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Recently a model, which is equivalent to the scalar form of a Gürsey model, is shown to be a nontrivial
field theoretical model when it is gauged with a SU�N� field. In this paper we study another model that is
equivalent to the vector form of the Gürsey model. We get a trivial theory when it is coupled with a scalar
field. This result changes drastically when it is coupled with an additional SU�N� field. We find a
nontrivial field theoretical model under certain conditions.
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I. INTRODUCTION

Historically, there has always been a continuing interest
in building nontrivial field theoretical models. A while ago
it was shown that perturbative expansions are not adequate
in deciding whether a model is nontrivial or not. Baker
et al. showed that the �4 theory, although perturbatively
nontrivial, went to a free theory as the cutoff was lifted in
four dimensions [1,2]. Continuing research is going on this
subject [3]. Alternative methods become popular.
Renormalization group (RG) methods are the most com-
monly used ones. They were first introduced by Wilson
et al. [4]. Another method is using the exact RG algorithm
which was proposed by Polchinski [5]. Recent studies gave
important insights on both methods [6–8].

Another endeavor is building a model of nature using
only fermions. Here all the observed bosons are con-
structed as composites of these ingredient spinors. In solid
state physics, electrons come together to form bosonic
particles [9,10]. Historically, the first work on models
with only spinors goes back to the work of Heisenberg
[11]. Two years later Gürsey proposed his model as a
substitute for the Heisenberg model [12]. This Gürsey
spinor model is important since it is conformally invariant
classically and has classical solutions [13] which may be
interpreted as instantons and merons [14], similar to the
solutions of pure Yang-Mills theories in four dimensions
[15]. This original model can be generalized to include
vector, pseudovector, and pseudoscalar interactions.

We have worked on different forms of the Gürsey model
[16–18] using the earlier works [19–23] as a starting point.
In those references it was claimed that a polynomial
Lagrangian could be written equivalently to Gürsey’s non-
polynomial Lagrangian. Recently it is shown that they are
equivalent only in a naive sense [16,17]. In [16], using
perturbative methods, we showed that only composite
particles took part in physical processes whereas the con-
stituent fields did not interact with each other. Recently in
[18], we showed that, when this model is coupled to a

constituent U�1� gauge field, we were mimicking a gauge
Higgs-Yukawa (gHY) system, which had the known prob-
lems of the Landau pole, with all of its connotations of
triviality. There, our motivation was the famous Nambu-
Jona-Lasinio model [24], which was written only in terms
of spinor fields. This model was shown to be trivial [25,26].
Recent attempts to gauge this model to obtain a nontrivial
theory are given in Refs. [27–31].

The essential point in our analysis is the factor of � in the
composite propagator [16,17]. This main difference makes
many of the diagrams convergent when the cutoff is re-
moved. Consequently, we find that we can construct a
nontrivial model from the scalar Gürsey model when a
non-Abelian gauge field is coupled to the fermions [32]. In
this paper we will investigate the vector form of the Gürsey
model. Here we will closely follow the line of discussion
followed in Refs. [27,32].

This article is organized as follows. In the next section
we describe the vector form of the Gürsey-like model.
There we derive the composite vector field propagator. In
Sec. III, we couple a constituent scalar field to our model
and discuss the new results. Then we solve the renormal-
ization group equations (RGE’s) and find a Landau pole in
the solution. In Sec. IV, we introduce another field, a non-
Abelian gauge field to the model. In the subsections we
write the new RGE’s and derive the solutions by using
some RG invariants. We discuss some limiting cases of the
coupling constant solutions before giving the criteria of the
nontriviality condition in Sec. V. Then we find the fixed
point solutions. In the following subsections we analyze
the solutions of the coupled equations and find their
asymptotic behaviors. The final section is devoted to
conclusions.

