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We derive the most general Seiberg-Witten maps for noncommutative gauge theories in second order of
the noncommutative parameter �. Our results reveal the existence of more ambiguities than previously
known. In particular, we demonstrate that some of these ambiguities enter observables like scattering
cross sections and enlarge the parameter space of the noncommutative standard model beyond O���.
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I. INTRODUCTION

With the start of data taking at the Large Hadron
Collider (LHC), particle physics will, for the first time,
directly probe the Tera Scale, i.e. the scale of electroweak
symmetry breaking according to the standard model (SM),
around 1 TeV. While the SM has been confirmed experi-
mentally to be a very precise effective description of the
physics below the Tera Scale, there are many serious
contenders for the more fundamental theory beneath the
SM.

For quite some time, superstring theory has been a
leading candidate for the fundamental theory unifying all
known interactions. There are certain solutions of super-
string theory with additional spatial dimensions, where the
characteristic string scales are low enough to allow experi-
mental tests at the LHC and the planned International
e�e� Linear Collider (ILC). One spectacular prediction
[1] of superstring theory is the emergence of a noncommu-
tative (NC) structure of spacetime at a scale �NC associ-
ated with nonvanishing commutators

 �x�; x�� � i��� � i
1

�2
NC

C�� (1)

of spacetime coordinates that correspond to oriented mini-
mal resolvable areas of size O���2

NC�. While a nonvanishing
commutator like (1) had been proposed much earlier [2] as
a regulator of divergencies in quantum field theory (QFT)
and quantum gravity, the observation of [1] caused intense
renewed interest in QFT on NC spacetimes (NCQFT).

The commutator (1) can be conveniently realized on a
commuting spacetime by replacing all products of func-
tions by Moyal-Weyl �-products

 �f � g��x� � f�x�e�i=2�@����� ~@�g�x�: (2)

A prescription for constructing arbitrary gauge theories on
an NC spacetime was presented in [1]. These so-called
Seiberg-Witten Maps (SWM) realize NC gauge transfor-
mations in the NC theory as ordinary commutative gauge

transformations on an effective commutative gauge theory.
By going to the enveloping algebra of the Lie algebra of a
given gauge group, this approach [3] circumvents obstruc-
tions like charge quantization in U�1� gauge theories and
the prohibition of SU�N� gauge groups in the earlier
attempts.

In particular, this prescription allowed the construction
of the so-called Noncommutative Standard Model
(NCSM) [4] as an anomaly-free [5] canonical NC exten-
sion of the SM without having to introduce additional
particles.1 In the first order of an expansion in �, one has
only three new bounded parameters that depend on the
choice of the representation of the enveloping algebra of
the SM Lie algebra and describe new couplings among
gauge bosons [4]. These couplings vanish in the minimal
NCSM, where the enveloping algebra is realized by ma-
trices acting in the vector space of the adjoint representa-
tion. Furthermore, the bosonic sector of the minimal
NCSM was shown to be renormalizable at one-loop [7],
where all counter terms can be expressed through the usual
field strength and coupling constant renormalizations. Also
the nonminimal NCSM is renormalizable at one-loop, if a
finite gauge invariant O���-term is added to the action [7].
Finally, the fermionic sector can be shown to require a
finite number of gauge invariant four-fermion operators as
additional counter terms in one-loop order [8]. In
Euclidean NC space, the renormalizability of scalar and
gauge models has been shown to all orders in � [9].

Using the effective theory in the first order of the
�-expansion, several phenomenological studies were per-
formed for past, present, and future colliders [10–12]. In a
preceding paper [12], we have studied the associated pro-
duction of photons and Z-bosons at hadron colliders
(Tevatron and LHC) showing that at the LHC one can
reach a noncommutativity scale �NC slightly above
1 TeV [12]. Moreover, we have found that it is necessary
to go beyond the first order in �, because of significant
contributions from partonic center of mass energies ex-
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1Other constructions of NC extensions of the SM start from a
U�3� 	U�2� 	U�1� gauge theory and subsequently break the
extraneous symmetries, introducing additional particles that
must be removed from the observable spectrum [6].

PHYSICAL REVIEW D 76, 105018 (2007)

1550-7998=2007=76(10)=105018(10) 105018-1 © 2007 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.76.105018


ceeding the noncommutativity scale that can actually be
probed.

While it is possible in simple cases to derive expressions
for families of SWM to all orders in � [13–15], an explicit
parametrization of the most general solution has not been
given. Therefore, we start in this paper by constructing the
most general SWM for the NCSM in the second order of
the �-expansion. The importance of this systematic ap-
proach is stressed a posteriori by discovering ambiguities
in the SWM that have been missed in earlier O��2� con-
structions of SWM [3,16]. While these authors expected all
ambiguities to cancel in observable quantities, we find that
they do not. In fact, using e�e� ! �� as an example, we
will calculate the ambiguity in the corresponding scatter-
ing amplitude explicitly.

