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The visibility of the shell-focusing singularity in Szekeres space-time—which represents quasispher-
ical dust collapse—has been studied on numerous occasions in the context of the cosmic censorship
conjecture. The various results derived have assumed that there exist radial null geodesics in the space-
time. We show that such geodesics do not exist in general, and so previous results on the visibility of the
singularity are not generally valid. More precisely, we show that the existence of a radial geodesic in
Szekeres space-time implies that the space-time is axially symmetric, with the geodesic along the polar
direction (i.e. along the axis of symmetry). If there is a second nonparallel radial geodesic, then the space-
time is spherically symmetric, and so is a Lemaı̂tre-Tolman-Bondi space-time. For the case of the polar
geodesic in an axially symmetric Szekeres space-time, we give conditions on the free functions (i.e. initial
data) of the space-time which lead to visibility of the singularity along this direction. Likewise, we give a
sufficient condition for censorship of the singularity. We point out the complications involved in
addressing the question of visibility of the singularity both for nonradial null geodesics in the axially
symmetric case and in the general (nonaxially symmetric) case, and suggest a possible approach.
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I. INTRODUCTION AND SUMMARY

The weak cosmic censorship hypothesis (CCH) main-
tains that realistic gravitational collapse leads to the for-
mation of a black hole rather than a naked singularity.
Among the different studies of the hypothesis, we mention
two categories of interest. First, there are demonstrations of
the validity of the hypothesis in specific circumstances (the
prime example of this is Christodoulou’s proof of the
instability—and hence nonrealistic nature—of naked sin-
gularities in the spherical collapse of a minimally coupled
scalar field [1]). The other category involves the construc-
tion of an example of a space-time which undergoes col-
lapse from a regular configuration to a naked singularity.
Many such examples have been constructed, but to date,
none has been shown to involve both (i) a physically
realistic matter model and (ii) stability in the initial data
space of those space-times which give rise to naked singu-
larities. It is probably fair to say that the main utility of the
latter class of studies has been to refine and better under-
stand the content of the CCH.

These examples have mainly involved spherically sym-
metric space-times, for example, the shell-crossing [2,3]
and shell-focusing [4] singularities in Lemaı̂tre-Tolman-
Bondi (LTB) spherical dust collapse, and the naked singu-
larity solutions that arise at the threshold of black hole
formation in scalar field and perfect fluid collapse [5]. A
notable (although as we will see flawed) exception to this
involves the various studies of the visibility of the shell-

focusing singularity in Szekeres space-time [6–12]. First
analyzed by Szekeres in [13], this class of space-times
corresponds to solutions of the Einstein equations for
dust, where the fluid flow vector is geodesic and nonrotat-
ing. The metric admits no Killing vector fields (in the
general case) but for reasons described below is referred
to as quasispherical. It can be understood as a nonspherical
generalization of the LTB class of dust-filled space-times,
and its evolutionary aspects are very closely related to
those of the corresponding LTB models, and so are rela-
tively straightforward. Hence analyzing the visibility or
otherwise of singularities that arise in this model affords
an opportunity to study cosmic censorship in nonspherical
collapse.

Szekeres initiated the study of the singularities in this
model, and noted the possibility that the shell-crossing
singularity (see below) may be visible [14]. He also noted
the occurrence of an apparent horizon (or in current termi-
nology, a marginally trapped tube) that forms at least as
early as the shell-focusing singularity (again, see below).
As in the spherical case, the shell-crossing singularity is
interpreted as being fundamentally nongravitational in
origin and not of particular significance for cosmic censor-
ship. Thus attention turned to the shell-focusing singular-
ity, where in the spherical case, a more-or-less complete
understanding of the visibility or otherwise of the singu-
larity has been developed. In these studies [6–12], the
question of visibility of the shell-focusing singularity is
considered from the point of view of the existence or
otherwise of future-pointing null geodesics with an addi-
tional simplifying property that allows one to refer to these
geodesics as ‘‘radial’’ (see below). We show below that
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radial geodesics do not exist in a general Szekeres space-
time and consequently, the analyses of the question of
visibility of the singularity of [6–12] are not generally
valid. Motivated by this observation, we revisit the ques-
tion of the visibility of the shell-focusing singularity. We
provide some preliminary results on this question, and, in
particular, consider it in the case when the space-time is
axially symmetric. In this case, a single radial geodesic
direction exists, and the analysis of the visibility of the
singularity along this direction is essentially the same as
the spherically symmetric case. We emphasize that the
question becomes considerably more difficult in the gen-
eral (nonaxially symmetric) case.

In the next section, we review the basic properties of
Szekeres space-time, and discuss what is meant by refer-
ring to this space-time as ‘‘quasispherical.’’ We then dis-
cuss the formation of singularities in a collapsing Szekeres
space-time, and discuss the conditions on the free metric
functions that arise from the imposition of regularity con-
ditions on the initial data. Here, we specialize to the so-
called marginally bound case. We will indicate clearly
when this restriction is in place, and when results apply
generally.

