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Matched filtering and parameter estimation of ringdown waveforms
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Using recent results from numerical relativity simulations of nonspinning binary black hole mergers,
we revisit the problem of detecting ringdown waveforms and of estimating the source parameters,
considering both LISA and Earth-based interferometers. We find that Advanced LIGO and EGO could
detect intermediate-mass black holes of mass up to ~103M,, out to a luminosity distance of a few Gpc.
For typical multipolar energy distributions, we show that the single-mode ringdown templates presently
used for ringdown searches in the LIGO data stream can produce a significant event loss ( > 10% for all
detectors in a large interval of black hole masses) and very large parameter estimation errors on the black
hole’s mass and spin. We estimate that more than ~10° templates would be needed for a single-stage
multimode search. Therefore, we recommend a “‘two-stage” search to save on computational costs:
single-mode templates can be used for detection, but multimode templates or Prony methods should be
used to estimate parameters once a detection has been made. We update estimates of the critical signal-to-
noise ratio required to test the hypothesis that two or more modes are present in the signal and to resolve
their frequencies, showing that second-generation Earth-based detectors and LISA have the potential to

perform no-hair tests.
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L. INTRODUCTION

Astronomical observations provide us with a large num-
ber of black hole candidates [1]. Stellar mass candidates
(with mass M ~ 5 — 20M,) are found in x-ray binaries in
our galaxy. Since the discovery of quasars and other active
galactic nuclei, we have growing evidence that supermas-
sive black holes (SMBHs, with M ~ 10° — 10°M,,) should
reside in the cores of almost all galaxies, including our
own. There is also mounting observational support to the
idea that intermediate-mass black holes (IMBHs) may fill
the gap between these two classes of astrophysical objects.

It is commonly believed that the ultimate test of the
“black hole hypothesis” will come from gravitational
wave observations (see e.g. Lasota’s entertaining account
of exotic alternatives to astrophysical black holes [2], and
Hughes’ lectures [3] for a relativist’s perspective on
present and future observational tests of the black hole
hypothesis). From the point of view of an astrophysicist,
black holes are not particularly interesting: ‘““black hole
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candidates” are characterized only by their mass and an-
gular momentum, and no compact object with mass M =
3M, has shown any feature that would allow us to attribute
to it any other property other than mass and rotation. For a
relativist, black holes (being vacuum solutions of the field
equations) are much more exciting: they are unique,
“clean” probes of the structure of spacetime in strong-
gravity conditions.

An important identifying dynamical feature of a black
hole are its characteristic damped oscillation modes, called
quasinormal modes (QNMs) [4]. Any compact binary
merger leaving behind a black hole produces a gravita-
tional wave signal that, after the black hole’s formation,
can be decomposed as a superposition of exponentially
damped sinusoids. By analogy with the ordinary vibrations
of a bell, this signal is known as ‘““‘quasinormal ringing’’ or
ringdown.

The fact that all information is radiated away in the
process leading to black hole formation, so that astrophys-
ical black holes in Einstein’s theory are characterized
completely by their mass and angular momentum, is
known as the ‘‘no-hair theorem.”” For this reason the ring-
down signal is very simple: mass and angular momentum
are enough to characterize the black hole’s oscillation
spectrum (see Ref. [5] for details), and the detection of
ringdown waves may allow us to identify a black hole and
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determine its properties. A measurement of the frequency
and damping time of a single QNM can be used, at least in
principle (see below), to determine both the mass and
angular momentum of the hole [5-8]. Detection of more
than one QNM would allow us to test consistency with the
black hole hypothesis—or in more colloquial speaking, to
“test the no-hair theorem’ [5,9].

The detectability of ringdown waves, as well as their use
to measure black hole properties and test relativity, depend
mainly on two factors: (i) the fraction of the black hole’s
mass radiated in ringdown waves (i.e. the “ringdown effi-
ciency” €4), and (ii) the detector’s sensitivity in the fre-
quency band of interest. In Ref. [5], some of us carried out
a detailed study of ringdown detectability and no-hair tests
with the planned space-based Laser Interferometer Space
Antenna (LISA). The ringdown efficiency €4, the multi-
polar energy distribution of the radiation, and the dimen-
sionless angular momentum j of the final black hole were
considered as free parameters, to be varied within a certain
reasonable range. We confirmed and refined earlier esti-
mates by Flanagan and Hughes [8], showing that the ring-
down signal-to-noise ratio (SNR) is usually larger than the
inspiral SNR for the typical SMBH masses (M = 10°M,)
inferred from astronomical observations of nearby
galaxies.

Binary black hole simulations are now carried out by
different groups all over the world. Large-scale simulations
of nonspinning unequal-mass binary black hole mergers
were recently used to provide reliable estimates of €4, of
the final angular momentum j, and of the multipolar energy
distribution [10]. Reference [10] also showed that two or
more modes are excited to comparable amplitudes in a
binary black hole merger whenever the binary’s mass ratio
qg = my/m; # 1. The significant excitation of different
multipolar components can be used to extract useful infor-
mation on the geometry of the ringing object, and to
perform no-hair tests (in the sense explained above).

In this paper we revisit the analysis of Ref. [5] taking
into account these recent results from numerical relativity,
and we extend that study to include planned and presently
operating Earth-based detectors (LIGO, Virgo, Advanced
LIGO, and EGO). Many authors have recently stressed the
potential of Earth-based detectors for measuring ringdown
waves in the IMBH mass range [11-21]. For example,
Ref. [19] matched an equal-mass merger waveform from
numerical relativity to a post-Newtonian inspiral and
showed that the resulting SNR for a single LIGO detector
peaks at M ~ 150M,, which is well within the IMBH mass
range. The results presented in this paper confirm that
ringdown waves may be used to provide conclusive evi-
dence for the existence of IMBHs and (even more impor-
tantly) to accurately measure their parameters. Initial
LIGO (Virgo) may detect IMBHs with M < 400M, (M =
800M, respectively) out to a luminosity distance D; ~
100 Mpc. Advanced Earth-based interferometers would
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extend the luminosity distance at which ringdown events
are detectable by a factor ~10 for Advanced LIGO, and
~100 for EGO (see Fig. 2 below). Advanced LIGO and
EGO could detect IMBH ringdowns out to cosmological
distances with large SNR, and allow precision measure-
ments of the IMBHSs’ properties.

Higher multipolar components of the radiation can be
significantly excited [10], and this calls for a critical re-
vision of the matched-filtering techniques used for ring-
down searches. Present ringdown searches in the LIGO
data stream use templates consisting of only one QNM [22]
(see also Ref. [23] for data analysis methods to resolve
neutron star ringdowns from instrumental glitches).

In this paper we address this problem and give a pre-
liminary answer to the following questions:

(1) Given estimates of the multipolar energy distribu-
tion in nonspinning binary black hole mergers, how
many events would we miss in a search with single-
mode ringdown templates? The answer is quantified
in Fig. 1, where we compute Owen’s ‘‘minimal
match” [24] as a function of the black hole mass
M, measured in the source frame. The event loss is
larger than 10% whenever the minimal match is
larger than 0.035 (details are provided in the body
of the paper). From the figure we see that this
happens in a significant mass range for all Earth-
based detectors. We will show below that similar
conclusions apply also to the planned space-based
interferometer LISA, although in a completely dif-
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FIG. 1 (color online). Owen’s minimal match, as defined be-
low Eq. (2.5), for different Earth-based detectors. For this
illustrative calculation we assume that the Kerr parameter of
the final black hole is j = 0.6, and that the relative amplitude of
the second mode is A = 0.3. We also set the phases in Eq. (2.1)
tobe ¢p; = ¢, = 0 (thick lines) or ¢p; = 0, ¢p, = 7 (thin lines).
The black circle and the red square mark two cases that we study
in more detail below: a M, = 100M, black hole as observed by
LIGO and a M, = 200M, black hole as observed by Advanced
LIGO, respectively.
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ferent mass range. Furthermore, we will show that
single-mode templates can produce a large bias in
the estimation of the black hole’s mass and spin. Our
conclusions should be rather conservative, because
from perturbation theory and from numerical rela-
tivity results we expect higher multipoles to be more
excited for black hole binaries with spin and large
mass ratios.