The outline of this paper is as follows. In Sec. II we
derive the general SWM up to second order in the non-
commutativity �. Particular emphasis will be given to the
ambiguities resulting from the homogeneous solutions of
the gauge equivalence equations. Furthermore, the
Lagrangian and the Feynman rules of the neutral current
sector of the NCSM are constructed in Sec. III. Section IV
presents our analysis of the impact of the SWM ambigu-
ities on physical observables. We will demonstrate by an
explicit calculation of e�e� ! �� that not all ambiguities
cancel in the O��2� contribution to the cross section. In
Sec. V we conclude with a brief summary. All expressions
that are needed for the main results of this paper will be
given in full, either in the main text or in the appendix.
Complete expressions in second order in � that are too
lengthy to be included in this paper can be found in the
appendix of [17].

II. SEIBERG-WITTEN MAPS

The purpose of the SWM is to realize noncommutative
gauge transformations by representations of the enveloping
algebra using nonlinear functions of ordinary, commuta-
tive fields that reside in representations of the given Lie
algebra. This requirement is expressed by a set of so-called
gauge equivalence equations for noncommutative gauge
fields Â��A; ��, gauge parameters2 �̂��; A; ��, and matter
fields  ̂� ; A; �� as functions of the commutative gauge
fields A�, gauge parameters �, and matter fields . General
SWM are defined as solutions of the gauge equivalence
equations:3

 

Â��A; �� ! ei�̂��;A;����Â��A; �� � i@��e
�i�̂��;A;���

�
!
Â��A0; �� (3a)

 ̂� ; A; �� ! ei�̂��;A;��� ̂� ; A; ���
!
 ̂� 0; A0; ��; (3b)

where A� and  transform as usual:
 

A� ! A0� � ei��A� � i@��e
�i� (4a)

 !  0 � ei� : (4b)

Here, we have used the notation A� � Aa�Ta and � �
�aTa, Ta being the generators of the gauge group. In
practice, the gauge equivalence Eqs. (3) can be solved
order by order in an expansion in �.

A. Field redefinitions vs SWM ambiguities

The physical predictions of QFT, in particular, the on-
shell S-matrix elements and scattering cross sections, do
not depend on the choice of interpolating fields [19–21]. In
fact, any two theories which are related by nonsingular
local field redefinitions

 �$ �0��� with
@�0

@�

����������0
� 1 (5a)

and the corresponding change in the Lagrangian

 L ��� $ L0��0� � L����0�� (5b)

will predict identical scattering cross sections. This repar-
ametrization invariance can be proven both in axiomatic
QFT [19] and in perturbation theory for effective QFT [21].
It provides the basis for the application of the powerful and
now ubiquitous methods of effective QFT to elementary
particle physics phenomenology [20]. The fact that the
reparametrization (5) corresponds to a change of integra-
tion variables in the path integral, provides a particularly
intuitive proof of the invariance.

Since the SWM

 

�
A�
 

0
@

1
A!

�̂��; A; ��
Â��A; ��
 ̂� ; A; ��

0
B@

1
CA (6)

appear to be just a reparametrization like (5), one might
expect that its application has no effect on the calculation
of observables. For a noncommutative U�1� gauge theory
with unit charge [22] it can be shown that this is indeed the
case. However, in theories with multiple U�1� charges and
SU�N� gauge groups, the enveloping algebra is strictly
larger than the Lie algebra, and the SWM (6) must there-
fore be singular. The NCSM is a prominent representative
of such theories, whence we must expect nontrivial effects
of the SWM on observables, as can readily be seen from
[10–12]. It was noted from early on, that the solutions of
(3) are not unique [3,16]. Consequently, the construction of
NC extensions of the SM via SWM is a priori not unique as

2The gauge parameters �̂��; A; �� appear in the Lagrangian in
the guise of Faddeev-Popov ghosts, if the gauge fixing is
performed before application of the SWM.

3The gauge equivalence Eqs. (3) could be relaxed by demand-
ing that the two sides of Eq. (3) lie in the same gauge orbit, but
are not identical [18]. Since by construction the corresponding
ambiguities must cancel in the gauge invariant Yang-Mills action
to all orders in �, we can ignore them in the rest of this paper.
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well. Only those ambiguities that correspond to nonsingu-
lar reparametrization like (5) are guaranteed to cancel in
observables. This leaves us with the crucial problem of
genuine ambiguities in physical quantities.

To first order in � it has been shown by explicit calcu-
lations that all ambiguities cancel in on-shell scattering
amplitudes. In turn, one can use these cancellations as a
powerful consistency check for numerical calculations of
cross sections [12]. However, there is no general theorem
or physical argument that implies the cancellation of all
ambiguities in the SWM to all orders in the �-expansion.
Below we will identify ambiguities in the second-order
SWM that affect cross sections. In an examination of the
effective action of O���-NCQED [22] showing that the
SWM in first order corresponds to a field redefinition, it
was already conjectured that this is not the case in second
order. Our results provide a proof for this conjecture from a
completely different angle. Furthermore, some of the am-
biguities in second order are discussed in [16], but no claim
is made of completeness. In fact, we have found additional
ambiguities.

