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We solve for the cosmological perturbations in a five-dimensional background consisting of two
separating or colliding boundary branes, as an expansion in the collision speed V divided by the speed of
light c. Our solution permits a detailed check of the validity of four-dimensional effective theory in the
vicinity of the event corresponding to the big crunch/big bang singularity. We show that the four-
dimensional description fails at the first nontrivial order in �V=c�2. At this order, there is nontrivial mixing
of the two relevant four-dimensional perturbation modes (the growing and decaying modes) as the
boundary branes move from the narrowly separated limit described by Kaluza-Klein theory to the well-
separated limit where gravity is confined to the positive-tension brane. We comment on the cosmological
significance of the result and compute other quantities of interest in five-dimensional cosmological
scenarios.
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I. INTRODUCTION

One of the most striking implications of string theory
and M theory is that there are extra spatial dimensions
whose size and shape determine the particle spectrum and
couplings of the low energy world. If the extra dimensions
are compact and of fixed size R, their existence results in a
tower of Kaluza-Klein massive modes whose mass scale is
set by R�1. Unfortunately, this prediction is hard to test if
the only energy scales accessible to experiment are much
lower than R�1. At low energies, the massive modes de-
couple from the low energy effective theory and are, for all
practical purposes, invisible. Therefore, we have no means
of checking whether the four-dimensional effective theory
observed to fit particle physics experiments is actually the
outcome of a simpler higher-dimensional theory.

The one situation where the extra dimensions seem
bound to reveal themselves is in cosmology. At the big
bang, the four-dimensional effective theory (Einstein grav-
ity or its stringy generalization) breaks down, indicating
that it must be replaced by an improved description. There
are already suggestions of improved behavior in higher-
dimensional string and M theory. If matter is localized on
two boundary branes, the matter density remains finite at a
brane collision even though this moment is, from the
perspective of the four-dimensional effective theory, the
big bang singularity [1–3]. Likewise, the equations of
motion for fundamental strings are actually regular at t �
0 in string theory, in the relevant background solutions
[4,5].

In this paper, we shall not study the singularity itself.
Instead, we will study the behavior of higher-dimensional

gravity as the universe emerges from a brane collision. Our
particular concern is to determine the extent to which the
four-dimensional effective theory accurately captures the
higher-dimensional dynamics near the big bang
singularity.

The model we study is the simplest possible model of
braneworld gravity. It consists of two empty Z2-branes (or
orbifold planes) of opposite tension separated by a five-
dimensional bulk with negative cosmological constant,
corresponding to an anti-de Sitter (AdS) radius L [6].
Many works have been devoted to obtaining exact or
approximate solutions for this model, for static or moving
branes [7–11]. Our methods have much in common with
these earlier works, in particular, the idea that, when the
branes move slowly, the four-dimensional effective theory
works well. However, our focus and goals are rather
different.

When the two boundary branes are very close to one
another, the warping of the five-dimensional bulk and the
tension of the branes become irrelevant. In this situation,
the low energy modes of the system are well described by a
simple Kaluza-Klein reduction from five to four dimen-
sions, i.e., gravity plus a scalar field (the Z2 projections
eliminate the gauge field zero mode). We shall verify this
expectation. However, when the two branes are widely
separated, the physics is quite different. In this regime,
the warping of the bulk plays a key role, causing the low
energy gravitational modes to be localized on the positive-
tension brane [12–14]. The four-dimensional effective
theory describing this new situation is nevertheless identi-
cal, consisting of Einstein gravity and a scalar field, the
radion, describing the separation of the two branes.

In this paper, we study the transition between these two
regimes—from the naive Kaluza-Klein reduction to local-
ized Randall-Sundrum gravity—at finite brane speed. In
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the two asymptotic regimes—the narrowly separated
brane limit and the widely separated limit—the cosmo-
logical perturbation modes show precisely the behavior
predicted by the four-dimensional effective theory. There
are two massless scalar perturbation modes; in longitudinal
gauge, and in the long wavelength (k! 0) limit, one mode
is constant and the other decays as t�2

4 , where t4 is the
conformal time. In the four-dimensional description, these
two perturbation modes are entirely distinct: one is the
curvature perturbation mode; the other is a local time delay
to the big bang. However, we shall show that in the five-
dimensional theory, at first nontrivial order in the speed of
the brane collision, the two modes mix. If, for example,
one starts out in the time delay mode at small t4, one ends
up in a mixture of the time delay and curvature perturba-
tion modes as t4 ! 1. Thus the two cosmological pertur-
bation modes—the growing and decaying adiabatic
modes—mix in the higher-dimensional braneworld setup,
a phenomenon which is prohibited in four dimensions.

The mode-mixing occurs as a result of the qualitative
change in the nature of the low energy modes of the
system. At small brane separations the low energy modes
are nearly uniform across the extra dimension. Yet as the
brane separation becomes larger than the bulk warping
scale, the low energy modes become exponentially local-
ized on the positive-tension brane. If the branes separate at
finite speed, the localization process fails to keep pace with
the brane separation and the low energy modes do not
evolve adiabatically. Instead, they evolve into a mixture
involving higher Kaluza-Klein modes, and the four-
dimensional effective description fails.

As mentioned, the mixing we see between the two scalar
perturbation modes would be prohibited in any local four-
dimensional effective theory consisting of Einstein gravity
and matter fields, in the absence of entropy fluctuations.
Therefore the mixing is a truly five-dimensional phenome-
non, which cannot be modeled with a local four-
dimensional effective theory. There is an independent ar-
gument against the existence of any local four-dimensional
description of these phenomena. In standard Kaluza-Klein
theory, it is well known that the entire spectrum of massive
modes is actually spin two [15]. Yet, despite many at-
tempts, no satisfactory Lagrangian description of massive,
purely spin two fields has ever been found [16,17]. Again,
this suggests that one should not expect to describe the
excitation of the higher Kaluza-Klein modes in terms of an
improved, local, four-dimensional effective theory.

The system we study consists of two branes emerging
from a collision. In this situation, there are important
simplifications which allow us to specify initial data rather
precisely. When the brane separation is small, the fluctua-
tion modes neatly separate into light Kaluza-Klein zero
modes, which are constant along the extra dimension, and
massive modes with nontrivial extra-dimensional depen-
dence. Furthermore, the brane tensions and the bulk cos-

mological constant become irrelevant at short distances. It
is thus natural to specify initial data which map precisely
onto four-dimensional fields in the naive dimensionally
reduced theory describing the limit of narrowly separated
branes. With initial data specified this way, there are no
ambiguities in the system. The two branes provide bound-
ary conditions for all time and the five-dimensional
Einstein equations yield a unique solution, for arbitrary
four-dimensional initial data.

Our main motivation is the study of cosmologies in
which the big bang was a brane collision, such as the cyclic
model [1]. Here, a period of dark energy domination,
followed by slow contraction of the fifth dimension, ren-
ders the branes locally flat and parallel at the collision.
During the slow contraction phase, growing, adiabatic,
scale-invariant perturbations are imprinted on the branes
prior to the collision. However, if the system is accurately
described by four-dimensional effective theory throughout,
then, as a number of authors have noted [18–23], there is
an apparent roadblock to the passage of the scale-invariant
perturbations across the bounce. Namely, it is hard to see
how the growing mode in the contracting phase, usually
described as a local time delay, could match onto the
growing mode in the expanding phase, usually described
as a curvature perturbation. One possibility, advocated in
[24], is that this matching occurs at the brane collision
itself, by virtue of the specific five-dimensional prescrip-
tion used to pass from crunch to bang. Here, we show that,
on top of any mixing that occurs at the brane collision, the
two four-dimensional perturbation modes undergo addi-
tional nontrivial mixing as the branes pass from large
through to small separations (and vice versa), both before
and after the collision. By solving for the full five-
dimensional geometry as an expansion in terms of V=c
(where V is the brane collision speed and c is the speed of
light), we find that the four-dimensional effective theory,
while working well when the branes are either close to-
gether or far apart, breaks down in the transition from one
regime to the other at order �V=c�2. It is precisely this
breakdown that permits the mixing of the four-dimensional
perturbation modes.

As a technical aside, we note that the present work is
distinguished from the closely related work [24] through
the choice of expansion parameter for the bulk geometry.
In [24], a series expansion of the bulk geometry was
developed in terms of time about the collision. This ex-
pansion fails to converge at quite modest times, necessitat-
ing a matching onto the four-dimensional effective theory
in order to continue out to late times. The alternative
expansion in terms of V=c developed here is much more
powerful. At leading order it exactly reproduces the pre-
dictions of the four-dimensional effective theory for all
times, and at first nontrivial order, we obtain corrections
to the four-dimensional effective theory. These corrections,
and the mode-mixing they encode, were invisible to pre-
vious approaches.
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In the present paper, we consider the simplest scenario
involving two empty boundary branes separated by a bulk
with a negative cosmological constant. For the cyclic
model, the details are more complicated [25]. In particular,
the bulk possesses an additional five-dimensional stress
�T5

5 , associated with the interbrane force, that plays a vital
role in converting a growing mode corresponding to a pure
time delay perturbation into a mixture of time delay and
curvature modes on the brane. Nonetheless, the general
principle is the same as in the case considered in this paper:
one must go beyond the four-dimensional effective theory
and consider the full five-dimensional theory to compute
properly the evolution of perturbations before and after a
brane collision.

Even though our main concern is with cyclic/ekpyrotic
models, our methods are likely to be more broadly appli-
cable in braneworld models. (See, e.g., [26–28] for re-
views). Our methods may be extended, for example, to
models with better motivation from fundamental theory,
such as heterotic M theory [29,30]. One may also include
matter on the branes. Another interesting application
would be to study the evolution of a four-dimensional
black hole in the limit of narrowly separated branes, i.e.,
a black string, as the two branes separate and the Gregory-
Laflamme instability appears.

The outline of this paper is as follows. In Sec. II we
provide an overview of our three solution methods. In
Sec. III we review the four-dimensional effective theory
and its predictions. In Sec. IV we solve for the background
and cosmological perturbations using a series expansion in
time about the collision. In Sec. V we present an improved
method in which the dependence on the fifth dimension is
approximated using a set of higher-order Dirichlet or
Neumann polynomials. In Sec. VI we develop our most
powerful tool, an expansion about the small-�V=c� scaling
solution, before comparing our results with those of the
four-dimensional effective theory in Sec. VII. We conclude
with a discussion of mode-mixing in Sect. VIII. Detailed
explicit solutions may be found in the Appendices, and the
MATHEMATICA code implementing our calculations is
available online [31].