(2) How many templates would we need for searches
using two-mode templates? We estimate that, as
compared with single-mode searches, the number
of templates needed for a two-mode search would
increase by roughly 3 orders of magnitude. A more
detailed data analysis study (e.g. using better tem-
plate placing techniques, along the lines of [25])
could be wuseful to reduce computational
requirements.

(3) How strong must a ringdown event be if we want to
perform no-hair tests or resolve nonlinear contribu-
tions [26] to the ringdown waveform? More pre-
cisely: what is the minimum SNR needed to resolve
QNMs? Below we address different aspects of this
problem (frequency, damping time, and amplitude
resolvability require different SNRs). Our results
suggest that prospects to resolve QNMs are quite
optimistic for both LISA and second-generation
Earth-based detectors.

The plan of the paper is as follows. In Sec. IT we discuss
the potential of Earth-based detectors to measure ringdown
waves from solar-mass black holes and IMBHs. In Sec. III
we look at the event loss and bias in parameter estimation
induced by searching for a two-mode waveform with a
single-mode template. In Sec. IV we revise our previous
estimates [5] of the critical SNR required to perform no-
hair tests. Section V contains a brief summary of our
conclusions. Some technical details are presented in the
Appendices. In Appendix A we estimate the number of
templates required to detect multimode waveforms, and in
Appendix B we provide a (somewhat optimistic) estimate
of the critical SNR required to test the hypothesis that two
modes are present in a ringdown signal.

II. RINGDOWN DETECTABILITY BY
EARTH-BASED DETECTORS

In this section we study the detectability of ringdown
waves by present and planned Earth-based interferometers:
LIGO, Virgo, Advanced LIGO, and EGO. Our analysis
complements that of Ref. [5], where a similar study was
performed for the planned space-based interferometer
LISA. Detectability can be assessed by computing the
(maximum) SNR p achievable by matched filtering:

where the scalar product between two waveforms is de-

(1.1)
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fined as [7,27]

(hylhy) =2 [ - ﬁT(f)ﬁz(f;hJ(rff)i(f)ﬁE(f)

df. (1.2)
Here

h(f) = fjm 27 R()dt (1.3)

is the Fourier transform of the waveform A(z), and S;,(f) is
the noise power spectral density (PSD) of the detector. For
the initial LIGO and Virgo PSD we use the analytic ap-
proximation of Ref. [28]. We assume that the PSD S, (f) =
oo for f < f, where the low-frequency sensitivity cutoff
fs = 40 Hz (for initial LIGO) and f; = 20 Hz (for Virgo).
For Advanced LIGO we consider the broadband configu-
ration PSD given in Ref. [29], and for the projected PSD of
EGO we follow Appendix C of Ref. [30]. For LISA, we
model the PSD (including white-dwarf confusion noise) by
the semianalytic approximation used in [5,31], with a low-
frequency cutoff f, = 3 X 1073 Hz.

An estimate of the maximum detectable black hole mass
for LISA and Earth-based detectors can be obtained by
equating the fundamental / = m = 2 QNM frequency (as
tabulated and fitted in Ref. [5]) to f,. Since QNM frequen-
cies scale as 1/M, this sets a limit on the maximum
detectable black hole mass. The results of this estimate,
which are mildly dependent on the black hole’s rotation
parameter j, are listed in Table I. The mass range acces-
sible to Earth-based interferometers can increase dramati-
cally with relatively small (but technically difficult)
improvements in the low-frequency sensitivity threshold.
For example, a detector with f, = 10 Hz can detect
IMBHs with M > 103M,, even if they are nonspinning.
For the typical spins that should result from a binary black
hole merger (j ~ 0.6), a low-frequency sensitivity thresh-
old at 40 Hz means that initial LIGO will not be sensitive to
QNM ringing from IMBHs with mass = 400M,. The
detectable mass range increases as the spin of the remnant
black hole gets larger.

In the left panel of Fig. 2 we show the typical sky-
averaged SNR of Earth-based detectors for black hole
ringdowns at luminosity distance D; = 100 Mpc as a
function of the black hole mass in the source frame M,
[related to the mass M in the detector frame by M = (1 +
7)M,, where z is the cosmological redshift]. The actual
value of the ringdown SNR changes slightly depending on
the way we compute the Fourier transform in (1.3). There
are two common conventions in the literature (see Ref. [5]
for more details). The Echeverria-Finn (EF) convention (in
the terminology of Ref. [5]) is shown by thin lines in the
left panel. It assumes that the ringdown waveform h(r) ~
e~ "/7sin(27f1) is zero before some starting time (say t =
0). Alternatively, we can adopt the Flanagan-Hughes (FH)
doubling prescription (thick lines in the figure): we assume
that the waveform for # <0 is identical to that for r >0
except for the sign of ¢/7 (i.e., we replace e~ "/7 by ¢~ Il/7)
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TABLE L.
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Upper limit on the detectable black hole mass for which the fundamental QNM with

I = m = 2 would be detectable by LISA and Earth-based interferometers, for different dimen-
sionless spin parameters j. A reasonable estimate of f; is ~10 Hz for EGO, and ~20 Hz for

Advanced LIGO (see Ref. [30]).

j=0 j=06 j=07 j =098
Earth-based 1200M, (1%H42) 1600M (%) 1720M o (1%H2) 2670M o (101
LISA 4 X 108M, 5.3 X 108M, 5.7 X 108M, 8.9 X 108M

and we divide the resulting SNR by /2 to compensate for
the doubling [8]. The left panel of Fig. 2 shows that
adopting one or the other convention does not change the
results significantly. In the remainder of the paper, we will
adopt the EF convention, since it is generally more
straightforward to implement in matched-filtering
applications.

The right panel of Fig. 2 shows the luminosity distance
out to which ringdown would be detectable by each detec-
tor with a SNR of 10 (assuming a flat, A-dominated
cosmology, in accordance with the latest observational
data). In the figure we use typical values from simulations
of nonspinning binary black hole mergers [10], assuming
that the final black hole has angular momentum j = 0.6
and that the ringdown efficiency is €4 =~ 3%. The results
would not change much had we made different assump-
tions. In particular, the SNR scales with efficiency as p ~
/€ If the merging black hole binary has mass ratio g =
m,/m; < 1, the ringdown SNR would decrease (to a very
good approximation) by a factor 4¢/(1 + g)*> compared to
the equal-mass case [10]. Figure 2 can be compared with
Figs. 7 and 8 in Ref. [5], showing the inspiral and ringdown
SNR of LISA at different values of the cosmological
redshift (for clarity, in Fig. 2 we do not show the inspiral
SNR). We also note that Fig. 2 assumes matched filtering
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FIG. 2 (color online).

with one mode only, and that (following results from
numerical relativity simulations) we assumed this mode
to be the fundamental mode with [ = m = 2. Inclusion of
higher multipoles, the main topic of this paper, would only
increase the sky-averaged SNR by small factors of order
unity, but (as we will show) it may have important impli-
cations for a matched-filtering detection of the signal.

The left panel of Fig. 2 is in good agreement with the
results for LIGO and Advanced LIGO shown in Fig. 2 of
Ref. [16]. Our results for Advanced LIGO are slightly
different because we use a more accurate model for the
PSD. For Virgo, our results agree with those in Ref. [15].
The right panel clarifies the potential of present and future
interferometric detectors to detect ringdown waves. At the
present sensitivity, LIGO could detect waves from IMBHs
of mass M ~ 10>M, out to a distance of about 100 Mpc.
Virgo spans roughly the same distance range, but it should
be able to detect larger IMBH masses when the low-
frequency design sensitivity is met. Advanced LIGO will
extend the distance range out to a few Gpc (a factor ~10)
and it should be able to detect IMBHs of mass 10>M, <
M, < 10°M,. EGO would be a remarkable tool to detect
IMBHs of mass as large as ~10°M,, out to distances of
~10 Gpc and larger, and to measure their properties with
remarkable precision.

