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Dynamics in nonlocal cosmological models derived from string field theory
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A general class of nonlocal cosmological models is considered. A new method for solving nonlocal
Friedmann equations is proposed, and solutions of the Friedmann equations with nonlocal operator are
presented. The cosmological properties of these solutions are discussed. Especially indicated is the p-adic
cosmological model in which we have obtained a nonsingular bouncing solution and string field theory
tachyon model in which we have obtained full solution of nonlocal Friedmann equations with w = —1 at
large times. The possibility of obtaining a realistic value of the cosmological constant from nonlocal

cosmological models is also discussed.
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L. INTRODUCTION

In recent works there appears interest in nonlocal cos-
mological models derived from string field theory in con-
nection with the problem of describing cosmological
inflation or accelerating expansion of the Universe.

Modern cosmological data indicates that expansion of
the Universe is accelerating. It may be owing to a compo-
nent of the Universe with negative pressure, dark energy.
Recent results of WMAP [1] together with Ia supernovae
data give us the following range for the dark energy state
parameter w = —0.9757. In the assumption that the
value of the state parameter changes in the range 0 > w >
—1 there exist different theoretical models for the dark
energy (see reviews [2,3] and references therein)—quin-
tessence models [4], K-essence [5], quintom models [6],
models constructed on the DBI action (see reviews [7] and
references therein, [8]) and dilatonic models [9]. The case
w = —1 corresponds to models with cosmological con-
stant, which are also possible. We also can find in the
literature models related to w < —1 with modified gravity
[10].

A nontrivial possibility is the case w < —1 that means
the violation of the null energy condition. One of the
possibilities is to consider the phantom Universe [11,12].
There were proposed several coupled scalar-gravity mod-
els in which the null energy condition is violated, but as an
effect most such models are unstable [13]. Recently it was
proposed another possibility to consider dark energy de-
scription in the context of D-brane decay in cubic super-
string field theory [11]. It was shown that D-brane decay
can be interpreted at least at late times as a phantom model.
Note that unlike phenomenological phantom models here
phantom is an effective theory. Since string field theory by
itself is a consistent quantizable theory this approach does
not suffer from instabilities which are inevitable for phe-
nomenological phantom models [11]. Such nonlocal cos-
mological models were also considered in [14-18].
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At the same time there have been a number of attempts
to realize descriptions of the early Universe via nonlocal
cosmological models [18—21]. One example is the p-adic
inflation model [19] which is represented by nonlocal
p-adic string theory coupled to gravity. For this model, a
rolling inflationary solution was constructed and the inter-
esting features were discussed and compared with cosmic
microwave background (CMB) observations. The possibil-
ity of obtaining large non=Gaussian signatures in the CMB
has also been considered in a general class of single field
nonlocal hill-top inflation models [20]. Another example is
investigation of the inflation near a maximum of the non-
local potential when nonlocal derivative operators are in-
cluded in the inflaton Lagrangian. It was found that higher-
order derivative operators in the inflaton Lagrangian can
support a prolonged phase of slow-roll inflation near a
maximum of the potential [21].

It may happen that both early stage and contemporarily
Universe can be explained with a single nonlocal model
derived from string field theory. To be able to tell more
about the early stage we need to consider perturbations in
nonlocal models. It will be very interesting to compare
obtained results, in particular, with those in [22—-24]. To be
able to do it the new technique for solving the nonlinear
Friedmann equation is required which will hopefully be
provided in the present work where for the first time
construction of the solution of the full nonlocal
Friedmann equations is presented. That is why in the
present work we discuss numerical solution of
Friedmann equations and their features in more detail.

One of the popular examples of nonlocal models is the
D-brane decay in the gravitational background in the
framework of string field theory which is described by
the following tachyon action:

s= [ary=g("ir + £ 90,0 + Lo> — Lo
_/ x\/_g<7 7‘75 ¢® 505 4
—T—A) (1)

where g is the metric, m » is reduced Planck mass, ¢ is the
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tachyon field, ® = ¢*“ ¢, k = §, [, is the usual Beltrami-
Laplace operator, T is tension of the D3 brane, and A’ is
the effective cosmological constant.