II. THREE SOLUTION METHODS

In this section, we review the three solution methods
employed, noting their comparative merits. For the model
considered here, with no dynamical bulk fields, there is a
Birkhoff-like theorem guaranteeing the existence of coor-
dinates in which the bulk is static. It is easy to solve for the
background in these coordinates. However, the motion of
the branes complicates the Israel matching conditions ren-
dering the treatment of perturbations difficult. It is prefer-
able to choose a coordinate system in which the branes are
located at fixed spatial coordinate y � �y0, and the bulk
evolves with time.

We shall employ a coordinate system in which the five-
dimensional line element for the background takes the
form

 d s2 � n2�t; y���dt2 � t2dy2� � b2�t; y�d ~x2; (1)

where y parametrizes the fifth dimension and xi, i �
1; 2; 3, the three noncompact dimensions. Cosmological
isotropy excludes dtdxi or dydxi terms, and homogeneity
ensures n and b are independent of ~x. The t; y part of the
background metric may then be taken to be conformally
flat. One can write the metric for two-dimensional
Minkowski spacetime in Milne form so that the branes
are located at y � �y0 and collide at t � 0. By expressing
the metric in locally Minkowski coordinates, T � t coshy
and Y � t sinhy, one sees that the collision speed is
�V=c� � tanh2y0 and the relative rapidity of the collision
is 2y0. As long as the bulk metric is regular at the brane
collision and possesses cosmological symmetry, the line
element may always be put into the form (1). Furthermore,
by suitably rescaling coordinates one can choose b�0; y� �
n�0; y� � 1.

In order to describe perturbations about this background,
one needs to specify an appropriate gauge choice. Five-
dimensional longitudinal gauge is particularly convenient
[32]: first, it is completely gauge-fixed; second, the brane
trajectories are unperturbed in this gauge [24], so that the
Israel matching conditions are relatively simple; and fi-
nally, in the absence of anisotropic stresses, the traceless
part of the EinsteinGi

j (spatial) equation yields a constraint
amongst the perturbation variables, reducing them from
four to three. In light of these advantages, we will work in
five-dimensional longitudinal gauge for the entirety of this
paper.

Our three solution methods are as follows.

A. Series expansion in t

The simplest solution method for the background is to
solve for the metric functions n�t; y� and b�t; y� as a series
in powers of t about t � 0. At each order, the bulk Einstein
equations yield a set of ordinary differential equations in y,
with the boundary conditions provided by the Israel match-
ing conditions. These are straightforwardly solved. A simi-
lar series approach, involving powers of t and powers of t
times lnt suffices for the perturbations.

The series approach is useful at small times �t=L� � 1
since it provides the precise solution for the background
plus generic perturbations, close to the brane collision, for
all y and for any collision rapidity y0. It allows one to
uniquely specify four-dimensional asymptotic data as t
tends to zero. However, the series thus obtained fails to
converge at quite modest times. Following the system to
long times requires a more sophisticated method. Instead
of taking �t=L� as our expansion parameter, we want to use
the dimensionless rapidity of the brane collision y0, and
solve at each order in y0.
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B. Expansion in Dirichlet/Neumann polynomials in y

In this approach we represent the spacetime metric in
terms of variables obeying either Dirichlet or Neumann
boundary conditions on the branes. We then express these
variables as series of Dirichlet or Neumann polynomials in
y and y0, bounded at each subsequent order by an increas-
ing power of the collision rapidity y0. (Recall that the range
of the y coordinate is bounded by jyj � y0.) The coeffi-
cients in these expansions are undetermined functions of t.
By solving the five-dimensional Einstein equations pertur-
batively in y0, we obtain a series of ordinary differential
equations in t, which can then be solved exactly. In this
Dirichlet/Neumann polynomial expansion, the Israel
boundary conditions on the branes are satisfied automati-
cally at every order in y0, while the initial data at small t are
provided by the previous series solution method.

The Dirichlet/Neumann polynomial expansion method
yields simple, explicit solutions for the background and
perturbations as long as (t=L) is smaller than 1=y0. Since
y0 � 1, this considerably improves upon the naive series
expansion in t. However, for (t=L) of order 1=y0, the
expansion fails because the growth in the coefficients over-
whelms the extra powers of y0 at successive orders. Since
�t=L� 	 1=y0 corresponds to brane separations of order the
AdS radius, the Dirichlet/Neumann polynomial expansion
method fails to describe the late-time behavior of the
system, and a third method is needed.

C. Expansion about the scaling solution

The idea of our third and most powerful method is to
start by identifying a scaling solution, whose form is
independent of y0 for all y0 � 1. This scaling solution is
well behaved for all times and therefore a perturbation
expansion in y0 about this solution is similarly well be-
haved, even at very late times. To find the scaling solution,
we first change variables from t and y to an equivalent set
of dimensionless variables. The characteristic velocity of
the system is the brane speed at the collision, V �
c tanh2y0 	 2cy0, for small y0, where we have temporarily
restored the speed of light c. Thus we have the dimension-
less time parameter x � y0ct=L	 Vt=L, of order the time
for the branes to separate by one AdS radius. We also
rescale the y coordinate by defining ! � y=y0, whose
range is �1 � ! � 1, independent of the characteristic
velocity.

As we shall show, when reexpressed in these variables,
for small y0, the bulk Einstein equations become perturba-
tively ultralocal: at each order in y0 one only has to solve
an ordinary differential equation in !, with a source term
determined by time derivatives of lower order terms. The
original partial differential equations reduce to an infinite
series of ordinary differential equations in ! which are
then easily solved order by order in y0.

This method, an expansion in y0 about the scaling
solution, is by far the most useful and may be extended

to arbitrarily long times t and for all brane separations. As
is well known for this model, a Birkhoff-like theorem holds
for backgrounds with cosmological symmetry. The bulk in
between the two branes is just a slice of five-dimensional
AdS–Schwarzschild spacetime [26–28] within which the
two branes move, with a virtual black hole lying outside of
the physical region, beyond the negative-tension brane. As
time proceeds, the negative-tension brane becomes closer
and closer to the horizon of the AdS–Schwarzschild black
hole. Even though its location in the Birkhoff-frame
(static) coordinates freezes (see Fig. 1), its proper speed
grows and the y0 expansion fails. Nonetheless, by analytic
continuation of our solution in ! and x, we are able to
circumvent this temporary breakdown of the y0 expansion
and follow the positive-tension brane, and the perturba-
tions localized near it, as they run off to the boundary of
anti-de Sitter spacetime.

Our expansion about the scaling solution is closely
related to derivative-expansion techniques developed ear-
lier by a number of authors [7–9]. In these works, an
expansion in terms of brane curvature over bulk curvature
was used. For cosmological solutions, this is equivalent to
an expansion in LH�, where H� is the Hubble constant
on the positive-tension brane. However, we specifically
want to study the time dependence of the perturbations
for all times from the narrowly separated to the well-
separated brane limit. For this purpose it is better to use a
time-independent expansion parameter (y0) and to include

FIG. 1. The background brane scale factors b� plotted as a
function of the Birkhoff-frame time T, where b� have been
normalized to unity at T � 0. In these coordinates the bulk is
AdS–Schwarzschild: the brane trajectories are then determined
by integrating the Israel matching conditions, given in
Appendix E. In the limit as T ! 1, the negative-tension brane
asymptotes to the event horizon of the black hole, while the
positive-tension brane asymptotes to the boundary of AdS.
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all the appropriate time dependence order by order in the
expansion.

Moreover, in the earlier works, the goal was to find the
four-dimensional effective description more generally,
without specifying that the branes emerged from a colli-
sion with perturbations in the lowest Kaluza-Klein modes.
Consequently, the solutions obtained contained a number
of undetermined functions. In the present context, how-
ever, the initial conditions along the extra dimension are
completely specified close to the brane collision by the
requirement that only the lowest Kaluza-Klein modes be
excited. The solutions we obtain here are fully determined,
with no arbitrary functions entering our results.

III. FOUR-DIMENSIONAL EFFECTIVE THEORY

Having now outlined our solution methods for the bulk
geometry, in this section we will review the four-
dimensional effective theory and its predictions. We will
also take the opportunity to sketch our strategy for calcu-
lating how the four-dimensional perturbation modes mix
between early and late times.

In the near-static limit, the mapping from four to five
dimensions may be calculated from the moduli space
approach [2,33,34]: putting the four-dimensional effective
theory metric g4

�� into Einstein frame, the mapping reads

 g��� � cosh2��=
���
6
p
�g4
��; g��� � sinh2��=

���
6
p
�g4
��;

(2)

where g��� and g��� are the metrics on the positive- and
negative-tension branes, respectively, and � is the radion,
parametrizing the separation between the branes. Two of us
have shown elsewhere that on symmetry grounds this is the
unique local mapping involving no derivatives [35], and
that to leading order the action for g4

�� and � is that for
Einstein gravity with a minimally coupled scalar field.

Solving the four-dimensional effective theory is trivial:
the background is conformally flat, g4

�� � b2
4�t4����, and

the Einstein-scalar equations yield the following solution,
unique up to a sign choice for �0, of the form

 b2
4 �

�C4t4; e
������
2=3
p

�0 � �A4t4; (3)

with �0 the background scalar field, and �A4 and �C4 arbi-
trary constants. (Throughout this paper we adopt units
where 8�G4 � 1.)

According to the map (2), the brane scale factors are
then predicted to be

 b� �
1
2b4e

��0=
��
6
p

�1� e
������
2=3
p

�0� � 1� �A4t4; (4)

where we have chosen �C4 � 4 �A4, so that the brane scale
factors are unity at the brane collision. As emphasized in
[24], the result (4) is actually exact for the induced brane
metrics, when t4 is identified with the conformal time on
the branes. From this correspondence, one can read off the

five-dimensional interpretation of the parameter �A4: it
equals L�1 tanhy0 (our definition of y0 differs from that
of [24] by a factor of 2).

