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We develop a parametrized post-Friedmann (PPF) framework which describes three regimes of
modified gravity models that accelerate the expansion without dark energy. On large scales, the evolution
of scalar metric and density perturbations must be compatible with the expansion history defined by
distance measures. On intermediate scales in the linear regime, they form a scalar-tensor theory with a
modified Poisson equation. On small scales in dark matter halos such as our own galaxy, modifications
must be suppressed in order to satisfy stringent local tests of general relativity. We describe these regimes
with three free functions and two parameters: the relationship between the two metric fluctuations, the
large and intermediate scale relationships to density fluctuations, and the two scales of the transitions
between the regimes. We also clarify the formal equivalence of modified gravity and generalized dark
energy. The PPF description of linear fluctuation in f�R�modified action and the Dvali-Gabadadze-Porrati
braneworld models show excellent agreement with explicit calculations. Lacking cosmological simula-
tions of these models, our nonlinear halo-model description remains an ansatz but one that enables well-
motivated consistency tests of general relativity. The required suppression of modifications within dark
matter halos suggests that the linear and weakly nonlinear regimes are better suited for making a
complementary test of general relativity than the deeply nonlinear regime.
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I. INTRODUCTION

Theoretically compelling alternatives to a cosmological
constant as the source of the observed cosmic acceleration
are currently lacking. In the absence of such alternatives, it
is useful to have a phenomenological parametrized ap-
proach for testing the predictions of a cosmological con-
stant and phrasing constraints in a model-independent
language. This approach parallels that of local tests of
general relativity. The parametrized post-Newtonian de-
scription of gravity forms a complete description of lead-
ing order deviations from general relativity locally under a
well-defined set of assumptions [1].

A parametrization of cosmic acceleration from the
standpoint of dark energy is now well established. The
expansion history that controls distance observables is
completely determined by the current dark energy density
and its equation of state as a function of redshift. Structure
formation tests involve additional parameters that control
inhomogeneities in the dark energy. Covariant conserva-
tion of energy-momentum requires that the dark energy
respond to metric or gravitational potential fluctuations at
least on scales above the horizon. In a wide class of models
where the dark energy remains smooth relative to the
matter on small scales, the phenomenological parameter
of interest is where this transition occurs [2–4].

A similar structure is imposed on modified gravity mod-
els that accelerate the expansion without dark energy.
Requirements that gravity remain a metric theory where

energy-momentum is covariantly conserved also place
strong constraints on their scalar degrees of freedom. On
scales above the horizon, structure evolution must be com-
patible with the background expansion [5]. Intermediate
scales are characterized by a scalar-tensor theory with a
modified Poisson equation [6]. If these modifications are to
pass stringent local tests of gravity then additional scalar
degrees of freedom must be suppressed locally [7]. Two
explicit models that exhibit all three regimes of modified
gravity are the so-called f�R� modified Einstein-Hilbert
action models [8–10] and the Dvali-Gabadadze-Porrati
(DGP) braneworld model [11].

Although several parametrized gravity approaches exist
in the literature, none describe all three regimes of modi-
fied gravity (cf. [12–14]) and most do not explicitly en-
force a metric structure to gravity or energy-momentum
conservation (e.g. [15–19]).

In this paper, we develop a parametrized post-Friedmann
(PPF) framework that describes all three regimes of modi-
fied gravity models that accelerate the expansion without
dark energy. We begin in Sec. II by describing the three
regimes individually and the requirements they impose on
the structure of such modifications. In Sec. III, we describe
a linear theory parametrization of the first two regimes and
test it against explicit calculations of the f�R� and DGP
models. In Sec. IV, we develop a nonlinear ansatz for the
third regime based on the halo model of nonlinear cluster-
ing. In the appendix, we clarify the formal relationship
between modified gravity and dark energy beyond the
smooth class of models.*whu@background.uchicago.edu
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II. THREE REGIMES OF MODIFIED GRAVITY

In this section, we discuss the three regimes of modified
gravity theories that accelerate the expansion without dark
energy. We begin by reviewing the requirements on super-
horizon metric perturbations imposed by compatibility
with a given expansion history (Sec. II A). Modifications
that introduce extra scalar degrees of freedom then enter a
quasistatic regime characterized by a modified Poisson
equation (Sec. II B). Finally stringent local tests of gravity
require that modifications are suppressed in the nonlinear
regime within collapsed dark matter haloes (Sec. II C).

A. Post-Friedmann superhorizon regime

Under the assumption that modified gravity remains a
metric theory in a statistically homogeneous and isotropic
cosmology where energy-momentum is covariantly con-
served, a parametrization of the expansion history that is
complete under general relativity is complete under modi-
fied gravity as well. A modified gravity model and a dark
energy model with the same expansion rateH � a�1da=dt
and spatial curvature predicts the same observables for any
measure that is based on the distance-redshift relation (see
e.g. [20]). Hence in terms of the background, modified
gravity models can be parametrized in the same way as
dark energy without loss of generality. Neglecting spatial
curvature and radiation for simplicity here and throughout,
we can assign an effective energy density

 �eff �
3

8�G
�H2 �H2

ma
�3�; (1)

where

 H2
m �

8�G
3

�m�lna � 0� (2)

would be the contribution of matter to the expansion under
the normal Friedmann equation. Alternately we can assign
a current effective energy density in units of the critical
density �eff � 8�G�eff=3H2

0 and an effective equation of
state

 1� weff�lna� � �
1

3

�0eff

�eff
� �

1

3

2HH0 � 3H2
ma
�3

H2 �H2
ma
�3 : (3)

Compatibility with this expansion combined with
energy-momentum conservation highly constrains the evo-
lution of metric fluctuations above the horizon.
Superhorizon metric fluctuations in a perturbed universe
can be viewed as evolving as a separate universe under the
same modified Friedmann equation but with different
parameters.