10°
r /=0.6, £ ,=3%
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Q ol - N
OR: e
Q\' [ / ——.
AL/ _
10 — LIGO 3
C — = Advanced LIGO| 1
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Left: ringdown SNR for LIGO, Advanced LIGO, Virgo, and EGO at 100 Mpc. Thin lines refer to the EF

convention, thick lines to the FH convention (see text). Right: luminosity distance (in Mpc) for detectability of the ringdown signal
with a SNR of 10 (for clarity, here we only show results for the FH convention).
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III. EVENT LOSS AND BIAS IN PARAMETER
ESTIMATION USING SINGLE-MODE TEMPLATES

A common choice to search for signals of known form in
noisy data is matched filtering. Matched filtering works by
cross correlating the signal with a set of theoretical tem-
plates.' Current searches for ringdown signals in the LIGO
data stream [22] and in resonant bar detectors [33] make
use of the simplest theoretical model: a single damped
sinusoid. Here we try to assess the performance of such a
template to detect a superposition of damped sinusoids.
More precisely, we estimate the number of events we
would miss by using single-mode templates to detect mul-
timode signals, and we try to quantify the bias in measured
parameters induced by the use of such templates.

The optimal way of addressing the performance of
single-mode ringdown templates would be to use our
present best guess for the “true” waveform emitted by a
binary black hole merger: the wavetrain obtained by stitch-
ing together the post-Newtonian predictions for the inspiral
and the best available numerical relativity waveforms.
Finding the optimal way to perform this stitching is in
itself a difficult problem, now actively pursued by many
research groups [10,17,19,34]. Our purpose here is to make
some general points of principle, exploring semiquantita-
tively the typical event loss and parameter bias induced by
single-mode templates. For this reason, and to keep the
analysis as simple and general as possible, our true wave-
form will be taken to consist of a two-mode QNM super-
position. Therefore we assume that the following two-
mode signal is impinging on the detector, starting at time
t=0:

h(t) = Ae” /@) sin2mf it — )
+ Aye T/ gin(2a for — ¢y) (2.1a)
= ~;ql[e—(ﬂrfl/Ql)f sinQRarft — ¢y)
+ Ae T/ sin2arfat — )] (2.1b)
Here f; (i = 1, 2) denotes the oscillation frequency of each

QNM, Q; = 7 f;7; is the quality factor of the oscillation,
and A, is the oscillation amplitude of mode i. For reasons
that will become apparent in the following, in the second
line we found it convenient to express the signal in terms of
the relative amplitude of the two modes A = A,/ A;.
The Fourier transform of Eq. (2.1) in the EF convention
reads

~ O01[2f10; cospy — (fy — 2ifQy)sing,]
A(f) =
(=2 alf} —4iff10, +4(—=f* + 1071
+(1—-2).

2.2)

"For alternative techniques especially designed to extract
damped sinusoidal signals from noise, see Ref. [32] and refer-
ences therein.
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Matched filtering works by cross correlating the detec-
tor’s output with a set of templates. Consider a one-mode
bank of templates such as those presently used in ringdown
searches [22]:

T{X} = e ™1/t sin[ 2 f ot — to) — b1,
{A} [27fr 0) — 7] 2.3
for t = ¢,

where X is an (N-dimensional) vector of template parame-

ters, and T{A} = O for ¢ < t,. In this particular case, A =
(f7, Or, ¢7) and N = 3 (in principle we could use 7, as an
additional parameter, but we verified by explicit calcula-
tions that setting 7, = 0 does not sensibly affect the fitting
factor and the estimated values of the other parameters).
The Fourier transform of this template is similar to those in
Eq. (2.2), with an additional exponential factor depending
on the starting time ¢:

Qr[2f70rcosdpr — (fr — 2if Qr) singz]
7(f7 — 4if frQr + 4(—f* + [7)0F)
—7(fr — 2if Oty
conf 0]

The performance of the template (2.3) to detect the two-
mode waveform (2.1) can be computed with the help of the
fitting factor (FF) first introduced by Apostolatos [27]:

(T{A} 1)

X ————— :
A AT{XT{A (R )

where the scalar product between two waveforms has been
defined in Eq. (1.2). An equivalent quantity often used in
the literature is Owen’s “minimal match,” defined as (1 —
FF) [24]. From the definition, Eq. (2.5), it is clear that an
overall normalization constant (say, A ;) does not affect
calculations of the FF: this is the reason for introducing the
relative amplitude ‘A defined in (2.1). The FF measures the
degradation of the SNR due to cross correlating an arbi-
trary signal /(z), such as the two-mode signal (2.1), with all
filters T{X} in the template bank. The effective SNR that
can be obtained by matched filtering is

TR
L @R

where p has been defined in Eq. (1.1). For gravitational
wave detection the SNR is proportional to the inverse of
the luminosity distance to the source, while the event rate
(scaling with the accessible volume) is proportional to the
cube of this distance. Therefore, given the FF, we can
compute the event loss as

() =

(2.4)

FF =

(2.5)

— FF X p, (2.6)

PMF =

event loss = 1 — FF>. 2.7)

For detection purposes, one usually requires FF = 0.965,
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corresponding to a loss of less than 10% of the events that
could potentially be detected by a ““perfect” filter.

We compute the integrals in (2.5) and (2.6) using a
Gauss-Legendre spectral integrator, and we perform the
maximization by a FORTRAN implementation of the
Nelder-Mead downhill simplex method [35]. In actual
searches, the set of all templates forms a grid that should
cover the N-dimensional parameter space. The point on
this grid for which the FF is maximum singles out the
template that best matches the actual waveform impinging
on the detector. If the FF is above some predetermined
threshold, e.g. FF = 0.965, we say that we have a detec-
tion. An estimate of the number of templates required to
detect multimode waveforms is given in Appendix A.

The detectability of a multimode signal by a single-
mode template depends, among other things, on the rela-
tive amplitude of the subdominant modes in the “real”
signal. In our simplified signal (2.1) we denoted this rela-
tive amplitude by A. Below we discuss how recent nu-
merical simulations of binary black hole mergers can be
used to provide such an estimate.

A. Estimates of the relative mode amplitude from
numerical relativity

Recent results from numerical simulations of the merger
of nonspinning, unequal-mass black hole binaries support
the expectation that the / = m = 2 mode should dominate
the ringdown signal [10]. However, they also reveal that
other modes (especially [ =m =3 and [ = m = 4) are
significantly excited. Whenever the mass ratio g = 2, the
I = m = 3 mode is excited to roughly one-third of the
amplitude of the / = m = 2 mode. We expect this estimate
of the relative excitation to be conservative: perturbative
results and numerical simulations indicate that higher
multipoles should be more excited as the binary’s mass
ratio grows, or when the black holes in the binary are
spinning.

Merger simulations show that the projection of the Weyl
scalar W, onto spin-weighted spherical harmonics
_,Y,,(6, ) has a circular polarization pattern (see
Appendix D of Ref. [10]). In the ringdown regime the
Weyl scalar W, can further be decomposed as a QNM
sum, and to a good approximation we can write

1 .
\1,4 - ;Zw%ﬂ”ﬂﬂe_t/q-—ZYlm(a’ 0)[S11’1(X - |m|¢)
Im

+ isin(y — |m|l¢p + 7/2)]. (2.8)
For simplicity, in this expansion we are considering only
the least-damped, fundamental mode for each (/, m) pair
[5]. We also approximate spin-weighted spheroidal har-
monics by spin-weighted spherical harmonics, which in-
troduces an error of order ~1% or less [36]. The variable
X = w,t+ ¢y, with ¢ a constant, and it is implicitly
assumed that all frequencies and damping times depend
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on the angular numbers (I, m). Using the equatorial sym-
metry of the system, the waveform can be rewritten as

1 )
P, =- Z w%ﬂll|m|e”/7[Yl:1 sin(y — mao)
r

1, m>0
+ 1Y) sin(y — me + 7/2)], (2.9)
where we have defined the following useful quantities:
Y = ,Y,00,0)+ (—1)"_,Y,_,(6,0),
Yy, = Y000 —(=1)'_,Y,_,(6,0).