A recursive solution of the gauge equivalence Eqs. (3) to
all orders in �, including ambiguities, has been given in
[13]. Unfortunately, the ambiguities are not given as an
explicit function of an independent set of parameters and it
is not straightforward to search for observable effects in the
NCSM in this form. Thus we do not rely on [13] for a
discussion of the general solution of (3) and derive the
higher-order terms anew.

Still, the existence of ambiguities with observable ef-
fects does not render the NCSM proposed in [4] unphysical
and thus rather useless. It merely adds more free parame-
ters, not unlike those originating from the freedom of
choosing the representation of the enveloping algebra, al-
ready discussed in [4]. The most serious aspect of such
additional parameters is the question to which extent de-
viations from SM predictions could be hidden by particular
choices of the ambiguous contributions, making the NCSM
untestable by experiment.

B. Infinitesimal gauge transformations

The nonlinear gauge equivalence Eqs. (3) are most
easily solved by going over to the equivalent set of equa-
tions for infinitesimal gauge transformations. In the com-
mutative case, the latter are given by
 

��A� � Dadj
� � � @��� i�A�; �� (7a)

�� � i� ; (7b)

while the noncommutative infinitesimal gauge transforma-
tions read
 

�̂�Â��A; �� � D̂adj
� �̂��;A; �� � @��̂��; A; ��

� i�Â��A; ��
�; �̂��;A; ��� (8a)

�̂� ̂� ; A; �� � i�̂��; A; �� �  ̂� ; A; ��: (8b)

From (7) and (8), one readily obtains the infinitesimal
versions of the gauge equivalence Eqs. (3a) and (3b):
 

�̂�Â��A; �� � ��Â��A; �� (9a)

�̂� ̂� ; A; �� � �� ̂� ; A; ��; (9b)

where the commutative gauge transformation �� acts on
the arguments of the noncommutative gauge and matter
fields via the chain rule.

However, the Eqs. (9) are not sufficient. The existence of
a noncommutative gauge parameter �̂��; A; �� in (3) re-
quires that the commutator of two infinitesimal gauge
transformations closes to another gauge transformation
just as in the commutative case:

 ��̂��̂� � �̂��̂�� ̂ � �̂�i��;�� ̂; (10)

where ��;�� denotes the bracket in the commutative Lie
algebra. Applying (9b) twice and taking into account that
the commutative gauge transformation of the noncommu-
tative gauge parameter �̂��; A; �� does not vanish because
it depends on A�, one has

 

�̂��̂� ̂ � i�̂���̂��� �  ̂� � i�̂��̂��� �  ̂� i�̂��� � �̂� ̂

� i�̂��̂��� �  ̂� �̂��� � �̂��� �  ̂; (11)

where all unnecessary arguments have been omitted.
Substituting the above in (10) and factoring out  ̂, the
additional consistency condition reads
 

���̂��;A; �� � ���̂��; A; �� � i��̂��; A; �� �; �̂��;A; ���

� �̂��i��;��; A; ��: (12)

The infinitesimal consistency Eqs. (9) and (12) still contain
all orders of � and closed expressions for their solutions are
not yet known. However, we can express the SWM as
formal power series in �:
 

�̂��;A; �� �
X1
n�0

��n���; A; �� (13a)

Â��A; �� �
X1
n�0

A�n�� �A; �� (13b)

 ̂� ; A; �� �
X1
n�0

 �n�� ;A; ��; (13c)

expand the Eqs. (9) and (12) and solve them order by order
in �, starting at n � 0 with the commutative gauge theory:
 

��0���; A; �� � � (14a)

A�0�� �A; �� � A� (14b)

 �0�� ; A; �� �  : (14c)
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C. First order in �

Writing all terms involving the unknown function ��1�

on the left-hand side, the expansion of (12) results in the
inhomogeneous linear equation
 

����1���;A; �� � ����1���; A; �� � i���1���;A; ��; ��

� i��; ��1���;A; ��� � ��1���i��;��; A; ��

� �
���

2
�@��; @����: (15)

The general solution is given by

 ��1���;A; �� �
1

4
����@��; A��� � ic�1�� �

���@��; A��

(16)

involving one free parameter c�1�� . Using this solution, we
can proceed analogously with (9) and derive the linear
equations for A�1�� ,

 ��A
�1�
� �A; �� � i�A�1�� �A; ��; ��

� @��
�1� � i�A�; �

�1���; A; ��� �
�	


2
�@	A�; @
���;

(17a)

and  �1�,

 �� �1�� ; A; �� � i� �1�� ;A; ��

� i��1���; A; �� �
�	


2
@	�@
 ; (17b)

where the right-hand sides depend on the free parameter

c�1�� via ��1���;A; ��. For each value of c�1�� , we then find the
general solutions