In Sec. III, we analyze the geodesic equations of
Szekeres space-time and show that the existence of a radial
geodesic implies that the space-time is axially symmetric.
Furthermore, we show that the existence of a second non-
collinear radial geodesic implies that the space-time is
spherically symmetric. The marginally bound assumption
is not required in this section.

In Sec. IV, we derive some elementary results in the
marginally bound case relating to the visibility of the shell-
focusing singularity, which is spherically symmetric in the
sense that it corresponds to a surface t � tc�r�, r � 0. This
singularity is always preceded by an apparent horizon
given by t � tah�r�: we have tah�r� � tc�r� for all r with
equality if and only if r � 0. The region of space-time with
tah�r�< t < tc�r� is trapped. Then intuitively, one expects
that only the central singularity �t; r� � �tc�0�; 0� can be
visible. This is immediate in spherical symmetry, but is
slightly nontrivial in the quasispherical case—the result is
confirmed nonetheless. We derive the related result that a
geodesic that emerges into the future from the central
singularity must emerge into the untrapped region t <
tah, and hence show that the singularity is censored if
t0ah�r�< 0 (this condition can be described in terms of the
initial data of the collapse). We also show that for suffi-
ciently small values of r, the apparent horizon is a one-way
membrane for all future-pointing causal geodesics: such
geodesics cannot leave the trapped region. Again, this is
immediate in the spherical case, but requires checking in
the quasispherical case.

In Sec. V, again working in the marginally bound case,
we consider the question of the visibility of the singularity
for the polar null geodesic of the axially symmetric mod-

els. This problem is essentially the same as the correspond-
ing spherically symmetric problem, and we can give
sufficient conditions (in terms of the initial data) for the
formation of a naked singularity.

We conclude by briefly considering the substantive, and
crucially, open, question of the visibility of the shell-
focusing singularity in quasispherical collapse. We point
out how this question is considerably more difficult than in
the spherical case and suggest an approach to its consid-
eration. We set 8�G � c � 1.

II. SZEKERES SPACE-TIME AND ITS
SINGULARITIES

A comprehensive review of the properties of the
Szekeres space-times representing nonaccelerating, irrota-
tional dust is given in [15]; this review includes equivalent
invariant characterizations of the class which involve some
technicalities that will not play any role here. Suffice to say
that these lead uniquely to the line element

 ds2 � �dt2 � e2�dr2 � e2��dx2 � dy2� (1)

where

 e� � R�t; r�e�; (2)

 e�� � A�r��x2 � y2� � B1�r�x� B2�r�y� C�r�; (3)

 e� �
R0 � R�0������������������
1� f�r�

p ; (4)

where the prime denotes differentiation with respect to r.
The geodesic fluid flow vector is @

@t and the coordinates
�r; x; y� are comoving. The ranges of these coordinates are
�x; y� 2 R2, r � 0 and that of t will be discussed below.
The free functions A, B1, B2 and C are related by

 B2
1 � B

2
2 � 4AC � �1: (5)

(There are also solutions with 0 and �1 on the right hand
side here: the choice�1 forms part of the input essential to
the interpretation of these space-times as being quasispher-
ical.) The remaining Einstein equations determine the
evolution of R and define the energy density of the
space-time:

 

�
@R
@t

�
2
� f�r� �

F�r�
R

; (6)

 ��t; r; x; y� �
F0 � 3F�0

R2�R0 � R�0�
: (7)

F � 0 is a function of integration. We note that the coor-
dinate freedom corresponds to rescalings of the comoving
radial coordinate r! r̂�r� (which must be a monotone
mapping), the transformations in the �x; y� plane discussed
in (8) below and trivial shifts of the origin of t.
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The quasispherical interpretation arises as follows [14]:
each 2-surface St;r of constant t and r is a round 2-sphere
with proper radius R�t; r�. To see this, we write the line
element dl2

�t;r� of St;r in the stereographic coordinates � �
x� iy:

 dl2
�t;r� �

R2�t; r�

�A�r�� �� � B�r�� � �B�r� �� � C�r��2
d�d ��

where B � �B1 � iB2�=2. The form of this line element is
invariant under the fractional linear transformation

 � ! � �
k� � l
m� � n

; kn� lm � 1 (8)

and for each fixed value of t and r, such a transformation
can be found so that the line element has the form

 dl2
�t;r� � R2�t; r�

4d�d ��

�1� � ���2
;

which is the line element of the round 2-sphere with radius
R. It should be noted that the condition (5) plays a crucial
role in deriving the explicitly spherical form of dl2�t;r�. The
transformation �x; y� ! ��;	� given by

 � � ei	 cot
�
2

yields the more familiar spherical form

 dl2
�t;r� � R2�t; r��d�2 � sin2�d	2�:

The fact that a different transformation (8) is required for
each different St;r indicates that in each 3-space of constant
t, these 2-spheres are not concentric.