Note that covariant string field theory as of today is
constructed only in the flat background. It was built only
for some special types of nonflat backgrounds, in particu-
lar, in the anti—de Sitter background [25] and in the plane
wave background [26]. So the action (1) at the special
choice of V(®) is a direct generalization for the approxi-
mated tachyon action to the case of an arbitrary metric.

The action (1) in the Friedmann-Robertson-Walker
(FRW) background

ds* = —dr* + a®(t)(dx? + dx3 + dx3)

leads to the following Friedmann equations:

1
3H? = W& ()
P

. 1
3H> +2H = —— P, 3)
mp
which have the same form as the usual equations except for
an extra term in the expression for the energy £ and
pressure P which appear from the nonlocal interaction
and which contain the Hubble function. This term makes
these Friedmann equations more complicated even for
numerical consideration. More precisely,

E=&E+EA+THN +En+En @

Vo
usual local energy expression

P=&—-E-T—-N —&n+&mn &)

Vo
usual local pressure expression

where

1
Eun =k [ dpter5 @)~ Dye ),
0

1
Eun = —kf dp(9e*PH: ®3) (e kD D).
0

The field equation reads
(£20, + De D = V/(D),

here, and below we will denote by ’ usual function deriva-
tive. The Beltrami-Laplace operator takes the form L], =
— 97 — 3H(1), + 5 93.

In the case of cubic potential the action (1) corresponds
to the tachyon in bosonic string field theory [27] for the
lowest level in the level-truncated scheme [28,29] with the
induced twisted space-time. It is supposed that we are
dealing with D3-brane in the D26 space-time and the
volume of the D22 compactified subspace is omitted.

The case of quartic potential in the action (1) corre-
sponds to inclusion of the metric in the tachyon action of
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the fermionic cubic string [30] in the approximation of a
slowly varying auxiliary field [31]. Such an action appears
in the level-truncated scheme where only lowest scalar
field (tachyon field) in the GSO(—) sector and correspond-
ingly the lowest scalar field in the GSO(+) sector (this field
does not have a kinetic term and is considered an auxiliary
field) are considered. Integration over the auxiliary field
results in the quartic potential for the tachyon field. Note
that appearance of the nonextremal D-brane in the frame-
work of fermionic string field theory requires GSO(—)
sector in the spectrum [32,33].

The purpose of this work is to consider a general class of
nonlocal cosmological models of the form (1) and discuss
which physical properties and consequences might be
obtained from such models. Among them we will be
interested first in the classical solutions of the correspond-
ing Friedmann equations which can be considered as a first
approximation to the quantum solutions and might be
useful for the study of ways to avoid the cosmological
singularity problem [34].

We start with the description of some general class of
nonlocal models. In Sec. III we will describe a new nu-
merical algorithm for solving nonlocal Friedmann equa-
tions. In Sec. IV we will present the numerical solutions of
Friedmann equations for different parameters and will
provide an analytical explanation for some of their inter-
esting features. In Sec. V we will consider which cosmo-
logical solutions can be provided by nonlocal models.

II. GENERAL CLASS OF NONLOCAL
COSMOLOGICAL MODELS

In this paper we will consider the following nonlocal
scalar field on the D-brane coupled to the gravity

M? M€
S = ] d4x1/_—g[—2pR + . (—2 $(O, /M)
1
% — /M) — A —
+2¢2 V(M p) — A Tﬂ (0)

where g is the metric, 0, = \/.%_gam/—_gg/’“”a,,, M, is a
Planck mass, M| is a characteristic string scale related with
the string tension o' as M, = 1//a/, ¢ is a scalar field, g,
is a dimensionless four-dimensional effective coupling
constant related with the ten-dimensional string coupling
constant g, and the compactification scale, A = Z_: A'isan

effective four-dimensional cosmological constant, 7 is the
brane tension, and k is a nonlocal coupling constant
[31,33].

