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A five dimensional model containing both left-right and quark-lepton symmetries is constructed, with
the gauge group broken by a combination of orbifold compactification and the Higgs mechanism. An
analysis of the gauge and scalar sectors is performed and it is shown that the 5D model admits a simpler
scalar sector. Bounds on the relevant symmetry breaking scales are obtained and reveal that two neutral
gauge bosons may appear in the TeV energy range to be explored by the LHC. Split fermions are
employed to remove the mass relations implied by the quark-lepton symmetry and the necessary fermion
localization is achieved by introducing bulk scalars with kink vacuum profiles. The symmetries of the
model constrain the Yukawa sector, which in turn severely constrains the extent to which realistic split
fermion scenarios may be realized in the absence of Yukawa coupling hierarchies. Nevertheless we
present two interesting one generation constructs. One of these provides a rationale for mt > mb;m� and
m� � mt with Yukawa parameters which vary by only a factor of 5. The other also suppresses the proton
decay rate by spatially separating quarks and leptons but requires a Yukawa parameter hierarchy of order
102.
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I. INTRODUCTION

While the standard model (SM) of particle physics is a
very successful theory, it must be admitted that the fermi-
onic sector of the model contains a rather strange set of
gauge group representations. One of the triumphs of the
SM is the fact that this set of fermion representations
conspires to ensure the model is free from both gauge
and global anomalies. Though anomaly cancellation pro-
vides a very strong motivation for the necessity of the
observed representations, it does not provide any insight
into their origin. Many questions remain, including ‘‘Why
are left-chiral fermions distinguished from right-chiral
fermions?,’’ ‘‘Why are quarks and leptons different?,’’
and ‘‘What is the origin of the strange set of hypercharge
values?’’

The left-right (LR) [1] and quark-lepton (QL) [2] sym-
metric models were introduced in an effort to answer these
questions; the hope being that the somewhat awkward
arrangement of fermions found in the SM may be simpli-
fied by a more fundamental theory possessing a larger
degree of symmetry. Both the LR and QL models simplify
the structure of the SM fermion representations by relating
previously disparate fields. However it is not until these
symmetries are combined together in the so-called quark-
lepton left-right (QLLR) symmetric model that the fermi-
onic sector of the SM simplifies dramatically. Indeed with
both QL and LR symmetries the assumed existence of one

SM field mandates the existence of all other SM fields from
the same generation [3,4].

The goal of grand unified theories (GUTs) is to unite the
SM forces into one larger gauge group and reduce the
number of independent fermion representations. It is a
remarkable feature of the QLLR model that the quantum
numbers of quarks and leptons may be unified independent
of gauge unification. This interesting fact makes it possible
that fermionic unification may be observed at low (TeV)
energies even if gauge unification does not occur until a
very large energy scale.

A standard problem which arises when one extends the
SM to obtain a greater degree of symmetry is that the
symmetry breaking sector of the model must also be ex-
tended. This issue is often coupled with the method of mass
generation in the neutrino sector, with one stage of high
energy symmetry breaking assumed to result from a scalar
field which possesses the quantum numbers necessary to
couple to a right-chiral neutrino Majorana bilinear. Both
the SU�2�R scalar triplet in the LR model and the leptonic
color �SU�3�l� sextet scalar in the QL model serve the dual
purpose of partially breaking the gauge symmetry and
generating a large right-chiral neutrino Majorana mass.

This has the desirable consequence of allowing the see-
saw mechanism to be implemented, but at the expense of
introducing scalars which do not transform as a fundamen-
tal representation of the gauge group. The problem be-
comes even more severe in the QLLR model; one
introduces seventy-two additional complex scalar degrees
of freedom in the form of gauge representations which
transform as chiral SU�2� triplets and color SU�3� sextets.
The QLLR symmetry ensures that once one assumes the
existence of a scalar which induces a right-chiral neutrino
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Majorana mass three additional scalar multiplets are also
required.

The large interest in extra dimensional models in recent
years has uncovered new mechanisms to achieve symmetry
breaking. Using orbifold symmetry reduction allows one to
reduce the bulk symmetry to some subgroup operative at
low energies (or the zero mode level). This can reduce the
number of scalars required in a model and thus simplify the
symmetry breaking sector. However the removal of scalars
(and, in particular, the reduction of the SM cutoff in models
which seek to solve the hierarchy problem) often removes
the seesaw mechanism as a viable source of neutrino mass
suppression.

Fortunately the inclusion of additional spatial dimen-
sions permits new mechanisms for suppressing neutrino
masses. In particular split fermions allow one to suppress
fermion masses relative to the electroweak scale by spa-
tially separating left- and right-chiral fermions in an addi-
tional dimension [5]. The subsequent reduction in higher
dimensional wave function overlap serves to suppress the
effective Yukawa coupling constants in the 4D theory.

In this work we investigate the implementation of these
two mechanisms in the context of a QLLR model. The
objective of our paper is to retain the attractive fermionic
unification found in QLLR models but reduce the compli-
cated symmetry breaking sector required in 4D constructs.
We find that the scalar sector of the model may be signifi-
cantly reduced in 5D with the 70 degrees of freedom
previously mentioned not required to achieve a realistic
low energy model. The symmetry breaking sector of our
model has the additional consequence of permitting the
two exotic neutral gauge bosons found in QLLR models, Z0

and Z00, to appear at TeVenergies and thus be observable at
the LHC. Previous works have all required one of these
bosons to be unobservably heavy.

The use of split fermions has a number of interesting
consequences. We provide two distinct one generational
constructs that suppress neutrino masses to experimentally
acceptable values and also provide a rationale for the
inequalities mt > mb;m�. However the large degree of
symmetry in the model severely constrains the Yukawa
sectors and it is a nontrivial task to obtain fermion local-
ization patterns which account for the range of fermion
masses observed and remove the need for Yukawa parame-
ter hierarchies.

We show that one generation of flavor can be accounted
for with Yukawa parameters which vary only by a factor
of 5. However this setup does not allow one to suppress
proton decay by spatially separating quarks and leptons
and thus, along with the majority of split fermion works
completed to date, the model must be extended to avoid the
usual hierarchy problem associated with stabilizing the
electroweak scale. In the alternative construct the proton
decay rate is safely suppressed by separating quarks and
leptons, but a Yukawa hierarchy of order 102 is necessary

to achieve one generation of flavor. Thus one may alleviate
the hierarchy problem by lowering the cutoff to order
100 TeV. Further work is required to see if these promising
results can be carried over to a full three generation model.

We note that recent works have investigated the LR
model [6–8] and the QL model [9–11] in 5D. The concept
of leptonic color has also been generalized in [12] and
studied within the context of unified theories in [13–18].

The layout of this paper is as follows. In Sec. II we
review the main features of the QLLR model. Section III
details the symmetry breaking sector of our 5D construct
and Sec. IV looks at the gauge sector. The fermionic sector
is detailed in Sec. V, where we briefly describe the features
of split fermion models required for our investigations and
then present two promising one generation fermionic geog-
raphies. In Sec. VI we discuss neutral currents and derive
bounds on the symmetry breaking scales of the model. We
consider some experimental signatures of the model in
Sec. VII and conclude in Sec. VIII.

II. REVIEW OF THE QUARK-LEPTON
LEFT-RIGHT SYMMETRIC MODEL

In this section we review the four dimensional QLLR
model [3,4]. To this end, let us recall some features of the
SM, the LR model, and the QL model. The fermion spec-
trum of the SM is given by

 QL � �3; 2; 1=3�; uR � �3; 1; 4=3�;

dR � �3; 1;�2=3�; LL � �1; 2;�1�;

eR � �1; 1;�2�;

(1)

where we have suppressed generational indices and the
quantum numbers label the transformation properties of
the fields under GSM � SU�3�c 	 SU�2�L 	U�1�Y . While
GUTs provide us with a candidate explanation for the
origin of the SM fermion quantum numbers, it is safe to
say that we do not yet know the underlying theory respon-
sible for the rather curious collection of quantum numbers
in (1). The key observation made in GUTs is that the SM
quantum numbers may be understood if one embeds the
group GSM into a simple group H. The SM fermions are
embedded into one [or two in the case of SU�5�] represen-
tation R of H. By employing a suitable symmetry breaking
mechanism to reduce the symmetry operative at observable
energy scales from the unifying group H down to GSM, the
SM fermion quantum numbers may be understood in terms
of the decomposition of R under the low energy group
GSM.

An alternative approach employed to uncover candidate
extensions of the SM follows from the observation that
there exist suggestive similarities among the quantum
numbers of the SM fermions. One similarity is that all
left- and right-chiral fields possess identical electric and
color charges; another is the similar family structure of
quarks and leptons, with all left-chiral fields forming
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SU�2�L doublets while their right-chiral partners assume
singlet SU�2�L representations.

