit their symmetry properties from Eq. (B8) by a simple BRST argument: they transform in the
adjoint of both symmetry transformations.

At this point one could either work with the above action directly or one could integrate out the quantum field b _� _�. The
first option, which we also explored, leads generically to more diagrams to be calculated, although results do not change.
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Also, one would like to stay as close to the original Yang-Mills calculation as possible. Therefore the field b will be
integrated out using its field equation,

 b a
_� _�
� Fa

_� _�
�
g
2
fabcA

b
�f _�a�;c_�g

: (B10)

Note that F _� _� is a functional of the quantum field a only. This equation leads to
 

S�A� a;B� b	 � S�A;B	 �
Z
d4x

1

4
F _� _�F

_� _� �
1

2�
�@�a��2 � �cD� �D� a���������!�c�

g
4�
�fabc@� _�aa� _�A� _�;ba� _�;c�

�
g
8
�fabc�@�f _�a�;a_�g

� gfadea
d
�f _�a�;e_�g

�Af _�;b
� a _�g�;c� �

g2

8�
fabcf

a
efAb

� _�a� _�;cAe
� _�

a� _�;f

�
g2

16
fabcf

a
efAf _�;b

� a _�g�;cAe
�f _�a�;f_�g

�
g
4

Z
d4xfabcBa

_� _�
a _�;b
� a� _�;c: (B11)

The above action admits an intriguing simplification be-
yond the simple form of the propagator if � � 1. In that
case the terms quadratic in quantum fields in the second
and third lines combine to form

 

g
2
fabc@� _�a�_�;aA _�;b

� a _��;c �
g2

4
fabcfaefA _�;b

� a� _�;cAe
� _�a�;f_�

;

(B12)

which can be proven by decomposing the primed tensor
structure in this term into symmetric and antisymmetric
parts. Hence we will fix � � 1 in the following. Note that
decomposing the above expression in symmetric and anti-
symmetric parts in the unprimed tensor structure leads to
the type of terms which might be derived from the anti-
Chalmers and Siegel action (the parity conjugate action),
 

Santi-Chalmers and Siegel

�
1

2
tr
Z
d4x

�
Ba
��F

��
a �

1

2
Ba
��B��

a

�
; (B13)

treated in the background field method. It would be inter-
esting to understand this connection further as parity in-
variance is obscured in the Chalmers and Siegel action.
The kinetic term F _� _�F

_� _� can be written as a sum of
(minus) the usual Yang-Mills action and a topological
term. It therefore follows that perturbatively the quantum
field a can be treated as a standard d-dimensional vector
field in dimensional regularization with the ’t Hooft-
Veltman prescription which only continues fields inside
the loop.

2. Self-energies

Using (B11) we can calculate the self-energies of the
fields in the theory,

 hAAi hABi hBBi h �cci: (B14)

As this does not affect the � function we will ignore the
ghost self-energy here. There is a slight irritation with the
normalization g�� �

1
2 ���� _� _� in the calculations below:

when the quantum fields are rewritten as actual Lorentz-

vector fields contracted into a space-time tensor, one picks
up a factor of 2. Note that this rewriting has to be per-
formed in order to employ dimensional regularization.

a. BB

By straightforward calculation

 hBBi � �
1

2

g2CA
�4��d=2

��1� �	2

��2� 2�	
���	



Z d4q

�2��d
Ba

_� _�
�q�B _� _�a��q�

�
1

q2

�
�

(B15)

is obtained. This can be expanded as
 

hBBi � �
1

2

g2CA
�4��2

�
1

�

�Z d4q

�2��d
Ba

_� _�
�q�B _� _�a��q�

�O��0�: (B16)

b. BA

This self-energy vanishes. This is a consequence of the
fact that B is a symmetric tensor, as the only contribution to
this self-energy which is not a tadpole is

 � fabcfdefB
a
_� _�
A _�;e
�

Z
d4ph:a _�;b

� a� _�;c::@� _�a
�
_�;d
a _��;f:i:

(B17)

Note that one type of vertex has primed indices contracted,
while the other has unprimed indices contracted. Working
out the contractions with the usual � � 1 propagator, it
quickly emerges that a consequence of this is that the (four-
dimensional) tensor structure of the primed indices is
�� _� _�. Contracted into B _� _� this gives zero. It is obvious
a similar argument applies to many terms in other one-
(and higher-)loop diagrams, and at one loop there seem to
be no diagrams which contain one B and the rest A’s on the
external lines. However, there might be subleading contri-
butions in � as for this reasoning to work we must be able
to treat the quantum field a as a pure 4 dimensional object
which clashes with dimensional regularization: one should
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do all index contractions on the quantum fields in d di-
mensions and then couple to the four-dimensional back-
ground fields.