(2.10a)
(2.10b)

Recalling that W, = h, — ihy and using the large-Q
limit, which is usually a good approximation [5], we get

1
hy === Ayue” "7y, sin(x — mg), (2.11a)
I w0
1
hy = ; Z ﬂllmleﬂ/TY}); Sin(X —m¢ + 77/2). (2.11b)
1,m>0

The gravitational wave strain at the detector is given by

h=hiF. (05 ¢s, s) + hxFx (05, b5, ), (2.12)

where F, (05, ¢, ) are pattern functions depending on
the orientation of the detector and on the direction of the
source, whose expressions can be found (for example) in
Ref. [37]. In the following, to simplify the notation, we will
drop the functional dependence of Y ;,;X and F, x on the
angles.

Let us consider, for simplicity, a two-mode situation.
Guided by numerical results for the merger phase (see
below), we can assume that the dominant modes are [ =
m = 2 and [ = m = 3. Then we get

A
h(t) = _ﬂ{e—'/TZZ[Sin(a)%zt + o0 —28)YHF,
r

+ sin(w%zt + ©$r — 2¢ + 77/2)Y2><2F><]
_Asn

22

+ sin(wBt + @33 — 3¢ + 77/2)Y3X3FX]}. (2.13)

e*l‘/”m[sin(a)?t + @33 — 3¢)Y3+3F+

The relative magnitude of different multipolar compo-
nents depends on the factor A = A3/ A,, (discussed
below), but it is also a function of the angles (6, ¢): that is,
it depends on the orientation of the black hole’s spin. Let us
discuss the influence of these two factors, in turn.

To start with, in Table II we show two different estimates
of the relative amplitudes A3/ A, and A,/ A,, from
numerical simulations of unequal-mass black hole bi-
naries. The first estimate uses the energy maximized or-
thogonal projection (EMOP) criterion. The idea is to slide
a ringdown template of the form (2.3) along the numerical
waveform, and define the starting time of the ringdown as
the time maximizing the “energy content’ of the ringdown
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wave, which can be defined using a suitable scalar product.
Given this starting time, we can also compute the energy
radiated in a given multipolar component of the ringdown
waveform according to the EMOP criterion, EEMOP (see
Ref. [10] for details). The radiated energy EMMOP o
(AEMOPY () @), where AEMOP ig the amplitude of the
physical waveform h, w;,, the vibration frequency of the
fundamental mode and Q,,, its quality factor [5]. Then our
EMOP estimate of the relative amplitude of different mul-

tipolar components is

AR [Elle'm'wl’m’i|l/2. 2.14)

ﬂ%g;llop El’m’lewlm
To bracket uncertainties, a second estimate can be ob-
tained by simply computing the ratio of the moduli of the

waveforms |[AP*%|/ |h5<;e:}< , where a superscript ‘“‘peak”
means that we evaluate the modulus of the waveform’s
amplitude at the maximum (see Ref. [10]). We call this the
“peak estimate.”

The amplitude ratios depend on the modes being con-
sidered and on the binary’s mass ratio ¢, and their func-
tional dependence on ¢ can be deduced from the leading-
order post-Newtonian quasicircular approximation dis-
cussed in Ref. [10]. We find that the data in Table II are

well approximated by the following fitting relations:

ﬂ33

~k(1—-1 2.15
A, 1 ( /q9), (2.15a)
Ay q2
— =k + ks ——, 2.15b)
Ay 0 P(+g)r (

where the values of the fitting constants depend on the
estimation method we use. If we use the EMOP criterion
we get kPMOP =303, ikEMOP = —0.0134, kEMOP =
0.1400. If instead we use the peak estimate, the fitting
coefficients are K = 0.431, Kb = —0.0670, k5 =
0.2843.

Let us now turn to the angular dependence of different
multipolar components. From Eq. (2.13) we see that the
relative amplitude of the modes is a complicated function
of the sky position and orientation of the source, depending

TABLE II. Relative amplitudes of different multipoles, during
the ringdown phase.
EMOP Peak

q A/ An A/ Ax Asz/ Ap A/ An
1 0.00 0.05 0.00 0.06
1.5 0.09 0.05 0.12 0.06
2.0 0.15 0.05 0.19 0.06
2.5 0.19 0.06 0.24 0.08
3.0 0.20 0.06 0.28 0.09
35 0.21 0.07 0.32 0.10
4.0 0.23 0.08 0.35 0.12
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on products of the angular functions F »x and Y ;n’x. A
possible way to determine the influence of these angles on
the relative amplitude of the modes would be to perform
Monte Carlo simulations, assuming random distributions
for the angles. This is beyond the scope of this paper. Some
insight can be obtained by plotting the #-dependent com-
binations appearing in Eq. (2.13) (Fig. 3). For simplicity,
let us consider the following two cases:

(1) The angles (6s, ¢, g) are such that Fx = 0. Then
the relative amplitude A,/ A, depends on the
product of two factors: (As3/Ay) X (Y55/Y5).
In this case, from Fig. 3 we see that the ‘““plus”
component of the subdominant (I = m = 3) multi-
pole is never significantly enhanced with respect to
the dominant multipole, because |Y3;/Y5,| < 1 for
all values of 6.

(2) The angles (A, ¢, 5) are such that F, = 0. In this
case the angular factor (¥35/Y55) can blow up at the
equator 6 = 77/2, so that the “subdominant” [ =
m = 3 component will actually dominate the wave-
form for an observer located in this direction.

In conclusion, the relative amplitude A = A,/ A, is
at most ~1/3 for nonspinning mergers with moderate mass
ratios. Subdominant components can be amplified by the
angular dependence of the radiation, but the likelihood of
such an amplification should be quantified by a more de-
tailed analysis. If the ratio of angular functions is of order
unity, a relative amplitude A =~ 0.3 can be thought of as a
conservative estimate. From both point particle results and
present-day simulations of spinning binaries in numerical
relativity, we expect higher multipoles to be more excited
for initially spinning black holes and large mass ratios.
Below we illustrate the typical effect of subdominant
multipoles on matched filtering assuming A = 0.3.

Angular functions

FIG. 3 (color online).
Eq. (2.13).

0-dependent angular functions in
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B. Fitting factors and event loss due to single-mode
templates

In our calculations of the FF, we will assume that the
angular dependence of the waveform (2.13) is such that the
signal can be simplified to the form of Eq. (2.1). This
assumption is not general enough. Our discussion above
shows that it will only be valid for specific source locations
in the sky, or for specific orientations of the detector: for
example, the signal simplifies to Eq. (2.1) when F, = O or
Fy =0, as long as we consider an observer located at
some constant § and we appropriately define the azimuthal
angles (¢}, ¢,). A good strategy to address the general
case could make use of Monte Carlo simulations. However,
the simplified waveform (2.1) captures many of the im-
portant features we wish to address in this paper. Based on
our discussion of the relative multipolar excitation we
assume that mode ““1” is the fundamental QNM with [ =
m = 2, and that mode ““2” is the fundamental QNM with
[ = m = 3. We set the relative amplitude of the two modes
A = 0.3, and to compute the QNM frequencies and qual-
ity factors we consider a dimensionless Kerr parameter j =
0.6 (a typical value for the end product of unequal mass,
nonspinning binary black hole mergers).