For further investigation, let us rewrite our action in
dimensionless space-time variables
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[d4x\/_< ”R+—¢Dg¢+ Ly

— V(@) — A — T), %)
where ¢ is a dimensionless scalar field, ® = e Fs ¢ and
2
m?: = &4 M’£
As a particular metric we take FRW one
ds* = —di* + a*(1)(dx3 + dx3 + dx3). (8)

We will consider spatially homogeneous configurations
for which the Beltrami-Laplace operator takes the form
0, = —97 — 3H(1)d,. For the convenience of numerical
calculations let us introduce the following notation D% =
0% + 3H(1)d,, which we will understand as a generaliza-
tion of the second order time derivative, which contains the
extra term 3H(f)d, associated with gravitational
background.

Equation of motion for the space homogeneous configu-
rations for the scalar field ® takes the form

(=D} + 1)eXPad = VI(P). 9)
The Friedmann equations have the following form:
1 . 1
3H? = — &, 3H?> +2H = -—7P. (10)
mp mp

For the case of nonlocal potentials the energy and the
pressure have additional nonlocal terms &,;; and &,,;,

g = 5k+5p+T+A/ +5n” +5}112’ (11)

~
usual local energy expression

7) = 5k - gp A Al - Enll + 51112’ (12)
usual local pre;gure expression
where
2 1
& = —(6¢)2, Ep=— 5052 + V(D) (13a)
Eui = k ] dp(e " PhVI(®)(DyetPid),  (13b)
£10 =~k [ dp(oe P PVI@) 3T, (130)

As we can see, the structure of Friedmann equations and
of equations for scalar fields in this model is rather com-
plicated and their study is already a very interesting mathe-
matical problem and can be considered as a separate
mathematical investigation.

To avoid calculation of the e it term which is much
harder to compute than e Dh (k> 0) as computation of
the former results in an ill-posed problem [35], we will use
the following representation for nonlocal energy terms on

—kpD?
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the equation of motion for the scalar field
1
Enn = kf dp((— 2D + 1)@ PIDid) (DA ke D),
0
(14a)
1 2
Eni2 = _kf dp(9(— 2D + 1)e@ PDid)(9ekr D),
0
(14b)

III. METHOD FOR SOLUTION OF NONLOCAL
FRIEDMANN EQUATIONS

A. Iterative procedure for solution construction

For numerical calculations let us rewrite our system in
the following form:

3H? = %5, (15a)
mp
. 1
H=--—(P+¢&), (15
2m%( &), (15b)
(—&DY + De*Pid = V(D). (15¢)

In this paper we would like to point out which physical
results we can extract from solutions of this system. First,
we will find the Hubble function and the scalar field from
Egs. (15b) and (15¢). It happens that Eq. (15a) plays a role
of energy conservation from which the effective cosmo-
logical constant is extracted and is unique for every field
configuration.

Integrating Eq. (15b) we get the following system:

(—E2DE + 1)eXPad = V/(D), (16a)

1 [ !
H= —Wﬁd{?(aw—kﬁ dp(a(-&Dy + 1)

X e~ P>kf’a¢)(aekﬂ%¢)} (16b)

To find solutions of the system (16) we construct the
following iterative process

® = limP,, H = limH,, (17a)
n—oo n—oo
where iterations ®, and H,, are in turn obtained as limits of

subiterations

®,., = lim®,,,  H, = limH,,  (17b)
which are recursively defined as (m = 0)
@i = VH(=EDY + DX P, ,),  (170)
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Lo & i
Hy 1 = o2 ]0 d7[7(3€ tun @, )2
P

1 _ 2
B "ﬁ dp(o(=£Dfy |+ De® " Pin )

X (9¢* D <I>,,+1)} (17d)
where initial iteration in m is taken as
D,0=, H,,=H,. (17e)

By V/7! we denote a function inverse to V’. Note how
subiteration ®,, ,, depends only on H,, i.e. the whole step
of subiterations for H. Note also that H,,, depends on
®,., this is essentially a way to accelerate convergence.