II. THE MODEL

The vector form of the pure spinor Gürsey model [21] is
given as

 L � � �i@6 � ig@6 g�1 �m� � ��� � �� �� � �� ��2=3:

(1)
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Here only the spinor fields have a kinetic part. The g field is
a pure gauge term to restore the local gauge symmetry,
when the spinor field is transformed. This nonpolynomial
Lagrangian has been converted to an equivalent polyno-
mial form by introducing auxiliary fields �� and G� in
[21]. The constrained Lagrangian in the polynomial form is
given as
 

Lc � � �i@6 � ig@6 g�1 � e�G6 � �6 � �m� � e4��G�G2

� ghost terms: (2)

Recently it was shown that this equivalence should be
taken only ‘‘naively’’ [17]. This expression contains two
constraint equations, obtained from writing the Euler-
Lagrange equations for the auxiliary fields. Hence it should
be quantized by using the constraint analysis à la Dirac
[33]. This calculation is performed using the path integral
method. We find out that one can write the effective
Lagrangian as
 

Leff � � �i@6 � ig@6 g�1 � e�G6 � �6 � �m� � e4��G�G2

� �w��g��G
2 � 2G�G��w

�: (3)

Here �w� and w� are the ghost fields. With a suitable
redefinition of the fields the effective action can be given as

 Seff � Tr ln�i@6 � eJ6 �m� �
Z
dx4�e4�J�J

�J�J
��

� other terms�; (4)

where J� � �ig@�g�1 �G� � ��. The second deriva-
tive of the effective action with respect to the J� field gives
us the induced inverse propagator as
 

@2Seff

@J�@J�

��������J��0
� �

g2

3�2 �q�q� � g��q
2�

�

�
1

�
� finite part

�
: (5)

Here dimensional regularization is used for the momentum
integral and � � 4� n. All the other fields not shown in
this expression, including ghost fields arising from the
constrained equations, decouple from the model. The
only remaining fields are the spinors and the J� field.
This procedure is explicitly carried out in [17]. In the
Feynman gauge the propagator of the composite vector
field can be written as � g

��

p2 where the spinor propagator is

the usual Dirac propagator in the lowest order.
Although the original Lagrangian does not have a kinetic

term for the vector field, one loop corrections generate this
term and make this composite field as a dynamical entity
like it is done in [16], where the composite vector field is
replaced by composite scalar field. In the literature there
are also other similar models with differential operators in
the interaction Lagrangian [34].

In Ref. [17], the contributions to the fermion propagator
at higher orders were investigated by studying the Dyson-
Schwinger equations for the two point function. We found
that there is a phase which has no additions to the existing
fermion mass.

III. COUPLING WITH A SCALAR FIELD

We may add a constituent complex scalar field to the
model and investigate the consequences of this addition.
Our motivation is the work of Bardeen et al. [35,36]. When
they added a vector field to the Nambu-Jona-Lasinio
model, a complementary procedure to our work, they got
interesting results. Since we already have a composite
vector field, we can couple a massless scalar field which
has its kinetic term, a self-interacting term with coupling
constant a and an interaction term with new coupling
constant y in the Lagrangian. Then the effective
Lagrangian becomes
 

Leff � � �i@6 � ig@6 g�1 � e�G6 � �6 � �m� � e4��G�G2

� �wu�g��G
2 � 2G�G��w

� �
@��@

��

2

�
a
4
�4 � y � � : (6)

Since the G�, ��, and ghost fields decouple, this
Lagrangian reduces to the effective expression given be-
low:

 Leff � � �i@6 � eJ6 � y��m� � e4J4 �
@��@��

2

�
a
4
�4: (7)

If our fermion field had a color index i where i � 1 . . .N,
we could perform an 1=N expansion to justify the use of
only ladder diagrams for higher orders for the scattering
processes. Although in our model the spinor has only one
color, we still consider only ladder diagrams anticipating
that one can construct a variation of the model with N
colors. In the following subsection we summarize the
changes in our results for this new model.

A. New results and higher orders

In the model described in Ref. [17], it is shown that only
composites can scatter from each other with a finite ex-
pression, due to the presence of � in the composite vector
propagator. There is also a tree-diagram process where the
spinor scatters from a composite particle, a Compton-like
scattering, with a finite cross section. This diagram can be
written in the other channel, which can be interpreted as
spinor production out of vector particles. Note that in the
original model the four spinor kernel was of order �. The
lowest order diagram vanishes due to the presence of the
composite vector propagator. In higher orders this expres-
sion can be written in the quenched ladder approximation
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[10], where the kernel is separated into a vector propagator
with two spinor legs joining the proper kernel. If the proper
kernel is of order �, the loop involving two spinors and a
vector propagator can be at most finite that makes the
whole diagram in first order in �. This fact shows that there
is no nontrivial spinor-spinor scattering in the original
model.

