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We investigate properties of solutions of the scalar wave equation and Maxwell’s equations on
Minkowski space with helical symmetry. Existence of local and global solutions with this symmetry is
demonstrated with and without sources. The asymptotic properties of the solutions are analyzed. We show
that the Newman-Penrose retarded and advanced scalars exhibit specific symmetries and generalized
peeling properties.
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I. INTRODUCTION

A beautiful theorem by Leon Lichtenstein demonstrates
the existence of solutions describing the circular motion of
two fluid bodies around their center of mass under the
Newtonian force of gravity [1]. This solution is invariant
under the symmetry generated by the vector field @t �
�@�, the helical symmetry.

Are there corresponding solutions in Einstein’s theory of
gravity? For truly isolated systems such solutions will not
exist in general relativity because the orbiting bodies will
generate gravitational radiation and spiral towards each
other. It is however conceivable—and this was first con-
jectured by Detweiler [2]—that if there is the right amount
of incoming radiation which would just compensate the
outgoing radiation, then the bodies could stay on a circular
orbit and the spacetime would admit helical symmetry as
an isometry.

There is an example of a solution with helical symmetry
in Maxwell’s theory by Schild [3]: He shows that two
opposite electric point charges can move on a circular orbit
if the force on one particle is given by the Lorenz force of
the ‘‘one half advanced plus retarded field’’ of the other
particle. In this solution the total energy of the field is
infinite. (See also [4] where this is generalized to N scalar
point particles.)

One also expects that in a fully relativistic treatment of
the 2-body problem with helical symmetry the ADM mass
of the solution will be infinite and that the solutions will not
be asymptotically flat in the usual sense at spatial or null
infinity. Because of this it is not even clear how one defines
‘‘helical symmetry’’ if there is no asymptotic symmetry
group to characterize the infinitesimal helical Killing field
@t ��@�.

Apart from this fascinating question whether Einstein’s
theory has really solutions with helical symmetry in which
incoming radiation balances outgoing radiation, there is
interest in the numerical community to use data with
approximate helical symmetry in the numerical construc-
tion of solutions of the 2-body problem and the calculation
of the radiation emitted. This question has lead to various
both analytical and numerical studies of helical solutions

of linear and nonlinear model problems by J. Friedman, R.
Price, E. Gourgoulhon, their co-workers, and others (see,
e.g., [5–9], and references therein). The primary goal here
is computing quasiequilibrium configurations of close bi-
nary compact objects, or individual rotating neutron stars.

To address the problem of helical solutions in Einstein’s
theory it is absolutely necessary to have a really good
understanding of the linear situation. The reason is that
solutions to nonlinear problems are usually solved as a
limit of a sequence of linear problems. No systematic study
of linear helical solutions of the scalar wave equation,
Maxwell’s equations and linearized gravity is available.
This is the topic of the present paper.

Section II studies solutions with helical symmetry—i.e.
solutions invariant under the symmetry generated by
@t ��@�—of the scalar wave equation on Minkowski
space. There is a very important point: because of the
assumed symmetry one can study the wave equation on
the space of orbits of the symmetry. There one obtains an
apparently simpler 3-dimensional problem. However, the
symmetry reduced wave equation is a second order PDE
which changes its character: it is elliptic near the center and
hyperbolic far out. No general theory is available in this
situation. There is the paper by Torre [10] who obtains
some existence results for the inhomogeneous equations on
part of Minkowski space.

We proceed completely differently. A lot is known about
the wave equation in Minkowski space. In particular, the
retarded and advanced solutions of a spatially compact
source with helical symmetry are also helical. So, with
almost no work we obtain solutions of the inhomogeneous
wave equation on the space of orbits.

The general homogeneous solution with helical symme-
try can be constructed via a spherical harmonics decom-
position. So, we know the general solution.

There are helical solutions with explicit Ylm angular
behavior. We give an integral representation of such
solutions.

In Sec. III we investigate the asymptotic behavior of
these solutions near spatial and null infinity. The retarded
solution of a spatially compact helical source has the usual
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Bondi-type expansion [11] at future null infinity but no
such expansion exists at past null infinity. The standard
radiation field of the solution, as defined, e.g., in [11–13],
does not exist on past null infinity. Hence for the retarded
plus advance solution no radiation field is defined at all.
Also, the decay at spatial infinity is rather weak, the field
decays like sinr=r.

In Sec. IV we calculate the retarded and advanced field
of a scalar source moving on a circle with constant veloc-
ity. The rather complicated periodicity properties of the
solutions become apparent.

The analogous solution in Maxwell’s theory is presented
in Sec. V. We give the fields in terms of the null-tetrad NP
(Newman-Penrose) projections, i.e., as three complex sca-
lars. Since the charged particles moving in circular obits
occur in synchrotrons (where they are guided by external
magnetic fields) our final expressions might be of some use
also elsewhere. In Schild’s work [3] the field is not given.
The usual radiation field again does not exist but the NP
scalars exhibit generalized peeling properties. As a conse-
quence of the helical symmetry, the retarded and advanced
NP scalars show specific symmetry properties.