Intuitively this iteration procedure does the following.
First fixing H,, it finds ®, ;. using iteration process (17c)
which is a natural generalization of a process which is
described in [36—38] and for which convergence is proved
analytically. Then H,,; is obtained by iterating (17d)
where @, is fixed as computed in the previous step.
Thus found H,, is used to find ®,,, and so on. This
kind of multistep iterative procedure is known to provide
rapid convergence. In our experiments this iterative proce-
dure converges much more reliably as compared to a more
naive iterative procedure where one does not do intermedi-
ate iterations.

In a similar fashion one can construct iterative proce-
dures for systems with several scalar fields such as those
studied in [35,39].

B. Exponentiating D by solving diffusion equation

Equations of motion as well as the iteration method
discussed above require computation of action with opera-
tor ¢**Ph on a given function. Computationally this is a
nontrivial problem by itself. We use the following method
which beside giving mathematical definition for such an
operator more importantly provides a corresponding com-
putational method.

The result of the acting with operator e?Pii on a given
function ¢() is natural to define as a solution of the
following diffusion partial differential equation with cor-
responding initial and boundary conditions:

0

Ef(p, 1) = Dgf(p, 1), (18)
10,1 = o), (19)

flp, £00) = @(*00), (20)

where —oo <t << +o00, p = 0. Note that here evolution
goes along the p axis, while ¢ plays a role of space. The
solution of (18) is a rigorous mathematical definition of the
operator erDi acting on function ¢
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e’Pig(t) = f(p, 1).

Such a solution exists and is unique for wide classes of H
and ¢ [40]. Since in standard settings such a diffusion
problem is well defined, in particular, for H, ¢ € &,(R)
which seem to suffice applications which are considered
here, we will not discuss this topic any further.

C. Fixing potential and other parameters

So far we did not specify the exact shape of the potential
for our system. In this paper we are interested in coupled to
the gravity a tachyon field which appears as a lowest
excitation in the level-truncation scheme for fermionic
string field theory [31]. Thus all further discussion will
be about quartic potential

V(D) = 1. (21)

We would like to note though that from a numerical
perspective this potential can lead to difficulties as it results
in solutions which are not differentiable at zero (they
behave as '/ in the vicinity of zero [41]). For the later
reason we found it useful to study a similar problem in
potential

V(@) = (1 — a)i®? + ajd? 0<a<l.

As a — 1 this potential tends to potential (21). The inter-
esting property of this potential is that the solution has a
finite derivative at zero and moreover there is a theorem
which states convergence of our type of iterative procedure
in case of Minkowski metric [42].

Let us return to the potential (21). Equation (15c) is
invariant under shifts

(1) = D(r + 1), H(r) — H(t + 1), (22)
and mirroring

D(1) = —D(-1),

Thus it is natural to look for odd solutions. Without loss of
generality we can set ®(0) = 0.
Equation (15¢) has the following constant solutions:

d=0 =1

H(t) = —H(—1). (23)

Following the same logic as in the Minkowski case [31,36],
since V(® = +1) = V(® = —1) we can expect the exis-
tence of kink-type solutions where the scalar field inter-
polates between ® = +1 and ® = —1.

Iterative procedure (17) requires initial iteration ®,, H,,
to be specified explicitly. To find such kink solutions it is
natural to take

Dy (1) = sign(1),

This initial iteration leads to a rapid convergence. It is
interesting that our numerical experiments show that iter-
ative procedure (17) converges to a kink-type solution if
we start from any two bounded functions which are posi-
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tive on a positive semiaxis and negative on a negative one.
This observation provides a strong indication for unique-
ness of the solutions (up to shifts and mirroring).

The value of &2 is determined during a level-truncation
procedure; its value is

1

2
410g%

2 ~ 0.96.

(24)

Nevertheless, since different values of &2 already in the
Minkowski case result in different physical pictures, we
will systematically consider various values of £2. Note also
that the case £2 = 0 corresponds to p-adic string with p =
3. The value of the nonlocal coupling constant is fixed by
the same procedure; it is k = % in our case.

IV. NUMERICAL RESULTS

A. Numerical solutions for Friedmann equations

In what follows for numerical computations we put
m, = 1. We used an iterative method presented in the
previous section to solve Friedmann equations for our
system. We observe the crucial role of the value of £%: as
it varies the following physical properties of the system are
affected (see Fig. 1).