The motivation for the LR and QL models arises from
these observed similarities. By positing that the observed
similarity between left- and right-handed fields is the result
of an underlying symmetry one is led to the LR model [1].
This requires one to increase the fermion content of the SM
to include �R and to extend the gauge group from GSM to
GLR � SU�3�c 	 SU�2�L 	 SU�2�R 	U�1�B�L. This ex-
tension has the desirable consequence of simplifying the
structure of the SM fermion content. The fermion spectrum
of the LR model is

 QL � �3; 2; 1; 1=3�; QR � �3; 1; 2; 1=3�;

LL � �1; 2; 1;�1�; LR � �1; 1; 2;�1�;
(2)

and the LR model Lagrangian is taken to be invariant under
a discrete Z2 symmetry, which we label as ZLR

2 , and whose
action is defined by

 LL $ LR; QL $ QR; WL $ WR; (3)

where WL�R� denotes the SU�2�L�R� gauge bosons. Observe
that the extended model reduces the total number of fer-
mion representations and also reduces the number of inde-
pendent U�1� charges per generation from five to two. The
group GLR is broken to ensure that U�1�Y 
 SU�2�R 	
U�1�B�L so that the SM is recovered at low energies.

If one instead focuses on the similar family structures of
quarks and leptons in the SM (assuming three �R’s) and
follows the same procedure one arrives at the QL model
[2]. This requires GSM to be extended to GQL � SU�3�l 	
SU�3�c 	 SU�2�L 	U�1�X where SU�3�l is known as lep-
ton color and is the leptonic equivalent of SU�3�c in the
quark sector. As well as adding �R to the SM fermion
spectrum one must also triple the number of leptons, giving
the fermion spectrum

 QL � �1; 3; 2; 1=3�; LL � �3; 1; 2;�1=3�;

uR � �1; 3; 1; 4=3�; ER � �3; 1; 1;�4=3�;

dR � �1; 3; 1;�2=3�; NR � �3; 1; 1; 2=3�:

(4)

The usual lepton SU�2�L doublet is contained in LL and eR
(�R) is found inside ER (NR). The Lagrangian of the QL
model permits a discrete symmetry, ZQL

2 , defined as fol-
lows:
 

QL $ LL ER $ uR; NR $ dR;

Gc $ Gl; C$ �C;
(5)

where Gc (Gl) denotes the SU�3�c�l� gauge bosons and C is
the U�1�X gauge boson. This model reduces the number of
independent U�1� charges relative to the SM and also
reduces the number of independent fermion representa-
tions per generation from five (in the SM) to three. As
with the LR model, the total number of fermions per

generation is greater than that of the SM due to the exotics
required to permit the defining discrete symmetry of the
model.

One may combine the symmetries ZQL
2 and ZLR

2 to obtain
the QLLR model. The gauge group of this model is

 GQLLR � SU�3�l 	 SU�3�c 	 SU�2�L 	 SU�2�R 	U�1�V

and the fermions are assigned to the following representa-
tions:

 LL � �3; 1; 2; 1;�1=3�; LR � �3; 1; 1; 2;�1=3�;

QL � �1; 3; 2; 1; 1=3�; QR � �1; 3; 1; 2; 1=3�:
(6)

The action of the discrete symmetry ZQL
2 � Z

LR
2 is defined

as follows

 

LL $ LR V Gl WL $ WR

l l l l

QL $ QR �V Gq

(7)

where the QL (LR) symmetry acts vertically (horizontally)
and V denotes theU�1�V boson. Note that (6) contains only
one independent fermion field with the quantum numbers
of all other fermion fields determined completely by the
discrete symmetry. It is interesting that unification of the
quark and lepton quantum numbers may be achieved in the
QLLR model, independent of gauge coupling unification.
This is contrary to the usual expectation that relationships
which may exist between the quark and lepton quantum
numbers are the manifestation of a symmetry which is
operative only at the GUT scale.

The simplified fermion content of the QLLR model
comes at the expense of an extended scalar content. Both
the SU�3�l and SU�2�R symmetries must be broken to
reproduce the SM at low energies. This breaking proceeds
in two steps. The first step is achieved by the introduction
of the scalars

 �1L � ��6; 1; 3; 1; 2=3�; �1R � ��6; 1; 1; 3; 2=3�;

�2L � �1; �6; 3; 1;�2=3�; �2R � �1; �6; 1; 3;�2=3�;

(8)

which transform as

 

�1L $ �1R

l l

�2L $ �2R

(9)

under the discrete symmetries. The Yukawa Lagrangian for
these fields is
 

L� � ����LL�cLL�1L  �LR�cLR�1R  �QL�
cQL�2L

 �QR�
cQR�2R�  H:c: (10)

Provided the neutral component of �1R develops a nonzero
vacuum expectation value (VEV) the gauge symmetry will
be broken as per

COMBINING LEFT-RIGHT AND QUARK-LEPTON . . . PHYSICAL REVIEW D 76, 105020 (2007)

105020-3



 

GQLLR

#

SU�2�l 	 SU�3�c 	 SU�2�L 	U�1�Y 	U�1�Y0 ;

where Y denotes the SM hypercharge, Y0 denotes some
orthogonal unbroken U�1� factor whose precise form will
not be important to us, and SU�2�l 
 SU�3�l. The hyper-
charge generator is given by

 Y � 2I3R 
1���
3
p T8

l  V; (11)

where T8
l � �1=

���
3
p
�diag��2; 1; 1� is a diagonal generator

of SU�3�l and I3R � �1=2�diag�1;�1� is the diagonal gen-
erator of SU�2�R. Further symmetry breaking is accom-
plished by including the usual color triplet scalars found in
QL models, namely

 �l � �3; 1; 1; 1; 2=3�; �q � �1; 3; 1; 1;�2=3�;

which form partners under the ZQL
2 symmetry, �l $ �q.

The Yukawa Lagrangian for these fields is

 L � � ����LL�cLL�l  �LR�cLR�l  �QL�
cQL�q

 �QR�
cQR�q�  H:c: (12)

When the electrically neutral component of �l develops a
VEV the following symmetry breaking occurs

 

SU�2�l 	 SU�3�c 	 SU�2�L 	U�1�Y 	U�1�Y0
#

SU�2�l 	 SU�3�c 	 SU�2�L 	U�1�Y:

Note that SU�2�l remains unbroken. While a large number
of additional scalars are required to achieve the desired
symmetry breaking it should be pointed out that only two
additional Yukawa couplings are introduced. The symme-
tries highly constrain the Yukawa Lagrangian and, though
we shall not need to consider it, they also constrain the
scalar potential. Let us discuss briefly the spectrum of
exotic fermions and gauge bosons expected in the model.

The VEV hierarchy h�1Ri � h�li is assumed as the
nonzero value for h�1Ri induces a Majorana mass for the
right-handed neutrinos. After neutrinos acquire a Dirac
mass at the electroweak symmetry breaking scale the see-
saw mechanism will thus be operative to suppress the
observed neutrino masses below the electroweak scale.
The nonzero VEV for h�1Ri also gives mass to the
SU�3�l=SU�2�l coset gauge bosons and the WR bosons.
As the seesaw mechanism requires h�1Ri to be large,
roughly 1014 GeV, these gauge bosons become unobserv-
ably heavy. The VEV for �1R also breaks the linear com-
bination of I3R, Tl, and V which is orthogonal to Y and Y0.
Thus a neutral boson Z00 gains a mass of order h�1Ri.

The nonzero VEV for �l breaks Y0, resulting in a mas-
sive neutral gauge boson with an order h�li � wl mass.
The symmetry breaking induced by �l also gives mass to
the exotic fermions introduced to fill out the SU�3�l fer-

mion representations. These fermions are known as liptons
in the literature and are a common feature of models
possessing a QL symmetry. The unbroken SU�2�l symme-
try serves to confine the liptons into two-fermion bound
states. These states all decay via the usual electroweak
interactions into the known fermions [4]. The lower bound
on wl is of order TeV (we provide a detailed discussion of
the bound on wl in Sec. VI) and the key experimental
signatures for the model are the Z0 boson and the liptons.
The liptons may be produced at the LHC via the usual
electroweak interactions and via virtual Z0 creation.

