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In the context of a debate on the correct expression of the Hawking temperature of a cosmological black
hole, we show that the correct expression in terms of the Hawking-Hayward quasilocal energy mH of the
hole is T � �8�mH�t��

�1. This expression holds for comoving black holes and agrees with a recent
proposal by Saida, Harada, and Maeda.

DOI: 10.1103/PhysRevD.76.104042 PACS numbers: 04.70.Dy, 04.70.Bw, 98.80.Jk

I. INTRODUCTION

Recently, the power of Hawking radiation emitted by a
cosmological black hole was computed by Saida, Harada,
and Maeda [1]. In this work, the black hole is not the usual
asymptotically flat spacetime but lives instead in an asymp-
totically Friedmann-Lemaitre-Robertson-Walker (FLRW)
universe, which is taken to have flat spatial sections for
simplicity. In Ref. [1], two exact solutions of the Einstein
equations describing such systems are considered: the
Einstein-Straus vacuole [2] with a central nonexpanding
black hole, and the recent Sultana-Dyer solution [3] de-
scribing a perfectly comoving black hole embedded in a
dust-dominated FLRW universe (see Ref. [4] for other
dynamical black hole solutions and [5,6] for the thermo-
dynamics of dynamical black hole horizons).

The analysis of Saida, Harada, and Maeda [1] delivers
two main results: for the Einstein-Straus black hole [2],
which is not accreting, thermal radiation of quantum par-
ticles is suppressed by a factor coming from the expansion
of the boundary between the local (static) black hole ex-
terior and the expanding FLRW universe. This phenome-
non is interpreted in analogy with radiation from an
accelerated mirror, and we will not be concerned with it
here. The second result, upon which we focus, pertains to
the second exact solution studied in [1], i.e., the Sultana-
Dyer cosmological black hole [3]. This solution is obtained
by conformally transforming the Schwarzschild metric
 

ds2
Schw � �

�
1�

2m
r

�
dt2 �

�
1�

2m
r

�
�1
dr2

� r2�d�2 � sin2�d’2� � g�Schw�
ab dxadxb (1)

according to

 g�Schw�
ab ! g�SD�

ab � �2g�Schw�
ab (2)

and choosing the conformal factor � � a�t�, the scale
factor of a spatially flat FLRW metric

 ds2
FLRW � �dt

2 � a2�t��dr2 � r2�d�2 � sin2�d’2�� (3)

with the particular choice a�t� � a0t2=3 (the scale factor of

a dust-dominated universe). The explicit goal of Sultana
and Dyer is to turn the Schwarzschild global timelike
Killing field �c into a conformal Killing field (which
happens for �crc� � 0) which generates a conformal
Killing horizon (the dynamical black hole horizon). The
Sultana-Dyer metric can be written in various coordinate
systems; for example,
 

ds2
SD � a2���

�
�d�2 � dr2 � r2�d�2 � sin2�d’2�

�
2m
r
�d�� dr�2

�
; (4)

where m � const> 0, � is the conformal time, and r is an
areal (Schwarzschild-like) radial coordinate. To see that
(4) is conformal to the Schwarzschild line element, one
performs the coordinate transformation � � t�
2m ln� r2m� 1� which turns (4) into

 ds2
SD � a2���

�
�

�
1�

2m
r

�
d�2 �

�
1�

2m
r

�
�1
dr2

� r2�d�2 � sin2�d’2�

�
: (5)

It is relevant [7] that the Sultana-Dyer solution can be seen
as a generalization of the McVittie metric [8] describing a
point particle embedded in a cosmological background.
For a spatially flat FLRW background this is given by [8]
 

ds2
McVittie � �

�1� m�t�
2�r �

2

�1� m�t�
2�r �

2
dt2 � a2�t�

�
1�

m�t�
2�r

�
4

	 �d �r2 � �r2�d�2 � sin2�d’2��; (6)

where �r is the isotropic radius defined by

 r � �r
�
1�

m
2�r

�
2
; (7)

a�t� is the scale factor of the background FLRW universe,
and m�t� is a function of the comoving time t related to the
physical mass of the central object and determined by the
McVittie condition