From the results in Maxwell’s theory one can almost
guess the formulas for Einstein’s linearized gravity if
needed.

II. THE WAVE EQUATION ON MINKOWSKI SPACE

We begin by considering the wave equation on
Minkowski space and want to describe global and local
solutions with helical symmetry.

A function F�t; r; �; �� (in standard spherical coordi-
nates on Minkowski space) is invariant under @t ��@�
if and only if

 F�t; r; �;�� � G����t; r; �� � G��̂; r; ��: (1)

The function G is periodic in its first argument with period
2�.F is a solution of the scalar wave equation if and only if
G satisfies
 

��2G;�̂ �̂ �G;rr �
2

r
G;r �

1

r2 sin�
�sin�G;��;�

�
1

r2sin2�
G;�̂ �̂ � 0: (2)

(In Secs. II and III we set the speed of light c � 1.) A
remarkable property of this equation is that it changes
its character. The norm of the helical Killing vector is
N � �1��2r2sin2� and therefore the helical Killing
vector is timelike near the axis (N < 0�, null for N �
�1��2r2sin2� � 0, and spacelike for N � �1�
�2r2sin2� > 0. This implies that the reduced Eq. (2) is
elliptic near the center and hyperbolic for N �
�1��2r2sin2� > 0. This raises interesting questions
concerning solutions defined globally. We will denote

the three regions as: T � f��̂; r; ��jN < 0g, L �
f��̂; r; ��jN � 0g, S � f��̂; r; ��jN > 0g.

A. Local source-free solutions

Obviously in T local solutions can be determined by
boundary value problems and in S by Cauchy problems.
What happens near L is not so clear.

Suppose we have a C2 solution of (2) defined for r1 <
r< r2 such that N changes its sign in this region. We can
expand into spherical harmonics

 G��̂; r; �� � G�r�Ylm��̂; ��; �̂ 2 �0; 2��; (3)

and obtain for G�r� the radial equation

 m2�2G�
1

r
�rG�;rr �

1

r2 l�l� 1�G � 0: (4)

The general solution in terms of spherical Bessel functions
is

 Glm�r� �
alm�����������
m�r
p Jl��1=2��m�r� �

blm�����������
m�r
p Yl��1=2��m�r�:

(5)

The set L, the light cylinder, is no singularity for the radial
equation. Hence, we see that there are local solutions for
which nothing particular happens at L.

The only solutions regular at the origin are given by b �
0. For m�r� l the solutions behave as sin�m�r�
�
2 l�=m�r.

Thus we know the general C2 solutions in terms of
converging superpositions of spherical harmonics and
Bessel functions:

 G��̂; r; �� �
X
l;m

almGlm�r�Ylm��̂; ��: (6)

The coefficients alm, blm in (5) may depend on �. Taking
(5) in the form
 

Glm�r� �
�alm
�m��l

1�����������
m�r
p Jl��1=2��m�r� � �blm�m��l�1

�
1�����������
m�r
p Yl��1=2��m�r�; (7)

where �alm, �blm are independent of �, we find, using the
properties of the Bessel functions, that in the limit �! 0

 Glm�r� �
�alm

�2l� 1�!!
rl � �blm�2l� 1�!!

1

rl�1
: (8)

This is the general static Ylm—solution of the Laplace
equation.

B. Global source-free solutions

Now we assume that we have a C2 solution defined on
Minkowski space. Again we can decompose into spherical
harmonics and because of the regularity at the origin only

JIŘÍ BIČÁK AND BERND G. SCHMIDT PHYSICAL REVIEW D 76, 104040 (2007)

104040-2



J-Bessel functions appear:

 G��̂; r; �� �
X
l;m

alm
1�����������
m�r
p Jl��1=2��m�r�Ylm��̂; ��: (9)

This shows that a global C2 solution is uniquely deter-
mined by its values in a neighborhood of the center.

What is the asymptotics of such solutions? From the Ylm
decomposition it is not obvious what type of decay one can
produce by superpositions. Remember that a superposition
of not decaying plane wave solutions of the wave equation
can produce solutions with spatially compact support.

There is an easy argument that we cannot obtain solu-
tions of finite energy: suppose we have a C2 solution of
finite energy; then the energy in a finite box around some
fixed point in space has to decay in time, a general property
of solutions of the wave equation. Such a decay contradicts
helical symmetry.

In particular, there are no C2 solutions with spatially
compact support and helical symmetry.

In the next section we shall see that there are local
solutions near null infinity which allow a Bondi expansion,
but global source-free solutions have never a Bondi
expansion.

C. Global solutions with sources

Suppose we have a solution of the form (9) defined near
the center. In general, the series will not converge for all r.
Examples are given by solutions of the inhomogeneous
wave equation with sources invariant under the helical
symmetry. The simplest case is a point source moving on
an integral curve of the helical Killing field. In spacetime
the retarded and advanced fields of this source are well
defined outside the source. Near the center these solutions
must be of the form (9) but they become singular at the
source position. Further out we will again have a superpo-
sition of now both Bessel function solutions.