 A�1�	 �A; �� �
1

4
����F�	; A��� �

1

4
����A�; @�A	��

� ic�1�� �
���Dadj

	 A�; A�� � 2ic�1�A �
��Dadj

	 F��
(18a)

and

 

 �1�� ; A; �� � �
1

2
���A�@� 

�
i

8
�1� 4c�1�� ��

���A�; A�� 

�
c�1� 
2
���F�� ; (18b)

parametrized by the free parameters c�1�A and c�1� , respec-

tively. Notice that all terms proportional to c�1�� , c�1�A , or c�1� 
are Lie algebra valued. Therefore, they correspond to field
reparametrizations and will cancel in observables. In fact,
only the anticommutators in the expression (18a) for
A�1�	 �A; �� require the enveloping algebra and carry the
potential to affect observables.

D. Second order in �

In second order in �, we again start with the closure
relation (12) for gauge transformations:

 ����2���;A� � ����2���;A� � i��; ��2���;A�� � i���2���;A�; �� � ��2���i��;��; A�

� �
i

8
�������@�@��; @�@��� � i���1���;A�; ��1���;A�� �

1

2
�����@���1���;A�; @���� � �@���1���;A�; @�����;

(19)

where we have suppressed the dependence on � in ��k���; A� for brevity. Again, the right-hand side depends on the free
parameter c�1�� via ��1���;A�. For c�1�� fixed, we find that the general hermitian solution of (19) involves 15 new free
parameters, c�2��;1, . . ., c�2��;15. For the present discussion it is sufficient to describe the general characteristics of the solutions
and to give explicit expressions only for a specific choice of the free parameters. In the Appendix we spell out the specific
solution corresponding to c�2��;i � 0 in the case c�1�� � 0. The lengthy complete expression can be found in the appendix of
[17]. It can be shown that the solutions given in [3,16] are both contained in our 16-parameter family of solutions.

Proceeding with the expansion of the gauge equivalence Eqs. (9) in powers of �, one obtains the second-order equations
for gauge and matter fields:

 ��A
�2�
	 �A� � i��; A�2�	 �A�� � @	�2��; A� � i�A	; ��2���;A�� � i�A�1�	 �A�; ��1���; A�� �

1

2
�����@�A

�1�
	 �A�; @����

� �@�A	; @���1���;A���� �
i

8
������@�@�A	@�@�� (20a)

and
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 �� �2��A� � i� �2��A� � i��1���;A� �1��A� � i�2��;A� �
1

2
����@���1���;A�@� � @��@� �1��A��

�
i

8
������@�@��@�@� ; (20b)

where the right-hand sides now depend on c�1�� , c�1�A , c�1� ,
c�2��;1, . . ., and c�2��;15.

1. Gauge fields

Substituting (16) and (18a) for ��1���; A� and A�1�� �A�,
respectively, and the general solution ��2���; A� from [17]
in (20a), one gets the general hermitian solution for A�2�� �A�
which depends on 6 additional parameters c�2�A;1;
. The latter
define a convenient basis for the solutions of the homoge-
neous equation:

 

A�2�	;1;
 � c�2�A;1;

i

2
�������Dadj

� F��; F�	�
 (21a)

A�2�	;2;
 � c�2�A;2;

i

2
�������F��;D

adj
	 F���
 (21b)

A�2�	;3;
 � c�2�A;3;

i

2
�������F��;D

adj
	 F���
: (21c)

The three commutator terms A�2�	;i;� are contained in the Lie
algebra and correspond to field redefinitions that must
cancel in observables. In contrast, the three anticommuta-
tor terms A�2�	;i;� need not be part of the Lie algebra and can,
in principle, give nonvanishing contributions to scattering
amplitudes as we will demonstrate in Sec. IV B. An ex-
plicit expression for a specific solution of A�2�� is given in
the Appendix.

The solution presented in [3] can be shown to be con-
tained in our set of general solutions [17]. In contrast, the
solution presented in [16] is not. In fact, one can verify that
the solution as written in [16] does not satisfy the gauge
equivalence Eq. (20a) and must therefore be considered
incorrect. In addition, the solutions A�2�	;1;
 of the homoge-

neous equation are missing. As we will see later, A�2�	;1;�
plays a particularly important role. While the size of the
expressions makes it hard to pinpoint the actual error in
[16], we want to mention that our results have been ob-
tained and verified by long but straightforward algebraic
manipulations using FORM [23].

2. Matter fields

Plugging (16) for ��1���; A�, (18b) for  1� ; A�, and the
general solution for ��2���; A� given in [17] into (20b), we
obtain a three-parameter family of matter field SWM. A
suitable basis for the solutions to the homogeneous equa-
tions is given by

 

 �2�1 � ic�2� ;1�
������Dadj

� F���D� (22a)

 �2�2 � �
c�2� ;2

4
������F��F�� (22b)

 �2�3 �
c�2� ;3

2
������F��F�� : (22c)

This result confirms the corresponding result in [16]. In the
Appendix we present a specific solution for  �2�. For the
general solution we again refer to [17].