The gauge groupGSM 	 SU�2�l must be broken down to
SU�3�c 	U�1�Q 	 SU�2�l. This requires the introduction
of a Higgs bidoublet

 �� �1; 1; 2; 2; 0�; (13)

resulting in the following electroweak Yukawa Lagrangian
 

L� � ��1� �LLLR� �QLQR
~��

 ��2� �LLLR ~� �QLQR��  H:c:; (14)

where ~� � ���� (we denote the two dimensional anti-
symmetric tensor as �) and

 �$ ~� (15)

under the QL symmetry. If the neutral components of �
develop a VEV the desired symmetry breaking is achieved.
The Yukawa couplings in (14) give rise to fermion Dirac
masses and result in mass relations of the type

 mu � me; md � m�; (16)

wherem� is the neutrino Dirac mass. As the light neutrinos
acquire mass via the seesaw mechanism the relationship
md � m� does not provide any phenomenological diffi-
culty. The right-handed neutrinos acquire a Majorana mass
through their couplings to �1R and there is enough parame-
ter freedom in the Lagrangian L� to ensure that arbitrary
neutrino mass values can be obtained. The relationship
between the down quark mass matrix and the neutrino
Dirac mass matrix actually serves to reduce the number
of parameters employed to implement the seesaw mecha-
nism. The mass relations between the electrons and the up
quarks may also be removed by introducing an additional
bidoublet �0 � �1; 1; 2; 2; 0�. This doubles the number of
Yukawa couplings and thus also nullifies the mass relations
md � m�, thereby reducing predictivity of the model.

III. SYMMETRY BREAKING IN FIVE
DIMENSIONS

In this work we study the quark-lepton left-right sym-
metric extension to the standard model in five dimensions.
The additional spatial dimension is taken as the orbifold
S1=Z2 � Z

0
2, whose coordinate is labeled as y. The con-

struction of the orbifold proceeds via the identification y!
�y under the Z2 symmetry and y0 ! �y0 under the Z02
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symmetry, where y0 � y �R=2. The physical region in y
is given by the interval �0; �R=2�.

Given the absence of chirality in five dimensions we
shall denote the gauge group of the theory as SU�3�l �
SU�3�c � SU�2�1 � SU�2�2 �U�1�V . We will be required
to ensure that the low energy fermion spectrum contains
the chiral fermions found in the SM. The zero mode
SU�2�1�2� gauge bosons will eventually be identified with
the usualWL�R� bosons in LR models via their action on the
low energy fermion content. Thus the 5D theory is invari-
ant under the interchange 1$ 2 which will prove to be
equivalent to the usual LR symmetry in the low energy
theory. This matter has already been discussed in [7]. We
shall continue to label the discrete symmetry of the 5D
model as ZQL

2 � Z
LR
2 .

The orbifold action also has a definition on the space of
gauge fields which propagate in the bulk. We define P and
P0 to be matrix representations of the orbifold actions Z2

and Z02, respectively. To maintain gauge invariance under
these projections, the gauge fields must have the trans-
formations
 

A��x
�; y� ! A��x

�;�y� � PA��x
�; y�P�1;

A5�x
�; y� ! A5�x

�;�y� � �PA5�x
�; y�P�1;

A��x�; y0� ! A��x�;�y0� � P0A��x�; y0�P0�1;

A5�x�; y0� ! A5�x�;�y0� � �P0A5�x�; y0�P0�1;

(17)

where A denotes the bulk gauge sector,

 AM�x�; y� � GM
l �x

�; y� �GM
q �x

�; y� �WM
1 �x

�; y�

�WM
2 �x

�; y� � VM�x�; y�

� GMa
l Ta �GMa

q Ta �WMi
1 �i �WMi

2 �i � V;

(18)

with M being the 5D Lorentz index, T denotes the SU�3�
generators, � denotes the SU�2� generators, and the gauge
indices take the values a � 1; 2; . . . ; 8 and i � 1; 2; 3.

Given that P and P0 define a representation of reflection
symmetries their eigenvalues are�1. We can express these
matrices in diagonal form, with a freedom in the parity
choice of the entries. The exact nature of these actions then
completely determines the gauge symmetry which remains
unbroken in the low energy limit of the theory (namely the
zero mode gauge sector). Unless P is the identity matrix,
not all the gauge fields will commute with the orbifold
action. These fields will not possess a zero mode, and thus
only a subset of the 5D gauge theory is manifest at the zero
mode level. Ideally, the bulk gauge group would reduce to
GSM 	 SU�2�l at the zero mode level; however, this is not
directly possible via orbifolding. The Z2 � Z

0
2 actions are

Abelian and commute with the diagonal gauge group gen-
erators. Subsequently, the rank of the bulk gauge group
must be conserved at the zero mode level. This means that
breaking unwanted SU�3� and SU�2� factors has the trade-

off of retaining spurious U�1� subgroups and one must
invoke a mechanism in tandem to orbifolding in order to
accomplish the breaking to GSM 	 SU�2�l.

The orbifold action can be decomposed as
 

�P;P0� � �Pl�Pq�P1�P2�PV;P0l�P
0
q�P01�P

0
2�P

0
V�;

with
 

Pl � diag�1; 1; 1�; P0l � diag��1; 1; 1�;

Pq � P0q � diag�1; 1; 1�; P1 � P01 � diag�1; 1�;

P2 � diag�1; 1�; P02 � diag��1; 1� PV � P0V � 1:

(19)

The only nontrivial entries occur in the SU�2�2 and SU�3�l
gauge space. Denoting these gauge fields as

 W2 �
1

2
W0

2

���
2
p
W2���

2
p
W�2 �W0

2

 !
; (20)

and

 Gl �

� 2��
3
p G0

l

���
2
p
Y1
l

���
2
p
Y2
l���

2
p
Y1y
l G3

l 
1��
3
p G0

l

���
2
p

~Gl���
2
p
Y2y
l

���
2
p

~Gyl �G3
l 

1��
3
p G0

l

0BBB@
1CCCA; (21)

the Z2 � Z02 parities of these fields is found to be

 G0
l�; G

3
l�; ~Gl�; ~Gyl�;W

0
2�: �;�; (22)

 Y1
l�; Y

2
l�; Y

1y
l� ; Y

2y
l� ;W

�
2�: �;��; (23)

 G0
l5; G

3
l5; ~Gl5; ~Gyl5; W

0
2;5: ��;��; (24)

 Y1
l5; Y

2
l5; Y

1y
l5 ; Y

2y
l5 ; W

�
2;5: �;��: (25)

A general five dimensional field,  , can be expanded in
terms of Fourier modes in the compact dimension:

  �;��x
�; y� �

�������
2

�R

s
 �;��x

�� 
2�������
�R
p

X1
n�1

 �n�
�;��x

��

� cos
2ny
R
;

 �;���x
�; y� �

2�������
�R
p

X1
n�1

 �n�
�;���x

�� cos
�2n� 1�y

R
;

 ��;��x
�; y� �

2�������
�R
p

X1
n�1

 �n�
��;��x

�� sin
�2n� 1�y

R
;

 ��;���x
�; y� �

2�������
�R
p

X1
n�1

 �n�
��;���x

�� sin
2ny
R
:

Thus only fields with a �;� parity under Z2 � Z02 posses
a massless zero mode. Importantly, we see that G0

�, G3
�,

~G�, ~Gy�, W0
� are the only such four dimensional gauge
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fields to do so. Effectively then our SU�3�l � SU�2�2 sym-
metry has been broken down to SU�2�l �U�1�l �U�1�2 at
the zero mode level. It is worth commenting that new
heavy exotic bosons, corresponding to fields with �;��,
��;�, and ��;�� parities, exist in Kaluza-Klein (KK)
states at the inverse compactification scale, along with the
KK towers for the fields with �;� parities. The complete
zero mode gauge group is thus

 SU�2�l � SU�3�c � SU�2�1 �U�1�l �U�1�2 �U�1�V:

The parities in (19) ensure that all fifth dimensional com-
ponents of the bulk gauge fields do not possess a zero
mode. Consequently no spurious scalars appear in the
low energy theory.

The remaining symmetry breaking shall be achieved via
the Higgs mechanism. This requires the following scalars

 �l � �3; 1; 1; 1; 2=3�; �q � �1; 3; 1; 1;�2=3�;

�1 � �1; 1; 2; 1; 1�; �2 � �1; 1; 1; 2; 1�;

�� �1; 1; 2; 2; 0�;

(26)

which we take to be bulk fields. As in the 4D case �l $ �q
under ZQL

2 and �1 $ �2 under ZLR
2 . We do not define the

transformations of the Higgs bidoublet under ZQL
2 � Z

LR
2 at

this stage. Under Z2 � Z02 we assume the Higgs fields
transform as
 

�2�x
�; y� ! �2�x

�;�y� � P2�2�x
�; y�;

�2�x
�; y0� ! �2�x

�;�y0� � P02�2�x
�; y0�;

�1�x
�; y� ! �1�x

�;�y� � P1�1�x
�; y�;

�1�x
�; y0� ! �1�x

�;�y0� � �P01�1�x
�; y0�;

�q�x
�; y� ! �q�x

�;�y� � Pq�q�x
�; y�;

�q�x�; y0� ! �q�x�;�y0� � P0q�q�x�; y0�;

�l�x�; y� ! �l�x�;�y� � Pl�l�x�; y�;

�l�x�; y0� ! �l�x�;�y0� � �P0l�l�x
�; y0�;

��x�; y� ! ��x�;�y� � P1��x�; y�P�1
2 ;