The general solution of the inhomogeneous wave equa-
tion with a spatially compact source is given by the sum of
the retarded solution and some global solution of the
homogeneous equation.

If the spatially compact source has helical symmetry the
(unique) retarded and advanced solutions have also helical
symmetry.

A simple way to see this is to consider a point charge as a
source, as we do in detail in Sec. IV, and change the
‘‘source variables’’ t0, �0 to t0 � � and �0 ���, � 2 R,
which represents the action of the helical symmetry on the
source. It is then easy to show, using the explicit formulas
for Liénard-Wiechert potentials, that the field remains the
same when the ‘‘observation variables’’ t, � change to t�
�, ����. For an extended source the superposition
principle can be used. There is, in fact, a more general
theorem available showing for the wave equation that a
symmetry of the source is inherited by the retarded/ad-
vanced fields.

If we take these helical solutions, which we obtain from
general theorems about the wave equation in Minkowski
space, and consider them as solutions of the reduced
Eq. (2), we obtain immediately an existence theorem for
the reduced equation which, in contrast to the result by
Torre [10], includes the center.

More precisely: The retarded and advanced solution of
the wave equation with a spatially compact helical source
defines a global solution of the inhomogeneous reduced
equation which is analytic outside the source. The general
solution is obtained by adding a global solution of the
homogeneous equation described in Sec. II B.

If we take a source with helical symmetry, then the
difference of the retarded and advanced solution defines
a global, source-free solution with helical symmetry on
Minkowski space. This shows the existence of source-free
solutions defined on all of Minkowski space.

We want to give an explicit representation of a helical
solution with Ylm behavior: Let � be a helically symmetric
source of the scalar field ��t; r�, satisfying the inhomoge-
neous wave equation

 �� � �4���t; r�; (10)

where r � �xi� � �x; y; z�. The retarded solution reads

 ��t; r� �
Z ���t; �r�
jr� �rj

d �V; (11)

with

 

�t � t� jr� �rj; (12)

 jr� �rj �
�����������������������������
r2 � 2r�r� �r2

p
; (13)

r � jrj � �xixi�1=2, similarly for �r.
We assume for the helical source the Ylm dependence:

 

�̂��̂; r; �� � ��r�Ylm��̂; �� � ��r�alme
im�̂Pml �cos��;

�̂ 2 �0; 2��: (14)

The integrand I of the retarded integral becomes

 I �
1

jr� �rj
���r�alme

im� �����t�jr��rj�	Pml �cos ���: (15)

So,

 I �
�� �r�
jr� �rj

alme
im ��e�im�teim�jr��rjPml �cos ���; (16)

or

 I � e�im�t�� �r�Ylm� ��; ���
eim�jr��rj

jr� �rj
: (17)

Now we can use the following expansion in spherical
harmonics [see [14], Eqs. (16.18)–(16.22) with m� � k]:
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eikjr��rj

4�jr� �rj
�
X
l;m

gl�r; �r�Y
lm� ��; ���Ylm��;��; (18)

 g�r; �r� � ikjl�kr<�h
�1�
l �kr>�; (19)

with r< � min�r; �r�; r> � max�r; �r�. The Bessel and
Hankel functions jl, h�1�l can be found in [14]
[Eqs. (16.9), (16.10)] or [15].

If we insert this expansion into the retarded integral, use
the orthogonality properties of the spherical harmonics and
remember the volume element we obtain

 � � e�im�tYlm��; ��

�
Z 1

0
d �r�r2���r�im�jl�m�r<�hl

�1��m�r>�; (20)

or

 � � e�im�tYlm��; ��im�hl
�1��m�r�

�
Z r

0
d �r�r2���r�jl�m��r�

� e�im�tYlm��; ��im�jl�m�r�

�
Z 1
r
d �r�r2�� �r�hl

�1��m��r�: (21)

For compactly supported ��r� the behavior near infinity is
given by hl

�1��m�r� � eim�r=m�r. In this representation
of the solution the ‘‘retardation in spacetime’’ is com-
pletely hidden.

Thus, we have complete control of all solutions of the
inhomogeneous reduced equation with signature change
on the quotient. The lesson is not to forget Minkowski
space and just work with the reduced equation on the
quotient of the symmetry, but to use all the results one
has on the wave equation in Minkowski space.

III. ASYMPTOTICS OF SOLUTIONS WITH
SOURCES

In this section we discuss the asymptotics of helical
solutions on Minkowski space for scalar fields, and we
also mention the analogous cases for Maxwell fields and
linearized gravity. Here we deal with general (unspecified)
sources of spatially compact support. In the next sections
we investigate the fields of point sources on circular orbits
in detail.

A. The scalar wave equation

Let � be a helically symmetric source of the scalar field
��t; r�, satisfying the inhomogeneous wave equation

 �� � �4���t; r�; (22)

where r � �xi� � �x; y; z�. Again, the retarded solution
reads (11). Assume now general � which is bounded in

space; then at large distance from the matter, r� �r, we
obtain expansions for � in (11).