III. NCSM LAGRANGIAN AND FEYNMAN RULES

Following the prescription of [1] for constructing a
NCQFT, we replace all field products in the Yang-Mills
Lagrangian

 LYM � �
1

2
�F��F

��� � � �i 6D�m� (23)

by �-products, and obtain an action for fields in the envel-
oping algebra that is invariant under NC gauge transfor-
mations and follows from the Lagrangian

 LYM;� � �
1

2
tr�F��;� � F

��
� � � � � �i 6D�m� �  (24)

with F�� � i�D�;D�� and F��;� � i�D�
�; D��, respec-

tively. In a second step, we apply the SWM (6) to obtain
an action for fields residing in the Lie algebra that is
invariant under commutative gauge transformations and
results from
 

LNCYM � �
1

2
tr�F̂��;��A� � F̂

��
� �A��

� �̂ � ; A� � �i ^6D�A� �m� �  ̂� ; A�: (25)

From (25), one can derive the Feynman rules for the NC
extension of the original commutative gauge theory. Since
the terms in (23) and (25) that are quadratic in the fields are
identical, we can perform gauge-fixing and introduce
Faddeev-Popov ghosts directly to (25) in terms of the
commuting gauge fields. Hence, the ghost interactions
are not modified by NC contributions.

For the purposes of the present paper, we are mainly
interested in the cubic and quartic couplings in the neutral
current sector of the NCSM that contribute to boson pair
production in fermion-antifermion annihilation, f �f ! VV,
at tree level up to second order in �. With all momenta
incoming, including outgoing fermions, we define the
vertex factors as follows:
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where g�	� denotes the three-gauge boson coupling that
depends on the choice for the representation 	 of the
enveloping algebra. In a U�1� gauge theory we can choose
an arbitrary hermitian matrix 	�T� as a generator, normal-
ized to tr�	�T�	�T�� � 1. Consequently the squares of the
eigenvalues of 	�T� are bounded, 0 � �2

i � 1, and we find
�g � g�	� � g, with g�	� � 0 for 	�T� � 
3=

���
2
p

and
g�	� � g for 	�T� � 1. Only in the latter case, the anti-
commutator remains in the Lie algebra representation.

Since the chiral structure of the fermionic currents re-
mains unaffected by the SWM, we have written the follow-
ing vertex factors for pure vector currents. The necessary
substitutions �� ! gV�� � gA���5 depending on the
fermion flavor and the type of vector boson coupled can
be copied directly from the SM Lagrangian. Using the
notations p�q � p����q� and p�� � p����, the vertex
factors (26) up to second order in � are given by

 

V�1�� �p0; k; p� �
i

2
�k��p6 �1� 4c�1� � � 2k��k6 �c

�1�
A � c

�1�
 � � p��k6 � �k�p���� (27a)

V�2�� �p0; k; p� �
1

8
�k�p��k��p6 �1� 16c�2� � � 4k��k6 �c

�1�
A � 2c�2� � � p��k6 � �k�p���� (27b)

V�1��2�1�p
0; k2; k1; p� �

i

2
�k2��1

��2
� k1��1

��2
�1� 4c�1� � � ��1�2

k6 1 � ��1 $ �2; k1 $ k2�� (27c)

V�2��2�1�p
0; k2; k1; p� � �

1

8
�k1�k2k1��1

��2
�8c�2�A;1;� � 4c�1� � 8c�2� � 1� � k1�pk1��1

��2
�16c�2� � 1�

� 2k2�pk1��1
��2
�4c�1� � 1� � k1�k2k2��1

��2
� 3k1�pk2��1

��2
� 2k2�pk2��1

��2

� 3k1�k2p��1
��2
� 4k1��1

k1��2
k6 1�2c

�2�
A;1;� � c

�1�
A � c

�1�
 � � 2k1��1

p��2
k6 1�1� 4c�1� �

� 2k2��1
p��2

k6 1 � 4��1�2
k1�pk6 1 � ��1 $ �2; k1 $ k2��

� terms vanishing by equations of motion (27d)

V�1��1�2�3�k1; k2; k3� � ��1�2
��k1k3�k2;�3

� �k2k3�k1;�3
� � �k1�k2��k3;�1

g�2�3
� g�1�3

k3;�2
�

� ��k1���1
�k2;�3

k3;�2
� �k2k3�g�2�3

� � ��1 $ �2� � ��1 $ �3��

� cyclical permutations of f��1; k1�; ��2; k2�; ��3; k3�g (27e)