Bertschinger [5] showed that consequently metric fluc-
tuations in fact obey the same fundamental constraints as
they do in general relativity. These constraints appear in
different ways in different gauges as detailed in the appen-
dix. Under the assumptions of a metric theory and energy-

momentum conservation, all of the usual gauge structure
including the so-called ‘‘gauge invariant’’ approach used
here apply to modified gravity as well.

In the comoving gauge of the matter, the constraint for
adiabatic initial conditions looks particularly simple. The
curvature or space-space piece of the metric fluctuation �
remains constant to leading order ([21], see also (A14))

 � 0 � O�k2
H��; (4)

where 0 � d=d lna and kH � k=aH is the wave number in
units of the Hubble parameter. In the more familiar
Newtonian gauge where the curvature is denoted � and
the time-time piece or gravitational potential �, the gauge
transformation equation (A19)

 � � �� Vm=kH (5)

and the momentum conservation equation (A8)

 V 0m � Vm � kH� (6)

along with Eq. (4) imply

 �00 ��0 �
H00

H0
�0 �

�
H0

H
�
H00

H0

�
� � O�k2

H��: (7)

Here Vm is the scalar velocity fluctuation of the matter in
both the comoving and Newtonian gauges (see Eqs. (A5)
and (A10)). Equation (7) is also satisfied in general rela-
tivity [22].

These relations have been explicitly shown to hold for
DGP braneworld gravity [23] and f�R� modified action
gravity [24]. What distinguishes a particular model of
gravity or dark energy is the relationship between � and
� in the Newtonian gauge or equivalently � and Vm in the
comoving gauge. We will parametrize this relation by

 g �
���

���
�
kH� � V

0
m � 2Vm

kH� � V
0
m

: (8)

In terms of the post-Newtonian parameter � � ��=�,
g � ��� 1�=��� 1�. Given that gravitational redshift and
lensing effects involve the metric combination

 �� �
���

2
; (9)

we will typically state metric results in terms of ��. It is
useful to note that � � �g� 1��� and � � �g� 1���.
Superhorizon scalar metric fluctuations for adiabatic per-
turbations are completely defined by the expansion history
H and the metric ratio g.

In Fig. 1 we show the evolution of �� given a metric
ratio that evolves as g � g0a for a �CDM expansion
history defined by weff � �1 and 1��eff � �m �
0:24. Given that g! 0 as a! 0, we take matter domi-
nated initial conditions of �� � �i � 3�i=5 and �0� � 0
as in general relativity. Note that if g < 0, �� can actually
grow during the acceleration epoch. Changing the evolu-
tion of gravitational potentials alters the low order multi-
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poles of the cosmic microwave background (CMB)
through the integrated Sachs-Wolfe effect. For example,
it can be used to suppress the CMB quadrupole (see e.g.
[24]).

Under general relativity, the metric ratio is determined
by the ratio of anisotropic stress to energy density (see
Eq. (A21)). It supplements the information in the expan-
sion history since in the background the anisotropic stress
vanishes by assumption. In particular, with the matter
carrying negligible anisotropic stress, this relationship is
determined by the anisotropic stress of the dark energy. For
models of dark energy based on scalar fields, this also
vanishes in linear theory and hence g � 0. Nevertheless,
a hypothetical dark energy component that produces the
same g as a modified gravity model cannot be distin-
guished from superhorizon metric fluctuations. We further
examine the relationship between modified gravity and
dark energy in the appendix.

B. Post-Newtonian quasistatic regime

Well inside the horizon but still in the regime of linear
fluctuations, theories that exhibit an extra scalar degree of
freedom tend toward a post-Newtonian scalar-tensor de-
scription. As is the case in general relativity when time
derivatives of the metric fluctuations can be ignored com-
pared with spatial gradients, the modified field equations
reduce to a modified Poisson equation

 k2�� �
4�G

1� fG
a2�m�m; (10)

where �m is the fractional density perturbation (in the
matter comoving gauge), fG parametrizes a possibly
time-dependent modification of the Newton constant, and
the relationship between the two metric fluctuations is
again parametrized by g as in Eq. (8). We call this the
quasistatic approximation. This quasistatic approximation
has been explicitly shown to hold for both DGP braneworld
gravity [23,25] and f�R� models [24,26] once kH � 1.