It will be useful to consider the form of the 4-
dimensional line element using the spherical coordinates
��;	�. This yields

 ds2 � �dt2 � e2�dr2 � e2��d�2 � sin2�d	2�; (9)

where now

 e� � R�t; r�e
; (10)

 e�
 � a cos�� b1 sin� cos	� b2 sin� sin	� c; (11)

 e� �
R0 � R
0������������

1� f
p : (12)

The functions a, bi, c are related to A, Bi, C by

 a � A� C; bi � Bi; c � A� C: (13)

The condition (5) reads

 c2 � a2 � b2
1 � b

2
2 � 1: (14)

Before proceeding to discuss gravitational collapse and
the formation and nature of singularities in these space-
times, we note that the spherical limit arises when and only
when B1 � B2 � 0 and A and C are constant and equal

[and so by (5) both equal to 1=2]. Furthermore, it is clear
from (9) and (11) that the space-time is axially symmetric
with Killing vector @

@	 when B1 � B2 � 0.
In order to model gravitational collapse using a Szekeres

space-time, we choose the negative root of (6). The result-
ing equation, and the analysis of its consequences, are
greatly simplified by taking f�r� � 0. By analogy with
the spherical case, this is referred to as the marginally
bound case. The equation is then easily integrated and
the solution can be written in the form

 R3 �
9

4
F�tc�r� � t�2; (15)

where tc is a function of integration that describes the time
at which the 2-sphere St;r collapses to zero radius. This is
called the shell-focusing singularity: all the ‘‘shells’’ St;r
collapse to zero radius at this surface.

It is convenient to exploit the freedom in the comoving
radial coordinate r to set R � r on an initial surface: by an
allowed shift of the origin of t, we can take this to be t � 0
without loss of generality. Thus R�0; r� � r and hence
R0�0; r� � 1. With this choice, we have

 tc�r� �
2

3

�����
r3

F

s
; (16)

which leads to the following convenient form of (15):

 

�
R
r

�
3
�

�
1�

t
tc

�
2
: (17)

It can be shown that the Kretschmann scalar of (1)
diverges if and only if the density (7) does so. Thus scalar
curvature singularities can be discussed in terms of the
latter quantity (i.e. the density—or equivalently the Ricci
scalar) alone. As well as the shell-focusing singularity at
t � tc�r� for which R � 0, there may be singularities when
R0 � R�0 vanishes. By analogy with the spherical case,
these are referred to as shell-crossing singularities. [The
analogy is perhaps not quite appropriate: shells of Szekeres
space-time, i.e. the 2-spheres St;r will cross if we encounter
R�t; r1� � R�t; r2� for some r1 � r2 and some t > 0. A
necessary and sufficient condition for this to occur is
R0�t; r� � 0 at some t > 0, r > 0.] A crucial task is to
rule out the occurrence of both types of singularity on
the initial slice. To this end, we note that the initial density
is given by

 �0�r� :� ��0; r� �
F0 � 3F�0

r2�1� r�0�
:

We will require this term to be non-negative and finite for
all r � 0. Thus we impose

 F0 � 3F�0 � 0; (18)

 1� r�0 > 0 (19)
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for all r � 0 and all �x; y� 2 R2. We note that we also
impose e�� > 0. Identical conditions hold with � replaced
by 
. These conditions—i.e. (19) and e�
 > 0—have
been considered by Szekeres [14], and it is worth repeating
the result here as we will use the corresponding conditions
on a, bi and c below:

Lemma 1: (i) Let the condition (5) hold. Then e�� �
A�x2 � y2� � B1x� B2y� C is positive for all �x; y� 2
R2 and all r � 0 if and only if

 A�r�> 0 for all r � 0: (20)

(ii) Assuming the conditions (5) and e�� > 0,

 1� r�0 > 0

for all �x; y� 2 R2 and all r � 0 if and only if

 A� rA0 > 0 for all r � 0 (21)

and

 A0C0 � B0 �B0 >�
4

r2 for all r � 0 (22)

�
Requiring that �0 be finite in the limit as r! 0,

Szekeres [14] also derives the condition

 F�r� � O�r3�; r! 0 (23)

which we shall assume henceforth.
Next, we will consider conditions that rule out the

occurrence of a shell-crossing singularity (R0 � R�0 � 0)
prior to the occurrence of the shell-focusing singularity.
That is, we seek conditions on the initial data functions so
that

 R0 � R�0 > 0; for all 0 � t < tc�r�; r � 0:

We note that this condition follows by (19) if the inequality
R0 � R=r � 0 holds. But using (17), this latter condition is
equivalent to t0c � 0. Hence the condition

 F0 � 3
F
r
� 0; r � 0; (24)

which is equivalent to t0c � 0, is a condition that can be
imposed on the initial data and that guarantees the absence
of shell-crossing singularities. It is worth noting that for
t > 0, (24) is equivalent to the condition

 R0 �
R
r
: (25)

In a sense, this is the best bound that can be imposed. First,
it includes all cases of interest: t0c � 0 is a necessary
condition for the visibility of the shell-focusing singularity.
(To see this, we simply note that t must increase along a
future-pointing causal geodesic emerging from the singu-
larity.) Second, if the bound (24) is violated, then we can
find examples of � (which is constructed entirely from
initial data functions) for which the corresponding space-

time will contain shell-crossing singularities in its
evolution.