Figure 1 shows Owen’s “minimal match” (1 — FF) [24]
for this choice of parameters. The calculation is performed
for different Earth-based detectors (LIGO, Virgo,
Advanced LIGO, and EGO) and the minimal match is
computed as a function of the black hole’s mass in the
source rest frame, M. Thick lines assume that ¢, = ¢, =
0: roughly speaking, this means that the subdominant mode
is ““in phase” with the dominant multipole. Thin lines
assume ¢; = 0 and ¢, = 7, a rough way to simulate
“dephased” signals. Intuitively we would expect a
single-mode template to be a worse match for dephased
signals. This expectation is confirmed by the fact that the

47 ~ .
R it -]
2+ === - -
O F|— LIGO e 5
I'T|--- AdLIGO
0 t t t
0.5
30: 049 |
= 048
0.47
w15
o
— 10
>
O 5
X —

FIG. 4 (color online).
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minimal match is usually larger when ¢, = 7 (see below
for a more detailed analysis). Values above the horizontal
dashed line, corresponding to a FF = 0.965, correspond to
an event loss larger than 10%. This illustrative calculation
shows that, for the typical relative amplitudes expected
from numerical relativity, single-mode templates can pro-
duce a significant event loss in Earth-based detectors when
the black hole mass M = 10>°M,,. This event loss can be
fatal for detection of signals from very large mass IMBHs
(My = 200M,,), especially when the [ =m =2 and [ =
m = 3 components are not in phase. A more detailed
discussion of the dependence of the FF on the phases
(1, ¢,) can be found below.

A low value of the FF is usually accompanied by a large
bias in parameter estimation. This is illustrated quantita-
tively in Figs. 4 and 5, where we plot the quality factor and
(dimensionless) frequency maximizing the FF, and the
corresponding event loss, for different detectors. In Fig. 4
we consider Earth-based detectors of first and second
generation. To be conservative, we perform the calculation
in the “optimistic”’ case whenthe l = m = 2andl = m =
3 modes start in phase (¢ = ¢, = 0, A = 0.3).

The QNM frequency of the dominant mode (horizontal
dash-dotted line) is usually estimated with very good ac-
curacy by a single-mode filter, except for very large values
of the mass (M = 500M, for LIGO and Virgo, and M =
10°M, for second-generation detectors). Unfortunately,
even when the FF is very high the single-mode filter
produces a large bias in the quality factor of the dominant
mode. For all Earth-based detectors we consider, this error
is = 20% even for low values of the mass (M, < 100My,),
when the event loss is quite low and the filter works well
for the purpose of detection. The bias on the quality factor
gets even worse when we allow for a possible dephasing of
the subdominant multipole (see Fig. 8 below). Being di-

Quality factor (top panel) and frequency (middle panel) maximizing the FF, and corresponding event loss
(bottom panel), for Earth-based detectors. Solid and dashed lines are the template’s frequency and quality factor maximizing the FF,
and the corresponding event loss. Horizontal lines show the frequency and quality factor of the fundamental mode with [ = m = 2.
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FIG. 5 (color online).
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Same as Fig. 4 for LISA. In the left panel we choose ¢; = ¢, = 0, as for Earth-based detectors. In the right

panel we also consider a dephased QNM superposition with ¢; = 0, ¢, = 7 (green, dot-dashed lines).

mensionless, the quality factor of a QNM depends only on
the dimensionless angular momentum j of the black hole
[5]. Therefore, a large bias in the quality factor means that
single-mode templates cannot be used for accurate mea-
surements of the black hole’s angular momentum, contrary
to early claims in the literature (see e.g. Ref. [6]). Of
course, this does not mean that such measurements are
not possible. Single-mode templates are useful for detec-
tion (at least for small black hole masses), but multimode
templates will be necessary if we want to perform precision
measurements of a black hole’s properties using ringdown
waves.

Figure 5 shows that these remarks remain valid even for
LISA, when the SNR is much larger and the detectable
QNM frequencies much lower. In the plot we consider a
source at D; = 1 Gpc (z ~ 0.2), for which the SNR can be
= 103 [5]. The left panel shows the optimistic case when
the first and second QNM signals are in phase. Even in this
optimal situation the event loss can be as large as ~15% for
masses M ~ 5 X 10°M, roughly the measured mass of
the SMBH at the center of our own Galaxy. When the two
QNM signals are dephased (green, dot-dashed line in the
right panel) the event loss can be larger than 60% for
masses M, ~ 10’ M. Notice also that for My, < 10'M,
when the single-mode template works well for detection
purposes, the bias on frequency and quality factor has
opposite sign depending on whether the signals are in
phase (¢ = ¢, = 0) or dephased (¢p; =0, ¢, = m).
This is no coincidence, as we will demonstrate below by
studying the dependence of the bias on the phase angles

(d)lr ¢2)

C. Effect of the relative phase of the modes on detection
and parameter estimation

So far we computed the FF assuming ¢; = 0 (so that the
dominant QNM has maximum amplitude at r = 0). We

only explored the effect of the relative QNM phase by
changing the sign® of . In practice the situation is not
so simple, since the phase of the two (or more) components
of the “exact’ signal is not known in advance. This prob-
lem is reminiscent of the analogous problem occurring in
matched-filtering detection of inspiral signals (see
Appendix B of Ref. [38]). For both inspiral and ringdown,
maximizing the FF (2.5) over all parameters yields a “‘best
possible overlap’” which is somewhat optimistic, and there-
fore not too useful as a detectability criterion. More real-
istically, we should take into account our ignorance of the
phase, or phases, of the true signal. This can be done by
computing a “minimax’’ overlap [38]: first maximize the

FF (2.5) over all parameters {A} of the template T{A}, and
then minimize over the unknown phases of the actual
inspiral or ringdown signal A(r).

To discuss the difference between “‘best” and minimax
overlaps in terms of detection and parameter estimation,
here we perform FF calculations in the (¢, ¢,) plane. We
consider, for illustration, two cases:

(i) An IMBH with M, = 100M, as observed by LIGO;

(ii)) An IMBH with M, = 200M, as observed by

Advanced LIGO.

The FF for ¢; = ¢, = 0 in these two cases is marked
by a circle and a square, respectively, in Fig. 1. As in the
rest of this section, our signal will be given by the two-
mode waveform (2.1) with /A = 0.3 and j = 0.6. This
simple model is sufficient for our present purpose. A
more detailed analysis (taking into account details of the
angular dependence of the radiation, including a better
model of the ringdown signal for spinning mergers, and

*For ¢, = 0, a sign change in A is obviously equivalent to
setting ¢, = 2nm (what we referred to as the QNM signals
being ““in phase”) or ¢, = (2n + 1)7r (dephased signals), with
n an integer.
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FIG. 6 (color online).
the signal in case (i).

FF as a function of the phase angles of

possibly using waveforms from numerical relativity) is a
topic for future work.

Figure 6 shows a contour plot of the FF for case (i). The
FF is always larger than 0.965, or equivalently, the event
loss is always smaller than 10%. For this particular system
(and, presumably, for most low-mass black hole ring-
downs), our ignorance of the phases does not sensibly
reduce our chances of detecting the signal.

The plot shows interesting features, some of which are
easy to understand. Under a simultaneous replacement
(b1, d2) = () + 2n + )7, py + 2m + 1)7r), where
(n, m) are integers, the FF is unchanged. This is a trivial
consequence of the fact that the overall sign of the signal
(2.1) does not affect calculations of the FF. The FF has
maxima and minima as a function of the two phases.
Modulo periodicity, we see that the minimum occurs

Fitting Factor, M0=200 Msu - Advanced LIGO

FIG. 7 (color online).

PHYSICAL REVIEW D 76, 104044 (2007)

when ¢, ~ /4 and ¢, ~ — /4. This is reasonable: for
these values of the phases the signals have comparable
magnitude and opposite phase at ¢t = 0, so that the [ =
m = 3 multipole almost exactly cancels out the dominant
! = m = 2 multipole in the initial (and stronger) part of the
signal. This destructive interference produces a signal that
is sensibly different from a damped sinusoid, reducing the
performance of a simple single-mode filter.