With regard to the perturbations, in longitudinal gauge
(see, e.g., [36,37]) the perturbed line element of the four-
dimensional effective theory reads

 d s2
4 � b2

4�t4�
��1� 2�4�dt
2
4 � �1� 2�4�d ~x

2�; (5)

and the general solution to the perturbation equations at
small k [24,38] is

 �4 �
1

t4
� ~A0J1�kt4� � ~B0Y1�kt4��; (6)

 

�����
6
p �

2

3
k� ~A0J0�kt4� � ~B0Y0�kt4�� �

1

t4
� ~A0J1�kt4�

� ~B0Y1�kt4��; (7)

with ~A0 and ~B0 being the amplitudes of the two linearly
independent perturbation modes.

Now recall that on general grounds we expect the four-
dimensional effective theory to be valid in two particular
limits: first, as we have already discussed, a Kaluza-Klein
description will apply at early times near to the collision,
when the separation of the branes is much less than L.
Here, the warping of the bulk geometry and the brane
tensions can be neglected. Secondly, when the branes are
separated by many AdS lengths, we expect gravity to
become localized on the positive-tension brane, which
moves ever more slowly as time proceeds, so the four-
dimensional effective theory should become more and
more accurate.

We will find these expectations to be borne out in
Sec. VII when, equipped with our five-dimensional solu-
tion for the background and perturbations obtained by
expanding about the scaling solution, we will be able to
test the four-dimensional effective theory explicitly. We
show that, in general, the four-dimensional effective theory
accurately captures the five-dimensional dynamics only to
leading order in the y0 expansion. Beyond this, the y2

0
corrections lead to effects outside the scope of the four-
dimensional effective theory. Nevertheless, these higher-
order corrections are automatically small at very early and
very late times, restoring the accuracy of the four-
dimensional effective theory in these limits.

Expanding out (6) on long wavelengths, the leading
behavior of the four-dimensional effective Newtonian po-
tential is

 �4 � A4 �
B4

t24
�O�k2�; (8)

where the constants A4 and B4 represent linear combina-
tions of ~A0 and ~B0. Since �4 represents the anticonformal
part of the perturbed four-dimensional effective metric (5),
it is unaffected by the conformal factors in (2) relating the
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four-dimensional effective metric to the induced metrics on
the branes. Hence we can directly compare the anticonfor-
mal part of the perturbations of the induced metric on the
branes, as calculated in five dimensions, with the
Newtonian potential in the four-dimensional effective
theory.

Performing this calculation in Sec. VIII, we show that, in
the limit of very early and very late times, the behavior of
the anticonformal part of the induced brane metric pertur-
bations is indeed given by (8), in accordance with the four-
dimensional effective theory. The four-dimensional effec-
tive perturbation amplitudes A4 and B4 may then simply be
read off, both at early and at late times, in terms of the
underlying five-dimensional perturbation amplitudes.
Crucially, we find that the four-dimensional perturbation
amplitudes at late times differ at order y2

0 from those at
early times. The four-dimensional perturbation modes
therefore undergo a mixing in the transition between the
Kaluza-Klein effective theory at early times and the brane-
localized gravity at late times. We will parametrize this
mixing in terms of a matrix relating the late-time ampli-
tudes, AL4 and BL4 , to their counterparts at early times, AE4
and BE4 . This matrix contains off-diagonal terms at order
y2

0, and its explicit computation will be one of our key
goals.

IV. SERIES EXPANSION IN TIME

Let us now commence with our solution of the bulk
geometry. As described above, we find it simplest to
work in coordinates in which the brane locations are fixed
but the bulk evolves. The bulk metric is therefore given by
(1), with the brane locations fixed at y � �y0 for all time t.
The five-dimensional solution then has to satisfy both the
Einstein equations and the Israel matching conditions on
the branes [39].

The bulk Einstein equations read G�
� � �����, where

the bulk cosmological constant is � � �6=L2 (we work in
units in which the four-dimensional gravitational coupling
8�G4 � 8�G5=L � 1). Evaluating the linear combina-
tions G0

0 �G
5
5 and G0

0 �G
5
5 � �3=2�Gi

i (where 0 denotes
time, 5 labels the y direction, and i denotes one of the
noncompact directions, with no sum implied), we find

 �;�� � �;yy � �2
;� � �2

;y � 12e2� � 0 (9)

 �;�� � �;yy �
1
3��

2
;y � �

2
;�� � 2e2� � 0; (10)

where �t=L� � e�, � � 3 lnb, and � � ln�nt=L�. The
Israel matching conditions on the branes read [24,32]

 

b;y
b
�
n;y
n
�
nt
L
; (11)

where all quantities are to be evaluated at the brane loca-
tions, y � �y0.

We will begin our assault on the bulk geometry by
constructing a series expansion in t about the collision,
implementing the Israel matching conditions on the branes
at each order in t. This series expansion in t is then exact in
both y and the collision rapidity y0. Its chief purpose will
be to provide initial data for the more powerful solution
methods that we will develop in the following sections.

The Taylor series solution in t for the background was
first presented in [24]:
 

n � 1� �sechy0 sinhy�
t
L
�

1

4
sech2y0��3� 2 cosh2y

� cosh2y0�
t2

L2 �O
�
t3

L3

�
(12)

 

b � 1� �sechy0 sinhy�
t
L
�

1

2
sech2y0�cosh2y� cosh2y0�


t2

L2 �O
�
t3

L3

�
: (13)

(Note that in the limit as t! 0 we correctly recover
compactified Milne spacetime.)

Here, however, we will need the perturbations as well.
Working in five-dimensional longitudinal gauge for the
reasons given in the previous section, the perturbed bulk
metric takes the form (see Appendix A)
 

ds2 � n2���1� 2�L�dt
2 � 2WLdtdy� t2�1� 2�L�dy

2�

� b2�1� 2�L�d ~x
2; (14)

with �L � �L ��L being imposed by the five-
dimensional traceless Gi

j equation. The Israel matching
conditions at y � �y0 then read

 �L;y � �L
nt
L
; �L;y � ��L

nt
L
; WL � 0: (15)

Performing a series expansion of the perturbed bulk
Einstein equations [given explicitly in (32)–(34)], and
making use of the Israel matching conditions above, we
find
 

�L��
B

t2
�
Bsechy0 sinhy

t
�

�
A�

B
8
�
Bk2

4
�

1

6
Bk2 lnjktj

�
1

16
Bcosh2y��1� 6y0 coth2y0�sech2y0

�
3

8
Bsech2y0 sinh2y

�
�O�t� (16)

 �L � �
Bsechy0 sinhy

t
�

�
2A�

B
4
�

1

3
Bk2 lnjktj

�
1

4
B cosh2ysech2y0

�
�O�t� (17)
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WL � �
3

4
Bsech2y0�y cosh2y� y0 cosh2y0 sinh2y�t

�O�t2�; (18)

where we have set L � 1 (to restore L, simply replace t!
t=L and k! kL). Except for a few specific instances, we
will now adopt this convention throughout the rest of this
paper. The two arbitrary constants A and B (which may
themselves be arbitrary functions of ~k) have been chosen so
that, on the positive-tension brane, to leading order in y0,
�L goes as

 �L � A�
B

t2
�O�y0� �O�k2� �O�t�: (19)

V. EXPANSION IN DIRICHLET/NEUMANN
POLYNOMIALS

A. Background

Having solved the relevant five-dimensional Einstein
equations as a series expansion in the time t before or after
the collision event, we now have an accurate description of
the behavior of the bulk at small t for arbitrary collision
rapidities. However, in order to match onto the incoming
and outgoing states, we really want to study the long-time
behavior of the solutions, as the branes become widely
separated. Ultimately this will enable us to successfully
map the system onto an appropriate four-dimensional ef-
fective description. Instead of expanding in powers of the
time, we approximate the five-dimensional solution as a
power series in the rapidity of the collision, and determine
each metric coefficient for all time at each order in the
rapidity.

Our main idea is to express the metric as a series of
Dirichlet or Neumann polynomials in y0 and y, bounded at
order n by a constant times yn0 , such that the series satisfies
the Israel matching conditions exactly at every order in y0.
To implement this, we first change variables from b and n
to those obeying Neumann boundary conditions. From
(11), b=n is Neumann. Likewise, if we define N�t; y� by

 nt �
1

N�t; y� � y
; (20)

then one can easily check that N�t; y� is also Neumann on
the branes. Notice that if N and b=n are constant, the
metric (1) is just that for anti-de Sitter spacetime. For fixed
y0,N describes the proper separation of the two branes, and
b is an additional modulus describing the three-
dimensional scale factor of the branes.

SinceN and b=n obey Neumann boundary conditions on
the branes, we can expand both in a power series

 N � N0�t� �
X1
n�3

Nn�t�Pn�y�;

b=n � q0�t� �
X1
n�3

qn�t�Pn�y�;

(21)

where Pn�y� are polynomials

 Pn�y� � yn �
n

n� 2
yn�2y2

0; n � 3; 4; . . . (22)

satisfying Neumann boundary conditions and each
bounded by jPn�y�j< 2yn0=�n� 2�, for the relevant range
of y. Note that the time-dependent coefficients in this
Ansatz may also be expanded as a power series in y0. By
construction, our Ansatz satisfies the Israel matching con-
ditions exactly at each order in the expansion. The bulk
Einstein equations are not satisfied exactly, but as the
expansion is continued, the error terms are bounded by
increasing powers of y0.

Substituting the series Ansatz (21) into the background
Einstein equations (9) and (10), we may determine the
solution order by order in the rapidity y0. At each order
in y0, one generically obtains a number of linearly inde-
pendent algebraic equations, and at most one ordinary
differential equation in t. The solution of the latter intro-
duces a number of arbitrary constants of integration into
the solution.

To fix the arbitrary constants, one first applies the re-
maining Einstein equations, allowing a small number to be
eliminated. The rest are then determined using the series
expansion in t presented in the previous section: as this
solution is exact to all orders in y0, we need only to expand
it out to the relevant order in y0, before comparing it term
by term with our Dirichlet/Neumann polynomial expan-
sion (which is exact in t but perturbative in y0), taken to a
corresponding order in t. The arbitrary constants are then
chosen so as to ensure the equivalence of the two expan-
sions in the region where both t and y0 are small. This
procedure suffices to fix all the remaining arbitrary
constants.