To summarize, we assume the conditions on A, Bi and C
of Lemma 1 and the conditions (23) and (24) on F. These
guarantee that the collapse proceeds from a regular state to
the shell-focusing singularity, and that no shell-crossing
singularities occur prior to the shell-focusing singularity.

III. GEODESICS, RADIAL GEODESICS AND
SYMMETRY

With a clear description of the shell-focusing singularity
in place, we can now consider its causal nature or more
accurately, the question of its visibility. Of course this
requires the analysis of geodesics, and the determination
of whether or not there are future-pointing causal geo-
desics that emerge from the singularity. We will use a
subscript (�t etc.) to denote partial derivatives with respect
to t, x and y. We retain the prime for derivatives with
respect to r, and an overdot will represent differentiation
along the geodesic (e.g. with respect to an affine parameter
for null geodesics). We also note that we can drop the
assumption that the space-time is marginally bound. The
geodesic equations for the line element (1) are

 

�t� �te
2� _r2 � �te

2�� _x2 � _y2� � 0; (26)

 

�r� �0 _r2 � 2�t _t _r�2�x _x _r�2�y _y _r

� �0e2��2�� _x2 � _y2� � 0; (27)

 

�x� �x� _x2 � _y2� � 2�y _x _y�2�t _t _x

� 2�0 _r _x��xe
2��2� _r2 � 0; (28)

 

�y��y� _y2 � _x2� � 2�x _x _y�2�t _t _y

� 2�0 _r _y��ye2��2� _r2 � 0; (29)

and we have the first integral

 � _t2 � e2� _r2 � e2�� _x2 � _y2� � �; (30)

where � � 0, �1, �1 for null, spacelike and timelike
geodesics, respectively.

In [6–12], radial geodesics are defined to be those along
which x and y have constant values. From (28) and (29), we
see that along such a geodesic, we must have

 

@�
@x
e2��2� _r2 �

@�
@y
e2��2� _r2 � 0: (31)

We rule out e��� � 0, as this corresponds to a singularity
(and the geodesics must reside in the space-time rather than
on its singular boundary). Both equations of (31) are
satisfied if we take _r � 0. The only possible solutions of
the geodesic equations then have _t2 � 1 � ��: these are
the fluid flow lines and we will refer to these as trivial
radial geodesics. In particular, there are no null geodesics
that satisfy the condition _r � 0. The only possibility that
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remains in (31) is that

 

@�
@x
�
@�
@y
� 0

along the geodesic. It is clear that this is a restriction on the
metric functions. We can determine the exact geometric
nature of this restriction.

In order to do so, we note first that

 

@�
@x
�

Re��������������
1� f
p

@2�
@r@x

;

with a similar result holding for �y. Then a straightforward
calculation shows that the vanishing of �x is equivalent to
the vanishing of
 

Q1 :� �AB01 � A
0B1��x

2 � y2� � 2�AB02 � A
0B2�xy

� 2�AC0 � A0C�x� �B1B
0
2 � B

0
1B2�y

� �B1C0 � B01C�; (32)

while vanishing of �y is equivalent to vanishing of
 

Q2 :� �AB02 � A
0B2��y

2 � x2� � 2�AB01 � A
0B1�xy

� 2�AC0 � A0C�y� �B2B
0
1 � B

0
2B1�x

� �B2C
0 � B02C�: (33)

We can now prove the following result.
Proposition 1: If a Szekeres space-time admits a non-

trivial radial geodesic, then it also admits a Killing vector
field generating an axial isometry.

Proof: Suppose that there is a nontrivial radial geodesic
along which �x; y� � �x0; y0� is constant. Using a trans-
formation of the form (8),

 � � x� iy! � � u� iv �
k� � l
m� � n

we can assume without loss of generality that �x0; y0� �
�0; 0�. The necessary conditions Q1 � Q2 � 0 for the ex-
istence of a nontrivial radial geodesic then yield

 B1 � �1C; B2 � �2C

for some constants �1, �2. [We note that (5) implies that
C � 0.] If we consider a further coordinate transformation
of the form (8)—but with l � 0 to preserve the origin—
we find that [with B � �B1 � iB2�=2)]

 B! B� � k �nB�m �nC � �n�k��m�C

where � � ��1 � i�2�=2. Since kn� lm � kn � 1, we
have k � 0 � �n, and so we can choose m � �k� to get
B� � 0. Thus by using the coordinate freedom in the
stereographic coordinates �x; y�, we can write the line
element (1) in a form in which B1 � B2 � 0. As seen in
Sec. II above, this is a sufficient condition for the space-
time to be axially symmetric, with axial Killing field given
by @

@	 � �y
@
@x� x

@
@y . �

Remark 1: In this proposition, the radial geodesic is
normal to each of the 2-spheres and emerges from the
point with stereographic coordinates x � y � 0. In spheri-
cal coordinates, this corresponds to � � �: the south pole
in the standard configuration. The north pole (� � 0) cor-
responds to the point at infinity in stereographic coordi-
nates, and so is not covered by the coordinate patch
�x; y� 2 R2. However this point can be included by using
an additional coordinate patch and it is then clear that there
is also a radial geodesic emerging from the north pole. We
will refer the these collinear radial geodesics as the polar
geodesics.