 

_m
m
�

_a
a
� 0; (8)
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where an overdot denotes differentiation with respect to the
comoving time. This condition is equivalent to G1

0 � 0
(where Gcd is the Einstein tensor) and to vanishing com-
ponent T1

0 of the energy-momentum tensor of the cosmic
fluid. The physical meaning is that no accretion onto the
central object occurs and, as a consequence, the central
object’s radius stays constant, as discussed in Ref. [7]. This
dictates the form of m�t� � constant=a�t�. The McVittie
metric (6) cannot be interpreted as describing a cosmologi-
cal black hole because at the putative horizon �r � m=2 (or
r � 2m) the pressure of the cosmic fluid and the Ricci
curvature R diverge [9–11]. An important exception is the
Schwarzschild-de Sitter solution which is a special case of
the metric (6) and describes a genuine static black hole
embedded in de Sitter space [11].

The Sultana-Dyer solution corresponds to a generalized
McVittie metric (6) in which the condition (8) is dropped
and the central black hole is allowed to (radially) accrete
the surrounding cosmic fluid. The Sultana-Dyer choice of
m�t� � constant � m0 is, in this respect, the simplest. The
Sultana-Dyer solution does not satisfy the energy condi-
tions; indeed, the energy density of the cosmic fluid even
becomes negative, and the flow becomes superluminal,
near the horizon at late times [3]. Other solutions with
similar problems have been presented in Refs. [12,13], and
new solutions have been found in Ref. [7]; some of the
latter have positive energy density everywhere on the
spacetime manifold but still suffer from the superluminal
flow problem due to the oversimplified model of ‘‘rigid’’
accretion. However, they are not restricted to the special
form a�t� � a0t

2=3 but hold for general scale factors.
The Hawking-Hayward [14,15] quasilocal energy of the

McVittie, Sultana-Dyer, and new solutions of the form (6)
is [7,11]

 mH�t� � a�t�m�t�; (9)

this should be regarded as the physical mass of the central
object or black hole, where applicable, as opposed to the
function m�t� (which has led to misleading or incorrect
statements in the literature [12,16]) or to the Misner-Sharp
mass [1] which is not particularly illuminating. In terms of
mH, the McVittie condition (8) says that the Hawking mass
stays constant ( _mH � 0, no accretion), while the Sultana-
Dyer solution has mH�t� � m0a�t�, i.e., is ‘‘perfectly co-
moving.’’ This is not an abuse of terminology because the
physical mass mH is related to the physical size of the
horizon by r � 2mH � a�t�m0, which is reminiscent of the
expression of the Schwarzschild radius r � 2m. This rela-

tion comes from the definition of the areal radius r �
�����
A
4�

q
,

where A is the proper area of the horizon �,

 A �
ZZ

d�d’
������
g�
p

� 16�a2m2 � 16�m2
H (10)

and g� is the determinant of the restriction g���ab of the

metric to this surface. Equation (10) tells us that the surface
�r � m=2 in the McVittie geometry (including the case of
the Schwarzschild-de Sitter black hole) does not expand,
while the Sultana-Dyer solution and the solutions of
Ref. [7] are perfectly comoving.

II. THERMODYNAMICS OF A CONFORMALLY
SCHWARZSCHILD COSMOLOGICAL BLACK

HOLE

Let us consider now the zeroth law of black hole ther-
modynamics (i.e., the surface gravity � is constant on the
horizon) for these cosmological black holes. In [3], Sultana
and Dyer assumed the temperature of their black hole
solution to be

 TSD �
1

2�
��DH �L��ln�2�� �

1

8�m0
; (11)

i.e., constant over the conformal Killing horizon and equal
to the temperature of the static Schwarzschild black hole
conformal to the Sultana-Dyer solution. Here L denotes
the Lie derivative and �c is the conformal Killing vector
which becomes null on the conformal Killing horizon and
satisfies

 L �gcd � �L� ln�2�gcd; (12)

while the surface gravity of the dynamical horizon is
defined by

 �crc�a � ��DH�a: (13)