Density fluctuations on the other hand are determined by
the Newtonian limit of the conservation equations

 �0m � �kHVm; V0m � Vm � kH� � �g� 1�kH��:

(11)

Combining the modified Poisson equation (10) and the
conservation equations (11) and taking fG � const for
simplicity yields
 

�00� �
�
4�

H0

H

�
�0�

�

�
3�

H0

H
�

3

2

H2
m

�1� fG�H
2a3 �g� 1�

�
�� � 0: (12)

Note that this quasistatic equation is inequivalent to the
superhorizon evolution (7) whenever weff � �1, g � 0, or
fG � 0. The differences for weff � �1 apply in general

relativity as well and corresponds to the well-known fact
that growth defined by a smooth dark energy component is
inconsistent with conservation of energy-momentum on
superhorizon scales (e.g. [2,3]). In Fig. 2, we compare
the quasistatic and superhorizon evolution to the present.
Note that in terms of the change in the gravitational poten-
tial from its initial value, important for gravitational red-
shift effects in the CMB, the differences are amplified.
Compared with �CDM where ��� � ��i=4 (see
Fig. 1), these changes are enhanced by a factor of 	4
and cannot be neglected for large values of jgj.
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FIG. 1 (color online). Superhorizon (SH) metric evolution of
�� � �����=2 for various choices of g � g0a. For g < 0,
�� can actually grow near the onset of acceleration. The
expansion history is fixed by weff � �1 and �m � 0:24 in all
cases.
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FIG. 2 (color online). Fractional difference between the quasi-
static (QS) vs SH metric at a � 1 for a metric ratio of g � g0a.
The two evolutions differ unless weff � �1 and g0 � 0. �m �
0:24 for all cases.
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C. General relativistic nonlinear regime

A successful modification of gravity must have a third
regime where nonlinearities in the modified field equations
bring the dynamics back to general relativity. Scalar-tensor
modifications of gravity that persist to small scales can be
ruled out by stringent local tests of gravity. For example,
the Cassini mission imposes the limit [1]

 jgj< 1:2
 10�5 (13)

for the metric ratio in the solar system.
In both the DGP braneworld and f�R�modifications, the

extra scalar degree of freedom obeys a nonlinear equation
that suppresses its effects within collapsed objects such as
dark matter halos. In the DGP braneworld model, the scalar
degree of freedom represents a brane bending mode.
Nonlinear interactions of this mode become important at
the so-called Vainshtein radius r� 	 �2GMr2

c�
1=3 [7]. Here

rc 	H�1
0 is the crossover scale where gravity becomes

fully 5D. This radius is comparable to the virial radius of
dark matter halos and suggests that inside a halo gravita-
tional interactions behave as in general relativity.

Similarly, for modified action f�R� models the extra
scalar degree of freedom corresponds to df=dR and has a
mass that depends on the local curvature R. Deviations
from general relativity can then be suppressed by the so-
called chameleon mechanism [27,28] so long as the gravi-
tational potential is sufficiently deep [29,30].

In the empirical PPF description that follows in Secs. III
and IV we seek a description that joins these three regimes.

III. LINEAR THEORY PARAMETRIZATION

In this section, we construct a parametrized framework
for linear perturbations in modified gravity models that
joins the superhorizon and quasistatic regimes described
in the previous section. We first describe the construction
(Sec. III A) and then test the parametrization against modi-
fied action f�R� models (Sec. III B) and the DGP brane-
world model (Sec. III C).

A. PPF parameters

We have seen in Sec. II that in both the superhorizon and
quasistatic regimes, the evolution of metric fluctuations are
primarily determined by the metric ratio g. However, the
manner in which the metric ratio g determines metric
evolution differs between the two regimes. The quasistatic
regime also allows the freedom to change the effective
Newton constant.

Let us introduce a parametrization that bridges the dy-
namics of the two regimes at a scale that is parametrized in
units of the Hubble scale. The Newtonian-limit conserva-
tion equations (11) must first be corrected for metric evo-
lution. The exact conservation equations imposed by
r�T�� � 0 and the metric is given by (see Eqs. (A15)
and (A20))

 �0m � �kHVm � 3� 0; V 0m � Vm � �g� 1�kH��;

(14)

where the additional term involving evolution of the metric
is given in the matter comoving gauge � 0 to match the
definition of density perturbations �m in this gauge. It is
related to the evolution of the Newtonian metric by Eq. (5)

 � 0 � �g� 1��0� � �1� g� g0��� �
H0

H
Vm
kH

: (15)

In order to match the superhorizon scale behavior we
introduce an additional term � to the modified Poisson
equation (10)

 k2��� � � � 4�Ga2�m�m: (16)

We now demand that as kH ! 0 � enforces the metric
evolution of Eq. (7). In this limit, the derivative of
Eq. (16) gives an evolution equation for � given the con-
servation equations (14) and the required metric evolution.
Aside from g, the only remaining freedom is determining
the leading order behavior of � 0. Without loss of generality,
we can parametrize Eq. (4) with a possibly time-dependent
function f�

 lim
kH!0

� 0 � 1
3f�kHVm: (17)

Although the superhorizon metric is determined by H and
g alone, its relationship to the comoving density perturba-
tion is not. Since kHVm � O�k2

H�� and � 0 � O�k2
H��, this

degree of freedom enters into the conservation equa-
tion (14) at leading order. Combining these relations, we
obtain the equation of motion for �

 �0 � � � S; �kH ! 0�; (18)

where the source is

 S � �
�

1

g� 1

H0

H
�

3

2

H2
m

H2a3 �1� f� �
�
Vm
kH

�

�
g0 � 2g
g� 1

�
��: (19)

Here we have kept only the leading order term in kH.
Note that the exact choice of f� is rarely important for

observable quantities. Any choice will produce the correct
behavior of the metric evolution since that depends only on
enforcing � 0 � O�k2

H��. Hence observables associated
with gravitational redshifts and lensing are not sensitive
to this choice. Only observables that depend on the comov-
ing density on large scales beyond the quasistatic regime
are affected by this parameter. Furthermore the superhor-
izon density perturbation in Newtonian gauge or any gauge
where the density fluctuation evolves as the metric fluctua-
tion is also insensitive to f� .