We write

 jr� �rj � r� a� �r;�; �; ��; ��� �O
�
1

r

�
; (23)

and

 

1

jr� �rj
�

1

r
�O

�
1

r2

�
: (24)

Because � is helical we have

 ���t; ��; ��; �r� � �̂� �����t; ��; �r�; (25)

where �̂ is periodic with period 2� in its first argument.
Hence we obtain

 ��t; �; �; r� �
Z �̂� �����t� jr� �rj�; ��; �r�

jr� �rj
d �V: (26)

Let us first investigate the field for r! 1, t fixed. We can
expand, using (23),

 

�̂� �����t� jr� �rj�; ��; �r�

� �̂� �����t� r� a� �r;�; �; ��; ����; ��; �r�

�
@�̂

@ ��
� �����t� r� a� �r;�; �; ��; ����; ��; �r�

�O
�
1

r

�
� . . . (27)

(We can easily write a complete Taylor expansion if
needed.)

The leading contribution to the field is therefore [see
also (24)]
 

��t; �; �; r� �
1

r

Z
�̂� �����t� r

� a� �r;�; �; ��; ����; ��; �r�d �V �O
�

1

r2

�
: (28)

The function

 P�t� r;�; �� �
Z
�̂� �����t� r

� a� �r; �; �; ��; ����; ��; �r�d �V (29)

is periodic in t� r with period 2�=� and the asymptotic
behavior is oscillatory in r for t fixed, r! 1:

 ��t; �; �; r� �
P�t� r;�; ��

r
: (30)

For a helical source with Ylm behavior,

 �̂��̂; �; r� � eim�̂Pl�cos��f�r�; (31)

we can see the periodicity explicitly.
Next we consider the asymptotic behavior at future null

infinity I�. With u � t� r, we have

JIŘÍ BIČÁK AND BERND G. SCHMIDT PHYSICAL REVIEW D 76, 104040 (2007)

104040-4



 

�̂� �����u� r� jr� �rj�; ��; �r�

� �̂� �����u� a��r; �; �; ��; ����; ��; �r�

�
@�̂

@ ��
� �����u� a��r; �; �; ��; ����; ��; �r�

�O
�
1

r

�
� . . . : (32)

If we put this in the retarded integral (11) we find that for
u � const, r! 1, we obtain the usual Bondi-type expan-
sion in r�1 (see [11,12]) as we approach I�.

If we go to past null infinity I�, we have v � t� r and
obtain

 

�̂� �����v� 2r� jr� �rj�; ��; �r�

� �̂� �����v� 2r� a� �r; �; �; ��; ����; ��; �r�

�
@�̂

@ ��
� �����v� 2r� a� �r; �; �; ��; ����; ��; �r�

�O
�
1

r

�
� . . . : (33)

This for r! 1, v � const implies again oscillations. This
behavior is easy to understand in a spacetime picture: when
going to I� through the outgoing field of a source which
has been periodically moving at all times, we cross infi-
nitely many oscillations.

B. The Maxwell field

We take a continuous compact distribution of charges
with helical motion. They define a conserved, helical 4-
current. If we use Lorenz gauge we have for each compo-
nent of the 4-potential to solve a scalar wave equation with
a helical source. Because the source is spatially compact
the Lorenz condition is satisfied for the solutions given by
the retarded, or advanced potentials. Hence, all the results
for the scalar field apply.

C. Linearized gravity

If we take the T�� of particles moving along the orbits of
a helical Killing vector we can consider the linearized
equations in harmonic gauge. We then encounter again
wave equations for individual components and can write
down retarded and advanced solutions. The asymptotics is
thus very similar to that of the scalar fields. However, now
we cannot satisfy the harmonicity condition because the
energy momentum tensor in linearized gravity for circular
orbits is not conserved. A difference to the Maxwell case.

If we want a complete solution the matter must satisfy
the equation of motion. For example, those of linearized
elasticity.

IV. THE FIELD OF A POINT SCALAR CHARGE IN
A CIRCULAR ORBIT

We adopt the standard procedure of finding retarded and
advanced Liénard-Wiechert potentials in electrodynamics
(see, e.g., an elegant, covariant description by Rohrlich
[16]) to the case of scalar fields. The retarded (� � �1�
and advanced (� � �1) solutions of the wave equation
with a 	-function type source with scalar chargeQmoving
along the worldline �x��
� so that

 ��x�� � Q
Z
	�4��x� � �x��
��d
; (34)

can be written in the form

 �� � �
Q
w�
; (35)

where

 w� � ����
v��
c
R� : (36)

(Henceforth, we do not set c � 1.) Here the null vectors

 R� � x � �x� (37)

connect a given spacetime point x, in which �� is to be
calculated, with two points �x� on the worldline �x�
�, in
which the past and future light cones with vertex at x

intersect the worldline. The 4-velocities v�� are evaluated at
these points �x� . The null vectors can be written as

 R�� � ��R � �jRj;R � r� �r��; (38)

the time components R0
� � �R are equal to the retarded and

minus advanced distance of the particle to the field point
x�.