��x�; y0� ! ��x�;�y0� � P01��x�; y�P0�1
2 ;

where the matrix representations of the orbifold reflection
symmetries in the scalar sector are necessarily the same as
those introduced for the gauge sector in (19). The parity
assignments for the bulk scalar fields immediately follow:

 �l �
�0

1l�;�

�1=2
2l �;��

�1=2
3l �;��

0B@
1CA; �2 �

�1;2�;��
�0

2;2�;�

 !
; (27)

 � �
�0

1�;� ��2 �;��
�1 �;� �0

2�;��

� �
: (28)

We denote the VEVs of the zero mode scalars as

 h��0�l i �
wl
0
0

0@ 1A; h��0�2 i �
0
wR

� �
;

h��0�i �
k 0
0 0

� �
:

(29)

The subscript R on the �2 VEV has been used to adopt the
familiar four dimensional notation. Observe that we have
not included the four � scalars in (8). These seventy-two
degrees of freedom have been replaced with the four
degrees of freedom contained in �1;2. All scalars in the
5D model form fundamental representations of the gauge
group. This has the advantage of decoupling the SU�3�l
and the SU�2�2 symmetry breaking scales. The nonzero
value for wl induces the breaking,

 GQLLR ! SU�2�l 	GLR; (30)

while the VEV for �2 gives

 GQLLR ! GQL: (31)

Thus in the limit wl ! 1 (wR ! 1) we essentially repro-
duce the usual 5D orbifold broken LR (QL) model. Note
that both wl and wR may be of order TeV (as we shall
discuss further in Sec. VI), which will provide one of the
distinctions between our construct and 4D QLLR models
studied to date. Previous models have required the scalars
� to permit the seesaw mechanism to be operative. As we
shall see in Sec. V the higher dimensional theory permits
an alternative mechanism for suppressing neutrino masses
relative to the electroweak scale. Thus we may consider the
model without the additional degrees of freedom required
to implement the seesaw mechanism.

IV. GAUGE SECTOR

In this section we discuss the phenomenology of the
gauge sector in detail. Let us first consider the charged
bosons. We shall henceforth identify the SU�2� bosons in
terms of their action on the zero mode fermion spectrum,
i.e., W1 ! WL and W2 ! WR. The charged gauge bosons
do not mix and have the KK mass towers:

 m2
n;W�L

�
g2

2
k2 

�
2n
R

�
2
; (32)

 m2
n;W�R

�
g2

2
�k2  w2

R� 

�
2n 1

R

�
2
; (33)

 m2
n;Y1 �

g2
s

2
w2
l 

�
2n 1

R

�
2
; (34)

 m2
n;Y2 �

g2
s

2
w2
l 

�
2n 1

R

�
2
; (35)

where n � 0; 1; 2; . . . . The mass of the lightest Y1, Y2, and
WR bosons are set by the inverse compactification scale
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and only WL has a zero mode. We shall work under the
assumption that wl;R � 1=R and thus the only light
charged boson is W��0�L , with all other charged bosons first
appearing at energies of order 1=R.

The neutral gauge bosons do mix with each other and we
denote their mass terms as

 L mass �
1

2

X
n

VM2
nVy; (36)

where V � �W0�n�
L ;W0�n�

R ; B�n�V ; G
0�n�
l �, and

 M 2
n �

g2k2

2  �
2n
R �

2 � g2k2

2 0 0

� g2k2

2
g2�k2w2

R�

2  �2nR �
2 �

gvgw2
R

2 0

0 �
gvgw2

R
2 g2

v�
w2
R

2 
2w2

l
9 �  �

2n
R �

2 �
2gvgsw2

l

3
��
3
p

0 0 �
2gvgsw2

l

3
��
3
p

2g2
sw2

l
3  �2nR �

2

0
BBBBBBB@

1
CCCCCCCA: (37)

Only the zero mode gauge bosons possess masses less than
1=R and under our hierarchy 1=R� wl;R we may neglect
the higher modes. In order to simplify the analysis it is
useful to introduce the SM U�1�Y field with coupling
constant gY and a U�1�B�L field with coupling gB. In these
terms the coupling constants are related by

 

1

e2
�

1

g2 
1

g2
Y

;
1

g2
Y

�
1

g2 
1

g2
B

;

1

g2
B

�
1

g2
V


1

3g2
s
;

(38)

and the fields
 

A � cos	BY  sin	W0
L;

Z � � sin	BY  cos	W0
L;

BY � cos
BB  sin
W0
R;

Z0 � � sin
BB  cos
W0
R;

BB � cos�BV  sin�G0
l ;

Z00 � � sin�BV  cos�G0
l ;

(39)

where the mixing angles are defined as

 tan	 �
gY
g
; tan
 �

gB
g
; and tan� �

gV���
3
p
gs
:

(40)

Using Eqs. (40) and (38) one can relate all angles to the
Weinberg angle, 	.

 sin
 � tan	; (41)

 sin� �
g���
3
p
gs

sin	�������������
cos2	
p : (42)

Expressing the zero mode neutral boson masses in terms of
the fields (39) reveals a massless photon (A) and mixing
between the remaining bosons. Writing ~Z � �Z; Z0; Z00�T

and Lmass �
1
2
~ZyH ~Z one has

 H �

m2
Z �m2

Z cot
 sin	 0

�m2
Z cot
 sin	 m2

Z0
g2w2

R
4 tan2	 tan�

0
g2w2

R
4 tan2	 tan� m2

Z00

0
BB@

1
CCA; (43)

where

 

m2
Z �

g2k2

2cos2	
; m2

Z0 �
g2w2

R

2cos2


�
1

�
k
wR

�
2
cos4


�
;

m2
Z00 �

2g2
s

3cos2�

�
w2
l 

9

4
w2
Rsin4�

�
: (44)

Letting w generically denotewl andwR, the physical mass-
squared eigenvalues to O�k

2

w2� are

 M2
Z � m2

Z; (45)

 M2
Z0 � M2 � 1

2��m
2
Z�cos2
cos2	; (46)

 M2
Z00 � M2  1

2�m
2
Z��cos2
cos2	; (47)

with

 M2 � Aw2
l  Bw

2
R; (48)

and

 

1
2 � �

���������������������������������������������������
A2w4

l  Cw
2
l w

2
R  B

2w4
R

q
; (49)

where

COMBINING LEFT-RIGHT AND QUARK-LEPTON . . . PHYSICAL REVIEW D 76, 105020 (2007)

105020-7



 A � 1
3g

2
ssec2�; (50)

 B � 1
4�g

2sec2
 3g2
ssin2�tan2��; (51)

 C � A�2B� g2sec2
�; (52)

and

 �� �
1

2
�

1

4
�3g2

ssin2�tan2�� g2sec2
�
w2
R

�

�
1

3
g2
ssec2�

w2
l

�
: (53)

The leading order correction to the Z mass is obtained by
retaining higher order terms, giving

 M2
Z � m2

Z  �m
2
Z; (54)

where

 �m2
Z � �m

2
Z

��
k
wR

�
2
cos4


g4

4g4
s

�
k
wl

�
2
tan4	

�
: (55)

It is unnecessary to determine the higher order corrections
to the Z0 and Z00 masses. The physical Z bosons are found
by performing a 3-dimensional rotation of the interaction Z
bosons:

 

Zphy

Z0phy

Z00phy

0B@
1CA � U�1

Z
Z0

Z00

0@ 1A: (56)

We present the 3� 3 mixing matrix U in Appendix A.
Using the results from Appendix A one may verify the
usual LR and QL behavior of the neutral gauge sector in
the various largew limits. For completeness we note that in
the large wl limit we find

 M2
Z � m2

Z � �LR; (57)

 M2
Z0 �

g2w2
R

2cos2


�
1

�
k
wR

�
2
cos4


�
 �LR; (58)

 M2
Z00 �

2g2
sw2

l

3cos2�
; (59)

where �LR � �
k
wR
�2cos4
. As expected, Z0 is the usual LR

boson and M2
Z0 agrees with [7] aside from a minor error in

that paper [19]. Furthermore, in this limit �U33�
2 ! 1

which implies that

 U !
cos sin 0
� sin cos 0

0 0 1

0@ 1A; (60)

where we have defined  � ���   � in terms of the
angles (A12) and (A13). We find

 

tan � U21=U11 (61)

 �

�
k
wR

�
2 sin
cos3


sin	
; (62)

in agreement with [7].
In the large wR limit the heaviest physical neutral boson

is a linear combination of Z0 and Z00 (see Appendix B). The
mass eigenvalues are

 M2
Z � m2

Z

�
1�

g4

4g4
s

�
k
wl

�
2
tan4	

�
; (63)

 M2
Z0 �

2
3 g

2
sw2

l

1� tan2	�g2=3g2
s�
; (64)

 M2
Z00 �

1
2�g

2sec2
 3g2
ssin2�tan2��w2

R: (65)

The mixing angle between Z and Z0 is given by (see
Appendix B)

 tan� �

���
3
p

4

�
k
wl

�
2
�
g
gs

�
3 tan2	

cos	
; (66)

a result which has not previously appeared in the literature.