Corollary 1: If a Szekeres space-time admits two non-
collinear nontrivial radial geodesics, then the space-time is
spherically symmetric.

Proof: From the previous proposition, we may situate
the first nontrivial geodesic in the direction �x; y� � �0; 0�.
Then as we have seen B1 � B2 � 0 and the space-time is
axially symmetric. A second noncollinear nontrivial radial
geodesic has �x; y� � �x0; y0� � �0; 0� constant along the
geodesic, and as we have seen, a necessary condition for
the existence of such a geodesic is that Q1 and Q2 vanish
along the geodesic. As B1 � B2 � 0 and x0 and y0 are not
both zero, (32) and (33) yield

 AC0 � A0C � 0:

The condition (5) in the present case gives AC � 1=4.
Combining this with the previous relation shows that A
and C are both constant. A transformation of the form (8)
(with l � 0 to preserve the origin) can then be used to set
2A � 2C � 1, and so the line element is spherically sym-
metric. �

Remark 2: We can give a geometric interpretation of this
corollary. Proposition 1 shows that to each nontrivial radial
geodesic of Szekeres there corresponds an axis of symme-
try. Then the existence of a second noncollinear nontrivial
radial geodesic implies that the space-time admits two
nonparallel axes of symmetry and so must be spherically
symmetric.

Remark 3: The results of this section imply that the
analysis of [6–12], which were carried out for radial null
geodesics, can only be valid for the polar geodesic of an
axially symmetric Szekeres space-time, or for a spherically
symmetric Szekeres space-time—i.e. LTB space-time.
Thus the question of the visibility of the shell-focusing
singularity in a general Szekeres space-time remains open.
It is worth noting that the imposition of the assumption of
axial symmetry, equivalent to setting B1 � B2, implies that
the number of free functions �A;B1; B2; f; F� has been
reduced from 5 to 3. Therefore this sector of the Szekeres
class is highly specialized—one could impose a topology
on the space of free functions in which the nonaxially
symmetric solutions comprise an open dense subset of
the whole space—and so the results pertaining to the polar
geodesics cannot be assumed to reflect the general behav-
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ior. It is possible that the naked singularities found in the
axially symmetric case along the polar direction are (i) not
visible from any other direction and/or (ii) are not present
in the nonsymmetric case.

IV. SOME BASIC RESULTS IN THE MARGINALLY
BOUND CASE

We have argued above that the question of cosmic
censorship in Szekeres is open. In the remainder of this
paper, we seek to address this question. In this section, we
will derive some results, valid in the marginally bound case
only, which provide some useful preliminary results for the
study of the visibility of the shell-focusing singularity.
These results share the feature that they are trivial in the
spherically symmetric case: in the quasispherical case,
some checking is required.

To begin, we recall from the work of Szekeres [14] that
an apparent horizon forms at the hypersurface R�t; r� �
F�r�. That is, the outgoing future-pointing null geodesic
normals to each 2-sphere St;r have zero expansion on this
hypersurface. By outgoing, we mean that r increases with
the affine parameter along the geodesic. Note also that
while these geodesics are initially and instantaneously
radial, this condition is immediately violated as the geo-
desic moves away from the 2-sphere to which is was
normal—see (28) and (29).

From (17), we can show that the apparent horizon is
given by

 t � tah�r� � tc�r� �
2

3
F�r�: (34)

Thus the apparent horizon precedes the shell-focusing
singularity (F > 0 for r > 0), and the condition (24) im-
plies that the apparent horizon and the shell-focusing sin-
gularity meet at the central singularity �t; r� � �tc�0�; 0�.
As shown in [14], the region tah�r�< t < tc�r�, r � 0 is
trapped. That is, the 2-spheres St;r are closed trapped
surfaces in this region. The region t < tah�r�, r � 0 is
untrapped.

First, we point out that the portion r > 0 of the shell-
focusing singularity is censored.

Proposition 2: There are no future-pointing causal geo-
desics of a marginally bound Szekeres space-time with past
end point on the surface t � tc�r� for any r > 0.