Now consider a point charge Q moving in the plane
z � 0 along the circular orbit of radius a with center at
x � y � z � 0. So

 

�r � a�cos��t��0�; sin��t��0�; 0�; (39)

where � � constant is the particle’s angular velocity,�0 is
the azimuth at which the charge occurs at t � 0. The 4-
velocity is

 v� � �c�; �v�; (40)

 � �
1�����������������

1� a2�2

c2

q � constant; (41)

the 3-velocity is

 v � a��� sin��t��0�; cos��t��0�; 0�: (42)

From these simple relations we find the distance R entering
the null vectors (37) to be given by
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R� � ��x� a cos��t� ��0��
2

� �y� a sin��t� ��0��
2 � z2�1=2; (43)

which, in spherical coordinates, implies

 R� � r
�
1�

2a
r

sin� cos����t� ��0� �
a2

r2

�
1=2
: (44)

Retarded and advanced times are implicitly given by the
equation

 t� � t� �
R�
c

� t� �
r
c

�
1�

2a
r

sin� cos����t� ��0� �
a2

r2

�
1=2
:

(45)

Note that on geometrical grounds we know that this equa-
tion has a unique solution for t� provided the worldline of
the source is timelike, i.e., a�

c < 1. In contrast to the case of
linear uniform or of uniformly accelerated motion, it is
however impossible to obtain an explicit expression for t�
as a function of (t, r, �, �).

The expression in (36) for the scalar w� now reads
 

w� � �r
��

1�
2a
r

sin� cos����t� ��0� �
a2

r2

�
1=2

� �
a�

c
sin� sin����t� ��0�

�
; (46)

which then implies directly the form of the resulting scalar
field (35).

Let us finally rewrite the last relations in terms of
the ‘‘corotating’’ angular coordinate �̂ � ���t.
Introducing

 �̂ � � ���t�; (47)

Eq. (45) for the retarded/advanced time becomes

 �̂ � � �̂� �
�r
c

�
1�

2a
r

sin� cos��̂� ��0� �
a2

r2

�
1=2
:

(48)

Then the resulting scalar field,

 �� � �
Q
�r

��
1�

2a
r

sin� cos��̂� ��0� �
a2

r2

�
1=2

� �
a�

c
sin� sin��̂� ��0�

�
�1

(49)

is independent of the time t.
Let us finally investigate the asymptotic behavior of this

solution. Define the following dimensionless quantities

 C � � sin� cos����t� ��0�; (50)

 S � � sin� sin����t� ��0�; (51)

 R � �

�
1� 2C�

a
r
�
a2

r2

�
1=2
; (52)

 � �
a�

c
: (53)

For a subluminal source, �< 1; in the nonrelativistic limit,
�� 1. At large r� a we find

 R � � 1� C�
a
r
�

1

2
S2
�
a2

r2 �O
��
a
r

�
3
�
; (54)

irrespective of t, t�, �,�. This implies for the scalar field to
be given at r� a by the expansion

 �� � �
Q

�r�1� ��S��

�
1�

C�
�1� ��S��

a
r

�
�O

��
a
r

�
3
�
:

(55)

For � � 0 we of course get the asymptotic static field of a
source at rest at r � a, � � �0, � � �=2.

For a moving source we have to take into account
Eq. (45) for the retarded/advanced time by employing the
asymptotic form (54) for R�:

 t� � t� �
r
c
R�

� t� �
r
c
� �

a
c
C� � �

1

2c
S2
�
a2

r
�O

�
1

r2

�
: (56)

(If we drop the O term we obtain a new, approximate
implicit equation for t�.) Fixing t, �, �, we get

 

@t�
@r

��������t;�;�
�

��=c
1� ��S�

�O
�
1

r

�
: (57)

Since 1� ��S� > 0, t� is monotonically decreasing (� �
1) or increasing (� � �1) function of r.

Consider first the limit t fixed, r! 1: The functions C�,
S� are oscillatory as r! 1 and, correspondingly, the
scalar field decays, while oscillating, in accordance with
Eq. (55). Retarded and advanced fields have similar
asymptotic behavior at spatial infinity i0.

To see the character of the oscillations in more detail, we
solve the equation for the dimensionless quantity �t�
iteratively (realizing that the term j��C�j< 1). So,

 �t� ’�t� �
�r
c
� �� sin�cos

�
���0��

�
t� �

r
c

��
:

(58)

The functions appearing in the falloff of ��, with fixed t, �,
� and r! 1, thus behave as

 S � � p1 sin
�
�

�

c
r� �p2 cos

�
�

�

c
r� p3

�
� p4

�
; (59)
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p1 . . .p4 are constant parameters depending on fixed t, �,
�; similarly for C�. Notice that S� is again periodic in r
with the period 2�c=�.