Figure 7 shows contour plots of the FF and of the
matched-filtering SNR pyp, computed according to
Eq. (2.6), for case (ii). Now the FF is smaller than 0.965
in roughly half of the (¢, ¢,) plane. The event loss ranges
from ~6% to ~22%, being larger than 10% in roughly half
of the parameter space. From Fig. 1 we can expect that the
event loss would have been even larger if we had chosen
larger values of the black hole mass. The matched-filtering
SNR was computed assuming that the overall amplitude of
the signal A | corresponds to a ringdown efficiency €4 =
3%, and that the luminosity distance D; = 100 Mpc. Both
the FF and the SNR show the (by now familiar) 7-periodic
pattern as a function of the phase angles.

Suppose that the event loss is moderately large but not so
large to prevent a detection, as in case (ii). Then we may
ask the question: what is the bias in measured parameters
when (¢, ¢,) maximize the probability of detection? In
other words: when the template’s frequency and quality
factor maximize the FF, do they also correspond to the true
frequency and quality factor of the / = m = 2 fundamental
mode? Unfortunately, the answer is no.

Figure 8 shows the estimated dimensionless frequency
(left) and quality factor (right) as functions of the phase
angles. The estimated frequency has relatively small bias,
and it always corresponds to the least-damped mode in the
pair. Results are more interesting for the quality factor. For
our chosen value of the Kerr parameter (j = 0.6), the
quality factor of the [ =m =2 and [ = m = 3 modes

Matched filtering SNR, M0=200 Msu - Advanced LIGO

:‘

-3 -2 -1 0 1 2

FF (left) and matched-filtering SNR (right) as a function of the phase angles of the signal in case (ii).
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FIG. 8 (color online).
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Quality Factor, Mo=200 Msu . Advanced LIGO
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Dimensionless frequency (left) and quality factor (right) estimated by a single-mode filter in case (ii). The true

frequencies and quality factors for a Kerr parameter j = 0.6 are Mwg; = 0.4940, Q; = 2.9490, Mwp, = 0.7862, and Q, = 4.5507.

are Q) =29490 and @, =4.5507, respectively.
Comparing with Fig. 6, we see that relative minima in
pmr (and in the FF) occur when the quality factor “best
fits” the / = m = 3 mode. This is a rather remarkable
result: the filter corresponding to the minimax overlap
has a quality factor that “best fits” the subdominant
mode in the pair. Unfortunately, maxima in pyg do not
correspond to the filter being optimally adapted to the [ =
m = 2 mode. As the filter tries to maximize the overlap
(and the SNR), the estimated value of the quality factor
becomes significantly biased, and it deviates quite sensibly
from the value expected from the dominant (I = m = 2)
mode. The bottom line is, once again, that single-mode
filters can be useful for detection, but a multimode post-
processing will be necessary for accurate measurements of
the black hole’s angular momentum.

Another argument in favor of a two-stage search strategy
comes from estimating the number of multimode templates
that would be necessary for a detection. Searching for a
larger number of modes implies a larger number of free
parameters, and a correspondingly larger bank of filters.
Matched filtering requires that one covers the possible
parameter space with a sufficiently fine template mesh,
so that the best-matching template lies close enough to
the true waveform. The distance between templates can be
quantified in terms of a metric in template space, that was
introduced by Owen [24] following Refs. [27,39]. If the
mesh is too fine a very large number of templates may be
required, a computationally expensive option. On the other
hand, if the mesh is very coarse the template lying
“closer” to the true waveform may produce a large event
loss. A multimode search increases the number of tem-
plates needed for the mesh to be sufficiently fine. For a
single-mode search, Creighton [40] estimated that ~500
templates are necessary to reduce the event loss below

~10% for LIGO and VIRGO. The same estimate can be
used to show that ~1000 templates would be necessary for
single-mode templates with LISA [41]. In Appendix A we
estimate that the number of filters N required for a two-
mode template search would be much larger:
0.03 )5/ 2

(2.16)

~ b X 106(~——
N =b O(l—MM

where b is a factor of order unity which depends on the
detector’s frequency span: with our choice of f, we get
b=283, 22, 16, 1.2, 1.6 for LISA, EGO, Advanced
LIGO, LIGO, and Virgo, respectively. Using better tem-
plate placing techniques [25] or imposing constraints on
the functional form of the QNM frequencies (Appendix A)
could help reduce computational requirements. A two-
stage search seems to be a good compromise between
performance and computational costs. Single-mode tem-
plates can be used for detection. Given a detection, multi-
mode templates or Prony methods [32] should be used for
parameter estimation. A larger number of templates also
means that the threshold for detection must be set higher,
because there is a larger false alarm probability.
Hierarchical searches or other techniques could play an
important role in this regard [42]. In any case, such a large
number of templates may not be a problem by the time
advanced detectors are in operation. Improved computer
performance and the use of large-scale computational
projects, such as EINSTEIN@HOME [43], could be sufficient
to overcome computational difficulties within the next
decade.

IV. MODE RESOLVABILITY AND NO-HAIR TESTS

So far we looked at the event loss and bias in parameter
estimation due to the use of single-mode templates to
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detect multimode signals. The discussion assumed that the
gravitational wave signal is composed of at least two
QNMs having roughly comparable amplitude. The ques-
tion we address here is the following: how can we tell if
there really are two or more modes in the signal, and can
we resolve their parameters? If the noise is large and the
amplitude of the weaker signal is very low, or the two
signals have almost identical frequencies, the two modes
could be difficult to resolve. This issue is particularly
significant since no-hair tests using ringdown [5] require
the presence and resolvability of two or more modes.
Roughly speaking, the first mode is used to measure M
and j by inverting the relations f, = f,(M, j), Q, =
0:(M, j) (see Appendix A for more details); the second
mode can then be used to test consistency with the Kerr
geometry.

Here we really address two different issues. We first
assume that there are indeed two modes in the signal,
and we discuss criteria to resolve their frequencies and
damping times. This discussion parallels that in Ref. [5],
updating estimates of the relative mode excitation on the
basis of recent results from numerical relativity, and cor-
recting a typo in that paper. Then we introduce a rigorous
criterion to resolve amplitudes: that is, we compute the
minimum SNR such that one can decide by the presence of
two modes in a given ringdown signal.

Resolving frequencies and damping times.—A crude
lower limit on the SNR required to resolve frequencies
and damping times was presented in Ref. [5]. The analysis
uses the statistical uncertainty in the determination of each
frequency and damping time, which a standard Fisher
matrix calculation® estimates to be [5]

_ 7 [fiG+160D1  ATQ} A0 |2
’“’fl_ﬁ{ AIQ] [f1(1+4Q%)+f2(1+4Q%)“ ’
(3.1a)
_2(B+40)r A0} AZ03 )2
P _?{ﬂ%lel [f1(1+4Q%) fz(1+4Q%)” '
(3.1b)

These errors refer to mode 1 in a pair. By considering the
“symmetric”’ case ¢; = ¢, = 0, the errors on f, and 7,
are simply obtained by exchanging indices (1 < 2). The
expression above holds in both the FH and EF conventions,
assuming white noise for the detector, but modes 1 and 2
must correspond to different values of [/ or m (in the
nomenclature used in Ref. [5], the QNMs must be
quasiorthonormal).

A natural criterion (d la Rayleigh) to resolve frequencies
and damping times is

30ur Eq. (3.1a) corrects a missing factor of 277 in Ref. [5].
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|f1 - f2| > maX(O-flv a-f2)r (32)

|7, = 72| > max(o, , o).

