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This work presents a perturbative analysis of the supersymmetric Chern-Simons model in three
spacetime dimensions coupled to a Higgs field, using the superfield formalism. We study the spontaneous
symmetry breaking of the U�1� gauge symmetry and evaluate the first quantum corrections to the effective
action in the broken phase. We show that the infinite renormalization of the gap equation is enough to
ensure the renormalizability of the model at the first loop level.
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Field theories in three-dimensional spacetime are often
simpler than their similar four-dimensional counterparts
and, as such, can be regarded as useful laboratories for
several field theoretical properties. In particular, induced
by the Chern-Simons term [1,2], three-dimensional theo-
ries exhibit massive gauge fields, exotic statistics, and
fractional spin, relevant qualities for the study of the quan-
tized Hall effect [3]. In the non-Abelian case, the invari-
ance of the action under large gauge transformations
requires the Chern-Simons coefficient to be quantized
[1], an aspect that can be explicitly verified in perturbation
theory [4,5].

One interesting possibility that has been considered in
the literature is the coupling of the Chern-Simons term to a
Higgs field (CSH), thus allowing for spontaneous gauge
symmetry breaking to occur, and a nontrivial dynamics for
the Chern-Simons gauge field to be settled (giving rise to a
self-dual model, which happens to be equivalent to a
Maxwell-Chern-Simons theory [6]). The quantization of
the Chern-Simons coefficient for non-Abelian theories in
the broken phase holds if the remaining gauge symmetry is
non-Abelian [7,8], whereas such quantization does not
happen in the case of an Abelian theory, or a completely
broken non-Abelian gauge symmetry [9–11]. Also, for a
specific form of the Higgs potential, the CSH model has
solutions which satisfy a Bogomol’nyi equation [12,13].
The exact form of this potential can be obtained either by
imposing a self-dual condition on the matter field [14] or
by enlarging the model to obtain an N � 2 supersymmet-
ric theory [15]. It is interesting to note that a tridimensional
analog of the Coleman-Weinberg model in four spacetime
dimensions [16] is realized by a Chern-Simons field mini-
mally coupled to a massless scalar field with a purely
sextuple self-interaction. In this case, however, dynamical
symmetry breaking appears only at two loops [17–20], and
not at the one-loop level, as in four dimensions.

In this work, we will investigate some perturbative
properties of the N � 1 supersymmetric Chern-Simons-

Higgs model in 2� 1 dimensions. We use the superfield
formalism, so that supersymmetry is manifestly preserved,
and study the phase structure and the renormalizability of
the model at the one-loop level.

Our starting point is the action of the supersymmetric
Chern-Simons model coupled to a scalar superfield �,
 

S�
Z
d5z

�
A�W��
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2
r��r���� ������ ����2

�
; (1)

where A� is the gauge superpotential, W� �

�1=2�D�D�A� is the covariant field strength,r� � �D� �

ieA�� is the gauge supercovariant derivative, and D� �

@� � i��@�� is the usual supersymmetric covariant de-
rivative (in this paper, we follow the conventions of
[21]). This action is invariant under the infinitesimal gauge
transformations,
 

�� ���! ��0 � ���1� ieK�;

� ���! �0 � �1� ieK��;

A� ���! A0� � A� �D�K;

(2)

where K � K�x; �� is a real scalar superfield playing the
role of the gauge parameter.

For positive values of the parameter �, the classical
potential

 V� ��;�� � �� ���� �� ����2 (3)

has a nontrivial minimum specified by

 j�j �

������
�
2�

r
: (4)

With this in mind, we perform a shift v in the superfield �
( ��),

 ��
1���
2
p ��� v� i��; ���

1���
2
p ��� v� i��; (5)

in order to write an action in terms of the real superfields �
and � which satisfy h�i � h�i � 0. The gauge trans-
formation for � and � are given by

 � ���! �0 � �� eK��� v�;

� ���! �0 � �� eK�:
(6)
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Thus, the action in terms of the real superfields is given by
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To eliminate the mixing between A� and � that appears
in Eq. (7), we use an R� gauge fixing depending on a gauge
parameter �, which, together with the corresponding
Faddeev-Popov determinant, is introduced through the
action
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where c, �c are scalar ghost superfields. By adding Eqs. (7)
and (8), we obtain
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where M� � �3�v
2 ���, MA � e2v2=4, M� � ��v

2 ��� �MA�, and Mc � �MA.
In the minimum of the classical potential, v2 � �=�, and the mechanism of spontaneous breakdown of symmetry

generates masses M� � 2� and MA � e2�=4� for the superfields � and A�, respectively. The superfield � also acquires
mass, but only from the process of gauge fixing, since its mass turns out to depend on the gauge parameter �. Therefore, �
must be an unphysical field, which should not be observed in external legs of any scattering process [22].