The first few terms of the solution are

 N0 �
1

t
�

1

2
ty2

0 �
1

24
t�8� 9t2�y4

0 � � � � (23)

 N3 � �
1

6
�

�
5

72
� 2t2

�
y2

0 � � � � (24)

and

 q0 � 1�
3

2
t2y2

0 �

�
t2 �

7

8
t4
�
y4

0 � � � � (25)

 q3 � �2t3y2
0 � � � � ; (26)

and the full solution up to O�y10
0 � may be found in

Appendix B.
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B. Perturbations

Following the same principles used in our treatment of
the background, we construct the two linear combinations

 �4 �
1
2��L ��L�; 	4 � b2��L ��L� � b2�L;

(27)

both of which obey Neumann boundary conditions on the
branes, as may be checked from (11) and (15). In addition,
WL already obeys simple Dirichlet boundary conditions.

The two Neumann variables, �4 and 	4, are then ex-
panded in a series of Neumann polynomials and WL is
expanded in a series of Dirichlet polynomials,

 Dn�y� � yn � yn0 ; n � 2; 4; . . . ;

Dn�y� � yDn�1�y�; n � 3; 5; . . . ;
(28)

each bounded by jDn�y�j< yn0 for n even and yn0�n�
1�=nn=�n�1� for n odd, over the relevant range of y. As in
the case of the background, the time-dependent coeffi-
cients multiplying each of the polynomials should them-
selves be expanded in powers of y0.

To solve for the perturbations it is sufficient to use only
three of the perturbed Einstein equations (any solution
obtained may then be verified against the remainder).
Setting

 �L � �e�2���=3 (29)

 �L �  e��=3 (30)

 WL � we��2���=3 (31)

where t � e�, � � 3 lnb, and � � lnnt, the G5
i ,G

0
i , and Gi

i
equations take the form

 w;� � 2�;y � 4e3�=2� e�=2�;y (32)

 �;� �
1
2w;y � e

3�� e���;� (33)

 

� ;�e
�=3�;� � � ;ye

�=3�;y

� e�=3�13�
2
;��

1
9�

2
;y� k2e2����=3��

� 2
9e
�2���=3����2

;���
2
;y� �w�;��;y�: (34)

Using our Neumann and Dirichlet Ansätze for �4, 	4,
and WL, the Israel matching conditions are automatically
satisfied and it remains only to solve (32)–(34), order by
order in the rapidity. The time-dependent coefficients for
�4, 	4, and WL are then found to obey simple ordinary
differential equations, with solutions comprising Bessel
functions in kt, given in Appendix C. Note that it is not
necessary for the set of Neumann or Dirichlet polynomials
we have used to be orthogonal to each other: linear inde-
pendence is perfectly sufficient to determine all the time-
dependent coefficients order by order in y0.

As in the case of the background, the arbitrary constants
of integration remaining in the solution after the applica-
tion of the remaining Einstein equations are fixed by
performing a series expansion of the solution in t. This
expansion can be compared term by term with the series
expansion in t given previously, after this latter series has
itself been expanded in y0. The arbitrary constants are then
chosen so that the two expansions coincide in the region
where both t and y0 are small. The results of these calcu-
lations, at long wavelengths, are

 �L � A� B
�

1

t2
�
k2

6
ln jktj

�
�

�
At�

B
t

�
y� � � � (35)

 �L � 2A� B
k2

3
ln jktj �

�
At�

B
t

�
y� � � � (36)

 WL � 6At2�y2 � y2
0� � � � � (37)

where the constants A andB can be arbitrary functions of k.
The solutions for all k, to fifth order in y0, are given in
Appendix C.

VI. EXPANSION ABOUT THE SCALING
SOLUTION

It is illuminating to recast the results of the preceding
sections in terms of a set of dimensionless variables. Using
the relative velocity of the branes at the moment of colli-
sion, V � 2c tanhy0 ’ 2cy0 (where we have temporarily
reintroduced the speed of light c), we may construct the
dimensionless time parameter x � y0ct=L	 Vt=L and the
dimensionless y coordinate ! � y=y0 	 y�c=V�.

Starting from the full Dirichlet/Neumann polynomial
expansion for the background given in Appendix B, restor-
ing c to unity, and setting t � xL=y0 and y � !y0, we find
that

 n�1 � ~N�x� �!x�O�y2
0� (38)

 

b
n
� q�x� �O�y2

0�; (39)

where

 

~N�x� � 1�
x2

2
�

3x4

8
�

25x6

48
�

343x8

384
�

2187x10

1280

�O�x12� (40)

 q�x� � 1�
3x2

2
�

7x4

8
�

55x6

48
�

245x8

128
�

4617x10

1280

�O�x12�: (41)

The single term in (38) linear in! is necessary in order that
n�1 satisfies the correct boundary conditions. Apart from
this one term, however, we see that to lowest order in y0 the
metric functions above turn out to be completely indepen-
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dent of !. Similar results are additionally found for the
perturbations.

Later, we will see how this behavior leads to the emer-
gence of a four-dimensional effective theory. For now, the
key point to notice is that this series expansion converges
only for x� 1, corresponding to times t� L=y0. In order
to study the behavior of the theory for all times therefore,
we require a means of effectively resumming the above
perturbation expansion to all orders in x. Remarkably, we
will be able to accomplish just this. The remainder of this
section, divided into five parts, details our method and
results: first, we explain how to find and expand about
the scaling solution, considering only the background for
simplicity. We then analyze various aspects of the back-
ground scaling solution, namely, the brane geometry and
the analytic continuation required to go to late times,
before moving on to discuss higher-order terms in the
expansion. Finally, we extend our treatment to cover the
perturbations.

A. Scaling solution for the background

The key to our method is the observation that the ap-
proximation of small collision rapidity (y0 � 1) leads to a
set of equations that are perturbatively ultralocal: trans-
forming to the dimensionless coordinates x and !, the
Einstein equations for the background (9) and (10) become

 �;!! � �
2
;! � 12e2~� � y2

0�x�x�;x�;x � x
2�2

;x� (42)

 ~� ;!! �
1
3�

2
;! � 2e2~� � y2

0�x�x~�;x�;x �
1
3x

2�2
;x�; (43)

where we have introduced ~� � �� lny0. Strikingly, all the
terms involving x derivatives are now suppressed by a
factor of y2

0 relative to the remaining terms. This segrega-
tion of x and ! derivatives has profound consequences:
when solving perturbatively in y0, the Einstein equations
(42) and (43) reduce to a series of ordinary differential
equations in !, as opposed to the partial differential equa-
tions we started off with.

To see this, consider expanding out both the Einstein
equations (42) and (43) as well as the metric functions �
and ~� as a series in positive powers of y0. At zeroth order in
y0, the right-hand sides of (42) and (43) vanish, and the
left-hand sides can be integrated with respect to ! to yield
anti-de Sitter space. (This was our reason for using ~� �
�� lny0 rather than �: the former serves to pull the neces-
sary exponential term deriving from the cosmological con-
stant down to zeroth order in y0, yielding anti-de Sitter
space as a solution at leading order. As we are merely
adding a constant, the derivatives of ~� and � are identical.)
The Israel matching conditions on the branes (11), which
in these coordinates read

 

1
3�;! � ~�;! � e~�; (44)

are not however sufficient to fix all the arbitrary functions
of x arising in the integration with respect to!. In fact, two

arbitrary functions of x remain in the solution, which may
be regarded as time-dependent moduli describing the
three-dimensional scale factor of the branes and their
proper separation. These moduli may be determined with
the help of theG5

5 Einstein equation as we will demonstrate
shortly.

Returning to (42) and (43) at y2
0 order now, the left-hand

sides amount to ordinary differential equations in ! for the
y2

0 corrections to � and ~�. The right-hand sides can no
longer be neglected, but, because of the overall factor of y2

0,
only the time derivatives of� and ~� at zeroth order in y0 are
involved. Since � and ~� have already been determined to
this order, the right-hand sides therefore act merely as
known source terms. Solving these ordinary differential
equations then introduces two further arbitrary functions of
x; these serve as y2

0 corrections to the time-dependent
moduli and may be fixed in the same manner as previously.

Our integration scheme therefore proceeds at each order
in y0 via a two-step process: first, we integrate the Einstein
equations (42) and (43) to determine the ! dependence of
the bulk geometry, and then second, we fix the x-dependent
moduli pertaining to the brane geometry using the G5

5
equation. This latter step works as follows: evaluating the
G5

5 equation on the branes, we can use the Israel matching
conditions (44) to replace the single ! derivatives that
appear in this equation, yielding an ordinary differential
equation in time for the geometry on each brane. Explicitly,
we find

 

�
bb;x
n

�
;x
� 0; (45)

where five-dimensional considerations [see Eq. (4) of
Sec. III] further allow us to fix the constants of integration
on the (� ) brane as

 

bb;x
n
�
bb;t
y0n
�
b;t�
y0
� �

1

y0
tanhy0; (46)

where the brane conformal time t� is defined on the branes
via ndt � bdt�. When augmented with the initial condi-
tions that n and b both tend to unity as x tends to zero (so
that we recover compactified Milne spacetime near the
collision), these two equations are fully sufficient to deter-
mine the two x-dependent moduli to all orders in y0.

Putting the above into practice, for convenience we will
work with the Neumann variables ~N and q, generalizing
(38) and (39) to

 n�1 � ~N�x;!� �!x;
b
n
� q�x;!�: (47)

Seeking an expansion of the form

 

~N�x;!� � ~N0�x;!� � y2
0

~N1�x;!� �O�y4
0� (48)

 q�x;!� � q0�x;!� � y2
0q1�x;!� �O�y4

0�; (49)

the Einstein equations (42) and (43) when expanded to
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zeroth order in y0 immediately restrict ~N0 and q0 to be
functions of x alone. The bulk geometry to this order is
then simply anti-de Sitter space with time-varying moduli,
consistent with (38) and (39). The moduli ~N0�x� and q0�x�
may be found by integrating the brane equations (46), also
expanded to lowest order in y0. In terms of the Lambert W-
function [40], W�x�, defined implicitly by

 W�x�eW�x� � x; (50)

the solution is

 

~N 0�x� � e�1=2�W��x2�;

q0�x� � �1�W��x
2��e�1=2�W��x2�:

(51)

Thus we have found the scaling solution for the back-
ground, whose form is independent of y0, holding for any
y0 � 1. Using the series expansion for the Lambert W-
function about x � W�x� � 0, namely [41]

 W�x� �
X1
m�1

��m�m�1

m!
xm; (52)

we can immediately check that the expansion of our solu-
tion is in exact agreement with (40) and (41). At leading
order in y0 then, we have succeeded in resumming the
Dirichlet/Neumann polynomial expansion results for the
background to all orders in x.