(i) For &* =0 the solution in both ® and H has a
monotonic kink shape. This behavior is qualitatively
similar to the case of the Minkowski metric
[31,37,43].

(ii) There exists a critical value &2, = 1.18 which de-
termines between types of the ® component of the
solution—kink or oscillatory with finite period. For
&2 < €2, the solution has a kink shape with expo-
nentially decreasing oscillations around *1 as t —
+o0. On the other hand if &> > &2 the solution
converts to oscillations with finite period." Similar
behavior was observed in the case of the Minkowski
metric, although in that case the critical value was
higher = 1.38 [31,37].

(iii) There is one more critical value fghape = (.42 which
determines a shape of a Hubble function (see Fig. 2).
More precisely, as &2 grows the Hubble function H
gets a turning point at some positive time f,.

Moreover, for ¢ > & . H ends up in tending a

'Note that for the iterative method which we present in this
paper it is essential that solution ® has well-defined limits at
infinite times. This fact is used in particular for the boundary
condition (20). This means that this method is not suitable for
finding oscillatory solutions with high precision. Oscillatory
behavior reported in this paper was obtained by vastly enlarging
the lattice in ¢; this did not allow finding critical value of £ with
more then 3 significant digits. Reliable methods for finding
oscillatory solutions for the type of equations considered in
this paper is an open mathematical problem even for the
Minkowski metric, see [37]. Note though that physically signifi-
cant solutions in this model turned out to be of kink type where
iterations rapidly converge.
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negative (positive) value as ¢ — oo (t — —o0). This
is a new type of behavior which was not present in
the Minkowski case.

Note that the physical value of &2 (24) is in the region

2 2 2
gshape < gphys < §OSC~

Figures 1 and 2 also show how dynamics of the scale
factor a(z)

t
a(t) = ay exp(/ H(T)dT) (25)
0
change as &2 increases. For £ = 0 it has a has a minimum
at the perturbative vacuum ¢ = 0 and increases as ¢ tends
to nonperturbative vacua *1. As £ increases the shape of

a changes and for ¢2 > ffhape the scale factor decreases as

¢ — *£1 (t — £00). For numerical computations we use
initial condition ay = 1 in (25).

B. Two profiles of the Hubble function

To analyze the late time behavior of the Hubble func-
tion, let us use the so-called mechanical approximation
which was studied, for example, in [14] and gives a real-
istic qualitative picture at least for the late time behavior.
Mechanical approximation is constructed by keeping in the
original nonlocal expression only terms with derivatives no
higher than second order. For (16b) we get

H(t) = —% ]O ’ df(;<a¢>2 - k<a¢>2)

p

= m% ﬁ dr(k - %2>(6¢)2.

We can see from the expression above that there exists a
value of &2 which determines the change of sign for the
Hubble function, more precisely for ¢ < 2k the Hubble
function is positive for t — oo (negative as t — —00), while
for &2 > 2k the reverse becomes true. Thus mechanical
approximation gives us the critical value of &> = 2k =
0.25. As already described, numerical computations give

us the value ﬁhape ~ (.42 which slightly differs from the

just found approximate critical &2. This difference mani-
fests the influence of higher-order nonlocal terms.
Nevertheless the analysis above clarifies the phenomenon
which causes the change of sign for the asymptotic values
of the Hubble function.

(26)

C. Two regimes of the solution

In this section we will address the mechanism which
forms numerically found exponentially decreasing oscilla-
tions and the existence of critical value £2... We will also
compare this behavior with results obtained without a
gravitational term in action [37].
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FIG. 1. Solutions of the Friedmann equations ®, H, and a (left to right) for different values of the parameter £2 = 0, 0.2, 0.41, 0.43,
0.6, 0.96, 2 (top to bottom). Note that on the figures for scale factor a(f) axes cross at the point (t = 0, a = 1). We can see that when &2
increases the shape of the scale factor changes from parabolic type [a(f) = 1 for all times] to lump type [a(z) = 1 for all times];
transition between these shape types is illustrated in Fig. 2.
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FIG. 2. Functions @, H, and a (left to right) for £ = 0.41, 0.42, 0.43 (top to bottom). Note how asymptotic behavior changes as we

go through &2 = 0.42.