On small scales, recovery of the modified Poisson equa-
tion (10) from (16) implies
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 � � fG��; �kH ! 1�: (20)

Finally to interpolate between these two limits we take the
full equation of motion for � to be

 �1� c2
�k

2
H���

0 � �� c2
�k

2
H��� fG��� � S: (21)

For models where S! 0 as a! 0 we take initial condi-
tions of � � �0 � 0 when the mode was above the horizon.

In summary, given an expansion history H�a�, our PPF
parametrization is defined by 3 functions and 1 parameter:
the metric ratio g�lna; kH�, the superhorizon relationship
between the metric and density f� �lna�, the quasistatic
relationship or scaling of Newton constant fG�lna�, and
the relationship between the transition scale and the
Hubble scale c�. For models which modify gravity only
well after matter radiation equality, these relations for the
metric, density, and velocity evolution combined with the
usual transfer functions completely specify the linear ob-
servables of the model. In specific models, these functions
can themselves be simply parametrized as we shall now
show for the f�R� and DGP models.

B. f�R� models

In f�R� models, the Einstein-Hilbert action is supple-
mented by the addition of a free function of the Ricci scalar
R. The critical property of these models is the existence of
an extra scalar degree of freedom fR � df=dR and the
inverse-mass or Compton scale associated with it. The
square of this length in units of the Hubble length is
proportional to

 B �
fRR

1� fR
R0
H
H0
; (22)

where fRR � d2f=dR2. Below the Compton scale, the
metric ratio g! �1=3.

The evolution of B and the expansion history come from
solving the modified Friedmann equation obtained by
varying the action with respect to the metric. We follow
the parametrized approach of [24] where a choice of the
expansion history through weff and the Compton scale
today B0 � B�lna � 0� implicitly describes the f�R� func-
tion and model. For illustrative purposes, we take �m �
0:24 and weff � �1.

Given H�lna� and B�lna�, the metric ratio at superhor-
izon scales comes from solving Eq. (7)
 

�00 �
�
1�

H00

H0
�

B0

1� B
� B

H0

H

�
�0

�

�
H0

H
�
H00

H0
�

B0

1� B

�
� � 0; �kH ! 0�: (23)

We have used the f�R� relation [24]

 ��� � �B
H0

H
Vm
kH

; (24)

which when combined with � 0 � 0 and Eq. (15) gives

 � �
��� B�0

1� B
; �kH ! 0�: (25)

The solution of Eq. (24) together with (25) yields the
metric ratio

 g�lna; kH � 0� � gSH�lna� �
���

���
: (26)

The density evolution function f� can be adequately de-
scribed by noting that � 0 / k2

HB� and that B also controls
the behavior of g. We take

 f� � c�g (27)

with c� � �1=3.
For the transition to the quasistatic regime we take the

interpolating function

 g�lna; k� �
gSH � gQS�cgkH�

ng

1� �cgkH�
ng

; (28)

where gQS � �1=3. We find that the evolution is well
described by cg � 0:71B1=2 and ng � 2. We show an
example of this fit in Fig. 3.

Finally, the effective Newton constant is rescaled by fR
and the quasistatic transition takes place near the horizon
scale

 fG � fR; c� � 1: (29)

In Fig. 4, we show how well the PPF parametrization
reproduces the full f�R� metric evolution for scales that
span the Compton wavelength transition in a weff � �1
and B0 � 0:4 model. We have checked that a wide range of
f�R� models including those of [30] produce comparable
matches with these parameter choices.

0.1

0.01

0.1

1

1
a

-g

k/H0=100

10

1

0.1

f(R)

PPF

FIG. 3 (color online). Evolution and scale dependence of the
metric ratio g in f�R� models compared with the PPF fit. Here
B0 � 0:4, weff � �1, and �m � 0:24.
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C. DGP model

In the DGP braneworld model, the transition between
two different behaviors for g occurs at the horizon scale.
Above the horizon, the propagation of perturbations into
the bulk requires solving the full 5D perturbation equations
[31]. Fortunately, above the horizon scale the evolution is
scale free and can be solved using the iterative scaling
method of [23]. Well below the horizon the evolution
reaches the quasistatic limit where the equations can be
effectively closed on the brane [6,25]. We therefore take a
similar approach to the f�R� case of interpolating between
these two well-defined regimes.