Later, we will return to evaluate the y2
0 corrections in our

expansion about the scaling solution. In the next two sub-
sections, however, we will first examine the scaling solu-
tion in greater detail.

B. Evolution of the brane scale factors

Using the scaling solution (51) to evaluate the scale
factors on both branes, we find to O�y2

0�

 b� � 1� xe��1=2�W��x2� � 1�
���������������������
�W��x2�

q
: (53)

To follow the evolution of the brane scale factors, it is
helpful to first understand the behavior of the Lambert W-
function, the real values of which are displayed in Fig. 2.
For positive arguments the Lambert W-function is single-
valued, however, for the negative arguments of interest
here, we see that there are in fact two different real solution
branches. The first branch, denoted W0�x�, satisfies
W0�x� � �1 and is usually referred to as the principal
branch, while the second branch, W�1�x�, is defined in
the range W�1�x� � �1. The two solution branches join
smoothly at x � �1=e, where W � �1.

Starting at the brane collision where x � 0, the brane
scale factors are chosen to satisfy b� � 1, and so we must
begin on the principal branch of the Lambert W-function
for which W0�0� � 0. Thereafter, as illustrated in Fig. 3,
b� increases and b� decreases monotonically until at the
critical time x � xc, when W0��x

2
c� � �1 and b� shrinks

to zero. From (50), the critical time is therefore xc �

e��1=2� � 0:606 . . . , and corresponds physically to the
time at which the negative-tension brane encounters the
bulk black hole [42].

At this moment, the scale factor on the positive-tension
brane has only attained a value of two. From the Birkhoff-
frame solution, in which the bulk is AdS–Schwarzschild
and the branes are moving, we know that the positive-
tension brane is unaffected by the disappearance of the
negative-tension brane and simply continues its journey
out to the boundary of AdS. To reconcile this behavior with
our solution in brane-static coordinates, it is helpful to pass
to t�, the conformal time on the positive-tension brane.

FIG. 2. The real values of the Lambert W-function. The solid
line indicates the principal solution branch, W0�x�, while the
dashed line depicts the W�1�x� branch. The two branches join
smoothly at x � �1=e where W attains its negative maximum of
�1.

1

2

3

4

5
+_b

x0.1 0.2 0.3 0.4 0.5 0.6

x4      

x4 = 0
x4 = 1

8

FIG. 3. The scale factors b� on the positive-tension brane
(rising curve) and negative-tension brane (falling curve) as a
function of the bulk time parameter x, to zeroth order in y0. The
continuation of the positive-tension brane scale factor on to the
W�1 branch of the Lambert W-function is indicated by the
dashed line.
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Working to zeroth order in y0, this may be converted into
the dimensionless form

 x4 �
y0t�
L
�
y0

L

Z n
b

dt �
Z dx
q0�x�

� xe��1=2�W��x2�

�
���������������������
�W��x2�

q
: (54)

Inverting this expression, we find that the bulk time pa-
rameter x � x4e

��1=2�x2
4 . The bulk time x is thus double-

valued when expressed as a function of x4, the conformal
time on the positive-tension brane: to continue forward in
x4 beyond x4 � 1 (where x � xc), the bulk time x must
reverse direction and decrease towards zero. The metric
functions, expressed in terms of x, must then continue back
along the other branch of the Lambert W-function, namely,
the W�1 branch. In this manner we see that the solution for
the scale factor on the positive-tension brane, when con-
tinued on to the W�1 branch, tends to infinity as the bulk
time x is reduced back towards zero (see dotted line in
Fig. 3), corresponding to the positive-tension brane ap-
proaching the boundary of AdS as x4 ! 1.

For simplicity, in the remainder of this paper we will
work directly with the brane conformal time x4 itself. With
this choice, the brane scale factors to zeroth order in y0 are
simply b� � 1� x4.

C. Analytic continuation of the bulk geometry

In terms of x4, the metric functions n and b are given by

 n �
e�1=2�x2

4

1�!x4
�O�y2

0�; b �
1� x2

4

1�!x4
�O�y2

0�: (55)

At x4 � 1, the three-dimensional scale factor b shrinks to
zero at all values of ! except ! � 1 (i.e., the positive-
tension brane). Since b is a coordinate scalar under trans-
formations of x4 and !, one might be concerned that the
scaling solution becomes singular at this point. However,
when we compute the y2

0 corrections as we will do shortly,
we will find that the corrections become large close to x4 �
1, precipitating a breakdown of the small-y0 expansion.
Since it will later turn out that the scaling solution maps
directly on to the four-dimensional effective theory, and
that this, like the metric on the positive-tension brane, is
completely regular at x4 � 1, we are encouraged to simply
analytically continue the scaling solution to times x4 > 1.

When implementing this analytic continuation careful
attention must be paid to the range of the coordinate !.
Thus far, for times x4 < 1, we have regarded ! as a
coordinate spanning the fifth dimension, taking values in
the range �1 � ! � 1. The two metric functions n and b
were then expressed in terms of the coordinates x4 and !.
Strictly speaking, however, this parametrization is redun-
dant: we could have chosen to eliminate ! by promoting
the three-dimensional scale factor b from a metric function
to an independent coordinate parametrizing the fifth di-

mension. Thus we would have only one metric function n,
expressed in terms of the coordinates x4 and b.

While this latter parametrization is more succinct, its
disadvantage is that the locations of the branes are no
longer explicit, since the value of the scale factor b on
the branes is time dependent. In fact, to track the location
of the branes we must reintroduce the function !�x4; b� �
�b� x2

4 � 1�=bx4 [inverting (55) at lowest order in y0].
The trajectories of the branes are then given by the con-
tours ! � �1.

The contours of constant ! as a function of x4 and b are
plotted in Fig. 4. The analytic continuation to times x4 > 1
has been implemented, and the extent of the bulk is in-
dicated by the shaded region. From the figure, we see that,
if we were to revert to our original parametrization of the
bulk in terms of x4 and !, the range of ! required depends
on the time coordinate x4: for early times x4 < 1, we
require only values of ! in the range �1 � ! � 1,
whereas for late times x4 > 1, we require values in the
range ! � 1. Thus, while the positive-tension brane re-
mains fixed at ! � 1 throughout, at early times x4 < 1 the
value of ! decreases as we head away from the positive-
tension brane along the fifth dimension, whereas at late
times x4 > 1, the value of ! increases away from the
positive-tension brane.

While this behavior initially appears paradoxical if ! is
regarded as a coordinate along the fifth dimension, we
stress that the only variables with meaningful physical
content are the brane conformal time x4 and the three-

0.5 1 1.5 2 2.5
b

0.5

1

1.5

2

x
ω = 3 ω = 2 ω = 1.5 ω = 1.1

ω = 1

ω = -1

ω=1

ω = 0.9

ω = 0.5

ω = 0

4

FIG. 4 (color online). The contours of constant ! in the (b; x4)
plane. Working to zeroth order in y0, these are given by x4 �

1
2 

�b!�
�����������������������������������
b2!2 � 4�b� 1�

p
�, where we have plotted the positive

root using a solid line and the negative root using a dashed line.
The negative-tension brane is located at ! � �1 for times x4 <
1, and the trajectory of the positive-tension brane is given (for all
time) by the positive root solution for ! � 1. The region
delimited by the trajectories of the branes (shaded) then corre-
sponds to the bulk. From the plot we see that, for 0< x4 < 1, the
bulk is parametrized by values of! in the range�1 � ! � 1. In
contrast, for x4 > 1, the bulk is parametrized by values of ! in
the range ! � 1.
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dimensional scale factor b. These physical variables be-
have sensibly under analytic continuation. In contrast, ! is
simply a convenient parametrization introduced to follow
the brane trajectories, with the awkward feature that its
range alters under the analytic continuation at x4 � 1.

For the rest of this paper, we will find it easiest to
continue parametrizing the bulk in terms of x4 and !,
adjusting the range of the ! where required. Figure 5
illustrates this approach: at early times x4 < 1 the three-
dimensional scale factor b is plotted for values of ! in the
range �1 � ! � 1. At late times x4 > 1, we must how-
ever plot b for values of ! in the range ! � 1. In this
fashion, the three-dimensional scale factor b always de-
creases along the fifth dimension away from the brane.

We have argued that the scaling solution for the back-
ground, obtained at lowest order in y0, may be analytically
continued across x4 � 1. There is a coordinate singularity
in the x4; ! coordinates but this does not affect the metric
on the positive-tension brane which remains regular
throughout. The same features will be true when we solve
for the cosmological perturbations. The fact that the con-
tinuation is regular on the positive-tension brane and pre-
cisely agrees with the predictions of the four-dimensional
effective theory provides strong evidence for its correct-
ness. Once the form of the background and the perturba-
tions have been determined to lowest order in y0, the
higher-order corrections are obtained from differential
equations in y with source terms depending only on the
lowest order solutions. It is straightforward to obtain these
corrections for x4 < 1. If we analytically continue them to
x4 > 1 as described, we automatically solve the bulk
Einstein equations and the Israel matching conditions on
the positive-tension brane for all x4. The continued solu-
tion is well behaved after the collision in the vicinity of the
positive-tension brane, out to large distances where the y0

expansion fails.

D. Higher-order corrections

In this section we explicitly compute the y2
0 corrections.