Proof: We consider a future-pointing ( _t > 0) outgoing
( _r > 0) causal geodesic of (1). Either the geodesic remains
outgoing, or we encounter a value 
0 of the geodesic
parameter 
 (affine parameter or proper time) for which
_r�
0� � 0. But then (27) shows that this is a local minimum
( �r > 0) of r along the geodesic. (To see this, we note that

 

@�
@r
� �R0 � R�0�e�;

which is positive by the no-shell-crossing singularity con-
dition.) As all stationary points must be local minima, there

can in fact be only one local minimum. Thus _r�
�< 0 for
all 
 < 
0. Suppose that this geodesic were to meet the
singularity t � tc�r�. Now along the geodesic we have

 

_R � Rt _t� R0 _r � �

����
F
R

s
_t� R0 _r: (35)

Since _t > 0, R0 � 0 and _r < 0, this must by negative in the
approach to the singularity. But the singularity occurs at
R � 0, and so R cannot increase into the past ( _R< 0) to
reach the singularity, and so we get a contradiction.

We can now assume that _r > 0 for all 
 � 
0 where 
0 is
some arbitrary initial value for 
. This being the case, we
can use r as a parameter along the geodesic. Then along the
geodesic we may use (30) to write

 

dt
dr
� e�

�
1�

�

_r2 e
�2� � e2��2�

��
dx
dr

�
2
�

�
dy
dr

�
2
��

1=2
:

(36)

The fact that the geodesic is both future pointing and
outgoing indicates that the correct (positive) root has
been taken here. The change of R along a future-pointing
geodesic that emerges from the shell-focusing singularity
at some r > 0 satisfies the following:

 

dR
dr
� Rt

dt
dr
� R0

� �

����
F
R

s
dt
dr
� R0 <�

dt
dr
� R0 <�e� � R0

� �R�0 <
R
r
: (37)

The second line comes from the field Eq. (6) in the mar-
ginally bound case. The third line arises due to the fact that
for sufficiently small R, the geodesic must be in the trapped
region for which F > R. The fourth line follows from (36)
above and the definition (4). The last line comes from the
initial regularity condition (19). Integrating the overall
inequality proves the stated result: R cannot reach zero
(its value on the shell-focusing singularity) unless r also
drops to zero. �

Corollary 2: A future-pointing causal geodesic with past
end point on the shell-focusing singularity must have its
past end point on the central singularity �t; r� � �tc�0�; 0�.

�
Corollary 3: A future-pointing null geodesic with past

end point on the central singularity must emerge into the
untrapped region of space-time.

Proof: Suppose on the contrary that the geodesic
emerges into the trapped region, i.e. there exists � > 0
such that R�t�r�; r�<F�r� for values of R along the geo-
desic and for all 0< r< �. Letting r0 2 �0; �� and inte-
grating (37) from r to r0 shows that in the R-r plane, R
stays above the line R � R0

r0
r for all r � r0. Using (23), this

BRIEN C. NOLAN AND UJJAL DEBNATH PHYSICAL REVIEW D 76, 104046 (2007)

104046-6



implies that R> F for sufficiently small values of r, yield-
ing a contradiction. �

Proposition 3: If t0ah�r�< 0 on 	0; �� for some � > 0,
then the central singularity is censored.

Proof: The proof follows immediately from Corollary 3:
if a geodesic were to emerge from the central singularity,
then it must emerge into the untrapped region and must
have t0�r� non-negative for all sufficiently small values of r.
This cannot happen if t0ah is negative in a neighborhood of
the singularity. �

Remark 4: We note that this repeats in the Szekeres case
a result that holds in some generality in spherical symmetry
[16], and provides a sufficient condition, in terms of initial
data, for the singularity to be censored.

Finally in this section, we prove another result that
mirrors precisely the situation in the spherical case. As in
that case, the proof relies crucially on some of our assump-
tions about the regularity of the initial data.

Proposition 4: For sufficiently small values of r, the
apparent horizon t � tah�r� acts as a one-way membrane:
a future-pointing null geodesic cannot cross the horizon
from the trapped to the untrapped region.

Proof: Let p be a point of space-time on the apparent
horizon with r > 0 and consider a future-pointing null
geodesic at p. If _rjp � 0, then the fact that

 t0ah�r� � t0c�r� �
2

3
F0�r�

is finite for all r > 0 and that _tjp > 0 proves the stated
result. Suppose then that _rjp � 0. Then there is a neighbor-
hood I 3 s0 such that _r�s� � 0 for all s 2 I with sjp � s0

where s is the parameter along the geodesic in question.
Then for points on the geodesic corresponding to I, we can
take r to be the parameter along the geodesic. Along a
future-pointing outgoing null geodesic, we then have, us-
ing (36),

 

dt
dr

> e� > R0 �
R
r

(38)

where we have used (4) and the no-shell-crossing condition
(25). Using (17), we can show that

 

�
R0 �

R
r

���������t�tah�r�
�
tah

tc
t0c: (39)

Then using t0ah � t0c �
2
3F
0, we can show that

 

�
R0 �

R
r

���������t�tah�r�
>t0ah , F0 �

F
r
> 0:

The initial regularity condition (23) indicates that this last
inequality holds for sufficiently small values of r. Thus
when projected onto the r-t plane, for sufficiently small
values of r, an outgoing null geodesic can only cross the
apparent horizon from below. The same result is immediate
for ingoing null geodesics as we can show that subject to

(23), the slope of the apparent horizon t0ah is positive for
small values of r. �

Remark 5: We note that the result above is equivalent to
stating that the apparent horizon is spacelike for small
values of r. Globally, there is no restriction: the horizon
may be null or timelike for larger values of r, and can
change character. Thus the apparent horizon is not always a
one-way membrane in Szekeres space-time.