On superhorizon scales, the iterative scaling solution is
well described by the fitting function

 gSH�lna� �
9

8Hrc � 1

�
1�

0:51

Hrc � 1:08

�
; (30)

where recall that rc is the crossover scale. In the DGP
model � 0 is again related to g and so we take f� to be
defined by Eq. (27) with c� � 0:4. The expansion history is
given by

 

H
H0
�

��������
�rc

p
�

�����������������������������
�rc ��ma

�3
q

; (31)

where

 �rc �
1

4r2
cH

2
0

�
�1��m�

2

4
: (32)

For illustrative purposes we take �m � 0:24.
In the quasistatic regime [25]

 gQS�lna� � �
1

3

�
1� 2Hrc

�
1�

1

3

H0

H

��
�1
: (33)

We employ the interpolation function (28) to join the two

regimes. In Fig. 5, we show a fit to the results of [23] with
cg � 0:4 and ng � 3 for several values of kH that span the
transition. The remaining parameters are

 fG � 0; c� � 1: (34)

Around horizon crossing, the scaling assumption of [23]
is briefly violated leading to possible numerical transients
in the solution and an ambiguity in the exact value of cg.
The results for the metric evolution in [23] are best fit with
cg � 0:14 as shown in Fig. 6. The transition parameter cg
should therefore be taken as a free parameter in the range
cg 	 0:1–1 until a more precise solution is obtained.
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FIG. 4 (color online). Evolution and scale dependence of ��
in f�R� models compared with the PPF fit. Here B0 � 0:4,
weff � �1, and �m � 0:24.
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FIG. 5 (color online). Evolution and scale dependence of the
metric ratio g in the DGP model compared with a PPF fit. Here
�m � 0:24 and the PPF parameter cg � 0:4.

DGP

PPF

0.1 0.01 1
a

1.0

0.9

0.8

Φ
− 

/Φ
i

k/H0=1

10

100

FIG. 6 (color online). Evolution and scale dependence of ��
in the DGP models compared a PPF fit. Here �m � 0:24 and the
PPF parameter cg � 0:14.
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IV. NONLINEAR PARAMETRIZATION

As discussed in Sec. II C, we expect that a successful
modification of gravity will have a nonlinear mechanism
that suppresses modifications within dark matter halos. In
this section, we construct a nonlinear PPF framework
based on the halo model of nonlinear clustering.
Although a complete parametrized description of modified
gravity in the nonlinear regime is beyond the scope of this
work, the halo-model framework allows us to incorporate
the main qualitative features expected in these models.
Searching for these qualitative features can act as a first
step for cosmological tests of gravity in the nonlinear
regime.

Under the halo model, the nonlinear matter power spec-
trum is composed of two pieces (see [32] for details and a
review). One piece involves the correlations between dark
matter halos. As in general relativity, the interactions be-
tween halos should be well described by linear theory. The
other piece involves the correlations within dark matter
haloes. It is this term that we mainly seek to parametrize.

Specifically given a linear power spectrum of density
fluctuations PL, the halo model defines the nonlinear spec-
trum as the sum of the one and two halo pieces

 P�k� � I1�k� � I2
2�k�PL�k�; (35)

with

 I1�k� �
Z dM

M

�
M
�0

�
2
�
dn
d lnM

y2�M; k�
�
;

I2�k� �
Z dM

M

�
M
�0

�
dn
d lnM

b�M�y�M; k�;

(36)

where �0 � �m�lna � 0�. Here the integrals are over the
mass M of dark matter halos and dn=d lnM is the mass
function which describes the comoving number density of
haloes. y�M; k� is the Fourier transform of the halo density
profile normalized to y�M; 0� � 1 and b�M� is the halo
bias. Note that I2�k � 0� � 1 so that the linear power
spectrum is recovered on scales that are larger than the
extent of the halos.

A simple ansatz that restores general relativity in the
nonlinear regime is that the mass function and halo profiles
remain unchanged from general relativity. Specifically,
whereas the mass function and halo profiles usually depend
in a universal manner on ��M� the root-mean-square (rms)
of the linear density field smoothed on a scale that encloses
the massM at the background density, we replace this with
the rms of the linear density field of a smooth dark energy
model with the same expansion history �GR�M�. For def-
initeness, we adopt the Sheth-Torman mass function and
bias [33]

 

dn
d lnM

�
�0

M
f���

d�
d lnM

;

b�M� � 1�
a�2 � 1

�c
�

2p

�c�1� �a�
2�p

;

(37)

where � � �c=��M� and

 �f��� � A

�������������
2

�
a�2

s
�1� �a�2��p exp��a�2=2: (38)

We choose �c � 1:68, a � 0:75, p � 0:3, and A such thatR
d�f��� � 1. For the halo profiles we take the Navarro,

Frenk, and White (NFW) profile [34]

 � /
1

cr=rvir�1� cr=rvir�
2 ; (39)

where rvir is the virial radius, [35]

 c�Mv� �
9

1� z

�
M
M�

�
�0:13

; (40)

and M� is defined as ��M�� � �c. We call the result of
taking ��M� � �GR�M� in the halo-model equations (35)
P1�k�.

At the opposite extreme, we can make the ansatz that the
usual mapping of the linear to nonlinear power found under
general relativity remains unchanged in modified gravity.
In this case, changes in the linear growth rate determine the
nonlinear power spectrum. This type of prescription of
adopting the linear to nonlinear scaling of general relativity
has been tested against cosmological simulations with
various modified Poisson prescriptions [36]. It represents
the case where gravity is modified down to the smallest
cosmological scales. Specifically, in our halo model we
take ��M� � �PPF�M� as calculated from the linear power
spectrum of the modified gravity model and employ the
same Sheth-Torman and NFW prescriptions as before. Let
us call the power spectrum in this limit P0�k�.

We can parametrize an interpolation between these two
extreme behaviors

 P�k� �
P0�k� � cnl�

2�k�P1�k�

1� cnl�
2�k�

; (41)

that is based on the degree of nonlinearity defined by

 �2�k� �
k3PL�k�

2�2 : (42)

The analogous interpolation can also be used for the power
spectrum of �� that enters into gravitational lensing ob-
servables [37].