V. 5D QLLR WITH SPLIT FERMIONS

Having discussed in some detail the symmetry breaking
and gauge sectors of the model we now turn our attention
to the fermions. One interesting aspect of studying models
in additional dimensions is the novel new mechanisms
which become available to solve old problems. As we
have already emphasized, the scalar content of 4D QLLR
models is quite complicated with the � scalars of Eq. (8)
included to simultaneously break the gauge symmetry and
suppress neutrino masses below the electroweak (EW)
scale (via the seesaw mechanism). These states have not
been included in the 5D construct and thus we must present
an alternative method of suppressing neutrino masses if we
are to persist with the simplified scalar content. In doing
this we will find we are also able to remove the trouble-
some mass relations which occur in 4D QLLR models
without the need for a second Higgs bidoublet.

Since all the fermions transform nontrivially under ei-
ther SU�3�c or SU�3�l and either SU�2�1 or SU�2�2, their
Z2 � Z02 transformations are given by
 

��x�; y� ! ��x�;�y� � ��5P
a
1;2P



q;l�a;
�x

�; y�;

��x�; y0� ! ��x�;�y0� � ��5P0a1;2P
0

q;l�a;
�x�; y0�;

(67)

where a (
) are indices of the relevant SU�2� [SU�3�]
group. The � signs in the two equations are independent
and govern which chiral component of the fermion wave
function will be odd and which even about the relevant
fixed point. These orbifold boundary conditions (OBCs)
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force the two SU�2�L quark/lepton singlets of the SM to
come from different SU�2�2 doublets. We must therefore
double the minimal fermion content of our model com-
pared with 4D QLLR models. This doubling of the fermion
spectrum is typically required in 5D LR [7] and QL models
[10]. Thus the fermion spectrum is
 

L1; L
0
1 � �3; 1; 2; 1;�1=3�;

L2; L
0
2 � �3; 1; 1; 2;�1=3�;

Q1; Q01 � �1; 3; 2; 1; 1=3�;

Q2; Q02 � �1; 3; 1; 2; 1=3�;

(68)

where generation indices have been suppressed. The sym-
metries of the QLLR model, together with the requirement
that the low energy spectrum match that of the SM (up to
possible additional neutrinos), strongly restrict the fermion
orbifold parities. Preservation of the Q$ L and 1$ 2
symmetries in the Lagrangian together with the zero mode
content requirements completely specifies the OBCs of the
fermions (up to labeling) as

 

Qr;b;g
1;L �

u�;�

d�;�

 !
r;b;g

; Q0r;b;g1;L �
u�;��

d�;��

 !
r;b;g

;

Qr;b;g
1;R �

u��;��

d��;��

 !
r;b;g

; Q0r;b;g1;R �
u��;�

d��;�

 !
r;b;g

;

Qr;b;g
2;L �

u��;�

d��;��

 !
r;b;g

; Q0r;b;g2;L �
u��;��

d��;�

 !
r;b;g

;

Qr;b;g
2;R �

u�;��

d�;�

 !
r;b;g

; Q0r;b;g2;R �
u�;�

d�;��

 !
r;b;g

;

Lr
0

1;L �
��;��

e�;��

 !
r0

; L0r
0

1;L �
��;�

e�;�

 !
r0

; Lb
0;g0

1;L �
��;�

e�;�

 !
b0;g0

; L0b
0;g0

1;L �
��;��

e�;��

 !
b0;g0

;

Lr
0

1;R �
���;�

e��;�

 !
r0

; L0r
0

1;R �
���;��

e��;��

 !
r0

; Lb
0;g0

1;R �
���;��

e��;��

 !
b0;g0

; L0b
0;g0

1;R �
���;�

e��;�

 !
b0;g0

;

Lr
0

2;L �
���;�

e��;��

 !
r0

; L0r
0

2;L �
���;��

e��;�

 !
r0

; Lb
0;g0

2;L �
���;��

e��;�

 !
b0;g0

; L0b
0;g0

2;L �
���;�

e��;��

 !
b0;g0

;

Lr
0

2;R �
��;��

e�;�

 !
r0

; L0r
0

2;R �
��;�

e�;��

 !
r0

; Lb
0;g0

2;R �
��;�

e�;��

 !
b0;g0

; L0b
0;g0

2;R �
��;��

e�;�

 !
b0;g0

:

(69)

Here the numerical subscripts and the primes are used to
label different 5D fields such that Q1L and Q1R (Q01L and
Q01R) form the left and right chiral components of the one
5D field Q1 (Q01), etc., the superscripts r, b, g label quark
colors, and r0, b0, g0 label lepton colors. We have taken r0 to
be the color of the SM leptons. Note that zero modes of
some of the exotic b0 and g0 colored leptons are present.
The appearance of these states is a fortunate consequence
of the fermion orbifold parity structure as they are required
to ensure an anomaly free zero mode fermion content [20].
These states gain masses as in the 4D theory via the �
Yukawa Lagrangian which has the form (we must define
the action of the discrete symmetries before we can specify
it exactly)

 L Yuknon-EW
�

X
fermions

hi� �Lci Li�l  �Qc
iQi�q�; (70)

while the quarks remain massless since �q has a vanishing

VEV. We must also define the action of the QL and 1$ 2
symmetries on the fermions. Because of the doubling of
the fermion spectrum there are several ways we could do
this. The various possibilities result in different phenome-
nology and influence the extent to which the issues of
neutrino mass, proton decay, and unwanted mass relations
can be resolved. Below we shall investigate the two most
interesting scenarios.

We structure the remainder of this section as follows. In
Sec. VA we briefly introduce split fermions. Split fermion
models [5] use an inherently extra dimensional construct to
motivate the masses of SM fermions and/or proton longev-
ity. As we shall be employing split fermions to address
these issues a brief introduction is in order. In Sec. V B we
discuss the nature of neutrino mass and proton decay in our
model. In Sec. V C we explore the use of split fermions
with one possible assignment for quarks, leptons, and
scalars under the QL and 1$ 2 symmetries. This assign-
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ment is interesting as it induces a fermion localization
pattern motivating the differences in quark and lepton
masses observed in the SM. The hierarchy between, for
example, the top quark and a Dirac neutrino is obtained
with Yukawa couplings which vary by only a factor of 5.

We investigate an alternative symmetry assignment in
Sec. V D. This arrangement allows one to simultaneously
suppress the proton decay rate and understand the range of
fermion masses in the SM. We note that the symmetries of
the model highly constrain the parameters required to
localize fermions. It is a nontrivial result that we are able
to remove the unwanted mass relations implied by the QL
symmetry, suppress the proton decay rate by spatially
separating quarks and leptons, and understand some of
the flavor features found in the SM. To the best of our
knowledge this is the first model in the literature that
motivates a localization pattern which simultaneously en-
sures proton longevity and addresses flavor. We demon-
strate our ideas in this section with one generation
examples and further work is required to ensure that these
promising ideas carry over to a three generational model. A
complete numerical analysis of the three generational setup
is beyond the scope of the present work and shall be
pursued in a forthcoming paper.

A. Split fermion mechanism

In extra dimensional models the effective 4D theory is
obtained by integrating out the extra dimensions and any
symmetry or naturalness arguments should be made in the
fundamental extra dimensional model. The basic idea be-
hind split fermion models is that by appropriately choosing
the profiles of the fields in the extra dimensions, the con-
clusions of any symmetry or naturalness argument in the
extra dimensional model need not apply in the effective
theory. In their original paper, Arkani-Hamed and
Schmaltz (AS) [5] noted two situations where this obser-
vation is useful: to explain the hierarchy in SM fermion
masses and to explain the stability of the proton.

The work of AS was performed with an infinite extra
dimension. We are interested in the case where the extra
dimension is compactified and therefore follow [21]. To
localize fermions along the extra dimension we introduce a
gauge singlet bulk scalar, �1, assumed to possess odd
parity about both fixed points.

For a given bulk fermion,  , the Yukawa Lagrangian
with the bulk scalar �1 is

 

L � � �i�M@M � f 1
�1� 

1

2
@M�1@M�1

�
�1

4
��2

1 � v
2
1�

2; (71)

where f 1
, �1, and v1 are constants. The OBCs prevent �1

from developing a constant VEValong the extra dimension
and lead to a kink configuration

 h�1i � v1 tanh�1v1y� tanh
�
1v1

�
�R
2
� y

��
; (72)

where 2
1 � �1=2. Solving the Dirac equation for the

fermion gives

  �y� � Nef 
R
y

0
h�1i�y0�dy0 : (73)

Using (72) this solution is approximately a Gaussian of
width �f 1

v1�
�1 localized around y � 0 (y � �R=2) for

f 1
v1 > 0 (f 1

v1 < 0). Thus by assuming distinct cou-
plings to �1 for distinct SM fermion multiplets one can
localize them around different fixed points with varying
widths.