The size of these corrections indicates the validity of the

expansion about the scaling solution, which perforce is
only valid when the y2

0 corrections are small.
Following the procedure outlined previously, we first

evaluate the Einstein equations (42) and (43) to O�y2
0�

using the Ansätze (48) and (49), along with the solutions
for ~N0�x� and q0�x� given in (51). The result is two second-
order ordinary differential equations in !, which may
straightforwardly be integrated yielding ~N1�x;!� and
q1�x;!� up to two arbitrary functions of x4. These time-
dependent moduli are then fixed using the brane equations
(46), evaluated at O�y2

0� higher than previously.
We obtain the result:

 

n�x4;!� �
e�1=2�x2

4

1�!x4
�

e�1=2�y2
0

30��1�!x4�
2��1� x2

4�
4

 �x4�5!��3�!2� � 5x4� 40!��3�!2�x2
4

� 5��14� 9!2��2�!2��x3
4

� 3!3��5� 3!2�x4
4� 19x5

4� 5x7
4�

� 5��1� x2
4�

3 ln�1� x2
4���O�y

4
0�; (56)

 

b�x4; !� �
1� x2

4

1�!x4
�

x4y
2
0

30��1�!x4�
2��1� x2

4�
3

 ��5!��3�!2� � 20x4

� 5!��7� 4!2�x2
4 � 10�1� 12!2 � 3!4�x3

4

� 3!��20� 5!2 � 2!4�x4
4 � 12x5

4 � 31!x6
4

� 5!x8
4 � 5��1� x2

4�
2�!� 2x4 �!x2

4�

 ln�1� x2
4�� �O�y

4
0�: (57)

In Fig. 6, we have plotted the ratio of the y2
0 corrections

to the corresponding terms at leading order: where this
ratio becomes of order unity the expansion about the scal-
ing solution breaks down. Inspection shows there are two
such regions: the first is for times close to x4 � 1, for all!,
and the second occurs at late times x4 > 1, far away from
the positive-tension brane. In neither case does the failure
of the y0 expansion indicate a singularity of the back-
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FIG. 5 (color online). The three-dimensional scale factor b, plotted to zeroth order in y0 as a function of x4 and !, for x4 < 1 (left)
and x4 > 1 (right). The positive-tension brane is fixed at ! � 1 for all time (note the evolution of its scale factor is smooth and
continuous), and for x4 < 1, the negative-tension brane is located at ! � �1.
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ground metric: from the bulk-static coordinate system we
know the exact solution for the background metric is
simply AdS–Schwarzschild, which is regular everywhere.
The exact bulk-static solution in Birkhoff frame tells us
that the proper speed of the negative-tension brane, relative
to the static bulk, approaches the speed of light as it reaches
the event horizon of the bulk black hole. It therefore seems
plausible that a small-y0 expansion based upon slowly
moving branes must break down at this moment, when
x4 � 1 in our chosen coordinate system.

Analytically continuing our solution in both x4 and !
around x4 � 1, the logarithmic terms in the y2

0 corrections
now acquire imaginary pieces for x4 > 1. However, since
these imaginary terms are all suppressed by a factor of y2

0,
they can only enter the Einstein-brane equations (expanded
as a series to y2

0 order) in a linear fashion. Hence the real
and imaginary parts of the metric necessarily constitute
independent solutions, permitting us to simply throw away
the imaginary part and work with the real part alone. As a
confirmation of this, it can be checked explicitly that
replacing the ln�1� x4� terms in (56) and (57) with lnj1�
x4j still provides a valid solution to O�y2

0� of the complete
Einstein-brane equations and boundary conditions.

Finally, at late times where x4 > 1, note that the extent to
which we know the bulk geometry away from the positive-
tension brane is limited by the y2

0 corrections, which be-
come large at an increasingly large value of !, away from
the positive-tension brane (see Fig. 6). The expansion
about the scaling solution thus breaks down before we
reach the horizon of the bulk black hole, which is located
at !! 1 for x4 > 1.

E. Treatment of the perturbations

Having determined the background geometry to O�y2
0�

in the preceding subsections, we now turn our attention to
the perturbations. In this subsection we show how to
evaluate the perturbations to O�y2

0� by expanding about
the scaling solution. The results will enable us to perform
stringent checks of the four-dimensional effective theory
and moreover to evaluate the mode-mixing between early
and late times.

In addition to the dimensionless variables x � y0ct=L
and ! � y=y0, when we consider the metric perturbations
we must further introduce the dimensionless perturbation
amplitude ~B � By2

0c
2=L2 	 BV2=L2 and the dimension-

less wave vector ~k � kL=y0 	 ckL=V. In this fashion, to
lowest order in y0 and k, we then find �L � A� B=t2 �
A� ~B=x2 and similarly kct � ~kx. (Note that the perturba-
tion amplitude A is already dimensionless however.)

Following the treatment of the perturbations in the
Dirichlet/Neumann polynomial expansion, we will again
express the metric perturbations in terms of WL (obeying
Dirichlet boundary conditions), and the Neumann variables
�4 and 	4, defined in (27). Hence we seek an expansion of
the form

 �4�x4; !� � �40�x4; !� � y2
0�41�x4; !� �O�y4

0�; (58)

 	4�x4; !� � 	40�x4; !� � y
2
0	41�x4; !� �O�y

4
0�; (59)

 WL�x4; !� � WL0�x4; !� � y2
0WL1�x4; !� �O�y4

0�: (60)

As in the case of the background, we will use the G5
5

equation evaluated on the brane to fix the arbitrary func-
tions of x4 arising from integration of the Einstein equa-
tions with respect to !. By substituting the Israel matching
conditions into the G5

5 equation, along with the boundary
conditions for the perturbations, it is possible to remove the
single ! derivatives that appear. We arrive at the following
second-order ordinary differential equation, valid on both
branes,
 

0 � 2n�x2
4 � 1��2b2�4 � 	4� _b2 � b2�nx4�x

2
4 � 3�

� �x2
4 � 1� _n��2b2 _�4 � _	4� � b _b�4nx4�x2

4 � 3�

 �b2�4 � 	4� � �x2
4 � 1��4�b2�4 � 	4� _n

� n�10b2 _�4 � _	4��� � bn�x
2
4 � 1�

 �4�b2�4 � 	4� �b� 2b3 ��4 � b �	4�; (61)

where dots indicate differentiation with respect to x4, and
where, in the interests of brevity, we have omitted terms of
O�~k2�.
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FIG. 6 (color online). The ratio of the y2
0 corrections to the leading term in the small-y0 expansion for b, plotted for x4 < 1 (left) and

x4 > 1 (right), for the case where y0 � 0:1. Where this ratio becomes of order unity the expansion about the scaling solution breaks
down. The analogous plots for n display similar behavior.
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Beginning our computation, the G5
i and G5

5 Einstein
equations when evaluated to lowest order in y0 immedi-
ately restrict �40 and 	40 to be functions of x4 only.
Integrating the G0

i equation with respect to ! then gives
WL0 in terms of �40 and 	40, up to an arbitrary function of
x4. Requiring thatWL0 vanishes on both branes allows us to
both fix this arbitrary function, and also to solve for 	40 in
terms of �40 alone. Finally, evaluating (61) on both branes
to lowest order in y0 and solving simultaneously yields a
second-order ordinary differential equation for �40, with
solution

 �40 �

�
3A
2
�

9 ~B
16

�
�

~B

2x2
4

�O�~k2�; (62)

where the two arbitrary constants have been chosen to
match the small-t series expansion given in Sec. IV. With
this choice,

 	40 � �A�
11 ~B

8
�

~B

x2
4

�

�
A�

3 ~B
8

�
x2

4 �O�~k
2� (63)

 

WL0 � e��1=2�x2
4
�1�!2�

�1� x2
4�

2

�
3Ax2

4��2�!x4�

� ~Bx4

�
9

4
x4 �!

�
1�

9

8
x2

4

���
�O�~k2�: (64)

The resulting behavior for the perturbation to the three-
dimensional scale factor, b2�L, is plotted in Fig. 7.

In terms of the original Newtonian gauge variables, an
identical calculation (working now to all orders in ~k) yields

 

�L �
2~k�1�!x4�

2

3�x2
4 � 1�

�A0J0�~kx4� � B0Y0�~kx4��

�
1

x4

�
1�
�1�!x4�

2

1� x2
4

�
�A0J1�~kx4� � B0Y1�~kx4��

�O�y2
0�; (65)

 

�L �
1

3�1� x2
4�
�2~k�1�!x4�

2�A0J0�~kx4� � B0Y0�~kx4��

� 3�x4 �!��2�!x4���A0J1�~kx4�

� B0Y1�~kx4��� �O�y
2
0�; (66)

 WL � 2x2
4e
��1=2�x2

4
�!2 � 1�

�1� x2
4�

2 �
~k�1�!x4��A0J0�~kx4�

� B0Y0�~kx4�� �!�A0J1�~kx4� � B0Y1�~kx4���

�O�y2
0�; (67)

where the constants A0 and B0 are given by

 A0 �
3A
~k
�

9 ~B

8~k
�

1

2
~B ~k�ln2� 
� �O�y2

0�;

B0 �
~B ~k�

4
�O�y2

0�;

(68)

where 
 � 0:577 . . . is the Euler-Mascheroni constant.
To evaluate the y2

0 corrections, we repeat the same
sequence of steps: integrating the G5

i and G5
5 Einstein

equations (at y2
0 higher order) gives us �41 and 	41 up to

two arbitrary functions of x4, and integrating the G0
i equa-

tion then gives us WL1 in terms of these two arbitrary
functions plus one more. Two of the three arbitrary func-
tions are then determined by imposing the Dirichlet bound-
ary conditions on WL1, and the third is found to satisfy a
second-order ordinary differential equation after making
use of (61) on both branes. This can be solved, and the
constants of integration appearing in the solution are again
chosen so as to match the small-t series expansion of
Sec. IV.

Converting back to the original longitudinal gauge var-
iables, the results to O�y4

0� and to O�k2� take the schematic
form
 

�L � f�
0 � y

2
0�f

�
1 � f

�
2 ln�1� x4� � f

�
3 ln�1� x4�

� f�4 ln�1�!x4�; (69)
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FIG. 7 (color online). The perturbation to the three-dimensional scale factor, b2�L, plotted on long wavelengths to zeroth order in y0

for early times (left) and late times (right). Only the ~B mode is displayed (i.e., A � 0 and ~B � 1). Note how the perturbations are
localized on the positive-tension brane (located at ! � 1), and decay away from the brane.
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�L � f�
0 � y

2
0�f

�
1 � f

�
2 ln�1� x4� � f

�
3 ln�1� x4�

� f�
4 ln�1�!x4�; (70)

 

WL � e��1=2�x2
4�fW0 � y

2
0�f

W
1 � f

W
2 ln�1� x4�

� fW3 ln�1� x4� � fW4 ln�1�!x4���; (71)

where the f are rational functions of x4 and ! which, due
to their length, have been listed separately in Appendix D.
[If desired, more detailed results including the O�k2� cor-
rections are available [31].]