Jacobson and Kang [17], instead, defined a generalized
surface gravity �JK defined by the normalization of the
conformal Killing vector as

 ra��c�c� � �2�JK�a: (14)

This is conformally invariant if �! 1 at infinity. The
relation between these two notions of surface gravity is
[1,17]

 �JK � �DH �L��ln�2�; (15)

from which it follows that the corresponding temperatures
for the cosmological black hole coincide,

 TSD � TJK � TJKSD �
1

8�m0
: (16)

However, this prescription for the black hole temperature is
at odds with generalizations of the zeroth law to conformal
Killing horizons existing in metrics that are conformal to
asymptotically flat black holes [18,19], and also with a
simple argument proposed below. Saida, Harada, and
Maeda argue that the black hole temperature should be
the one given by the spectrum of the emitted Hawking
radiation, which is instead [1]
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 TSHM �
TJKSD

�
�

1

8�m0a
: (17)

In the light of the previous discussion, this is simply
TSHM � 1=�8�mH�, which appears natural when mH is
regarded as the physical mass of the Sultana-Dyer black
hole and reduces to the usual T�Schw� � �8�m��1 for a
Schwarzschild black hole. This conclusion is supported
by the following scaling argument. As discussed in great
detail by Dicke [20] following earlier ideas of Weyl [21], a
conformal transformation gab ! �2gab can be interpreted
as a mere rescaling of the lengths of vectors and of the units
used in a measurement, with the amount of rescaling
depending on the spacetime position (although Dicke
was concerned with the then-new Brans-Dicke theory
[22], his argument is quite general and applies also to
general relativity as well as other metric theories of grav-
ity). All that is measured in an experiment is the ratio
between a quantity q and its unit qu. For example, the
proper length of a ruler divided by the unit of length lu is
the same in the Minkowski metric �ab and in a conformally
related metric gab � �2�ab if a new length unit ~lu � �lu
is associated to it—see Ref. [23] for an application.
Therefore, two metrics gab and ~gab are physically equiva-
lent [24] provided that the units of the fundamental quan-
tities length, time, and energy scale according to ~lu � �lu,
~tu � �tu, and ~mu � ��1mu [20] (derived units are scaled
accordingly to their dimensions). In this sense, there is no
difference between using the Schwarzschild metric g�Schw�

ab

and its conformal Sultana-Dyer cousin ~gab � g�SD�
ab , pro-

vided that the units ~lu, ~tu, and ~mu are appropriately scaled,
i.e., expanding for lengths and times, and redshifting away
for energies. Since the black hole temperature T multiplied
by the Boltzmann constant kB scales as an energy, the ratio
between kBT and mu must be the same when using g�Schw�

ab

or g�SD�
ab , or

 

kB ~T
~mu
�
kBT�Schw�

mu
; (18)

which yields the effective temperature of the cosmological
black hole

 

~T �
T�Schw�

�
�

1

8�m0a
�

1

8�mH
(19)

in agreement with Ref. [1]. This simple argument supports
the result of Saida, Harada, and Maeda [1] and is fully
consistent with the revealing use of the Hawking-Hayward
quasilocal energy mH rather than other mass notions. The
argument does not apply to a Schwarzschild-de Sitter (or
Einstein-Straus) black hole, which cannot be obtained by
conformally transforming the Schwarzschild metric (re-
member thatmH � const for this case, contrary tomH�t� �
a�t�m0 for the Sultana-Dyer black hole).

In scalar-tensor cosmology it is well known that simple
rescaling provides the transformation law of the matter
energy-momentum tensor under conformal transforma-
tions gab ! ~gab � �2gab as

 

~T �m�ab � ��2T�m�ab ; (20)

which agrees with a direct calculation of ~T�m�ab [25,26]. By
applying the rescaling to the semiclassical stress-energy
tensor of a scalar field in the background of a Sultana-Dyer
(or any other comoving) black hole in our general-
relativistic situation, the renormalized h ~Tabi should then be

 h ~Tabi �
hTabi

a2 : (21)