These results change drastically with scalar field cou-
pling. Two fermion scattering is now possible due to the
presence of the scalar field instead of vector field channel.
In the lowest order this process goes through the tree
diagram given in Fig. 1(a). At the next higher order the
box diagram with two spinors and two scalar particles,
Fig. 1(b), is finite from dimensional analysis. If the scalar
particles are used as intermediaries, the spinor production
from scattering of composite vector particles becomes
possible as shown in Fig. 1(c) where the dotted, straight,
and wiggly lines represent scalar, spinor, and composite
vector particles, respectively.

B. Renormalization group equations and solutions

In Ref. [17], it is widely discussed that the h �  J�i
vertex and the spinor box diagram give finite results. The
higher diagrams do not change this result, since each
momentum integration is accompanied by an � term in
the composite vector propagator. Therefore, there is no
need for infinite coupling constant renormalization.

In the new model where a massless scalar field is added,
all the three coupling constants are renormalized. One can
write the first order RGE’s for these coupling constants,
similar to the analysis in [27]. We take �0 as a reference
scale at low energies, t � ln��=�0�, where � is the renor-
malization point:

 16�2 d
dt
y�t� � Ay3�t�; (8)

 16�2 d
dt
e�t� � Be�t�y2�t�; (9)

 16�2 d
dt
a�t� � Ca2�t� �Dy4�t�: (10)

Here A, B, C, and D are positive numerical constants. We
find out that Yukawa and h �  J�i vertices have only scalar

correction. The composite vector correction to these verti-
ces are finite due to the � in the propagator. Therefore, our
equations differ from those in Refs. [27,32]. These pro-
cesses are illustrated in diagrams shown in Fig. 2.

The RGE’s have the immediate solutions

 y2�t� �
y2

0

Z�t�
; (11)

 e�t� � e0Z�t�
�B=2A; (12)

 a�t� �
A	

��������������������
A2 � CD
p

C
y2

0

Z�t�
; (13)

where Z�t� � 1�
Ay2

0

8�2 t.
The main problem of models with U�1� coupling,

namely, the Landau pole, is expected to make our new
model a trivial one. We expect that coupling to a non-
Abelian gauge theory will remedy this defect by new
contributions to the RGE’s. Thus, obtaining a nontrivial
model will be possible. Coupling to a non-Abelian gauge
field will also give us more degrees of freedom in studying
the behavior of the beta function. This may allow us to find
the critical number of gauge and fermion fields to obtain a
zero of this function at nontrivial values of the coupling
constants of the model.

IV. COUPLING WITH A NON-ABELIAN FIELD

In this section we consider our model with SU�NC�
gauge field interaction, where the spinors haveNf different
flavors. Although we study in the leading order of 1

NC
expansion, where all the planar diagrams contribute to
the RGE’s, we are interested in the high-energy asymptotic
region where the gauge coupling is perturbatively small;
g2NC

4� 
 1. However, the number of fermions is in the same
order as NC. Only nf fermions have a degenerate large
Yukawa coupling. We start with the effective Lagrangian
 

Leff �
XNf
i�1

� i�iD6 � eJ6 �m� i � e
4J4 �

�@���2

2
�
a
4
�4

�
Xnf
i�1

� iy� i �
1

4
Tr�F���2 � Lghost � Lg:f:: (14)

The gauge field belongs to the adjoint representation of the
color group SU�NC� where D� is the color covariant

FIG. 1. (a) two spinor scattering through the scalar particle
channel, (b) higher order diagram for two spinor scattering,
(c) spinor production from scattering of composite vectors.

(a) (b) (c) (d)

FIG. 2. The three coupling constant corrections in one loop.
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derivative. y, a, e, and g are the Yukawa, quartic scalar,
composite vector, and gauge coupling constants,
respectively.

There are two kinds of ghost fields in the model. The first
one, which comes from the composite constraints, decou-
ples from our model [20,21]. The second one, coming from
the gauge condition on the vector field, does not decouple
and contributes to the RGE’s in the usual way.