It is easy to check that the results obtained by expanding
about the scaling solution are consistent with those ob-
tained using our previous method based upon Dirichlet/
Neumann polynomials. Taking the results from the poly-
nomial expansion given in Appendix C, substituting t �
�x4=y0�e

��1=2�x2
4 and y � !y0, retaining only terms of

O�y2
0� or less, one finds agreement with the results listed

in Appendix D after these have been reexpressed as a series
in x4. This has been checked explicitly both for the back-
ground and the perturbations.

Just as in the case of the background, the small-y0

expansion breaks down for times close to x4 � 1 when
the y2

0 corrections to the perturbations become larger than
the corresponding zeroth order terms. Again, we will sim-
ply analytically continue the solution in x4 and ! around
this point. In support of this, the induced metric on the
positive-tension brane is, to zeroth order in y0, completely
regular across x4 � 1, even including the perturbations as
can be seen from (65) and (66).

As in the case of the background, any imaginary pieces
acquired from analytically continuing logarithmic terms
are all suppressed by order y2

0. Thus they may only enter
the Einstein-brane equations (when these are expanded to
order y2

0) in a linear fashion, and hence the real and
imaginary parts of the metric constitute independent solu-
tions. We can therefore simply drop the imaginary parts, or
equivalently replace the ln�1� x4� and ln�1�!x4� terms
with lnj1� x4j and lnj1�!x4j, respectively. We have
checked explicitly that this still satisfies the Einstein-brane
equations and boundary conditions.

VII. COMPARISON WITH THE FOUR-
DIMENSIONAL EFFECTIVE THEORY

We have now arrived at a vantage point from which we
may scrutinize the predictions of the four-dimensional
effective theory in light of our expansion of the bulk
geometry about the scaling solution. We will find that the
four-dimensional effective theory is in exact agreement
with the scaling solution. Beyond this, the y2

0 corrections
lead to effects that cannot be described within a four-
dimensional effective framework. Nonetheless, the
higher-order corrections are automatically small at very
early and very late times, restoring the accuracy of the
four-dimensional effective theory in these limits.

A. Background

In the case of the background, we need only recall the
result from Sec. III that the scale factors on the positive-
and negative-tension branes are given by

 b� � 1� �A4t4; (72)

where the constant �A4 � L�1 tanhy0 and t4 denotes con-
formal time in the four-dimensional effective theory. (Note
this solution has been normalized so as to set the brane
scale factors at the collision to unity.) Consequently, the
four-dimensional effective theory restricts b� � b� � 2.
In comparison, our results from the expansion about the
scaling solution (57) give

 b� � b� � 2�
2x4

4�x
2
4 � 3�y2

0

3�1� x2
4�

3 �O�y4
0�: (73)

Thus the four-dimensional effective theory captures the
behavior of the full theory only in the limit in which the
y2

0 corrections are small, i.e., when the scaling solution is
an accurate description of the higher-dimensional dynam-
ics. At small times such that x4 � 1, the y2

0 corrections will
additionally be suppressed by O�x2

4�, and so the effective
theory becomes increasingly accurate in the Kaluza-Klein
limit near to the collision. Close to x4 � 1, the small-y0

expansion fails hence our results for the bulk geometry is
no longer reliable. For times x4 > 1, the negative-tension
brane has disappeared behind the horizon of the bulk black
hole and the above expression is no longer well defined.

We may also ask what is the physical counterpart of t4,
conformal time in the four-dimensional effective theory:
from (57), we find
 

t4 �
b� � b�

2 �A4

�
x4

y0
�

y0

30�1� x2
4�

3 �x
3
4�5� 14x2

4 � 5x4
4�

� 5x4��1� x2
4�

2 ln�1� x2
4�� �O�y

3
0�: (74)

In comparison, the physical conformal times on the posi-
tive- and negative-tension branes, defined via bdt� �
ndt � �n=y0��1� x2

4�e
��1=2�x2

4 dx4, are, to O�y3
0�,

 

t� �
x4

y0
�

y0

30�1� x2
4�

3 �10� 30x2
4 � x

3
4�5� 14x2

4 � 5x4
4�

� 5x4�1� x
2
4�

2 ln�1� x2
4�� (75)

 

t� �
x4

y0
�

y0

30�1� x2
4�

3 �10� 30x2
4 � x

3
4�5� 14x2

4 � 5x5
4�

� 5x4�1� x
2
4�

2 ln�1� x2
4��; (76)

where we have used (56) and (57).
Remarkably, to lowest order in y0, the two brane con-

formal times are in agreement not only with each other, but
also with the four-dimensional effective theory conformal
time. Hence, in the limit in which y2

0 corrections are
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negligible, there exists a universal four-dimensional time.
In this limit, t4 � x4=y0 and the brane scale factors are
simply given by b� � 1� �A4t4 � 1� x4. The four-
dimensional effective scale factor, b4, is given by

 �b4�
2 � b2

� � b
2
� � 4 �A4t4 � 4x2

4: (77)

In order to describe the full five-dimensional geometry,
one must specify the distance between the branes d as well
as the metrics induced upon them. The distance between
the branes is of particular interest in the cyclic scenario,
where an interbrane force depending on the interbrane
distance d is postulated. In the lowest approximation,
where the branes are static, the four-dimensional effective
theory predicts that

 d � L ln coth
�
j�j���

6
p

�
� L ln

�
b�
b�

�
� L ln

�
1� �A4t4
1� �A4t4

�
:

(78)

Substituting our scaling solution and evaluating to leading
order in y0, we find

 d � L ln
�

1� x4

1� x4

�
�O�y2

0�: (79)

(Again, this quantity is ill-defined for x4 > 1.)
In the full five-dimensional setup, a number of different

measures of the interbrane distance are conceivable, and
the interbrane force could depend upon each of these,
according to the precise higher-dimensional physics. One
option would be to take the metric distance along the extra
dimension

 dm � L
Z y0

�y0

�������
gyy
p

dy � L
Z y0

�y0

ntdy

� L
Z 1

�1
nx4e

��1=2�x2
4 d!: (80)

Using (56), we obtain

 dm � L
Z 1

�1

x4

1�!x4
d!�O�y2

0�

� L ln
�
1� x4

1� x4

�
�O�y2

0�; (81)

in agreement with (79).
An alternative measure of the interbrane distance is

provided by considering affinely parametrized spacelike
geodesics running from one brane to the other at constant
Birkhoff-frame time and noncompact coordinates xi. The
background interbrane distance is just the affine parameter
distance along the geodesic, and the fluctuation in distance
is obtained by integrating the metric fluctuations along the
geodesic, as discussed in Appendix E. One finds that, to
leading order in y0 only, the geodesic trajectories lie purely
in the y direction. Hence the affine distance da is trivially
equal to the metric distance dm at leading order, since

 da � L
Z �����������������

gab _xa _xb
q

d� � L
Z
nt _yd� � dm; (82)

where the dots denote differentiation with respect to the
affine parameter �. Both measures of the interbrane dis-
tance therefore coincide and are moreover in agreement
with the four-dimensional effective theory prediction, but
only at leading order in y0.

B. Perturbations

As discussed in Sec. III, the four-dimensional
Newtonian potential �4 represents the anticonformal part
of the perturbed four-dimensional effective metric [see
(5)]. It is therefore unaffected by the conformal factors in
(2) relating the four-dimensional effective metric to the
induced brane metrics. Hence we can directly compare the
anticonformal part of the perturbations of the induced
metric on the branes, as calculated in five dimensions,
with 2�4 in the four-dimensional effective theory. The
induced metric on the branes is given by
 

ds2 � b2���1� 2�L�dt
2
� � �1� 2�L�d ~x

2� (83)

 

� b2�1��L ��L����1��L ��L�dt2�

� �1� ��L ��L��d ~x
2�; (84)

where the background brane conformal time, t�, is related
to the bulk time via bdt� � ndt. The anticonformal part of
the metric perturbation is thus simply �L ��L. It is this
quantity, evaluated on the branes to leading order in y0, that
we expect to correspond to 2�4 in the four-dimensional
effective theory.

Using our results (58) and (62) from expanding about the
scaling solution, we have to O�y2

0�,

 

1

2
��L ��L�� �

1

2
��L ��L�� � �40�x4�

�
1

x4
�A0J1�~kx4� � B0Y1�~kx4��; (85)

with A0 and B0 as given in (68). On the other hand, the
Newtonian potential of the four-dimensional effective the-
ory is given by Eq. (6) in Sec. III. Since t4, the conformal
time in the four-dimensional effective theory, is related to
the physical dimensionless brane conformal time x4 by
t4 � x4=y0 (to lowest order in y0), and moreover ~k �
k=y0, we have ~kx4 � kt4. Hence the four-dimensional
effective theory prediction for the Newtonian potential is
in exact agreement with the scaling solution holding at
leading order in y0, upon identifying ~A0 with A0=y0 and ~B0

with B0=y0. The behavior of the Newtonian potential is
illustrated in Fig. 8.

Turning our attention now to the radion perturbation,
��, we know from our earlier considerations that this
quantity is related to the perturbation �d in the interbrane
separation. Specifically, from varying (78), we find
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 �d � 2Lcosech
� ���

2

3

s
�
�
�����

6
p : (86)

Inserting the four-dimensional effective theory predictions
for � and ��, we obtain
 

�d
L
�

�
4 �A4t4

� �A4t4�
2 � 1

��
2

3
k� ~A0J0�kt4� � ~B0Y0�kt4��

�
1

t4
� ~A0J1�kt4� � ~B0Y1�kt4��

�
; (87)

where to lowest order �A4 � y0 �O�y
3
0�.