In interferometry this would mean that two objects are
(barely) resolvable if “‘the maximum of the diffraction
pattern of object 1 is located at the minimum of the
diffraction pattern of object 2.” We can introduce two
“critical”” SNRs required to resolve frequencies and damp-
ing times,

; _ max(poy, poy,) _ max(po,, po,)

Perit = lfi—rfl 7 Peric = 7y — 7wl 7
(3.3)
and recast our resolvability conditions as
P = Peit = min(P}Ccrip pgm), (3.4a)
P = Proth = maX(szy pgrit)- (3.4b)

The first condition implies resolvability of either the
frequency or the damping time, the second implies resolv-
ability of both.

Resolving amplitudes.—A related question is: how large
a SNR do we need to confidently say that we have detected
a multimode signal, and to resolve two signals of different
amplitudes? Suppose again, for simplicity, that the true
signal is a two-mode superposition. Then we expect the
weaker signal to be hard to resolve if its amplitude is low
and the detector’s noise is large.

In Appendix B we quantify this statement by deriving a
critical SNR for amplitude resolvability based on the gen-
eralized likelihood ratio test (GLRT), pgirt- The deriva-
tion of this critical SNR, which is given in Eq. (B12), is
based on the following simplifying assumptions: (i) using
other criteria, we have already decided for the presence of
one ringdown signal, and (ii) the parameters of the ring-
down signal (frequencies and damping times), as well as
the amplitude of the dominant mode, are known. In prac-
tice the latter assumption is not valid. For this reason, our
estimates of the minimum SNR needed to detect more than
one mode should be considered optimistic.

Figure 9 compares the critical SNR pg; rt, as defined in
Eq. (B12), and the two different criteria for frequency
resolvability of Eq. (3.4). All quantities are computed as
functions of the binary’s mass ratio g. The angular mo-
mentum j of the final black hole is computed using the
fitting formula derived in Ref. [10] for the angular momen-
tum of the black hole resulting from unequal mass, non-
spinning binary black hole mergers:
j =3.352n — 2.4617n?%, where the symmetric mass ratio
n = q/(1 + ¢)*. This value of j is then used to read QNM
frequencies from numerical tables. We assume the domi-
nant mode to be the fundamental / = m = 2 QNM and for
the subdominant mode we take the fundamental QNMs
with [ =m =3 or [ = m = 4. To compute the relative
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FIG. 9 (color online). Minimum SNR required to resolve two
modes, as a function of the binary’s mass ratio g. If p > pgrrr
we can tell the presence of a second mode in the waveform, if
P > poir We can resolve either the frequency or the damping
time, and if p > py,,, We can resolve both. Mode 1 is assumed to
be the fundamental mode with [ = m = 2; mode 2 is either the
fundamental mode with [ = m = 3 (solid lines) or the funda-
mental mode with [ = m = 4 (dashed lines).

amplitude A(g) for different mass ratios we use the
EMOP estimate of Eq. (2.15a).

The plot shows that p i < pgLrT < Pborn fOr all values
of g. Therefore, given a detection, the most important
criterion to determine whether we can carry out no-hair
tests seems to be the GLRT criterion. If p > pgrr We can
decide for the presence of a second mode in the signal.
Whenever the second mode is present, we also have p >
Peric: that is, we can resolve at least the frequencies (if not
also the damping times) of the two modes. A SNR p ~
30-40 is typically enough to perform the GLRT test on the
[ = m = 3 mode, as long as ¢ = 1.5 or so (equal-mass
mergers should be quite rare anyway). By looking at Fig. 2
we conclude that not only LISA, but also advanced Earth-
based detectors (Advanced LIGO and EGO) have the
potential to identify Kerr black holes as the vacuum solu-
tions of Einstein’s general relativity.

V. CONCLUSIONS

In this paper we analyze the detectability of ringdown
waves by Earth-based interferometers. Confirming and
extending previous analyses, we show that Advanced
LIGO and EGO could detect intermediate-mass black
holes of mass up to ~10°M,, out to a luminosity distance
of a few Gpc.

Using recent results for the multipolar energy distribu-
tion from numerical relativity simulations of nonspinning
binary black hole mergers [10] to estimate the relative
amplitude of the dominant multipolar components, we
point out that the single-mode templates presently used
for ringdown searches in the LIGO data stream could
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produce a significant event loss ( > 10% in a large interval
of black hole masses). A similar event loss should affect
also next-generation Earth-based detectors, as well as the
planned space-based interferometer LISA.

Single-mode templates are useful for detection of low-
mass systems, but they produce large errors in the esti-
mated values of the parameters (and especially of the
quality factor). We estimate that, unfortunately, more
than ~10° templates would be needed for a single-stage
multimode search. For this reason we recommend a “two-
stage” search to save on computational costs: a single-
mode template could be used to detect the signal, and a
multimode template (or even better, Prony methods [32])
could be used to estimate parameters once a detection has
been made.

In Appendix B we introduce a criterion to decide for the
presence of more than one mode in a ringdown signal. By
updating estimates of the critical signal-to-noise ratio re-
quired to resolve the frequencies of different QNMs using
results from numerical relativity, we show that second-
generation Earth-based detectors and LISA both have the
potential to perform tests of the Kerr nature of astrophys-
ical black holes.

In the future we plan to use numerical waveforms (pos-
sibly including spin effects) to refine our estimates. We
also plan to carry out Monte Carlo simulations to study the
information that can be extracted on the source position
and orientation using a network of Earth-based detectors.
The possibility to constrain the black hole spin’s direction
from the multipolar distribution of the merger-ringdown
radiation should be particularly interesting (e.g. for coin-
cident electromagnetic observations of jets that could be
emitted along the black hole’s spin axis).
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APPENDIX A: NUMBER OF TEMPLATES FOR A
TWO-MODE SEARCH

Two-mode ringdown waveforms of the form (2.1) de-
pend of five parameters: two quality factors Qy, Q,, two
frequencies f;, f, and one relative amplitude ‘A between
the different modes (for simplicity, here we set ¢ = ¢, =
0). For matched filtering with ringdown waveforms of
unknown frequency and quality factor, we must lay down
a “mesh’ covering the parameter space with some prede-
fined precision (that can be translated to a predefined
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minimum loss of SNR) [24,39,40]. We follow Owen’s
formalism [24] to estimate the necessary number of tem-
plates. The distance between nearby templates, which
defines the mismatch between the filters, can be computed

in terms of the metric
|

200 = f2(f201 +2A°f10))
©C T 80,(£,0, + A0,

o = 04
T fO2 (5,0, + A2f1Q,)
gan = S1/2010,
2(/,01 + Af10,)*
2o = — [r(f201 +2A%f,0))
e 8f1(f201 + A2f10,)*
o = A%f0,
N 8(£,0, + A2f10)*
goa = — Af1120, ’
: 4(f201 + Af10,)?
_ A%0,0,
B1f2 8(201 + A2f10:)*
_ Af1010>
8HnA =

- 4(f,0, + A2f10,)*

Requiring a loss of no more than 10% in the event rate due
to a mismatched template (i.e., the minimal match MM
[24,40] should be at least 0.97), we get an estimate for the
number of templates we need:

[ dQ1dQydfdfrd A, [detllg,, |
B 32[(1 — MM) /5]

0.03 \5/2
~ph X100 ————) .
b X 10 <1 = MM)

Here b is a factor of order unity which depends on the
detector’s frequency span. We get b = 8.3,2.2,1.6,1.2, 1.6
for LISA, EGO, Advanced LIGO, LIGO, and Virgo, re-
spectively. In deriving this number we assume the frequen-
cies to be searched for are those of interest for each of the
detectors (3 X 107> < f <1 for LISA, 10 < f =< 2000
for EGO, 20 = f = 2000 for Advanced LIGO and Virgo,
40 = f = 2000 for LIGO), that the quality factor varies
between 0 and 20 for all modes likely to be detected [5],
and that the relative amplitude A varies between 0.01 and
100. Our estimates are not strongly sensitive to the relative
amplitude: assuming 0 < A <1 yields a total number of
templates which is roughly half the above number.