A. Renormalization group equations and solutions

In this subsection we will analyze the RGE’s in the
leading order of the approximation given above. In the
one loop approximation the RGE’s are

 16�2 d
dt
g�t� � �Ag3�t�; (15)

 16�2 d
dt
y�t� � By3�t� � Cy�t�g2�t�; (16)

 16�2 d
dt
e�t� � De�t�y2�t� � Ee�t�g2�t�; (17)

 16�2 d
dt
a�t� � Fa�t�y2�t� �Gy4�t�: (18)

Here A, B, C, D, E, F, and G are positive constants.
In the RGE’s we see that the diagrams, where the

composite vector field takes part, are down by the order
of �. Therefore we do not have contributions proportional
to e2�t�, e3�t�, y�t�e2�t�, and g�t�e2�t�. Also we neglect the
scalar loop contribution to the gauge coupling g�t�, similar
to the work of [27].

The solutions of the first RG equation (15) can be given
as

 g2�t� � g2
0

�
1�

A�0

2�
t
�
�1
; (19)

where �0 �
g2

0

4� . We define

 	�t� �
��t�
�0
�
g2�t�

g2
0

; (20)

where g0 � g�t � 0� which is the initial value at the
reference scale �0. For the solution of the second RG
equation (16), we can propose a RG invariant H�t� as

 H�t� � �	�1�C=A�t�
�

1�
C� A
B

g2�t�

y2�t�

�
: (21)

SinceH�t� is a constant, we call itH0. Then, the solution of
the Yukawa coupling constant can be written as

 y2�t� �
C� A
B

g2�t��1�H0	
1��C=A��t���1: (22)

The solution of the third RG equation (17) can be defined
by another RG invariant P�t� if and only if the constant B

equals to D and C equals to E. Then the invariant becomes

 P�t� � �	�1�C=A�t�
�

1�
B

C� A
y2�t�

g2�t�

�
e2�t�

y2�t�

g2�t�

y2�t�
:

(23)

The solution of the composite vector coupling e�t� can be
written as

 e2�t� � �
P0

H0

�
C� A
B

�
2
g2�t��1�H0	

1��C=A��t���1;

(24)

where P0 denotes the value of the invariant P�t�. The
solution of the last RG equation (18) can be defined by
another RG invariant K�t�, given as

 K�t� � �	�1��2C=A��t�
�

1�
2C� A

2B
a�t�

y2�t�

g2�t�

y2�t�

�
: (25)

We can rewrite the solution with a value of the invariant
K�t� as K0

 a�t� �
2�C� A�2

�2C� A�B
g2�t�

1� K0	1��2C=A��t�

�1�H0	
1��C=A��t��2

: (26)

Here we notice that the RG constants H0, P0, and K0 play
important roles on the behavior of the solutions of the
coupling equations (19), (22), (24), and (26). Similar works
have been studied in [27,32]. The values of the constants
are given in these equations as
 

A �
11NC � 4T�R�Nf

3
; B � D �

G
4
� 2nfNC;

C � E � 6C2�R�; F � G: (27)

Here C2�R� is a second Casimir, C2�R� �
�N2

C�1�

2NC
, R is the

fundamental representation with T�R� � 1
2 .

Before entering the analysis of the fixed point, we briefly
investigate the results of some limits.

1. The limiting case A! �0 for finite t

In this case the coupling constant solutions can be
written as

 g2�t� � g2
0; (28)

 y2�t� �
8�2

B
�
�c

�
1�H0 exp

�
�
�c
t
��
�1
; (29)

 e2�t� � �
16�3

B2

P0

H0

�

�2
c

�
1�H0 exp

�
�
�c
t
��
�1
; (30)

 a�t� �
8�2

B
�
�c

�1� K0 exp�2��c t��

�1�H0 exp���c t��
2 : (31)

Here �0 � � and C
2� �

1
�c

.
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2. The limiting case A! C for finite t

In this limit case the solutions of the couplings (22),
(24), and (26) seem to vanish. If we suggest new RG
invariant H1, instead of H0, as H0 � �1� C�A

A H1, we
find that two of the coupling solutions do not vanish,
whereas the composite vector coupling goes to zero.
These behaviors are given below:

 y2�t� �
A
B
g2�t��H1 � ln	�t���1; (32)

 e2�t� � P0

�
C� A
B

��
A
B

�
g2�t��H1 � ln	�t���1; (33)

 a�t� �
2A
B
g2�t�

1� K0	�1�t�

�H1 � ln	�t��2
: (34)

It is amusing to see that the added interactions nullify the
original vector-spinor coupling.