The fermion  may be shifted from the fixed points
by using two localizing scalars, �1;2, with VEVs v1;2

and fermion couplings f 1;2
. One finds that  is localized

around y � 0 (y � �R=2) for f 1
v1; f 2

v2 > 0
(f 1

v1; f 2
v2 < 0). However, if sgn�f 1

v1� �

sgn�f 2
v2�, the localization of  will depend on the rela-

tive sizes of f ivi. Cases exist where the fermion is local-
ized around one of the fixed points, within the bulk or has a
bimodal profile. Fermions localized inside the bulk gener-
ally have wider profiles than those localized at a fixed
point. A detailed discussion of the various cases may be
found in [21].

Having demonstrated the localization of fermions, we
now discuss the motivation of AS for doing so. To simplify
the explanation we shall assume that the fermion profiles
are exactly Gaussians of width ��1.

AS had two motivations for localizing fermions. First,
since the left- and right-handed components of a given SM
fermion are in different gauge multiplets they can be
localized at different points in the extra dimension. The
Higgs Yukawa coupling in the effective 4D theory is

 L � f
Z L

0
dy �FRFL� � fkK �fRfL; (74)

where L � �R=2 is the length of the extra dimension, k is
the Higgs VEV, K �

R
L
0 FR�y�FL�y�dy� e

��2r2
and r is

the separation between the left- and right-handed fields.
Thus even if the fundamental Yukawa coupling, f, is of
order one, that in the effective theory can be exponentially
suppressed. Since � and r will vary for different fermions
it is natural to expect the observed hierarchy in SM fermion
masses. Previous studies have confirmed that it is possible
to obtain the SM masses and mixings from this setup with
reduced parameter hierarchies [21,22]. The price we pay is
that we must introduce a new free parameter for every
scalar-fermion coupling. The setup therefore lacks predic-
tivity, telling us nothing, for example, about the relative
masses of the quarks and leptons, or the top and bottom
quarks.

Second, the AS proposal allows one to consider funda-
mental theories which contain nonrenormalizable proton
decay inducing operators without insisting that the funda-
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mental scale be very large. Instead the operators may be
suppressed in the effective theory by localizing quarks and
leptons at opposite ends of the extra dimension. It was
shown by AS that regardless of the particular proton decay
inducing operator, this leads to suppression of the rate of
proton decay going like �e��

2L2
. Thus provided � *

10=L the proton lifetime will be greater than the experi-
mental lower bounds. While providing a novel alternative
explanation for the stability of the proton, this requires that
we arbitrarily choose sgnfqi � �sgnflj for all i; j where i
(j) runs over all left- and right-handed SM quarks
(leptons).

In calculating the localization of the fermions in our
model below, we shall do so only classically. In taking this
approach we are following previous work on split fermions
[22] in assuming that any quantum corrections will be
small enough not to alter the qualitative nature of our
fermion geography. Before attempting to find realistic split
fermion geographies for our model, we briefly discuss the
nature of neutrino mass and proton decay within it.

B. Neutrino mass and proton decay

The nature of neutrino mass and proton decay in any
model is related to the status of baryon and lepton number
symmetries. Our model contains accidental unbroken
baryon- and lepton-number symmetries. Baryon number,
B, takes the value 1=3 for quarks and�2=3 for the colored
scalar �q. Lepton number is given by

 L � L0 �
T8
l���
3
p ; (75)

where L0 is 1=3 for leptons and �2=3 for �l. It is easy to
check that all renormalizable Lagrangian terms which
respect the gauge symmetries also conserve B and L. As
such there is no process which will lead to Majorana
neutrino mass or proton decay at any order within the
model. This differs from 4D QLLR models where the
larger scalar sector precludes lepton number conservation.

However, there are nonrenormalizable operators which
may induce these processes. The leading order effective
operators resulting in Majorana neutrino masses are
 

Oeff
�L �

g

���R�3
��yl �R

~�LL�
2

�5
;

Oeff
�R �

g0

���R�2
��lNc

R�
y
R�

2

�3 :
(76)

These operators can only lead to cosmologically accept-
able masses for the right-handed neutrino while keeping
the left-handed neutrinos light if we take the breaking
scales to be at least wl;R * 100 TeV. For phenomenologi-
cal reasons, such a possibility is uninteresting so we do not
consider it further. Instead we will assume that these
Majorana masses are zero or negligibly small. This could
occur either if the cutoff, �, is large, or if a subgroup of the

B and L symmetries is preserved also above the cutoff so as
to forbid these operators.

Proton decay occurs nonrenormalizably via the effective
operator

 O eff
p �

1

���R�3=2

�
��Q

Q�Q��yl
0L


0

�3 : (77)

Below we will consider two possibilities for preventing
proton decay. In Sec. V C we will assume this operator is
unimportant either because the cutoff is high, or the high
energy theory respects the B symmetry evident at low
energies. In Sec. V D, we consider the case where this
operator can lead to significant proton decay and must be
suppressed via the split fermion mechanism [23].

C. Fermion mass relationships

In the original 4D QLLR models with a single Higgs
bidoublet the QL symmetry led to phenomenologically
inconsistent mass relations between the quarks and leptons.
Depending on how we define the action of the discrete
symmetries on the fermions, these can be partially re-
moved in our 5D model due to the doubling of the fermion
spectrum. To proceed any further we must define the action
of theQ$ L and 1$ 2 on the fermions, which we take to
be

 

L1 $ L2 L01 $ L02
l l l l

Q1 $ Q2 Q01 $ Q02:
(78)

If we take the Higgs bidoublet to transform trivially under
1$ 2 and as �$ ~� under QL, the resulting EW Yukawa
Lagrangian is

 L YukEW
� �1� �Q1

~�Q2  �L1�L2�  �2� �Q1�Q02

 �L1
~�L02�  �3� �Q01�Q2  �L01

~�L2�

 �4� �Q01
~�Q02  �L01�L02�  H:c: (79)

Note that the 1$ 2 symmetry requires

 �1 � �y1 ; �4 � �y4 ; �2 � �y3 : (80)

The EW Yukawa Lagrangian for the SM particles,
LSM

YukEW

 LYukEW

, is

 L SM
YukEW

� �1k� �dLdR  �2k �uLuR  �3k� �eLeR

 �4k ��L�R  H:c: (81)

Thus Eq. (80) implies mu � me. As in the 4D case, these
phenomenologically incorrect relationships can be re-
moved by introducing a second Higgs bidoublet but at
the cost of predictivity and without any explanation for
the hierarchical nature of SM fermion masses.

Split fermions provide a natural alternative approach.
Naively one may think that the symmetries of our model
over constrain the extra dimensional fermion profiles.
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Indeed with only one localizing scalar, the quark doublet
and the right-handed down quark and charged lepton of a
given generation necessarily have the same profile, albeit
possibly localized around different fixed points (and simi-
larly for the lepton doublet and right-handed up quark and
neutrino). However, by using two localizing scalars with
different parities under the symmetries it is possible to give
the fermions different profiles and also move some fermi-
ons into the bulk.

Taking �1 to be even under both the Q$ L and 1$ 2
symmetries and �2 even (odd) under Q$ L (1$ 2)
results in the Lagrangian

 L Yukkink
� f� �Qc

1Q1  �Lc1L1  �Qc
2Q2  �Lc2L2��1

 f0�� �Q0c1 Q
0
1 �

�L0c1 L
0
1 �

�Q0c2 Q
0
2 �

�L0c2 L
0
2��1

 g� �Qc
1Q1  �Lc1L1 � �Qc

2Q2 � �Lc2L2��2

 g0�� �Q0c1 Q
0
1 �

�L0c1 L
0
1 

�Q0c2 Q
0
2 

�L0c2 L
0
2��2:

(82)

Taking f; f0; g; g0 > 0, the coupling of the SM quark dou-
blets to both scalars is positive, strongly localizing them
around the y � 0 fixed point while the lepton doublets
couple negatively ensuring they are localized at the y �
L fixed point. The SM singlets couple to the two scalars
with different signs allowing them to be localized at either
fixed point or within the bulk. However the symmetries
ensure that the profiles of the right-handed up quarks and
neutrinos (down quarks and charged leptons) have identi-
cal extra dimensional profiles.

We note that the localization of fermions along the extra
dimension does not suppress the mass of zero mode exotic
leptons relative to wl. Inspection of Eq. (70) reveals that
the mass terms generated by the �l VEV couple exotic
leptons from the same gauge multiplet. As these fields
necessarily have the same profile in the extra dimension
the lightest exotic leptons are generically expected to have
an order wl mass independent of the localization pattern
required to achieve a realistic SM spectrum.