At null infinity, retarded and advanced fields behave
very differently. Turning to future null infinity I�, we
put u � t� r

c and consider the limit r! 1, with u, �, �
fixed. From the asymptotic form of the Eq. (56) for t� for
r! 1, u, �, � fixed we now find that @t�

@r � O�r�1�,
whereas @t�

@r �
2
c �1� �S��

�1. Here  is the abbreviation
for � � , i.e., retarded/advanced. Hence, t� is approxi-
mately constant at large r, but t� is a monotonically
increasing function of r. Indeed, using the retarded time
t� from (58), we get C�, S� as functions of u, �,�, so that
the retarded field given by (55) with � � 1 has at I� the
standard Bondi-type expansion [11,12]

 �� � �
Q
�

�
f1�u; �;��

r
�
f2�u; �;��

r2

�
�O

�
1

r3

�
: (60)

However, the advanced field—(55) with � � �1—con-
tains functions like

 S � � k1 sin
�
�

2

c
�r� k2 cos

�
�

2

c
�r� k3

�
� k4

�
;

(61)

which oscillate in r with period �c=�, so half of that at
spatial infinity.

At past null infinity I�, r! 1 with v � t� r
c , �, �

fixed, the advanced fields exhibit the standard Bondi-type
expansion whereas retarded fields decay oscillating in r.
(All this becomes very clear in a spacetime picture.)

The oscillating factors at r�k in the asymptotic form (55)
of �� can become large for ultrarelativistic velocities when
the source moves near the light cylinder.

For nonrelativistic velocities, the asymptotics of the
fields simplifies considerably. Assuming �� 1 and ne-
glecting terms which are O��2�, we find the asymptotic
expansion (55) to yield

 

�� � �
Q
r

�
1� �� sin� sin

�
���0 ��

�
t� �

r
c

���

�
Qa

r2

�
1� �2� sin� sin

�
���0 ��

�
t� �

r
c

���

�

�
sin� cos

�
���0 ��

�
t� �

r
c

���
: (62)

From this simple explicit expression the asymptotic behav-
ior of �� at i0 and I becomes transparent. In particular it
is easy to see that at the leading order near i0 both ��
oscillate as r�1 sin���r=c�, whereas at I� the advanced
field behaves like r�1 sin�2�r=c� and, in the same way, the
retarded fields fall off at I�.

V. THE FIELD OF A ELECTRIC POINT CHARGE
IN A CIRCULAR ORBIT

As mentioned above, in the Lorenz gauge the results for
the individual components of the 4-potential will be essen-
tially the same as for the scalar field. It is, however, of
interest to see the behavior of the electromagnetic field
tensor because it determines directly the force and, from
the perspective of the asymptotics, the peeling-off proper-
ties of its null-tetrad projections. Since these may find
applications also in other context, we shall give the null-
tetrad components in the whole spacetime for a point
charge moving along a circular orbit with, in general,
relativistic speed (and so emitting synchrotron radiation).

We start from a general, covariant expression for the
retarded/advanced field tensor of an electric point charge e
moving with a 4-velocity v� and a 4-acceleration a� [16].
It is convenient to define a unit spacelike vector u� which is
orthogonal to v�, u�u� � 1, u�v� � 0, such that the null
vectors R�� � x� � �x�� [see Eqs. (37) and (38)] can be
written as

 R�� � w�

�
u�� � �

v��
c

�
: (63)

Conversely,

 w� � ��u��R

� � ����

v��
c
R� ; (64)

where the last expression is identical with (36). The 4-
potential is simply

 A�� �
e
c
v��
w�
; (65)

which shows that it differs from the scalar field �� given in
(35) just by the replacement Q! � e

c v
�. The resulting

expression for the Maxwell field tensor reads
 

F��� �
e

cw2
�
v��� u

�	
� �

e

c2w�

�
1

c
a��� v

�	
�

� u���

�
1

c
v�	� a� � �a

�	
�

��
; (66)

where the small square brackets denote antisymmetrization
without ‘‘1

2’’, a� :� ��a
�
� u


� .

For the circular motion with the same parameters as with
the scalar charge all expressions for the velocity, retarded
and advanced times and the scalar w� are again given by
formulas (39)–(46). In the expression (66) we also need the
4-acceleration a� � dv�=d
 � �dv�=dt, where v� is
given by (40)–(42); the result is

 a�� � �
a�2

1� a2�2

c2

�0; cos��t� ��0�; sin��t� ��0�; 0�:

(67)

From (63) the spacelike vector u�� can be expressed as
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u�� � R�� w�1
� � �v

�
� =c, which in the case of the circular

motion implies the components to be

 u0
� � �w�1

� rR� � ��; (68)

 u1
� � w�1

� �r sin� cos�� a cos��t� ��0��

�
�
c
�a� sin��t� ��0��; (69)

 u2
� � w�1

� �r sin� sin�� a sin��t� ��0��

�
�
c
�a� cos��t� ��0��; (70)

 u3
� � w�1

� r cos�; (71)

it is easy to check that u�� is unit and perpendicular to v�� .
The last necessary ingredient is the projection a� of a�� on
u�� :

 a� � �w
�1
� a2�2�2

�
r
a

sin� cos����t� ��0� � 1
�
:

(72)

The 4-potential is determined by (65) in terms of the
quantities we know already from the scalar field case—
the scalar w�, see (46), and by the 4-velocity v�� given by
(40)–(42) with t! t�. Notice that the time component At�
is equal to the scalar field �� [see (35)] up to the sign and
the multiplicative � factor.