We show an example of this nonlinear ansatz for an f�R�
model with �m � 0:24, �mh2 � 0:128, �bh2 � 0:0223,
ns � 0:958 and initial curvature fluctuation of �� �

A1=2
S � 4:52
 10�5 at k � 0:05 Mpc�1. We furthermore

fix the expansion history with weff��1.
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Unfortunately no cosmological simulations exist for
f�R� or DGP models against which to test the accuracy
of this nonlinear ansatz. Moreover even under general
relativity, the halo model of Eq. (35) does not exactly
reproduce the nonlinear spectra of cosmological
simulations.

More robust in our parametrization is the relative change
between a PPF power spectrum and the general relativistic
prediction with smooth dark energy PGR�k� and the same
expansion history. This factor can then be applied to more

exact results from cosmological simulations to search for
deviations from general relativity. The difference between
PGR�k� and P1�k� is that the former uses the general
relativistic linear power spectrum in Eq. (35). This pre-
scription can be further refined by calibrating P0�k� di-
rectly from simulations of the modified Poisson equation
[36].

We show the fractional change between the PPF power
spectra and the general relativistic power spectra for the
f�R� model in Fig. 8 and a DGP model with the same
parameters but with the DGP expansion history of
Eqn. (31) in Fig. 9. Note that as cnl ! 1, deviations appear
mainly in the linear to weakly nonlinear regime. For the
f�R� model they appear as an enhancement of power and
for the DGP model as a deficit of power reflecting the
opposite sign of g in the linear regime of the two models.

V. DISCUSSION

We have introduced a parametrized framework for con-
sidering scalar modifications to gravity that accelerate the
expansion without dark energy. This framework features
compatibility in the evolution of structure with a back-
ground expansion history on large scales, a modification of
the Poisson equation on intermediate scales, and a return to
general relativity within collapsed dark matter halos. This
return to general relativity is required of models to pass
stringent local tests of gravity. We have also clarified the
formal relationship between modified gravity and dark
energy in the appendix. A metric based modified gravity
model can always be cast in terms of a dark energy
component with a stress energy tensor defined to match
its influence on the metric. However such a component
would possess dynamics which are coupled to the matter.

f(R)

0.10.01 1 10
k (Mpc/h)

P
(k

)/
P

G
R

(k
)-

1

0.2

0.4

0.6

0.8

cnl=0

1

0.01

0.1

FIG. 8 (color online). Fractional difference in P�k� of the PPF
nonlinear f�R� ansatz from the smooth dark energy prediction
with the same expansion history. As cnl ! 1 deviations become
confined to the weakly nonlinear to linear regime. The model
parameters are the same as in Fig. 7.
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k (Mpc/h)

P
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(k
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1

0.01

0.1

DGP

FIG. 9 (color online). Fractional difference in P�k� of the PPF
nonlinear DGP ansatz from the smooth dark energy prediction.
The DGP model has less power than the equivalent dark energy
model in the linear and weakly nonlinear regime. Here �m �
0:24 and other parameters are given in the text.

0.1 1 10
k (Mpc/h)

k3
P

(k
)/

2π
2 2

0.1

1

10

100

linear

cnl=0

f(R)

FIG. 7 (color online). PPF nonlinear power spectrum ansatz
for an f�R� model. The nonlinear power spectrum is constrained
to lie between two extremes: defined by halo-model mass
functions with the quasistatic growth rate [cnl � 0 or P0�k�]
and the smooth dark energy growth rate with the same expansion
history [cnl � 1 or P1�k�]. Here B0 � 0:001, weff � �1, and
�m � 0:24 with other parameters given in the text.
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Our parametrized post-Friedmann framework features
several free functions even in the linear regime. The most
important function is the relationship g � �����=���
�� between the time-time and space-space pieces of the
metric in Newtonian gauge. Supplementing these are two
functions that link the metric to matter density perturba-
tions: one on superhorizon scales and one on intermediate
scales. Finally there is a parameter that controls the inter-
polation between these two regimes.

We have shown that with an appropriate choice of
parameters this framework describes linear perturbations
in the f�R� modified action and DGP braneworld gravity
models. It may be used in place of the more complicated
4th order and higher dimensional dynamics exhibited in
these models, respectively, when studying phenomena
such as the integrated Sachs-Wolfe effect in the CMB,
large-scale gravitational lensing, and galaxy clustering.
We intend to explore these applications in a future work.

On nonlinear scales our framework features an ansatz
based on the requirement that scalar modifications should
be suppressed locally in order to pass the stringent tests of
general relativity in the solar system. Indeed the scalar
degrees of freedom in both the f�R� and the DGP models
possess nonlinearities that drive the dynamics back to
general relativity in high curvature or high density regimes.
Our ansatz is based on the halo model of nonlinear cluster-
ing. It allows for a density dependent interpolation for the
abundance and structure of dark matter halos between the
expectations of general relativity and the modified Poisson
equation on intermediate scales.