Let us present the solution of Eq. (15¢c) for the quartic
potential V(®P) = ; *

(—&2D% + 1) Pid = P3 (27)
as a sum
O(1) = Do(1) + x(1), (28)

where @, denotes the solution of Eq. (15¢c) for &2 = 0.
Substituting (28) to (15¢) and leaving only linear terms in
X we get

(—&D} + D)X Pi(dy + x) = D) +3DFy.  (29)

Using the fact that @y, is the solution of Eq. (15¢) for &2 =
0 we can write equation for y(#) which in linear approxi-
mation has the form

(—&Dy + DX Piy =303y + €D Pud,. (30)

Using the fact that operator ¢**Dhi acts as an identity on

constants, we can write large ¢ approximation
(—&DY + 1)eXPiy = 3y, 31

were we used asymptotical properties of solution ®,.

To carry out harmonic analysis for Eq. (31) we will
consider eigenfunctions of the D’Alembertian operator
D2v, = —Av,. Using that ¢*Piv, = ¢ 2y, and ex-
panding y in v,, Eq. (31) leads us to

(2L + e 2y, = 3u,. (32)

Our goal is to analyze which values of £ allow real-valued
A, i.e. nondamping oscillations take place. Considering
Eq. (32) as an equation for complex variable A with pa-
rameter ¢ we obtain that there is a minimum value of
&3 =~ 1.77 for which A is real. So for ¢ < ¢ we have
solutions with nonzero imaginary parts which result in
vanishing solutions while &2 > £2 leads to the oscillatory
regime. Equation (32) has exactly the same form in the
case of Minkowski space which was considered earlier [37]
(functions v, are different as they depend on H). As we can
see the method discussed in this section provides us only a
qualitative explanation of the changing of the regimes; the
value of critical ¢ found here only approximately repro-
duces numerically obtained £2., =~ 1.18. It is interesting to
note that the Minkowski case leads to a higher value of
critical &2 [37], i.e. it appears that “friction” H(t) does not
damp oscillations but otherwise increases them.
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V. COSMOLOGICAL PROPERTIES

It is interesting to note that initially we considered a
model with potential V() = —1¢ +1p* +1 [see
Fig. 3(a)]. A nonlocal term contributes to a kinetic term,
most importantly it changes its sign [11], or equivalently
changes the sign of potential (kinetic term is positive in this
case), see Fig. 3. In this context it is interesting to study the
already-mentioned mechanical approximation which can
illustrate such an effect.

Solutions of (15) lead to interesting cosmological prop-
erties. Let us consider them for physically interesting
values of £ and see what kind of physical behavior they
result in. We would like to study dynamics of the following
physical quantities. The state parameter which is defined as
usual

w=2 (33)
p
or in the terms of Hubble parameter
2 H

will be presented on the figures below along with a decel-
eration parameter defined as

g = -2 (35)
a

A. Effective mechanical potential

In order to better understand which behavior of the
system we might expect, let us first study Eq. (9) in local
approximations.

If we ignore the nonlocal operator ¢2P4 in (9) we get

(—&D% +1)D = P (36)

Let us reproduce the action which leads to the equation
above

0.4

0.3

-1.5 -1 -0.5 0.5 1 1.5 (a)

FIG. 3.
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/d4x\/_< R—l—f—ZCI)D(I)—i- CI>2 <I>4>.

(37)

This action describes a particle moving in the system with
friction H(t)

£2920 = & — O — 3HEID, (38a)

2
H=—--"5(3®)~ (38b)
n

As we can see here, the Hubble function is explicitly
negative and thus we obtained a system which is unusual
from a mechanical point of view—it is an anharmonic
oscillator with negative friction (see Fig. 4). Such a behav-
ior looks similar with the behavior for nonlocal systems
studied in [14,15] in the Minkowski background, when the
trajectories of the scalar field exceed the extremum of the
potential, meanwhile the energy is conserved.