For highly relativistic motions, At� is thus much bigger
than the corresponding ��. The asymptotics of At� is,
however, the same as of �� [see (55), (60), and (62)].
Owing to the symmetry, Az� � 0. Because of the velocity
entering the components Ax�, A

y
�, their asymptotic expan-

sion at i0 begins immediately with the oscillatory terms at
r�1 even for nonrelativistic motions (�� 1), rather than
with constant� r�1 as in (62), and the same with the
advanced (retarded) fields at I� (I�).

Substituting for w�, v
�
� , a�� , u�� into (66) we obtain all

components of the Maxwell field tensor. These are quite
lengthy, here we give just the null-tetrad components from
which all information can be retrieved. The standard null
(Newman-Penrose) tetrad (see, e.g., [17]) in Minkowski
spacetime reads [18]

 

l� �
1���
2
p �1; cos� sin�; sin� sin�; cos��;

n� �
1���
2
p �1;� cos� sin�;� sin� sin�;� cos��;

m� �
1���
2
p �0; cos� cos�� i sin�; sin� cos�

� i cos�;� sin��;

(73)

in our signature it satisfies l�n� � �1, m� �m� � 1, all
vectors are null.

Now the null-tetrad electromagnetic scalars are given as
the following projections of the Maxwell tensor:

 �0 � F��l
�m�; �1 �

1

2
F���l

�n� � �m�m��;

�2 � F�� �m�n�:
(74)

The null tetrad naturally induces the orthonormal tetrad
(see Ref. [18]) associated with the spherical coordinates
with the standard orthonormal triad er̂, e�̂, e�̂ [supple-
mented by the timelike vector (1, 0, 0, 0)]. From the scalars
�q, q � 0, 1, 2 the physical components of the electric and
magnetic field in the triad can be expressed by means of the
relation

 Er̂ � iBr̂ � 2�1; E�̂ � iB�̂ � ��0 ��2;

E�̂ � iB�̂ � �i��0 ��2�:
(75)

The Maxwell tensor field is given by (66), with all the
ingredients expressed explicitly in (39)–(46), (67)–(72). In
addition to C�, S�, R� and � determined by (50)–(53), we
introduce another dimensionless quantity

 Q � �R� � ��S� �
�
1� 2C�

a
r
�
a2

r2

�
1=2
� ��S�:

(76)

Finally, substituting the explicit expression for F��� and the
null tetrad (73) into (74), we obtain—after straightforward
though not very short calculations and arrangements—the
following results for the 3 complex scalars �0, �1, �2, in
which again �̂� � ���t�:

 

�0 �
e�

2crQ3
�

�
��

�
1� �R� � C�

a
r
�
a2

r2

�
�cos� cos��̂� ��0� � i sin��̂� ��0�	

� �1� �R�
a
r
�� cos� sin��̂� ��0� � i cos��̂� ��0�	 � i

�
�2

�
1� �R� � C�

a
r

�
�
a2

r2

�
sin�

�

�
ea

2�rQ��
3 �cos� cos��̂� ��0� � i sin��̂� ��0�	; (77)

 �1 �
e

2r2Q3
�

�
1� ��R� sin� sin��̂� ��0� �

�
�2C� � �1� �2�

a
r
� i�3 cos�

�
sin� cos��̂� ��0� � i�

a
r

cos�
�
;

(78)
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�2 � �
e�

2crQ3
�

�
��

�
1� �R� � C�

a
r
�
a2

r2

�
�cos� cos��̂� ��0� � i sin��̂� ��0�	

� �1� �R��
a
r
�cos� sin��̂� ��0� � i cos��̂� ��0�	 � i sin�

�
�2

�
1� �R� � C�

a
r

�
�
a2

r2

��
(79)

 �
ea

2�rQ��
3 �cos� cos��̂� ��0� � i sin��̂� ��0�	: (80)

There are well-known properties of the null-tetrad compo-
nents of the zero-rest mass fields (see, e.g., [12]). In the
electromagnetic case �2 characterizes the outgoing radia-
tion field at I�: it is given as limr!1;u�const�r�2�. At I�

limr!1;v�const�r�0� determines the incoming radiation
field. We shall see that, indeed, this is the case for �2�

at I� and for �0� at I�. (Here is again the abbreviation
for � � 1, i.e., retarded/advanced fields.)