V. POLAR GEODESICS IN THE AXIALLY
SYMMETRIC CASE

As we have seen in Sec. III, the only case in which radial
geodesics exist in Szekeres space-time is when the space-
time is axially symmetric and that furthermore the only
radial geodesics that can emerge are in the polar direction.
In this situation, the analysis of the visibility of the singu-
larity is essentially the same as that for the spherically
symmetric case. We show here that there are choices of the
initial data for which the central singularity is visible along
the polar direction. We follow the treatment of the spheri-
cally symmetric (LTB) case given in [17]. However as with
the previous section, some care must be taken to account
for the minor differences between the present case and the
spherically symmetric case.

The axially symmetric case is obtained by setting B1 �
B2 � 0 in (3), and the polar geodesic corresponds to x �
y � 0. Then the null geodesic equations (26)–(30) reduce
to

 

_t 2 � e2� _r2 � 0; (40)

 

�t� �t _t2 � 0; (41)

 �r� ��0 � 2�te�� _r2 � 0: (42)

Our first step is to show that we can replace the affine
parameter s by the coordinate r, and consider the projec-
tion of the geodesic into the r-t plane. To see this, we note
that from (42), if _r�s0� � 0 for some s0, then _r�s� � 0 for
all s, and the geodesic reduces to a single point. So we can
assume that _r � 0 along the geodesic. Hence a polar null
geodesic that is initially outgoing _r�s0�> 0 remains out-
going for all s. Consequently, apart from the question of the
maximal s-interval of existence of the geodesic, all infor-
mation regarding the outgoing polar geodesic is contained
in the single equation

 

dt
dr
� e� � R0 � R�0: (43)

Along such a geodesic �, we have

 �0j� � �
C0

C
:

In the axially symmetric case, the conditions (5) and (20)–
(22) reduce to
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 AC �
1

4
; (44)

 A> 0; (45)

 A� rA0 > 0; (46)

 A0C0 >�
1

4r2 : (47)

From these we obtain

 �
1

r
< �0j� <

1

r
: (48)

Thus the additional symmetry in the problem yields a
useful additional bound on �0 [cf. (19)].

To proceed, we make an additional mild assumption on
the structure of the function F. We define the number f0

and the function F1 by

 F � r3�f0 � F1�r��; F1�0� � 0:

Our mild assumption is that f0 > 0: this corresponds to the
initial central density being strictly positive. The no-shell-
crossing condition corresponds to F01 < 0 for r > 0, and so
f1 :� F01�0� � 0.

Proposition 5: If f1 < 0, then there is a future-pointing
outgoing polar geodesic with past end point on the central
singularity.

Proof: For f1 < 0, we can use (34) to write

 tah �
2

3
f�1=2

0 �
1

3
f�3=2

0 f1r�O�r2�;

where this and all other asymptotic relations in the present
proof refer to the limit r! 0. For constant � with 0< �<

� 1
3 f
�3=2
0 f1 �: �, define

 t��r� �
2

3
f�1=2

0 � �r:

Then for sufficiently small �1, there is a nonempty region

 �	�1; �
 � f�t; r�: t��r�< t < tah�r�; 0< r< �1g:

Note that t0� � � > 0. Along a future-pointing outgoing
polar geodesic �, we have

 

dt
dr
� R0 � R�0 <R0 �

R
r
;

and a straightforward calculation using (17) then yields
 

dt
dr

���������
<
�
9

4

�
1=3
f1=3

0 ��� ��
2=3

�
2�

2f1

3f3=2
0 ��� ��

�
r2=3

�O�r5=2�:

Since f1 < 0 and 0< �< �, the leading coefficient here is
positive, and so there is a �2 > 0 such that for all r < �2,
we have

 

dt
dr

���������
<t0�:

Hence by taking � to be sufficiently small to allow use of
Proposition 4 and to minimize �1 and �2, we see that a
future-pointing outgoing polar null geodesic in the region
�	�; �
 as defined above cannot leave this region as we
extend back into the past. Hence the geodesic must extend
back to the central singularity r � 0, t � tc�0� � tah�0� �
t��0�. �

Remark 6: We note that as in the spherically symmetric
case, it is possible to consider the case where f1 � 0. This
requires an additional assumption on the differentiability
of F and on the value of the coefficients of a Taylor
expansion of the function around r � 0. There is nothing
to indicate that the results obtained in this way would differ
from those obtained in the spherically symmetric case.

We consider next the important question of whether or
not these geodesics meet the singularity at some finite
affine parameter value in the past, or if s! �1 as r!
0, t! tc�0�. In order to do this, we study the sign of �t in
the region �	�; �
 introduced in the proof of Proposition 5
above.