The above observation does show that in some sense B
and A seem to couple to disjoint gluons in the loop and it
would be very interesting to make this sense precise. An
argument in favor of a ‘‘decoupling’’ scenario is the fact
that by writing the kinetic term as

 F2 � �
1

2
�F2
� � F

2
�� (B18)

one can argue (at one loop) that the term with the back-
ground field B might be part of a determinant which only
features self-dual connection, while the terms with the
gauge field A might be part of a determinant with the
antiself-dual connection. Of course, this does not touch
upon ghost terms and higher loop effects, but it does seem
suggestive.

c. AA

There are two contributions, one with a gluon in the loop
and one with a ghost loop. Note that in the usual Yang-
Mills theory these are actually the only two diagram top-
ologies contributing to the � function calculation at one
loop. The ghost loop is the same as in Yang-Mills and gives
 

hAAighost � �
g2CA
�4��d=2

1

�� 1
���	

��2� �	2

��4� 2�	



Z d4q

�2��4
Aa
��q��q2g�� � q�q��


Aa
���q�

�
1

q2

�
�
; (B19)

which yields
 

hAAighost �
1

6

g2CA
�4��2

1

�

Z d4q

�2��4
Aa
��q��q2g�� � q�q��


Aa
���q� � � � � ��

0�: (B20)

The gluon loop yields
 

hAAigluon � 4
g2CA
�4��d=2

��2� �	2

��4� 2�	
���	

Z d4q

�2��4


Aa
��q��q

2g�� � q�q��Aa
���q�

�
1

Q2

�
�
;

(B21)

which can be expanded as
 

hAAigluon �
2

3

g2CA
�4��2

Z d4q

�2��4
Aa
��q��q2g�� � q�q��


Aa
���q� � � � � ��0�: (B22)

3. � function

In order to renormalize the theory, renormalization Z
factors for the different background fields in the problem

are introduced which preserve the Lorentz and gauge
symmetries. The latter are preserved as it is known that
the regularization procedure employed here does not break
gauge invariance and we have set up our calculation ex-
plicitly to preserve it. In principle one could introduce
renormalization factors for the quantum fields as well,
but this never matters as those Z factors cancel between
propagators and vertices. As explained in [25] the only
exception to this is a possible renormalization of the gauge-
fixing parameter �, but this will only contribute at higher
loop orders. Since this Appendix is only concerned with a
one-loop calculation, this will be ignored. We get

 A 0 � ZAAR; B0 � ZBBR � ZBAFR;

g0 � Zgg
R:

(B23)

The symmetries permit an extra field mixing renormaliza-
tion term for B since F, like B, transforms in the adjoint of
the gauge group and is a (self-dual) 2-form. In the follow-
ing the extra superscript R will be suppressed in order to
streamline the presentation. Plugging (B23) into the clas-
sical action we obtain
 

Sren �
1

2

Z
d4x�ZAZB � ZBZBA�B _� _�F

_� _�

�
1

2

�
ZAZBA �

1

2
Z2

BA

�
F _� _�F

_� _� �
Z2

B

4
B _� _�B _� _�:

(B24)

Here the field F is the self-dual part of the usual curvature
tensor, which is renormalized to

 � d��A�	 � ZgZA�A�;A�	: (B25)

In order for the renormalized action to be background
gauge invariant,

 ZgZA � 1 (B26)

must hold. Calculating ZA therefore determines Zg, which
can be used to determine the � function through [25]:

 ��g� � �g2 @
@g
Z1
A: (B27)

Here Z1
A is the residue at the pole 1

� in the Laurent expan-
sion of ZA. In the background field formalism one can
therefore calculate the beta function from a self-energy
calculation which is usually much simpler than the 3-point
function one needs to calculate otherwise.

The Z factors can be used to cancel the divergences
calculated above. Note that from the divergent parts of
the self-energy calculations we get equations which yield
(temporarily restoring the loop counting parameter)

 ZA � 1�
11

6

g2CA
�4�2��

�@� �O�@2�; (B28)
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 ZBA �
5

6

g2CA
�4�2��

�@� �O�@2�; (B29)

 ZB � 1�
g2CA
�4�2��

�@� �O�@2�; (B30)

which in turn yields the well-known one-loop Yang-Mills
� function through (B27)

 ��g� � �
11

3

g3CA
�4�2�

: (B31)
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