In order to give a concrete example, we consider a single
generation model. To determine the localization pattern of
fermions it is only necessary to specify the bulk scalar
parameters v1;2 and the Yukawa coupling constants
f; f0; g; g0 as functions of 1;2 and L � �R=2. We take
these to be v1 � 4=�1L� and v2 � 12=�2L�. With the
choice of fermion-� couplings f � 28:41, f0 � 14:41,
g � 7:02, g0 � 6:42. The resulting fermion localization
pattern is shown in Fig. 1 and is of interest as it allows us to
explain several SM features:

(i) The top singlet is localized on top of the quark
doublet so we expect mt � k, while the bottom
singlet is in the bulk leading us to expect mt > mb.
Since bR is localized in the bulk it has a relatively
large width. This ensures that the suppression of mb
is not too large.

(ii) The tau singlet is localized in the bulk close to the
opposite fixed point to the lepton doublet leading to
mt > m�. Again the large width of �R prevents the
suppression being too large.

(iii) The right-handed neutrino is strongly localized
with tR about the opposite fixed point to the lepton
doublet. The strong localization of both �L and �R
allows the neutrino mass to be tiny.

Recalling that our symmetries force the Higgs Yukawa
coupling of the top and tau to be identical [Eq. (80)], the
Yukawa couplings �t � �� � �b � �� � 1:01 lead to
masses [24] mt � 169 GeV, mb � 4:16 GeV, m� �
1:77 GeV, m� � 26 meV. Hence we are able to obtain
realistic fermion masses with fewer free parameters than
previously required. While a complete three generation
study remains to be undertaken, this approach does appear
to provide a viable and novel approach to explaining the
SM fermion masses with fewer free parameters and with-
out any parameter hierarchies. It also nullifies the phenom-
enologically incorrect mass relationships of previous
QLLR models.

D. Simultaneously suppressing proton decay and
obtaining correct fermion masses

We have shown that our 5D QLLR setup enables us to
obtain realistic fermion masses. However this setup does
not allow one to suppress the proton decay rate. Proton
decay occurs in the 5D QLLR model from operators of the
form

 Op �
1

�9=2
Q3L�yl ; (83)

where Q (L) denotes a quark (lepton) field and � is the
fundamental scale. As quarks and leptons have significant

FIG. 1. Fermion profiles for the parameter values described in
Sec. V C. Solid line, QL; short dashed line, bR; �R; long dashed
line, tR; �R, and dot-dashed line, LL. Note that some of the
fermions possess identical profiles. In particular the inset shows
the identical profiles of bR and �R about x=L � 1.
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fifth dimensional wave function overlap with the setup in
Sec. V C one must take the fundamental scale to be large or
extend the model to ensure proton longevity. If one simply
assumes the cutoff is large the usual fine-tuning is required
to stabilize the Higgs mass at the electroweak scale.

It was shown in [25] that models with a QLLR symmetry
admit a split fermion setup which suppresses proton decay
less arbitrarily than the split fermion implementation of the
SM. This requires one of the localizing scalars to be odd
(even) under Q$ L (1$ 2). Unfortunately neither of the
scalars in Sec. V C transformed in this way. If the fermion
transformations of Eq. (78) are retained and one of the
localizing scalars of Sec. V C is forced to be odd (even)
under the Q$ L (1$ 2) symmetry, the resulting fermi-
onic geographies require large parameter hierarchies to
produce realistic mass spectra. We instead choose � to
be trivial under QL and the fermions to transform as

 

L1 $ L2 L01 $ L02
l l l l

Q1 $ Q02 Q01 $ Q2

(84)

under the QL and 1$ 2 symmetries which leads to the
mass relationship md � me. Choosing �1 (�2) to be odd
(odd) under theQ$ L symmetry and even (odd) under the
1$ 2 symmetry, the localizing scalar Yukawa Lagrangian
is
 

LYukkink
� f� �Qc

1Q1 � �Lc1L1  �Q0c2 Q
0
2 �

�Lc2L2��1

 f0� �Q0c1 Q
0
1 �

�L0c1 L
0
1 

�Qc
2Q2 � �L0c2 L

0
2��1

 g�� �Qc
1Q1  �Lc1L1  �Q0c2 Q

0
2 �

�Lc2L2��2

 g0�� �Q0c1 Q
0
1 

�L0c1 L
0
1 

�Qc
2Q2 � �L0c2 L

0
2��2:

(85)

If we take f; f0; g; g0 > 0, all the right-handed fermions are
localized at the ends of the extra dimension, with quarks at
one end and leptons at the other. Further, we find that uR
(dR) localized about y � 0 has the same profile as eR (�R)
around y � L. Meanwhile the quark and lepton doublets
have unrelated profiles with peaks in the bulk. This is
precisely the setup advocated in [26,27] to achieve a natu-

rally small neutrino Dirac mass. That the leptons are lighter
than the quarks now results from the lepton doublet being
more strongly localized than the quark doublet. It then
follows that we expect m�=m� � mb=mt since the differ-
ence in the amplitudes of the right-handed wave functions
becomes more dramatic the further into the bulk we move.

Again simplifying to the one generation case, the pa-
rameter choice v1 � 7:9=�1L�, v2 � 69=�2L� and f �
15:61, f0 � 8651, g � 0:4402, g0 � 33:32, produces
the fermion localization pattern shown in Fig. 2. Note that
the overlap between quarks and leptons is small enough to
suppress the proton decay rate below current bounds with
an order 10–100 TeV fundamental scale. If we take �t �
1:32, �b � �� � 0:0713, and �� � 0:3, the fermion
masses are mt � 173 GeV, mb � 4:13 GeV, m� �
1:78 GeV, and m� � 77 meV. This setup does contain
some hierarchy: for v1 � v2 one requires �2 � 100�1

which leads to a hierarchy of O�102� between the smallest
and largest � Yukawa coupling. This remains a vast im-
provement over the �12 orders of magnitude parameter
hierarchy required to explain fermion masses with Dirac
neutrinos in the SM. It is also, to our knowledge, the first
realization of the ideas of AS which implements both
features of their proposal. Further work is required to check
that this carries over to three generations and that, in
particular, the SM mixing angles may be reproduced
[28]. However if this is shown to be the case this would
represent the first dynamical setup to produce both realistic
fermion masses and suppress proton decay via the split
fermion mechanism.

VI. NEUTRAL CURRENTS

Having specified the fermion content we now present the
neutral currents of the model and obtain bounds on the
symmetry breaking scales wR and wl. Since we consider
1=R� wl; wR it shall suffice to consider the interactions
of the zero mode fermions and gauge bosons. After chang-
ing to the neutral gauge boson mass eigenstate basis by
diagonalizing the matrix H with the rotation (A3) the
neutral current interactions for the zero mode fields may

FIG. 2. Fermion profiles for the parameter values described in Sec. V D. Note only the regions around the ends of the extra
dimension are plotted as all fermions have miniscule amplitudes in the central region. Quarks (leptons) are shown in the left (right)
plot. Solid line, QL�LL�; short dashed line, dR��R�; dot-dashed line uR�eR�.
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be written as
 

LNC �

�
eA�Q

�
g

cos	

�
Z�phyANC 

�
g

cos	

�
Z0�phyBNC



�
g

cos	

�
Z00�phyCNC

�
J00

NC;�; (86)

where the zero mode components of the current are

 J00
NC;� �

X
i�1;2

�Q0
i ��Q

0
i 

�Q00i ��Q
00
i 

�L0
i ��L

0
i

 �L00i ��L
00
i ; (87)

and we have defined

 ANC � I3L�U11  �Z� �Q�U11sin2	 �Z�

 I3R�U21 cos
 cos	 �Z�  TlU31
gs cos	
2g cos�

;

(88)

 BNC � I3L�U12  �Z0 � �Q�U12sin2	 �Z0 �

 I3R�U22 cos
 cos	 �Z0 �  TlU32
gs cos	
2g cos�

;

(89)

 CNC � I3L�U13  �Z00 � �Q�U13sin2	 �Z00 �

 I3R�U23 cos
 cos	 �Z00 �  TlU33
gs cos	
2g cos�

;

(90)

where

 �Z � sin	�U21 tan
U31 sec
 tan��; (91)

 �Z0 � sin	�U22 tan
U32 sec
 tan��; (92)

 �Z00 � sin	�U23 tan
U33 sec
 tan��; (93)

where the form of the elements of U may be found in
Appendix A. These couplings may now be used to bound
the symmetry breaking scales wR;l. We achieve this by
performing a �2 fit of the predictions of this model to the
following electroweak precision data:
 

Re;�;�;b;c; Ae;�;�;b;c;s; AFBe;�;�;b;c;s; QW�Cs�;

QW�Tl�; g2
nL ; g2

nR ; �Z; �had: (94)

Under the phenomenological necessary assumption that
MZ0 � MZ, the physical consequences of the corrections
to the coupling of Zphy far outweigh the new physics
resulting from the couplings to Z0phy. Thus we include
only this dominant effect when determining our bounds.
We find that in the LR limit one requires wR > 4:8 TeV
(wR > 6:2 TeV) at the 95% (90%) confidence level, which
leads to MZ0 > 2:7 TeV (MZ0 > 3:4 TeV). Note that we fit
to more precision electroweak parameters than previous

works using neutral currents to bound LR breaking scales
and thus, to the best of our knowledge, this is the strongest
bound on wR from the neutral sector yet obtained in the
literature (for previous bounds see [6,29,30]). In the QL
limit, it is necessary that wl > 1:5 TeV (wl > 2:0 TeV)
and MZ0 > 1:6 TeV (MZ0 > 2:0 TeV). If both wR and wl
are close to their lower bounds, it is possible that MZ00 is
also at the TeV scale. In this case, at 95% confidence, we
find wR > 6:3 TeV, wl > 2:1 TeV which leads to MZ0 >
2:1 TeV, MZ00 > 3:5 TeV. These bounds are shown in
Fig. 3.