V�2��1�2�3�k1; k2; k3� � i�k1�k2k1��1
��c�2�A;1;� � c

�1�
A ��k1;�3

k3;�2
� g�2�3

�k1k3�� � c
�2�
A;1;��k2;�3

k3;�2
� g�2�3

�k2k3���

� k1��1
k1��2

�c�2�A;1;� � c
�1�
A ��k2;�3

�k1k3� � k1;�3
�k2k3�� � ���2; k2� $ ��3; k3���

� cyclical permutations of f��1; k1�; ��2; k2�; ��3; k3�g: (27f)

Note that the triple-gauge boson vertex (27f) at O��2� is
generated by the SWM alone. There are no contributions
from the Moyal-Weyl �-product. In this paper, we will
apply the NCSM Feynman rules to the process f �f ! VV
at tree level. In the above, we have therefore given only the
on-shell expression for the �fVVf contact term (27d),
dropping terms which vanish by equation of motion. The
complete expressions can be found in [17].

IV. INFLUENCE OF SWM AMBIGUITIES ON
OBSERVABLES

As noted in Sec. II C, all SWM ambiguities to first order
in �, i.e. all terms in the SWM proportional to c�1�� , c�1�A , and
c�1� , correspond to Lie algebra valued field redefinitions
and must cancel in observables such as on-shell scattering
amplitudes to this order. This is explicitly checked for
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f �f ! VV in (32). Note, however, that the above O���
parameters reappear in the SWM in higher order.

A. Ambiguities to second order in �

We have already pointed out that beyond O��� there are
no such general arguments for or against the cancellation
of the SWM ambiguities that do not correspond to non-
singular field redefinitions in observables. Therefore, we
can approach this question presently only by studying
specific examples. For that we choose the NCQED process
e�e� ! �� as a prototype process in the neutral current
sector of the NCSM. The additional Z-boson couplings,
their chiral structure, and the Z-mass in the NCSM will not
add to our conclusions about the SWM ambiguities. The
Feynman diagrams contributing to e�e� ! �� in
NCQED are depicted in Figs. 1–3. The Feynman rules to
O��� and O��2� are given in Sec. III.

Actually, it is possible to demonstrate the dependence of
the scattering amplitude on the free O��2� parameter c�2�A;1;�
and the interplay of reparametrization invariance and the
enveloping algebra even without performing a complete
calculation. The term in (21a) relevant for the tree-level
diagrams of Fig. 3 contains two gauge fields. Suppressing
terms with more than two gauge fields, one has

 A�2�	;1;� � ic�2�A;1;��
�����@�@�A��@�A	 � @	A�� � . . . :

(28)

This term contributes both to the contact and the three-
gauge boson vertex. Explicitly, from the Feynman rule
(27d) for the contact term one finds the following contri-
bution to the scattering amplitude:

 A�2�contact � ig2c�2�A;1;��k1�"1�k1�k2"6 2 � k1�"2k6 1�

� k2�"2�k2�k1"6 1 � k2�"1k6 2�� � . . . : (29)

Since c�2�A;1;� is absent from the on-shell �fVf-vertex, this
contribution cannot be cancelled by any term coming from
the t- or u-channel diagrams. Therefore, a cancellation
must involve s-channel diagrams, which, however, are
proportional to the representation dependent coupling
g�	� as can be seen from (26c). Consequently, the cancel-
lation can at most take place for a particular value of g�	�,
namely, for g�	� � g, when the noncommutative gauge
fields do not leave the Lie algebra and the SWM are just
field reparametrizations.

As a side remark, the nonvanishing, a priori undeter-
mined contribution (29) to the tree-level amplitude of
f �f ! VV0 results from one of the SWM ambiguities
missed in [16].

B. e�e� ! �� scattering amplitude

We will now corroborate these preliminary remarks by a
complete tree-level calculation of e�e� ! �� up to sec-
ond order in �. It is useful to split the full scattering
amplitude in the following pieces:
 

A�e�e� ! ��� � g2ASM � g2A�1� � gg�	�A
�1�
s � g2A�2�

� gg�	�A
�2�
s ; (30)

which are self-explaining. It should be noted that the
s-channel contributions A�i�s must be separately gauge in-
variant, because their normalization depends on the choice
of the representation of the enveloping algebra.

For completeness, we restate the familiar QED ampli-
tude from the diagrams in Fig. 1:

 ASM � �
i

q2
u

�v�p2�"6 1q6 u"6 2u�p1� �
i

q2
t

�v�p2�"6 2q6 t"6 1u�p1�;

(31)

with qt � p1 � k1 and qu � p1 � k2, as well as the

FIG. 3. Feynman diagrams contributing to e�e� ! �� in
O��2� in NCQED. The filled squares denote O��2�-vertices.

FIG. 1. Feynman diagrams contributing to e�e� ! �� in
QED.