The explicit renormalization of Tab by Saida, Harada, and
Maeda [1] instead yields

 h ~Tabi � hT
�SD�
ab i �

hTabi

a2 �
1

2880�2 �Xab � Yab�; (22)

where [27]

 Xab � 2~ra ~rb ~R� 2~gab ~� ~R�
~R
2

~gab � 2 ~R ~Rab; (23)

 Yab � � ~Rca ~Rbc �
2

3
~R ~Rab �

1

2
~Rcd ~Rcd~gab �

~R
2

~gab: (24)

The extra terms in Eq. (22) are interpreted as due to
quantum particle creation by the expanding background
[1], which could not be predicted by using Dicke’s classi-
cal argument. However, when the black hole horizon is
much smaller than the cosmological horizon, these terms
can be safely neglected and the rescaling argument agrees
with the proper calculation of hT�SD�

ab i in [1].
An independent argument supporting the temperature

(19) of cosmological black holes versus the expression
(16) is the following. It is instructive to consider the first
law of black hole thermodynamics which, for a static
Schwarzschild black hole of massm takes the form TdS �
dm. The expression of the Bekenstein-Hawking entropy
S � A=4, where A � 4�r2 is the horizon area, together
with the expression r � 2m for the horizon radius, yields
the Hawking temperature T�Schw� � 1=�8�m�. For a con-
formally expanding black hole of the Sultana-Dyer type or
of the type in Ref. [7], the quasilocal energy mH�t� �
a�t�m�t� and proper horizon radius rp�t� � a�t�r (as well
as proper area A � 4�r2

p and proper volume V �
4�r3

p=3) should be used. For these expanding horizons,
the first law of black hole thermodynamics includes a work
term PdV:

 TdS � dmH � PdV: (25)

By identifying again the black hole entropy with S �A=4
and using proper quantities, one obtains
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 8�TmHdmH � dmH � 32�Pm2
HdmH: (26)

In the adiabatic approximation in which the accretion rate
is small, the black hole is in a state of quasiequilibrium and
the work term can be neglected yielding

 T ’
1

8�mH�t�
�
T�Schw�

a
; (27)

in agreement with our previous argument. The disagree-
ment between the result of Ref. [1], with which our argu-
ments agree, and the Jacobson-Kang-Sultana-Dyer
temperature is discussed in Ref. [1]. Recurrent folklore
supports the idea that the black hole temperature is con-
formally invariant: however, the conformal invariance
found in Ref. [17] is valid upon the assumption that the
conformal factor satisfies �! 1 and that the conformal
Killing field has unit norm at null infinity. These assump-
tions are not satisfied by the Sultana-Dyer black hole [3],
nor by the comoving black holes of Ref. [7]. The radiation
spectrum can be computed by evaluating the Bogoliubov
coefficients relating ingoing and outgoing modes of posi-
tive and negative frequencies. The latter are defined by
familiar boundary conditions when the spacetime is
Minkowskian at infinity. These boundary conditions are
not preserved by a conformal transformation mapping an
asymptotically flat spacetime into an asymptotically
FLRW one (in this case the Bogoliubov coefficients are
not expected to be conformally invariant). The temperature
of these black holes in the adiabatic approximation appears
in Ref. [1] as a result of a calculation of the renormalized
energy-momentum tensor (a full semiclassical calculation
including explicit Bogoliubov coefficients is not yet
available).

From the physical point of view, it is clear that the
temperature of an expanding black hole must be time
dependent while, if it were conformally invariant, it would
be constant in time for a conformally Schwarzschild black
hole. In fact, T is inversely proportional to the physical
mass; the latter must be related with the physical radius of
the horizon (e.g., by the expression of the Schwarzschild
radius rs � 2m for a Schwarzschild black hole). Therefore,
since the horizon radius changes with time, also the physi-
cal mass changes with time, and so does the Hawking
temperature. It would be unphysical for the temperature
to remain time independent while the black hole expands
without bound.