Lemma 2: There are values of � 2 �0;� 1
3 f
�3=2
0 f1� and

� > 0 such that �t > 0 for all �t; r� 2 �	�; �
.
Proof: We have

 �t �
R0t � Rt�0

R0 � R�0

and so using the no-shell-crossing condition R0 � R�0, this
is positive if and only if the numerator is positive. From
(48), we have

 R0t � Rt�
0 >R0t �

Rt
r

(recall that Rt < 0). The latter term is positive if and only if

 

1

2

�
R
r

�
�3=2

�
1

r
�

1

3

F0

F

�
>

1

r
�
F0

3F
�

2

r
�O�1�:

We note that

 

1

r
�

1

3

F0

F
� �

1

3

f1

f0
�O�r�> 0:

For t > t�, we have

 

�
R
r

�
�3=2

>
�
1�

t�
tc

�
�1
� �tc�0���� ��

�1r�1 �O�r2�:

We note that the coefficient of r�1 here is positive. Hence if
we can choose � so that

 

tc�0�
6

f1

f0
��� ���1 �

�
3��� ��

> 2;

then there exists � > 0 so that �t > 0 on �	�; �
 as
required. This choice entails � > 5

6�, which can always
be made. �
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Proposition 6: Let � and � have the values required by
Lemma 2. Then any future-pointing polar null geodesic
that enters the region �	�; �
 extends back to the central
singularity in finite affine parameter time.

Proof: It only remains to check the statement regarding
finiteness of the value of the affine parameter s at which the
geodesic meets the singularity. By Lemma 2 and (41), we
see that �t < 0 in the limit as the singularity is approached.
If the limit t! tc�0� is reached only as s! �1, then we
would have

 lim
s!�1

�t � 0;

contradicting the statement above. �

VI. DISCUSSION

We have revisited the issue of the visibility of the shell-
focusing singularity in quasispherical dust collapse, moti-
vated by the observation that previous results have incor-
rectly assumed that there exist radial null geodesics in such
space-times. As we have seen, this is not generally the
case: the existence of such geodesics implies an additional
symmetry of the space-time. It is worth noting that our
discussion has been restricted to the 4-dimensional case,
whereas there have been several studies carried out in
higher n� 2 � D � 5 dimensional Szekeres space-times.
We suspect that an analogous result applies: the existence
of a radial geodesic in the space-time implies the existence
of (n� 1) Killing fields, leaving just 2� 1 nonignorable
coordinates. This conjecture is based on the structure of the
derivates @�

@xi
, 1 � i � n in the higher dimensional case.

However, we have not been able to determine the structure
of the group of transformations for the higher dimensional
case that corresponds to the transformations (8) that play a
crucial role in the proof of Proposition 1.

It is perhaps worth pointing out that with the benefit of
hindsight, it is not surprising to see a connection between
the existence of radial geodesics and symmetry. First, and
on general grounds, it would be unusual to see a situation in
which one had a conserved quantity (the values of the
angles in this case) without the presence of some form of
symmetry. Second and more specifically for this quasi-
spherical situation, it is hard to envisage a geodesic emerg-
ing orthogonally from one 2-sphere and remaining
orthogonal to other 2-spheres that it meets—unless the
centers of those 2-spheres are aligned, with the alignment

direction forming an axis of symmetry of the space-time.
This is exactly what we see happening in Proposition 1.

In the axially symmetric case, there is one direction
along which radial geodesics exist: the polar direction.
We have looked briefly at the issue of the visibility of the
singularity along this direction in the marginally bound
case, and find no difference between the present case and
the spherically symmetric case. However, we cannot gen-
eralize our finding to either nonradial geodesics in the
axially symmetric case, or to geodesics in the general
case. The fundamental difficulty in doing so is that one
cannot project the geodesic onto the r-t plane and retain all
information required. The geodesic equations in the gen-
eral case (no symmetry and hence no radial assumption
allowed) form a second order nonlinear dynamical system
with singular coefficients. The presence of the singular
coefficients—which correspond to the points of space-
time we are interested in analyzing—mean that standard
methods of smooth dynamical systems do not offer means
of approaching the problem. One possible approach is to
rescale the dynamical system by multiplying through by
the most strongly vanishing denominator in the singular
coefficients. One then absorbs this coefficient into a re-
scaled affine parameter, to obtain a smooth system. When
this is done carefully, it is possible to convert the singular
point of the original system to a stationary point of the
rescaled system. However, this procedure typically yields
nonhyperbolic equilibrium points and spurious equilibrium
sets requiring the use of center manifold analysis.
Nonetheless, it has yielded useful results in a different
context where similar problems (singular dynamical sys-
tems) arise [18]. It would be of interest to see if this
approach could be used to study general geodesics in the
nonaxially symmetric Szekeres space-time, or indeed the
nonradial (nonpolar) geodesics of the axially symmetric
Szekeres space-time. The existence of additional bounds
on the metric functions [like (48)] would be of consider-
able use in this case.
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