FIG. 2. Feynman diagrams contributing to e�e� ! �� in
O��� in NCQED. The open squares denote O���-vertices.
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O���-amplitude in NCQED [11]:

 A�1� � �
i

q2
u

�
p1�p2 � k1�k2

2i

�
�v�p2�"6 1q6 u"6 2u�p1� �

i

q2
t

�

�
p1�p2 � k1�k2

2i

�
�v�p2�"6 2q6 t"6 1u�p1� � A

�1�
no pole;

(32)

with

 A�1�no pole � �v�p2�

�
1

2
"1�"2�k6 1 � k6 2� � k1�"2"6 1

� k2�"1"6 2�u�p1�; (33)

which collects all contributions from the t- and u-channel
diagrams as well as the contact diagram in Fig. 2 contain-
ing no pole. As expected, all contributions from ambiguous
terms in the SWM cancel in A�1� after application of the
equations of motion. Note that the 1=t- and 1=u-pole terms
in (32) result solely from the expansion of the Moyal
phases to order �. This can be easily seen by combining
the phase factors which multiply the vertices in a given
diagram. For momenta p1, p2, and p3 flowing into a vertex
momentum conservation implies the identities

 e�ip1�p2 � e�ip2�p3 � e�ip3�p1 : (34)

In the t-channel one thus obtains the total phase factor

 e�i��k2���p1�k1�e�ip1��p2�k2� � e�i�p1�p2�k1�k2�; (35)

from which the corresponding phase factor in the
u-channel follows by exchanging k1 $ k2:

 e�i�p1�p2�k1�k2�: (36)

Turning to the s-channel amplitude A�1�s , one finds that
the 1=s-pole contributions cancel in all contributions from
the SWM yielding

 A�1�s � A�1�s;� � A
�1�
no pole; (37)

with the 1=s-pole coming from the Moyal-Weyl �-product
alone:
 

A�1�s;� �
1

s
�k1�k2� �v�p2�

�
1

2
�"1"2��k6 2 � k6 1� � �k1"2�"6 1

� �k2"1�"6 2

�
u�p1�; (38)

and A�1�no pole given in (33). This ensures that all effects from
the SWM cancel for g�	� � g as they should, since in this
case the SWM are nonsingular field reparametrizations.

To second order in �, we obtain from the diagrams in
Fig. 3

 

A�2� � �
i

q2
u

1

2

�
p1�p2 � k1�k2

2i

�
2

�v�p2�"6 1q6 u"6 2u�p1�

�
i

q2
t

1

2

�
p1�p2 � k1�k2

2i

�
2

�v�p2�"6 2q6 t"6 1u�p1�

� A�2�no pole (39)

with

 A�2�no pole � �
i

2
p1�p2A

�1�
no pole � i�c�2�A;1;� � c

�1�
A � �v�p2�

� �k1�"1k1�"2k6 1 � k2�"1k2�"2k6 2

� k1�k2�k1�"1"6 2 � k2�"2"6 1��u�p1�: (40)

Note that the 1=t- and 1=u-pole terms in (39) follow again
from the expansion of the combined Moyal phases and
contain no contribution from the SWM. However, in con-
trast to A�1�no pole, the second-order amplitude A�2�no pole does
depend on ambiguous terms in the SWM. In the case at
hand, this is signalled by the appearance of the free pa-
rameters c�1�A and c�2�A;1;�. The exact cancellation for the

choice c�2�A;1;� � c�1�A appears to be accidental.
As in first order in �, we find that all 1=s-poles cancel in

the s-channel terms coming from the SWM. Since the
Moyal-Weyl �-product only contributes to the three-
photon couplings in odd orders of � there is no 1=s-pole
term at all in O��2�. The result is exactly the negative of 40:

 A�2�s � �A
�2�
no pole; (41)

leading again to the cancellation of all contributions from
the SWM in the case g�	� � g, including the ambiguous

terms involving the free parameter c�2�A;1;� � c
�1�
A . However,

in general, the cross section for e�e� ! �� is affected by
this SWM ambiguity.

V. CONCLUSIONS

We have investigated the noncommutative extension of
the standard model up to second order in �. As our main
result, we find that the general solution for the correspond-
ing Seiberg-Witten maps contains more ambiguous terms
than those reported previously, and that the SWM ambi-
guities do not necessarily cancel in observables. Further-
more, studying the scattering amplitude for e�e� ! �� as
an explicit example we have shown that the ambiguities
remaining in the scattering amplitude can be traced to the
necessary extension of the Lie algebra of the gauge group
to its enveloping algebra, which elevates the SWM from a
unobservable field reparametrization to a source of new
effective interactions.

Our results imply that the parameter space of the NCSM
[4] in O��2� is larger than assumed so far. There is every
reason to expect that higher orders in � will introduce even
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more ambiguities and evidence for this has been found in
NCQED [15].