III. STATIC CONFORMAL TRANSFORMATION

We now want to address an apparent contradiction [28]
between the scaling argument proposed here and the
claims of conformal invariance of the Hawking tempera-
ture appearing in the literature [3,17]. While this contra-
diction does not exist for the cosmological black hole
considered so far because conformal invariance of the
surface gravity and Hawking temperature has been dem-

onstrated only for scale factors that approach unity at
spatial infinity, it is certainly legitimate to consider a sta-
tionary conformal transformation in which the conformal
factor does not depend on time and approaches unity at
infinity. One can then consider the conformally trans-
formed Schwarzschild black hole with, say, � � ��r� in
order to preserve spherical symmetry, and �! 1 as r!
�1. The scaling argument still yields ~T � ��1T, in con-
tradiction with the claim of conformal invariance ~T � T
[3,17]. This contradiction disappears when one realizes
that two different notions of temperature are used, and
that quasilocal energy and quasilocal mass behave differ-
ently under conformal transformations. In the following we
adopt the Brown-York notions of quasilocal energy and
mass [29]. First, note that a stationary conformal trans-
formation satisfies �crc� � 0, where �c is the timelike
Killing vector of Schwarzschild spacetime, and therefore
the Schwarzschild Killing horizon is mapped into another
Killing horizon, not just a conformal Killing horizon.
Second, the Brown-York expression for the quasilocal
mass is conformally invariant [30]: under general confor-
mal transformations the latter is not a conserved charge,
but it does enjoy this property for transformations with
�crc� � 0 [30]. However, it is not the quasilocal mass
that should be used here but rather the (Brown-York)
quasilocal energy which differs from the quasilocal mass
and has been used extensively in quasilocal black hole
thermodynamics [31]. The boundaries that are necessary
to define quasilocal quantities, in general, may not be
mapped into boundaries embeddable in the conformally
related spacetime; however, this property holds for static,
spherically symmetric, conformal transformations [32].

The quasilocal energy E is not conformally invariant but
scales as ~E � ��1E [30]. It is significant that, in the
original Brown-York paper [29], the first law of thermody-
namics applied to a Schwarzschild black hole with radius R
and mass M becomes (Eq. (6.20) of Ref. [29])

 

dS

8�M
��������������
1� 2M

R

q � dU� PdV; (28)

where S � A=4 � 4�M2 is the entropy. The equilibrium
temperature here is given by �8�M

����������
jg00j

p
��1, not simply

by �8�M��1. This is reminiscent of Tolman’s criterion for
thermal equilibrium T

����������
jg00j

p
� const [33] which, applied

to a Sultana-Dyer black hole, yields again ~T � T=a. For a
stationary conformal transformation with � � ��r�, in-
stead, if M is conformally invariant, the new temperature
will be

 

~T �
1

8�M
����������
j~g00j

p �
T
�
; (29)

which is consistent with the scaling relations
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 d ~U �
dU
�
; (30)

 

~P � ��4P; (31)

 d ~V � �3dV: (32)

Equation (31) is well known from the conformal trans-
formation properties of perfect fluids in cosmology (e.g.,
Ref. [26]), while Eq. (32) applies to static conformal trans-
formations for which d� � _�dt � 0 in any thermody-
namic process. Therefore, the first law is valid also in the
conformally rescaled world and a necessary condition for
this to happen is that ~T � ��1T. The contradiction be-
tween the scaling argument and the claimed conformal
invariance originates from two different definitions of tem-
perature, one based on the quasilocal energy [29], and the
other based on the conformally invariant surface gravity
�JK � �DH given by Eq. (14) [3,17] and, in this respect,
akin to the Brown-York quasilocal mass.

IV. OUTLOOKS

The previous considerations reopen the issue of which
notion of temperature is to be used as the physical tem-
perature of a black hole that is conformally related to a
static or stationary one or, more in general, of a dynamical
horizon. We do not claim to have exhausted this subject
here: this issue is still open and awaits clarification.

To conclude, we have given independent arguments
supporting the result of [1] for the temperature of a
Sultana-Dyer black hole. A simple interpretation of this
temperature is given, which appears particularly natural
once the Hawking-Hayward quasilocal energy mH is
adopted as the physical mass. The prescription (19) for
the temperature of comoving cosmological black holes is
extended to the solutions of Ref. [7].
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