3. The limiting case A! 2C for finite t

In this limit case only the quartic coupling constant
solution (26) behaves critically. Similarly we can redefine
RG invariantK1 instead ofK0 asK0 � �1� 2C�A

A K1, then
the quartic coupling solution takes the form

 a�t� �
C
B
g2�t�

K1 � ln	�t�

�1�H0	
1=2�t��2

: (35)

This limit is not allowed because it does not give asymp-
totic freedom.

In the next section we will mention which criteria are
needed to define a nontrivial theory.

V. NONTRIVIALITY OF THE SYSTEM

To have a nontrivial theory all the running coupling
constants should not diverge at any finite energy, which
means the absence of Landau poles of the system. For a
consistent theory these solutions should not vanish identi-
cally and must have real and positive values. These con-
ditions make the model unitary and satisfy the vacuum
stability criterion. Note that if we decouple the scalar and
composite vector field from the system, we have a non-
trivial theory, similar to QCD. Therefore, e�t� � g�t� �
a�t� � 0 solution will not be named as the nontriviality
of our composite model. The mass parameter can be re-
normalized in the MS scheme and the mass can be chosen
as zero.

Remember that we are restricted by neglecting the scalar
loop contributions to the gauge coupling where the com-
posite vector contributions are not neglected but down due
to the presence of � in its propagator. If the Yukawa and/or
quartic scalar couplings become so large and break the
1=NC expansion then the behavior of the gauge coupling
might be affected.

These restriction conditions are the same as the ones in
the gHY system which was discussed widely in [27]. A
while ago, one of us, B. C. L., with a collaborator, studied
the scalar form of the Gürsey model in this fashion [32]. In
that model, there is a composite scalar field with a propa-
gator completely different from a constituent scalar field
used in Ref. [27]. There, we showed that a restriction is not
needed between the scalar and the gauge field coupling
since the contribution of the scalar field to the gauge field is
down by the factor of � in the scalar propagator. In this
work, the vector form of the Gürsey model, we have a
constituent scalar field and a composite vector field which
is missing in the gHY system. This composite field adds a
new RGE to the system but does not contribute to the
former ones in the gHY system with a totally different
reason.

After these remarks we will discuss the nontriviality
conditions of our model in the following subsections.

A. Fixed point solution

The RGE’s can be rewritten as

 8�2 d
dt

�
y2�t�

g2�t�

�
� Bg2�t�

�
y2�t�

g2�t�

��
y2�t�

g2�t�
�
C� A
B

�
; (36)

 

8�2 d
dt

�
e2�t�

y2�t�

g2�t�

y2�t�

�
� �C� A�g2�t�

�
e2�t�

y2�t�

�

�

�
g2�t�

y2�t�
�

B
C� A

�
; (37)

 8�2 d
dt

�
a�t�

y2�t�

g2�t�

y2�t�

�
� �2C� A�g2�t�

�
a�t�

y2�t�

g2�t�

y2�t�

�
2B

2C� A

�
: (38)

The fixed point solutions can be given as

 

y2�t�

g2�t�
�
C� A
B

; (39)

 

e2�t�

y2�t�
� Arbitrary constant; (40)

 

a�t�

y2�t�
�

2�C� A�2

B�2C� A�
: (41)

These are also the solutions of Eqs. (22), (24), and (26)
where the RG invariants are P0 � H0 � K0 � 0 as P0 �

H0. Here 
 is a constant. It is clear that the behavior of all
the coupling constants are determined by the gauge cou-
pling which means the Kubo, Sibold, and Zimmermann’s
‘‘coupling constant reduction’’ [37]. This corresponds to
the Pendleton-Ross fixed point [38] in the context of the
RGE. Remark that only the case, C> A, prevents the
violation of the unitarity and keeps the stability of the
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vacuum. This gives rise to nontriviality of the model when
the RG invariants are set to zero. In the following subsec-
tions we will analyze the coupling constant solutions only
in this case with nonzero RG invariants.