As an outlook, phenomenological consequences of the
NCSM at O��2� with the focus on collider searches will be
presented in an upcoming paper [24].
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APPENDIX: SEIBERG-WITTEN MAPS IN O��2�

1. Gauge parameter

For each value of c�1�� , we find a family of hermitian
solutions to (19) depending on the free parameters c�2��;1, . . .,

c�2��;15. The specific solution corresponding to c�2��;i � 0 for

the case c�1�� � 0 is given by

 ��2���; A� �
i

32
��������3A�A�@��A� � 4A�A�@��A� � 3A�@��A�A� � 2A�@��A�A� � 2A�A�A�@��

� A�A�A�@��� 2A�A�@��A� � 4A�@��A�A� � 2@�A�@�@��� 2@��A�A�A� � @��A�A�A�

� 2@�@��@�A�� �
1

16
�������4A�@�@��A� � A�@��@�A� � 2A�A�@�@��� 2A�@�A�@��

� @�A�@��A� � @�A�A�@��� @��A�@�A� � 2@��@�A�A� � 2@�@��A�A��: (A1)

For the general expression we refer to the appendix of [17].

2. Gauge fields

A representative of the six-parameter family of second-order SWM A�2�	 �A� corresponding to the parameter choice c�1�� �

c�2��;i � c�1�A � 0 is given by

 

A�2�	 �A� �
i

16
�������2�@�@�A	; @�A�� � �@�A�; @	@�A��� �

1

16
��������2A�A�@�@�A	 � A�A�@�@	A�

� A�A�@	@�A� � 4A�@�A�@�A	 � 4A�@�A�@	A� � 2A�@�A�@�A	 � 2A�@�A	@�A� � 3A�@	A�@�A�

� 4A�@�@�A	A� � 2A�@�A	@�A� � A�@	A�@�A� � A	@�A�@�A� � 4@�A�A�@�A	 � @�A�A�@	A�

� @�A�A�@	A� � @�A�@�A�A	 � 2@�A�@�A	A� � 3@�A�@	A�A� � 2@�A	@�A�A� � 2@�A�@�A	A�

� @�A�@	A�A� � 2@�A�A	@�A� � 2@�A	A�@�A� � 4@�A	@�A�A� � @	A�A�@�A� � @	A�A�@�A�

� 4@	A�@�A�A� � 2@�@�A	A�A� � @�@	A�A�A� � @	@�A�A�A��:�
i

32
��������4A�A�A�@�A	

� 3A�A�A�@	A� � 2@	A�A�A�A� � 4A�A�A�@�A	 � 2A�A�A�@	A� � 4A�A�A�@�A	 � 2A�A�@�A�A	

� 2A�A�@�A�A	 � 8A�@�A�A�A	 � 4A�A�@�A	A� � 4A�A�@	A�A� � 8A�A�A	@�A� � 4A�@�A	A�A�

� 2A�@	A�A�A� � 4A�A�@�A	A� � 2A�A�@	A�A� � 4A�A�@�A	A� � A�A�@	A�A� � 8A�@�A�A	A�

� 4A�@�A	A�A� � A�@	A�A�A� � 4A�A�A	@�A� � 4A�A	A�@�A� � 4A�A	A�@�A� � 8A�A	@�A�A�

� 4A�@�A	A�A� � 4A�@	A�A�A� � 2A	A�A�@�A� � 2A	A�A�@�A� � 8A	A�@�A�A� � 2A	@�A�A�A�

� 2A	@�A�A�A� � 2@�A�A�A�A	 � 2@�A�A�A�A	 � 4@�A�A�A	A� � 4@�A�A	A�A� � 4@�A	A�A�A�

� 4@�A�A�A	A� � 8@�A�A	A�A� � 4@�A	A�A�A� � 4@�A	A�A�A� � 3@	A�A�A�A��

�
1

32
��������3A�A�A�A�A	 � 2A�A�A�A�A	 � 4A�A�A�A	A� � 4A�A�A	A�A� � 4A�A	A�A�A�

� 4A�A�A�A	A� � 4A�A�A�A	A� � 2A�A�A	A�A� � 8A�A�A	A�A� � 4A�A	A�A�A� � 4A�A	A�A�A�

� 3A	A�A�A�A� � 2A	A�A�A�A��: (A2)
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Here, we have arranged the terms according to the power of A�, for the benefit of deriving Feynman rules. The general
solution can be found in [17]. As pointed out in Sec. II D 1, this solution is related to the one presented in [3], but
incompatible with the one in [16].

3. Matter fields

Choosing c�1�� � c�2��;i � c�1� � 0, we obtain the following representative of the three-parameter family of matter field
SWM:

 

 �2�� ; A� �
i

8
��������@�A�@�@� � �

1

16
��������2A�@�A�@� � 2@�A�A�@� � 2A�A�@�@� � 4A�@�A�@� 

� @�A�@�A� � �
i

8
��������2A�@�A�A� � @�A�A�A� � A�A�A�@� � A�A�A�@� 

� A�A�A�@� � �
1

32
��������3A�A�A�A� � 4A�A�A�A� � 2A�A�A�A� �: (A4)

Again, the terms are ordered according to the power in the gauge field. For the general solution one may consult [17].
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