Now let us consider mechanical approximation by ac-
counting in Eq. (9) only derivatives no higher than second
order; we get

(2k — £)9* + 1) = @3 — 32k — E)H(1)oD. (39)

Equation (39) could be obtained from the following action:

2_

fd4x\/_< pR+ 5 .

+3 L2 - . q>4>, (40)

which leads to the following local Friedmann equations:
® — P?
(2k — &)
2k —¢%)

P

D = — —3HoD, (41a)

H= (41b)

This system of equations describes particles moving in the
following potential:

0.5 1 1.5

-0.4 (b)

W and —W-shaped potentials.
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4 6 8 10

03 (b)

FIG. 4. Anharmonic oscillator with W-shape potential; (a) periodic scalar field trajectory located around ® = 1; (b) the solution for

the Hubble function H(¢), £ = 0.4.

202 — Pt
V(D) 10k — &)
As we can see for & < 2k, a flip of the potential takes
place. In particular, for £2 = 0 we get an equation describ-
ing a particle moving in the —W-shape potential [see
Fig. 3(b)]. For & > 2k the potential has W-shape [see
Fig. 3(a)]. This simple remark leads to important physical
consequences: we might expect two different regimes of
the solution. Solutions for the scalar field and Hubble
function for different values of &2 are presented on
Fig. 5. We see two regimes—decreasing oscillations with
positive Hubble function and increasing oscillations with
positive Hubble function.

It is important to note that while mechanical approxi-
mation helps us to illustrate or explain qualitatively some
physical consequences, it is a rather rough approximation
and does not necessarily capture some nonlocal effects.
This situation is already depicted by the fact that in a full
nonlocal model and its mechanical approximation the
change of regime of the solution corresponding to W and
— W shapes of the potential happens for different values of
&2, they are of the same order though.

0.8 0.75
0.6 0.5
0.4 0.25 /\
0.2 /\ A\
/\. 2\/ AR 8 10
2 4 ~—F 8 10 02
02 05
04 075
0.4 0.4
0.3 0.3
0.2 0.2
0.1 0.1
2 4 6 8 10 ' 2 4 6 8 10

B. Rolling tachyon in the FRW background and the
effective cosmological constant A’

Let us study the value of effective cosmological constant
A’. Formally A’ enters action as a correction of D3-brane
tension 7. For a rolling solution in Minkowski background
it is known [11,31,44] that the value of T is essential for
calculating the stress tensor, but as it does not enter equa-
tions of motion it is not essential for the existence of the
solution. Moreover, according to Sen’s conjecture
[11,31,44]

TMinkowski = _V((I) = il) = 411

Such value of T in Minkowski background corresponds to
a zero cosmological constant in the nonperturbative vac-
uum & = *=1.

In the case of the FRW metric we represent D3-brane
tension as T = Tyginkowski T A's where A’ is determined
uniquely for each field configuration (situation is the
same in local theories). Note that A’ does not enter
Egs. (16); in fact we determine its value from (15a).
Different values of A’ for different ¢ are presented on
Table I. Note that we worked with dimensionless variables.

Tnpaapnfl ”
o VYV L AN
; 2Wo 3

10

FIG. 5. Scalar field ®(¢) (upper row) and Hubble function H(z) (lower row) for the system (41) for different values for £? parameter
pp y P

&2 =0,02, 0.4, 1 from left to right correspondingly.
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TABLE 1. Values of A’ for different &2.

§2 A/

0 0.036938
0.2 0.010379
0.41 0.000022
0.42 0

043 0.000 023
0.6 0.007 766
0.96 0.077 848

If we return to initial notations and take into account
physical constants in action (6) we can get a realistic value
of A because generally speaking the string scale does not
coincide with the Plank mass [11,17,19].