Before turning to the asymptotic properties of the �’s let
us observe some intriguing ‘‘symmetry relations’’ of these
quantities. They arise as a consequence of the helical
symmetry of the source and the fields. In order to under-
stand them we have to turn back to Eq. (45) for retarded
and advanced times. Notice first that putting the ‘‘field’’
time t � 0, Eq. (45) still cannot be solved explicitly for t�,
however it is easy to see the following relations between t�
and t�:

 t��t � 0; r; �; �� � �t��t � 0; r; �;��� 2�0�: (81)

(It is instructive to draw the circular orbit of the source and
convince oneself that this relation can also be understood
on ‘‘geometrical grounds.’’) Owing to the helical symme-
try the relation (81) can be generalized for any t to read
 

t��t; r;�;���t�� t��t��t; r;�;����t� 2�0�� t;

(82)

this can be checked directly using (45) again.
Now as a consequence of helical symmetry and, in

particular, of (82), there arise the following relations—
valid at any spacetime point—between the retarded and
advanced fields as given by the null-tetrad components of
the �’s:

 �2��t; r; �;���t� � ��0��t; r; �;����t� 2�0�;

�0��t; r; �; ���t� � ��2��t; r; �;����t� 2�0�;

�1��t; r; �; ���t� � ��1��t; r; �;����t� 2�0�:

(83)

It is straightforward to convince oneself that our resulting
expressions (77)–(79) satisfy these relations. They are the
keystone in Schild’s 2-body problem, in fact the N-body as
well, implying that tangential forces on particles vanish
when both retarded and advanced effects are taken into
account. But this problem will be considered elsewhere

(for the N-particle problem in the case of the scalar field,
see [4]).

We now turn to the asymptotic properties of the fields.
As with the scalar field we first make the expansions of the
retarded and advanced fields at large r� a using the
expansion (54) of R�. In addition to the abbreviations
C�, S� defined in (50), (51), i.e.,

 C � � sin� cos��̂� ��0�; (84)

 S � � sin� sin��̂� ��0�; (85)

we introduce

 

~C � � cos� cos��̂� ��0�; (86)

 

~S � � cos� sin��̂� ��0�; (87)

and

 c� � cos��̂� ��0�; (88)

 s� � sin��̂� ��0�: (89)

With these notations we obtain the following:

 �2� �
e��

c�1� �S��3
�~C� � is� � i� sin��

1

r
�O

�
1

r2

�
;

(90)

 �2� � �
ea

2�1� �S��3

�
~C� � is� � ��C��~S� � ic��

 

� i sin��
1

2
��1� C2

���~C� � is��

� i
�2

2
�1� C2

�� sin�	
�

1

r3 �O
�

1

r4

�
; (91)

 

�1� �
e

2�1� ��S��
3 �1� ��S� � ��

2C� � i�2 cos��C�	

�
1

r2 �O
�

1

r3

�
; (92)

 �0� � �
ea

2�1� �S��3

�
~C� � is� � ���C��~S� � ic��
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� i sin��
1

2
��1� C2

���
~C� � is��

� i
�2

2
�1� C2

�� sin�
��

1

r3 �O
�

1

r4

�
; (93)

 �0� � �
e��

c�1� �S��3
�~C� � is� � i� sin��

1

r
�O

�
1

r2

�
:

(94)

These formulas get still simplified for nonrelativistic
motion of the source, �� 1, when only terms linear in
� are kept [using �1� ��S���3 ’ 1� 3�S� �O��

2�]
and rearranging the terms:

 �2� �
e��
c
�~C� � is��

1

r
�O

�
1

r2

�
; (95)

 �2� � �
ea
2
��1� 2�S���~C� � is��	

1

r3 �O
�

1

r4

�
; (96)

 �1� �
e
2
�1� 2��S��

1

r2 �O
�

1

r3

�
; (97)

 �0� �
ea
2
��1� 2�S���~C� � is��	

1

r3 �O
�

1

r4

�
; (98)

 �0� � �
e��
c
�~C� � is��

1

r
�O

�
1

r2

�
: (99)

Clearly, the fields have again the oscillatory character.
The retarded and advanced times t� can be expressed in
terms of the field time t and functions C� and S� according
to Eq. (56). At fixed t, �, � and r! 1, i.e., at i0, the
oscillations are given by C�, S� which have the form (59) as

in the scalar-field case. The retarded and advanced fields
behave similarly.

At future null infinity I� the retarded field has the
standard Bondi-type expansion since C�, S� become func-
tions of u, �, � [see Eq. (60) and the text therein]. In
addition, in the electromagnetic case we observe a new
feature in the asymptotics—the well-known ‘‘peeling-off
property’’ [12], [17]: �q� � fq�u; �;��r

q�3. The limits
r3�q�q� are well defined at r! 1 with u � t� r=c, �,
� fixed, i.e., at I�. With the advanced field at I� the
situation is different. We still find a ‘‘generalized peeling’’
in the sense that �q� � r

�1�q; so �q� corresponds to
��2�q��. However, the limits r1�q�q� at r! 1, u, �, �
fixed do not exist since these are oscillatory functions as
S� in (61), i.e., with period �c=� which is half of that at
spatial infinity. Nevertheless, notice that r1�q�q� remains
bounded as r! 1.

As expected, at past null infinity I�, r! 1, v � t�
r=c, �, � fixed, the advanced fields exhibit the standard
Bondi-type expansion and peeling, whereas the retarded
fields do decay with r! 1 but in an oscillatory manner.

All these features become evident especially when re-
garding the simple fields (95)–(99) in the nonrelativistic
limit �� 1.
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