From Eq. (9), one readily obtains the propagators of the model,
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In the process of renormalization, we need to redefine the superfields as ��! Z1=2
1

��, �! Z1=2
1 �, c! Z1=2

c c, and A� !
Z2A�, and also renormalize the couplings according to �! ��� ���, e! �e� �e�, and �! ��� ���. After this, we
can write explicitly the action of counterterms for this model,
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where �1 � �Z1 � 1�, �2 � �Z2 � 1�, and �c � �Zc � 1�.
We shall begin our analysis by looking at the phase

structure of the model. To this end, we investigate the
one point function, whose vanishing yields the gap equa-
tion. At tree level, the gap equation is given by

 v��� v2�� � 0; (12)

which admits two solutions, v � 0 and v2 � �=�. The
first is the trivial solution where the U�1� gauge symmetry
is not broken. For the second solution, the symmetry U�1�
is broken, yet for both of these solutions, supersymmetry is
explicitly maintained. We focus our attention on the re-
normalizability of the phase where gauge symmetry is
broken, in which the Chern-Simons field acquires a non-
trivial dynamics, so we will set v2 � �=� from now on.

Let us first look at the quantum corrections to the gap
equation. Up to one loop order, five graphs contribute to it,
those depicted in Fig. 1. The resulting gap equation reads
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We calculate the divergent integrals in Eq. (13) with the
help of an ultraviolet (UV) regulator �, obtaining the
following divergent part (note the cancellation of the
�-dependent divergent parts)

 � iv
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4

�
� iv�3 � 0; (14)

where
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2

� ��� v2��� � �� ���1 � v2��: (15)

Now we turn to the investigation of the divergence
properties of the two-point vertex functions. The diagrams
contributing to the two-point function of the � superfield
are drawn in Fig. 2. We shall be mainly interested in the
evaluation of divergent contributions, which can come
from the first four graphs in Fig. 2. The contribution to
S�� from the graph 2(a) is given by
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where ��� means the limit of ��2���� �0� when �0 ! �
after the application of the covariant derivatives. After
standard D-algebra manipulations [23], expression (16)
results in
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For the contributions from graphs 2(b) and 2(c) one obtains

 S��bc � �
Z d3p
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(18)

As for diagram 2(d), we have

(a) (b) (c)

(d) (e)

FIG. 1. One-loop contribution to the gap equation. Continuous
lines represents the � propagator, double continuous lines the �
propagator, dashed lines the ghost propagator, and wavy lines the
gauge superpotential propagator. The cross represents the inser-
tion of counterterms.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 2. One-loop contribution to the self-energy of � super-
field.
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where the shorthand notations �12 � ��2���1 � �2� and
D�
i � D���i� were used. The complete evaluation of

Eq. (19) yields,
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The momentum integral in Eqs. (17), (18), and (20) is
again performed with an UV regulator �, resulting in the
following correction to the effective action of �2,
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where �4 � �3��� ����1� �1�
2v2 � ��� ����

�1� �1� �M�� � 2v2�� � �3. We verify that the diver-
gence in S�� is completely eliminated by the �3 counter-
term, already fixed by the gap Eq. (14). The conclusion is
that the counterterm �� must be finite. From the absence of
wave function renormalization, the counterterm �1 is also
finite, so that from Eq. (15), only �� needs to be divergent.

The diagrams that contribute to the radiative corrections
to the self-energy of the � superfield are represented in
Fig. 3, and again only the first four graphs are ultraviolet
divergent. Interestingly enough, the graphs 3(a)–3(d) are
identical to the corresponding ones in Fig. 2, after inter-
changing �$ �. Because of this, we can use our result in
Eq. (21) to write directly
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Again, all ultraviolet divergences in this correction are
canceled by the gap equation renormalization, so that the
counterterm �e is finite.

As for the effective action of the gauge superfield, four
diagrams contribute to its quadratic part, which are those in
Fig. 4. The contribution of diagram 4(a) is given by
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After some algebraic manipulation, this expression can be
cast as

(a) (b) (c)

(d) (e) (f )

FIG. 3. One-loop contribution to the self-energy of � super-
field.
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We witness here a general property of the Chern-Simons
field coupled to matter, that is the generation, at the quan-
tum level, of a nonlocal Maxwell term W�W� in the
effective action of gauge superfield, which was not present
in original action. As we will show below, the linear

divergence in the last term in Eq. (25) will be canceled
when summing up the other graphs in Fig. 4.

The contributions of diagram 4(b),
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and of the graphs 4(c) and 4(d)

 

SAAcd � �
e2

4

Z d3p

�2��3
d2�A��p; ��A���p; ��

Z d3k

�2��3

�

�
1

k2 �M2
�

�
1

k2 �M2
�

�
; (27)

are added to Eq. (24), together with the contribution of the
counterterms, to obtain,
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where �6 � ��1� �2�
2�1� �1��e� �e�

2 � e2� �
e2��1 � 2�2� � 2�e. We extract from Eq. (28) the diver-
gent parts using a power expansion of the integrands
around p � 0, and observe the total cancellation of the
divergences in the two-point function of the gauge super-
field. As a consequence, the �2 counterterm must be finite.