B. Yukawa coupling

The Yukawa coupling solution is given in Eq. (22). It is
obvious that the sign of the RG invariant, H0, plays an
important role in the behavior of the solution where B is
positive. The ultraviolet (UV) limit of	�t� is needed before
continuing the analysis in the C> A case.

 	1��C=A��t! 1� ! �1: (42)

The UV behavior of the Yukawa coupling with a nonzero
RG invariant H0 is

 y2�t! 1� !

8<
:
�0; 0<H0 <1;
Landau Pole; �1<H0 < 0;
�0; �1<H0 � �1:

(43)

For the �1<H0 < 0 case, there exists a finite value of t
before it goes to infinity

 1�
A�0

2�
t �

�
�1

H0

�
A=�C�A�

: (44)

In this t value the Yukawa coupling diverges and changes
its sign. These asymptotic behaviors show that the theory is
nontrivial if and only if the RG invariant H0 is positive.

The RG flows in the �g2�t�; y2�t�� plane are shown in
Fig. 3. The upper bound of the figure denotes the ‘‘Landau
Pole.’’

C. Composite vector field coupling

The composite vector coupling solution is given in
Eq. (24). In this case not only the sign of H0 but also the
sign of P0 is crucial for nontriviality. Since H0 is positive,

P0 must be negative. The composite vector field coupling
behaves similarly to the Yukawa coupling up to a constant
multiplier. In Fig. 4 we plot e2�t� vs y2�t� where P0 < 0,
H0 > 0. Both coupling constants approach the origin as t
goes to infinity. Thus, our model fulfills the condition
required by the asymptotic freedom criterion.

D. Quartic scalar field coupling

Finally the quartic scalar coupling solution given in
Eq. (26) can be analyzed. We have already restricted
ourselves with C> A, H0 > 0, and P0 < 0 for nontrivial-
ity. In the limit where t 1, the 	 terms in the last fraction
of Eq. (26) become dominant therefore 1 can be neglected.
Hence we can express the solution as

 a�t� �
2�C� A�2

�2C� A�B
g2

0	�t�
K0	1�2C=A�t�

�H0	
1�C=A�t��2

; (45)

which is equal to

 a�t! 1� �
2�C� A�2

�2C� A�B
g2

0

K0

H2
0

: (46)

This asymptotic behavior shows that to have a nontrivial
model the RG invariant K0 should be equal to zero. The
other possibilities for a nonzero solution for K0 have been
widely discussed in Ref. [27]. In Fig. 5, we plot the RG
flows in �a�t�; y2�t�� plane for different values of H0 higher
than zero while the gauge coupling��t � 0� is fixed to one.
The origin is the limit where t goes to infinity, there both
coupling constants approach zero when K0 � 0.

VI. CONCLUSION

A while ago, one of us, F. T., with a collaborator, showed
that the scattering of composite vector particles gives non-
trivial results while the constituent spinors do not. In that
work [17], a polynomial Lagrangian model inspired by the

FIG. 3. Plot of g2�t� vs y2�t� for different values of H0. The
arrows denote the flow directions toward the UV region.

FIG. 4. Plot of y2�t� vs e2�t� for the values of H0 > 0 and P0 <
0.
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vector form of the Gürsey model was used. Here we couple
a constituent massless scalar field to our previous model.
We find out that many of the features, related to the
creating and scattering of the spinor particles of the origi-
nal model, are not true anymore. In the one loop approxi-

mation we find the RGE’s whose solutions have all the
problems associated with the Landau pole, like the case in
Ref. [18]. To remedy this defect we couple a SU�NC� non-
Abelian gauge field to the new model. We solve the new
RGE’s and conclude that if the conditions C> A, H0 > 0,
P0 � 0, and K0 � 0 are satisfied, the model gives a result
which can be interpreted as a nontrivial field theoretical
model. We find fixed point solutions where the coupling
constants are not equal to zero. In Sec. V we plot the UV
region behavior of the coupling constants. There, they all
go to zero asymptotically which means asymptotic free-
dom, which is another feature of a nontrivial model.

Our calculation shows that one can construct a nontrivial
field theory starting from constrained Lagrangians.
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