VII. EXPERIMENTAL SIGNATURES

In the limit 1=R� wl;R the key signatures of 5D QLLR
models result from the additional neutral gauge bosons and
the liptons. The discovery of an additional neutral gauge
boson at the LHC would be via Drell-Yann processes
pp! Z0 ! ll� [31,32]. The lower center-of-mass en-
ergy of a next generation linear collider (NLC) precludes
the production of real Z0’s. Thus any discovery at the NLC
would be made by measuring ee� ! f �f and observing
corrections resulting from interference between diagrams
with a Z0 propagator, and those with a � or Z [31], to the
relevant quantities discussed in Sec. VI.

Current data allows a Z0 at TeVenergies regardless of the
hierarchy between wl and wR; however, the discovery
prospects depend strongly on this hierarchy. In the limit
wR < wl the additional boson is basically that of the LR
model. Previous studies have found that Z0LR is discover-

FIG. 3. Plot of the values of wR;l which are consistent with a �2

fit to the electroweak precision parameters [see Eq. (94)]. The
gray (black) region is excluded at the 90% (95%) confidence
level and the units are in TeV.
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able up to a mass of about 5 TeV at the LHC (or NLC with���
s
p
� 1 TeV) with an integrated luminosity of 100 fb�1

[31,33]. If wl < wR the light Z0 is that of the QL model. In
this case discovery at a hadron collider such as the LHC is
unlikely since the cross section of the Drell-Yann process,
��pp! Z0�B�Z0 ! ll��, will not be large. This is since
Z0 contains a large fraction of G0

l which does not couple to
the quarks, meaning the cross section ��pp! Z0� will be
small. The discovery prospects are greater at the NLC since
G0
l has large universal couplings to all leptons. These

couplings are quite different from any of the canonical
Z0’s usually considered, providing a distinctive signature.

The most interesting case is when wR � wl. Then both
Z0 and Z00 possess significant couplings to the SU�3�l and
SU�2�R neutral currents and may have TeV masses. As
such they could both be produced at the LHC. The pros-
pects of discovery depend on the masses of the liptons,
which are of order wl. If the Z0 bosons can decay into
liptons their branching fraction into charged leptons will
reduce and hence the Drell-Yann cross section will be
smaller. The presence of light liptons would afford alter-
native discovery channels, with liptonic final states, at the
LHC. At a linear collider light liptons are unimportant
since only virtual Z0’s are produced. However, diagrams
with both Z0 and Z00 propagators will interfere with those of
the SM, causing corrections. Without prior knowledge of
the mass and mixings of the neutral gauge bosons their
couplings to fermions are unknown. Thus separating their
effects and categorically identifying the nature of the bo-
sons is difficult.

If wl is at the TeV scale then the production of liptons is
also possible at the LHC. For 1=R� wl, only the zero
mode liptons with orbifold parity �;�, which are in
different SU�3�l multiplets to the SM leptons, can be
produced. Since both the Y�1;2 and WR bosons have
�;�� orbifold parity, they do not directly couple the
lightest liptons to the SM leptons. As the unbroken
SU�2�l is expected to be confining these liptons will form
bi-lipton bound states. These states will decay into SM
fermions via creation of a W, Z or photon. This will
produce a clear experimental signature, the details of
which are similar to those obtained in the 4D QLLR model
[4].

VIII. CONCLUSION

In this paper we have constructed and analyzed the 5D
QLLR model. We have shown that the higher dimensional

construct permits a novel mechanism for suppressing neu-
trino masses below the electroweak scale and allows one to
dramatically simplify the scalar sector employed in 4D
constructs. This allows one to keep both the QL and the
LR symmetry breaking scales low (TeV energies) so that
two neutral gauge bosons may be observed at the LHC.

Split fermions were used to explain some of the features
of the SM mass spectrum. Two interesting fermionic geog-
raphies were presented, each of which provided a rationale
for the relationships mt > mb;m� and m� � mt. One of
these had no Yukawa coupling hierarchy but to suppress
the proton decay rate required either a large cutoff or that
the fundamental theory observed the accidental B and L
symmetries of the QLLR model. In the former case, fine-
tuning was required to stabilize the Higgs boson mass at
the electroweak scale. The alternative arrangement sup-
pressed the proton decay rate by spatially separating
quarks and leptons in the extra dimension. Thus the hier-
archy problem was alleviated but at the cost of introducing
an order 102 Yukawa coupling hierarchy. Given the extent
to which the symmetries of the model constrain the
Yukawa sector it is a nontrivial result that interesting
fermionic geographies can be obtained with mild Yukawa
coupling hierarchies. These arrangements show promise
but further work is required to ensure that a fully realistic
three generational setup may be obtained.
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APPENDIX A: NEUTRAL GAUGE BOSON MIXING

The physical Z bosons are found by performing a 3-
dimensional orthogonal rotation of the interaction Z bo-
sons. Defining

 ZP � �Zphy; Z
0
phy; Z

00
phy�

T; ZI � �Z; Z
0; Z00�T; (A1)

the relationship between the physical and interaction states
is

 ZP � U�1ZI; (A2)

with the diagonalized mass matrix beingD � U�1HU and
H is defined in (43). We will parametrize the rotation
matrix as

 U��; �;  � �
cos� cos � cos� sin� sin cos sin�  cos� cos� sin sin� sin 
� cos� cos sin� � cos� sin cos� cos� cos � sin� sin cos sin�

sin� sin� � cos� sin� cos�

0@ 1A; (A3)

and we note that U�1��; �;  � � U�� ;��;���. To order O�k
4

w4� we find

 U11 � 1; (A4)
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 U21 �
m2
Zcos3
 cos	�9w2

Rsin4� 4w2
l �

2g2w2
l w

2
R

; (A5)

 U31 �
�3

���
3
p
m2
Zcos2
 cos� cos	sin2�

2ggsw
2
l

; (A6)

 U33 � U22 �
��������
�
p

�m2
Z
g2w2

R

4�2 sin2	 tan�
��������
��
p

; (A7)

 U23 � �U32 �
��������
��
p

m2
Z
g2w2

R

4�2 sin2	 tan�
��������
�
p

;

(A8)

 U12 � �

�
m2
Z

M2 � 1
2 �

�
U33 cos
 cos	; (A9)

 U13 �

�
m2
Z

M2  1
2 �

�
U32 cos
 cos	: (A10)

Expressing the mixing angles in terms of the elements Uij
we have

 � � arccos�U33�; (A11)

 � � arcsin�U31 csc��; (A12)

  � arcsin�U13 csc��; (A13)

if � � 0, and

   � � � arcsinU21; (A14)

if � � 0.

APPENDIX B: LARGE LR BREAKING LIMIT

In the limit wR ! 1 one has U13 ! 0 so that  ! 0.
Thus

 U �
cos� sin� 0

� cos� sin� cos� cos� sin�
sin� sin� � cos� sin� cos�

0@ 1A: (B1)

This may be written as U � R�R� where

 R� �
1 0 0
0 cos� sin�
0 � sin� cos�

0@ 1A; (B2)

 R� �
cos� sin� 0
� sin� cos� 0

0 0 1

0@ 1A; (B3)

so that

 ZP � U�1ZI � R�1
� R�1

� ZI � R�1
�

~ZI; (B4)

where we have redefined the interaction basis as ~ZI �
R�1
� ZI. In this basis, one of the additional neutral gauge

bosons, Z00QL, decouples in the large wR limit. The mixing
between the SM Z boson and the other additional neutral
gauge boson, Z0QL, in this limit is given by � . These extra
gauge bosons are

 Z0QL � cos�Z0 � sin�Z00; (B5)

 Z00QL � sin�Z0  cos�Z00; (B6)

with Z0 and Z00 defined in (39) and the subscript empha-
sizes that Z0QL is the extra neutral boson found in the QL
symmetric model.
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