Two more remarks remain to be made concerning two-
point functions. First, the quadratic part of the ghost effec-
tive action also gets a quantum correction, given by the
graphs in Fig. 5,
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but this correction is clearly finite, and so must be �c.
Finally, in the process of gauge fixing we eliminated at
the classical level a mixture between A� and � that
appeared due to spontaneous breakdown of gauge symme-
try. However, at the quantum level, this mixing can in
principle reappear. That this is not the case can be deduced
by calculating the graphs in Fig. 6 and verifying that their
contributions vanish individually.

(d)

)c()a( (b)

(e)

FIG. 4. One-loop contribution to the self-energy of gauge
superfield A�.

(a) (b)

FIG. 5. Contribution at one loop to the ghost effective action.
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Before continuing with more complicated vertex func-
tions, it is interesting to investigate the general structure of
the divergences in the model. To establish its renormaliz-
ability at one loop, we have to calculate the superficial
degree of divergence D of an arbitrary diagram F . For
this, we will denote the number of the different vertices in
theory as Vi, according to the following correspondence,

 

�D��A���D��A��� ���! V1; �2A2 ���! V2
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(30)

Let P�, PA, P�, and Pc denote the number of propagators
for each field in the model. Then, for an arbitrary diagram,
the superficial degree of divergence D is given by

 D � 2L� PA � P� � P� � Pc �
V1

2
; (31)

since each loop L furnishes two powers of momenta (re-
member that the contraction of the loop to a point in
� space reduces the power counting by one), and each
propagator contributes with �1 to D [21]. By using the
topological relations,
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as well as the Euler identity L� V � P � 1, we find

 

D � 2�
1

2
�EA � E� � E� � Ec�

�
1

2
�V4 � V8 � V9 � V10� �

ND
2
; (33)

where ND is the number of covariant derivatives D� acting
on the external fields of the diagram.

We can now conclude that, at one loop, any diagram
with more than four external legs is finite. No diagram

possesses linear divergence except the ones with one or
two external legs, which have already been taken into
account. Some diagrams with three and four external legs
are superficially logarithmically divergent, and are shown
in Figs. 7 and 8.

The diagrams 7(a)–7(i) possess an expression propor-
tional to

 

Z d3k

�2��3
d2�1d2�2

�D2�M1��12�D
2�M2��12

��k�p�2�M2
1��k

2�M2
2�

G�p;�1;�2�;

(34)

where G�p; �1; �2� is the factor involving the external
fields. Inspecting the consequences of the D-algebra ma-
nipulations on Eq. (34), we realize that the only nonvanish-
ing contributions are those where one of the operatorsD2 is
moved to the external fields, and also terms proportional to
M1 or M2. Thus, by simple power counting, we can state
that those diagrams are finite. Diagram 7(j) possesses three
internal propagators and has the following structure:

 Z d3k

�2��3
d2�1d

2�2d
2�3�jDj

3
vertex�

�
�D2 �M1��12�D

2 �M2��23�D
2 �M3��31

k6

� G�p; �1; �2; �3�; (35)

where G�p; �1; �2; �3� has the same meaning as above, and
the �jDj3vertex� factor represents schematically three super-
covariant derivatives arising from the vertices. After
D-algebra manipulations, expression (35) reduces to some-
thing proportional to

(a) (b)

FIG. 6. Diagrams that mix the A� and � superfields.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

( j) (k)

FIG. 7. Diagrams of three points with logarithmic superficial
degree of divergence.
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Z d3k

�2��3
d2�

k��
k4 jDjG

���p; �1; �2; �3�; (36)

which vanishes due to the symmetrical integration in k. As
for graph 7(k), its contribution has a similar structure,
lacking one D in comparing with Eq. (36). Therefore, the
three point functions of the model are finite.

As for the four-point vertex functions, depicted in Fig. 8,
they also have superficial degree of divergence D � 0, but
also turn out to be finite. Indeed, diagrams with two
internal propagators possess the same general structure of
the graphs 7(a)–7(i) discussed above. As for the graphs
with four internal propagators, their divergent parts are

proportional to

 

Z d3k

�2��3
d2�1d2�2d2�3d2�4�jDj4vertex�

�
D2�12D

2�23D
2�34D

2�41

k8 G�p; �1; �2; �3; �4�: (37)

The finiteness of these contributions follows from argu-
ments similar to the ones we discussed before.

In summary, in this work we investigated some pertur-
bative aspects of the supersymmetric Chern-Simons field
in the presence of spontaneous breaking of U�1� gauge
symmetry. The model possesses a classical nontrivial vac-
uum for h�i �

������������
�=2�

p
, which represents a supersymmet-

ric phase where the gauge symmetry is spontaneously
broken. In the calculation of the quantum corrections to
the effective action of the model, we have used a R� gauge
to eliminate the mixture among the A� and � superfields.
The absence of this mixing is preserved at the one-loop
level. The renormalization of the gap equations, including
one-loop corrections, ensures also finiteness of the two-
point functions of the � and � superfields, while the
corrections to the quadratic effective action of the gauge
superfield A� turns out to be finite. Thus, the only infinite
renormalization needed by this model is in the mass coun-
terterm ��. By means of general arguments, we could
show that no divergences arise in the vertex functions of
up to four points, which are the only having UV divergence
at the one-loop level, according to the power counting. This
completes the proof of the one-loop renormalizability.
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