For the single-mode case, setting O, = f, = A =0
we get the following metric:

o
807

(A3)

1 2
2 =_
do 4Qfdef—i-f2

ds® ~ dr. (Ad)
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xt = (Q]r QZ? fl: fzy ‘52‘—)’ (Al)

ds* = g, dxtdx”,

where (for large or moderate values of Q; and Q,) the
metric coefficients are well approximated by

_A2f,0, + A%f10,)

80,0, 80,(f2,01 + A2f10.)* (A22)
Srap ™ f(m(fzJquz{rl igtzfl 0,)’ (AZD)
2
00~ 50, + H0T (A2
2
N T (20
2 2
80, =~ J: ff(lj(cjgl% ;‘2[122%), (A2)
o 4(sz?£12§;1 0,7 (A20)
40~ i+ A G (A2
(A2h)

[

The number of templates N ~ 60 a5 108(fmax/ fmin) [40].
In particular, we get N ~ 460 for LIGO and Virgo [40],
and N ~ 1000 for LISA [41] (a huge improvement in
terms of computational requirements).

The formalism and numbers presented in this section are
valid for a general ringdown signal: no constraints were
imposed on the QNM spectrum. A possible approach to
reduce the number of templates is to assume that the source
is a general relativistic black hole. In this case, we are left
with only three intrinsic parameters: the mass and angular
momentum of the black hole and the relative amplitude
between the modes. Alternatively, we can choose the in-
dependent parameters to be one quality factor Q;, one
frequency f;, and the relative amplitude of the modes;
the quality factor and frequency of the second mode, O,
and f», can be thought of as functions of Q; and f.

More explicitly, we find that for rotations 0 = j = 0.98
the frequencies and quality factors of the fundamental
mode with [ =m =2, 3, 4 are well approximated (to
within ~6% or better) by

—(0.78 + 0.181)(1 — j)B32+490/100  (A5)

Quo = 0.26 + 0.221 + (—0.36 + 0.881)(1 — j)~0.
(A6)

By inverting these relations for (say) the / = m = 2 mode,
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one can infer (j, M) and compute the frequency and quality
factor of the modes with [ = m = 3, 4. More generally, in
Ref. [5] the frequencies and quality factors of the first three
overtones (for [ = 2, 3, 4 and all values of m) were fitted by
functions of the form

277Mflmn = fl + f2(1 - ])fg; (A7)

len = q + ('I2(1 - j)q3- (A8)

Here the constants f; and ¢; depend on (I, m, n) (see
Tables VIII-X in Ref. [5]), and the fits are accurate to
better than 4%. By using these fits or (more precisely)
numerical QNM data, we can express any subdominant
mode in terms of the dominant mode, and possibly reduce
the number of templates.

Another possibility to reduce the number of templates is
to restrict the parameter space by using information de-
rived from measurements of the inspiral waveforms. For
example, if we had a reasonably accurate measurement of
the masses and spins of the binary members we could
significantly restrict the possible values of the mass and
spin of the final black hole to be searched for.

APPENDIX B: AMPLITUDE RESOLVABILITY

The purpose of this Appendix is to estimate the mini-
mum SNR required to test the hypothesis that a second
mode is present in a ringdown waveform. The derivation is
based on the following simplifying assumptions: (i) using
other criteria, we have already decided for the presence of
one (dominant) damped sinusoid in the signal, and (ii) the
parameters of the ringdown signal (frequencies and damp-
ing times), as well as the amplitude of the dominant mode,
are known. In practice the latter assumption is not valid, so
our estimates of the minimum SNR should be considered
optimistic.

The question of whether one or two damped sinusoids
are present in the signal can be stated in statistical terms, as
follows.* Let w(f) be a zero-mean Gaussian white-noise
process, and define y(r) = s(r) — A h,(¢) to be the differ-
ence between the actual signal s(¢) and the dominant
normalized QNM signal h(f) = e~ ("1/Q) sin(27rf,1)
(for simplicity, in the present discussion we set ¢; =
¢, = 0). Denote by H | the hypothesis that the signal
contains only one damped exponential in noise, and by
H , the hypothesis that the signal consists of two damped
exponentials in noise:

{3{1: y(1) = w()

Bl
Hrt (1) = Ashs(t) + wld). B

We write the normalized second QNM as h,(r) =
e~ (/) sin(2arf, 1).

4See also the work by Milanfar and Shahram [44,45].
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We assume that we do not possess any prior information
on the possible values of A ,, besides the fact that A, > 0.
The general structure of composite hypothesis testing is
involved when unknown parameters (in this case, A,)
appear in the probability density function. We follow
Milanfar and Shahram [44,45] and consider the general-
ized likelihood ratio test, which proceeds by computing
first the maximum likelihood (ML) estimates of the un-
known parameters. These estimates are then used to form
Neyman-Pearson detectors. We note that this approach has
been compared very favorably against other standard tests
in Ref. [44].

Suppose that the signal s(z) is sampled at discrete times
ti(k =1, ..., N) and that the corresponding sample values
are s, = s(1y), yp = s — A h(t,). If we assume additive
white noise with variance o, the probability of the ob-
served data under the hypothesis of a second damped
sinusoid of amplitude A, in the signal is

N
pa, =[] r0x)
i—1

N _ 2
! exp|: — M} (B2)

k=1 0"\/277' 20—2

To decide on hypothesis HH ; or HH ,, we start by comput-
ing the ML estimate of the unknown parameter A ,:

N
max Inp 4, = min Z(yk — Ashy)?
Az =

max
s pAa,

m1n||Y - .ﬂsz”z, (B3)
A,

where Y and H, are column vectors of the samples y; and
hyy, respectively, a superscript T stands for “transpose,”
and ||V]|> = VTV denotes the norm of a vector V. The
(unconstrained) ML estimate lez of the parameter A, is
then

. HIY
> TP B
We wish to test the hypothesis that A, > 0 against the

hypothesis that A, = 0. There is no general-purpose test
to do this, but a powerful test is to compute a likelihood
ratio and to find the maximum in both the numerator and
denominator: this is called the generalized likelihood ratio
test (GLRT). Some algebra shows that

maxp 4, (y,)
2 1/ HIY \2
T(Y) = 2L =—< 2 ) (B5)
n;_?xp;qfo(yx) 2\ olH,l
1

For any given data set Y, we decide on H , if \/2T(Y)
exceeds a specified threshold 7:
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HIY

iy BN (B6)
o|[H, ||

While it may seem troublesome to use the unconstrained
ML estimate to form the GLRT, in fact, due to the assumed
positivity of A,, the detector structure is effectively pro-
ducing a one-sided test and therefore this is in fact a
uniformly most powerful detector [46].

The choice of y is motivated by the level of tolerable
false-positive rate [44,45]. The detection rate P, and false
alarm rate P for this detector are related as

P;=0(Am+7vy) =0An+ 07 '(P)), (B
where
_ Il -
o

Here Q denotes the right-tail probability function for a
standard Gaussian random variable (zero mean and unit
variance):

0x) = f ” \/%_77 exp[ - %z}dw. (B9)
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From (B7) we find

07" (Py) — Q7' (Py) = Asm. (B10)

This last expression can now be put in a more convenient
form, by defining the output SNR as

p = | AH, + AH,|
o

(B11)

Using (B8) and (B10) the relation between the minimum
resolvable A = A,/ A, and the required SNR can be
made explicit. The critical SNR for hypothesis testing

PGLRT 18

IH, + AH,||

peirt = [07'(Py) — O7'(Py)] A,

(B12)
For the calculations in Fig. 9 we set P; = 1072, Py =
0.99. Had we chosen P; = 0.1 and Py = 0.9, the critical p
would have decreased by a factor ~2.6/4.6. For more
stringent false alarm rates (say, with P; = 107° and Py =
0.99), the critical SNR would have increased by a factor
~7.1/4.6.
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