Because of the current lack of cosmological simulations
in these modified gravity models, the accuracy of our
simple ansatz remains untested. With cosmological simu-
lations, our framework can be extended and refined by
introducing more parameters that describe the potentially
mass-dependent modification of dark matter haloes. In
fact, our simple halo-model parametrization is not even
sufficient to accurately model nonlinear effects in general
relativity. Nonetheless phrased as a simple template form
for relative deviations in the power spectrum between
modified gravity and general relativity with smooth dark
energy, our current ansatz can be used in conjunction with
more accurate results from dark energy cosmological
simulations. For example, it can be used to search for
possible deviations of this type as a consistency check on
dark energy inferences from expansion history tests with
upcoming cosmic shear surveys.

While many such consistency tests have been proposed
in the literature, it is important to incorporate a density
dependence to the modifications as we have done here. The
principle that nonlinear scales should exhibit a return to
general relativity itself suggests that mildly nonlinear
scales provide the most fruitful window for cosmological
tests of gravity. Furthermore uncertainties in the baryonic
influence on the internal structure of dark matter halos in

the deeply nonlinear regime even under general relativity
(e.g. [38,39]) make consistency tests in this regime poten-
tially ambiguous. Our parametrized framework should en-
able studies of such issues in the future.
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APPENDIX A: DARK ENERGY
CORRESPONDENCE

Suppose we view the modifications to gravity in terms of
an additional ‘‘dark energy’’ stress tensor. We are free to
define the dark energy stress tensor to be

 T��e �
1

8�G
G�� � T��m : (A1)

Given this association, all of the familiar structure of
cosmological perturbation theory in general relativity ap-
plies. In particular, covariant conservation of the matter
stress energy tensor T��m and the Bianchi identities imply
conservation of the effective dark energy [40]

 r�T
��
e � 0: (A2)

The remaining degrees of freedom in the effective dark
energy stress tensor can then be parametrized in the same
manner as a general dark energy component [3,41]. Two
models that imply the same T��e at all points in spacetime
are formally indistinguishable gravitationally [22,42].

Note, however, that this equivalence is only formal and
two physically distinct models, e.g. f�R� modified gravity
and scalar field dark energy, will not in general imply the
same effective stress energy tensor [43]. The Einstein and
conservation equations do not form a closed system and the
distinction between modified gravity and dark energy lies
in the closure relation. For dark energy that is not coupled
to matter, the closure relationship takes the form of equa-
tions of state that define its internal dynamics. These
microphysical relations do not depend explicitly on the
matter. For example for scalar field dark energy, the sound
speed or the relationship between the pressure and energy
density fluctuations is defined in the constant field gauge
without reference to the matter [3], and is associated with
the form of the kinetic term in the Lagrangian [44].

For modified gravity of the type described in this paper,
we shall see that the closure relations must depend explic-
itly on the matter (see also [40]). The effective dark energy
of a modified gravity model must be coupled to the matter.
In other words, while the modification to gravity can be
modeled as fifth forces mediated by the effective dark
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energy, it cannot be viewed as a missing energy component
that obeys separate equations of motion.

It is nonetheless useful to phrase the PPF parametriza-
tion in terms of an effective dark energy component. It
enables the use of the extensive tools developed for cos-
mological perturbation theory and facilitates the develop-
ment of PPF formalisms in different gauges.

1. Covariant field and conservation equations

Following [21,45], we parametrize linear scalar metric
fluctuations of a comoving wave number k as

 g00 � �a�2�1� 2AY�; g0i � �a�2BYi;

gij � a�2��ij � 2HLY�
ij � 2HTY

ij�;
(A3)

where the ‘‘0’’ component denotes conformal time 	 �R
dt=a and �ij is the background spatial metric which we

assume to be flat across scales comparable to the wave-
length. Under this assumption, the spatial harmonics are

simply plane waves

 Y � eik�x; Yi � ��k�riY;

Yij � �k�2rirj � �ij=3�Y:
(A4)

Likewise the components of the stress tensors can be
parametrized as

 T0
0 � ��� ��; T0

i � ���� p�vYi;

Tij � �p� �pY��
i
j � p�Yij;

(A5)

where we will use the subscriptsm to denote the matter and
e to denote the effective dark energy. When no subscript is
specified we mean the components of the total or matter
plus effective dark energy stress tensor. For simplicity we
assume that the radiation is negligible during the epochs of
interest.

By definition, Eq. (A1) enforces the usual 4 Einstein
field equations [22]

 

HL �
1

3
HT �

B
kH
�
H0T
k2
H

�
4�G

H2k2
H

�
��� 3��� p�

v� B
kH

�
;

A�HL �
HT

3
�
B0 � 2B
kH

�

�
H00T
k2
H

�

�
3�

H0

H

�
H0T
k2
H

�
� �

8�G

H2k2
H

p�;

A�H0L �
H0T
3
�

4�G

H2 ��� p�
v� B
kH

;

A0 �
�
2� 2

H0

H
�
k2
H

3

�
A�

kH
3
�B0 � B� �H00L �

�
2�

H0

H

�
H0L �

4�G

H2

�
�p�

1

3
��

�
;

(A6)

where recall 0 � d=d lna and kH � �k=aH�. The conserva-
tion laws for the matter and effective dark energy become

 ��0 � 3���� �p� � ���� p��kHv� 3H0L�;

�a4��� p��v� B�0

a4kH
� �p�

2

3
p�� ��� p�A:

(A7)

There are 4 metric variables and 4 matter variables per
component that obey 4 Einstein equations and 2 conserva-
tion equations per component. However 2 out of 4 of the
Einstein equations are redundant since the Bianchi identi-
ties are automatically satisfied given a metric.
Furthermore, 2 degrees of freedom simply represent gauge
or coordinate freedom. This leaves 2 degrees of freedom
per component to be specified. Usually, this involves defin-
ing equations of state that specify the spatial stresses in
terms of the energy density and velocities. As we shall see,
it is this prescription that must be altered to describe
modified gravity.