C. P-adic cosmological model, £> = 0

Recently p-adic string models started to attract a lot of
attention being used as toy cosmological models. In [19]
the p-adic string model [31] was considered in the context
of inflation and approximate solutions of the fully nonlocal
p-adic string theory coupled to gravity were constructed.
In Sec. IVA we presented a new algorithm for construction
of precise solutions for these models. While an iterative
procedure of Sec. IVA converges for any odd p (for
rigorous mathematical proof for the simpler Minkowski
case see [43]) here we will analyze cosmological properties
of the solution for the case p = 3. This case is specifically
interesting since as mentioned earlier it corresponds to the
zero mass of the tachyon field, §2 = (, in level-truncated
fermionic string field theory (SFT).

w(t

q()

)
p) !
-1
2
3
t

4 4 2 2 z
5 )
6

4
L7

FIG. 6. The state and deceleration parameters for the case of
the p-adic cosmological model (£2 = 0).

w ()

-0.9998
/L

PHYSICAL REVIEW D 76, 105007 (2007)

We can see in Figs. 1 and 6 that scalar field and back-
ground solutions are monotonic functions which tend to
constants as t — *oo. Since these solutions do not have
turning points (oscillations) there is no crossing of the
cosmological state parameter barrier (w = —1); it is nega-
tive and approaches to —1 from below (Fig. 6). For these
solutions we have a nonsingular accelerating Universe with
a bounce. As an illustration we can note that behavior of
the scale factor obtained could be well approximated by
Aapprox (1) = €' for large 1> 0 and by ayppox(1) = e~
for large ¢t <0, where H, = lim,_,H(f). Thus we get a
de Sitter type solution for flat FRW background for ¢ —
+o00 and anti—de Sitter as t — —oo. It might be useful to
remark that bouncing cosmology is a subject of a recent
investigation which includes the ekpyrotic [34], pre-big-
bang [45], and higher derivative modification of Einstein
gravity scenarios [46].

Deceleration parameter g is negative and approaches — 1
from below as t — *oo.

2
phys

Today SFT is the strongest candidate for real physical
theory of nature. As we mentioned earlier level truncation
in nonsypersymmetric fermionic SFT leads to action (7)
with potential (21) with &2 = ghys (24) [11,31,33]. The
algorithm presented in Sec. IVA allowed us to study this
model coupled to the FRW backgroud without explicit
approximations.

As shown in Figs. 1 and 7 in this case scalar field
solution has turning points (decreasing oscillations) and
tends to stationary solutions *1 as t — *oo. The shape of
the Hubble function is essentially different as compared to
the case 52 = (; indeed it has a clear maximum and tends
to negative constant for 7> 0, lim,_.H(f) = F0.15.
Such behavior is in agreement with analysis presented in
the previous section since &5, > 3

The state parameter w(z) tends to —1 as t — *o0 and has
exponentially decreasing oscillations around the w = —1
barrier. Note that models which allow for crossing of the
w = —1 barrier are the subject of many recent investiga-
tions [17,47-53]. Here we observe this behavior in a non-
local model with only one scalar field as in [17]. We also

D. SFT cosmological model, £2 =

q (@)

1

-1.0002
-1.0004
-1.0006

! -1.0008
-50 -1.001

T 8 9 10
0.

FIG. 7. The state parameter, its fine structure, and deceleration parameter for the case of the SFT cosmological model (£ = &2, ).

phys
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see that we have a decelerating phase at late times; this
property was not predicted by approximate methods [11].

VI. CONCLUSIONS

In this paper we have studied the dynamics of nonlocal
cosmological models driven by string field theory. These
models have an infinite number of derivatives and are
characterized by positive constants k, &, and A’ which
determine the shape of the solution. We have developed a
new method for solving nonlocal Friedmann equations.
Such equations contain an infinite number of derivatives
and form a new class of equations in mathematical physics
which recently started to be discussed in literature
[15,18,19,37,41-43,54].

To study cosmological properties we have investigated
the behavior of nonlocal models in the FRW background.
We are especially interested in two physical cases: p-adic
cosmological models and the level-truncated SFT model.
In the p-adic cosmological model we obtained a nonsin-

PHYSICAL REVIEW D 76, 105007 (2007)

gular bouncing solution with the w parameter approaching
the —1 barrier from below. The SFT model has a non-
singular solution for which the w parameter crosses the —1
barrier. We also discussed the possibility of obtaining a
realistic cosmological constant from the above considered
nonlocal cosmological models.
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