2. Gauge

The scalar gauge degrees of freedom are fixed by gauge
conditions. Under a gauge transformation defined by the
change in conformal time slicing T and spatial coordinates

L

 	 � ~	� T; xi � ~xi � LYi; (A8)

the metric variables transform as

 A � ~A� aH�T0 � T�; B � ~B� aH�L0 � kHT�;

HL � ~HL � aH�T �
1
3kH�; HT � ~HT � aHkHL;

(A9)

and the matter variables transform as

 �� � ~��� �0aHT; �p � ~�p� p0aHT;

v � ~v� aHL0; � � ~�:
(A10)

A gauge is fully specified if the functions T and L are
uniquely defined.

In this paper we work in the matter comoving and
Newtonian gauges. The matter comoving gauge is speci-
fied by the conditions

 B � vm; HT � 0: (A11)

They fully specify the gauge transformation from an alter-
nate gauge choice
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 T � �~vm � B�=k; L � � ~HT=k: (A12)

To avoid confusion between fluctuations defined in differ-
ent gauges, we will define

 � � HL; 
 � A; �� � ��;

�p � �p; V � v:
(A13)

�p should not be confused with p� � p���=��.
The appropriate Einstein and conservation equations for

this gauge can be obtained by utilizing these definitions in
Eqs. (A6) and (A8). For example, the third Einstein equa-
tion reads

 � 0 � �
4�G

H2 ��e � pe�
Ve � Vm
kH

; (A14)

and the energy-momentum conservation equations for the
matter become

 �0m � �kHVm � 3� 0; 
 � 0: (A15)

The dark energy-momentum conservation equation

 

�a4��e � pe��Ve � Vm�0

a4kH
� �pe �

2

3
pe�e; (A16)

in conjunction with Eq. (A14) and the first Einstein equa-
tion implies that unless �pe or pe�e >O���=k2

H�,
� 0=� ! 0 as kH ! 0.

Similarly, the Newtonian gauge is defined by the condi-
tion B � HT � 0 and the transformation

 T � �
~B
k
�

~H0T
kkH

; L � �
~HT

k
: (A17)

To avoid confusion we define

 � � HL; � � A: (A18)

We refrain from utilizing matter variables in Newtonian
gauge but note that velocities in the two gauges are the
same. The relationship between the two metric fluctuations
are

 � � ��
Vm
kH

; 
 � ��
V 0m � Vm
kH

: (A19)

The matter momentum conservation law in Newtonian
gauge becomes

 V 0m � Vm � kH�: (A20)

This equation can alternately be derived from the gauge
transformation equation (A19) given that 
 � 0.

Finally the Einstein equations (A6) in Newtonian gauge
imply

 

���

2
� �

4�G

H2k2
H

p� � �
4�G

H2k2
H

pe�e; (A21)

 

���

2
�

4�G

H2k2
H

�
��� 3��� p�

V � Vm
kH

� p�
�

�
4�G

H2k2
H

�
�m�m � �e�e

� 3��e � pe�
Ve � Vm
kH

� pe�e

�
; (A22)

where we have assumed that the anisotropic stress of the
matter is negligible. A finite metric ratio parameter g �
�����=����� is thus associated with a nonvanishing
effective anisotropic stress.

3. PPF correspondence

The system of equations defined by the field equations
and the conservation equations are incomplete. To close
the system of equations two more conditions must be
required of the effective dark energy. It is this closure
condition that the PPF parametrization must determine.

Given that the matter has no anisotropic stress,
Eq. (A21) defines the anisotropic stress of the effective
dark energy in terms of the metric

 pe�e � �
H2k2

H

4�G
g��; (A23)

where recall �� � �����=2. This is the first of two
closure relations.

The second closure relation comes from equating
Eq. (A22) and the modified Poisson equation (16)

 �e�e � 3��e � pe�
Ve � Vm
kH

� pe�e � �
k2

4�Ga2 �:

(A24)

The PPF equation of motion (21) for � is therefore the
‘‘equation of state’’ for the effective dark energy.

The conservation laws for the effective dark energy and/
or remaining Einstein equations then define the other two
components Ve and �pe. For example,

 Ve � Vm � kH
H2

4�Ga2��e � pe�
� 0;

�pe � pe�e �
1

3
�e�0e � ��e � pe��kHVe=3� � 0�:

(A25)

The modification represented by this prescription obeys all
4 Einstein equations and both sets of conservation laws.

Unlike the case of a microphysical candidate for dark
energy such as a scalar field, the closure relations not only
cannot be defined as direct relationships between the spa-
tial stresses and the energy density and velocity, they here
involve the matter and the metric fluctuations directly.
Hence the effective dark energy is implicitly coupled to
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the matter and cannot be described as an independent
entity.

On the other hand, the virtue of making this correspon-
dence explicit is that with these relations all of the usual

representations of perturbation theory can be reached by
standard gauge transformations from our matter comoving
and Newtonian representations.
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