In comparison, the perturbation in the metric distance
between the branes is

 

�dm
L
�
Z y0

�y0

nt�Ldy �
Z 1

�1

nx4	4

b2 e��1=2�x2
4 d!; (88)

where we have used (27). Evaluating the integral using
(63), to an accuracy of O�y2

0� we obtain

 

�dm
L
�
Z 1

�1

nx4	40�x4�

b2 e��1=2�x2
4 d! �

2x4	40�x4�

�1� x2
4�

2

�
1

�x2
4 � 1�

�
8

3
~kx4�A0J0�~kx4� � B0Y0�~kx4��

� 4�A0J1�~kx4� � B0Y1�~kx4��

�
; (89)

which is in agreement with (87) when we set �A4t4 	
y0t4 � x4, along with ~A0 � A0=y0, ~B0 � B0=y0, and k �
~ky0. The calculations in Appendix E show moreover that
the perturbation in the affine distance between the branes,
�da, is identical to the perturbation in the metric distance
�dm, to lowest order in y0.

The four-dimensional effective theory thus correctly
predicts the Newtonian potential �4 and the radion pertur-
bation ��, but only in the limit in which the y2

0 corrections
are negligible and the bulk geometry is described by the
scaling solution. While these corrections are automatically
small at very early or very late times, at intermediate times
they cannot be ignored and introduce effects that cannot be

described by four-dimensional effective theory. The only
five-dimensional longitudinal gauge metric perturbation
we have not used in any of the above isWL: this component
is effectively invisible to the four-dimensional effective
theory, since it vanishes on both branes and has no effect
on the interbrane separation.

VIII. MIXING OF GROWING AND DECAYING
MODES

Regardless of the rapidity of the brane collision y0, one
expects a four-dimensional effective description to hold
both near to the collision, when the brane separation is
much less than an AdS length, and also when the branes are
widely separated over many AdS lengths. In the former
case, the warping of the bulk geometry is negligible and a
Kaluza-Klein–type reduction is feasible, and in the latter
case, one expects to recover brane-localized gravity. At the
transition between these two regions, when the brane sepa-
ration is of order one AdS length, one might anticipate a
breakdown of the four-dimensional effective description.

However, when the brane separation is of order a few
AdS lengths, the negative-tension brane reaches the hori-
zon of the bulk black hole and the small-y0 expansion
temporarily fails. This failure hampers any efforts to probe
the breakdown of the four-dimensional effective theory at
x4 � 1 directly; instead, we will look for evidence of
mixing between the four-dimensional perturbation modes
in the transition from Kaluza-Klein to brane-localized
gravity.

To see this in action we have to compare the behavior of
the perturbations at very small times with that at very late
times: in both of these limits a four-dimensional effective
description should apply, regardless of the collision rapid-
ity y0, in which the four-dimensional Newtonian potential
�4 satisfies

 �4 �
1

x4
�A0J1�~kx4� � B0Y1�~kx4��: (90)

Expanding this out on long wavelengths ~k� 1, taking in
addition ~kx4 � 1, we find
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FIG. 8. The four-dimensional Newtonian potential �4 on the positive-tension brane, plotted to zeroth order in y0 as a function of the
time x4 for wavelength ~k � 1. The plot on the left illustrates the mode with A � 1 and ~B � 0, while the plot on the right has A � 0 and
~B � 1.
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 �4 � �
~B0

4

x2
4

� A0
4 �

1

2
~B0

4
~k2 ln~kx4 �

1

8
A0

4
~k2x2

4 �O�k
4�;

(91)

where the dimensionless constants A0
4 and ~B0

4 are given in
terms of the five-dimensional perturbation amplitudes A
and ~B by

 A0
4 �

3

2
A�

9

16
~B�

1

8
~B~k2; ~B0

4 �
1

2
~B; (92)

where we have used (68) and (85), recalling that �4 � �40

at leading order in y0.
In comparison, using our results from expanding about

the scaling solution, we find the Newtonian potential on the
positive-tension brane at small times x4 � 1 is given by

 �4 �

�
�

~B

2x2
4

�
3

2
A�

9

16
~B�

1

8
~B~k2 �

1

4
~B~k2 ln~kx4

�
3

16
A~k2x2

4 �
9

128
~B~k2x2

4

�
� y2

0

�
11

120
~B� 3Ax4

�
47

8
~Bx4 �

1

2
~B~k2x4 ln~kx4 � 6Ax2

4 �
1084

105
~Bx2

4

�
211

960
~B~k2x2

4 �
~B~k2x2

4 ln~kx4

�
�O�x3

4� �O�y
4
0�:

(93)

Examining this, we see that to zeroth order in y0 the result
is in exact agreement with (91) and (92). At y2

0 order,
however, extra terms appear that are not present in (91).
Nonetheless, at sufficiently small times the effective theory
is still valid as these ‘‘extra’’ terms are subleading in x4: in
this limit we find

 �4 � �
~BE4
x2

4

� AE4 �
1

2
~BE4 ~k2 ln~kx4 �O�x4� �O�~k

4� (94)

(the superscript E indicating early times), in accordance
with the four-dimensional effective theory, where

 AE4 � A0
4 �

11

120
~By2

0; ~BE4 � ~B0
4: (95)

At late times such that x4 � 1 (but still on sufficiently
long wavelengths that ~kx4 � 1), we find on the positive-
tension brane
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16
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16
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960x2
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�
~B~k2 ln~k

18x2
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12x2
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�
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6
~B~k2 lnx4 �

3
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~B~k2x2

4

�
�O
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1

x3
4

�
�O�y4

0�: (96)

To zeroth order in y0, the results again coincide with the
effective theory prediction (91) and (92). However, at y2

0
order extra terms not present in the four-dimensional ef-
fective description once more appear. In spite of this, at
sufficiently late times the effective description still holds as
these ‘‘extra’’ terms are suppressed by inverse powers of x4

relative to the leading terms, which are

 �4 � AL4 �
~BL4
x2

4

�
1

8
AL4 ~k2x2

4 �O�~k
2 ln~kx4� (97)

(where the superscript L indicates late times), in agreement
with the four-dimensional effective theory. [Since x4 � 1,
we find ~k� ~kx4 � 1, and we have chosen to retain terms
of O�~k2x2

4� but to drop terms of O�~k2�. The term of O�x�2
4 �

is much larger than O�~k2� and so is similarly retained.]
Fitting this to (96), we find [43]

 AL4 � A0
4 �

3

8
~By2

0; ~BL4 � ~B0
4 �

�
A
3
�

~B
24

�
y2

0: (98)

Comparing the amplitudes of the two four-dimensional
modes at early times, AE4 and ~BE4 , with their counterparts
AL4 and ~BL4 at late times, we see clearly that the amplitudes
differ at y2

0 order. Using (92), we find:
 

AL4
~BL4

 !
�

1 � 14
15 y

2
0

2
9 y

2
0 1� �13�

~k2

18�y
2
0

0
@

1
A AE4

~BE4

 !
: (99)

Hence the four-dimensional perturbation modes (as de-
fined at very early or very late times) undergo mixing.

IX. CONCLUSION

In this paper we have developed a set of powerful
analytical methods which, we believe, render braneworld
cosmological perturbation theory solvable.

Considering the simplest possible cosmological sce-
nario, consisting of slowly moving, flat, empty branes
emerging from a collision, we have found a striking ex-
ample of how the four-dimensional effective theory breaks
down at first nontrivial order in the brane speed. As the
branes separate, a qualitative change in the nature of the
low energy modes occurs; from being nearly uniform
across the extra dimension when the brane separation is
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small, to being exponentially localized on the positive-
tension brane when the branes are widely separated. If
the branes separate at finite speed, the localization process
fails to keep up with the brane separation and the low
energy modes do not evolve adiabatically. Instead, a given
Kaluza-Klein zero mode at early times will generically
evolve into a mixture of both brane-localized zero modes
and excited modes in the late-time theory. From the per-
spective of the four-dimensional theory, this is manifested
in the mixing of the four-dimensional effective perturba-
tion modes between early and late times, as we have
calculated explicitly. In the absence of entropy perturba-
tions, such a mixing would be impossible, were a local
four-dimensional effective theory to remain valid through-
out cosmic history. Under such circumstances mode-
mixing is literally a signature of higher-dimensional
physics.

This breakdown in the four-dimensional effective de-
scription has further ramifications for cosmology. A key
quantity of interest is the comoving curvature perturbation
� on the positive-tension brane, which is both gauge-
invariant and, in the absence of additional bulk stresses,
conserved on long wavelengths. As we show elsewhere
[25], at first nontrivial order in the brane speed, � differs
from its four-dimensional effective theory analogue, �4.
Hence, while the five-dimensional � is exactly conserved
on long wavelengths in the absence of bulk stresses, the
four-dimensional effective theory �4 is not precisely con-
served, contrary to the predictions of the four-dimensional
effective theory. This has important implications for the
propagation of perturbations before and after the bounce in
cosmologies undergoing a big crunch/big bang transition,
such as the ekpyrotic and cyclic models.

The methods developed in this paper should moreover
readily extend to other braneworld models; for example,
those containing matter on the branes, and to models
deriving from heterotic M theory which are better moti-
vated from a fundamental perspective [30]. A further ap-
plication would be to probe the dynamical evolution of
braneworld black holes [44] and black strings [45] in an
expanding cosmological background.

In conclusion, the strength of the expansion about the
scaling solution developed in this paper lies in its ability to
interpolate between very early and very late time behav-
iors, spanning the gap in which the effective theory fails.
Not only can we solve for the full five-dimensional back-
ground and perturbations of a colliding braneworld, but our
solution takes us beyond the four-dimensional effective
theory and into the domain of intrinsically higher-
dimensional physics.
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APPENDIX A: FIVE-DIMENSIONAL
LONGITUDINAL GAUGE

1. Gauge-invariant variables

Starting with the background metric in the form (1), the
most general scalar metric perturbation can be written as
[32]
 

ds2 � n2���1� 2��dt2 � 2Wdtdy� t2�1� 2��dy2�

� 2ridxidt� 2t2ri�dydxi � b2��1� 2���ij

� 2rirj��dxidxj: (A1)

Under a gauge transformation xA ! xA � 	A, these varia-
bles transform as
 

�! �� _	t � 	t
_n
n
� 	y

n0

n
;

�! �� 	0y �
1

t
	t � 	t

_n
n
� 	y

n0

n
;

W ! W � 	0t � t2 _	y; ! � 	t �
b2

n2
_	s;

�! �� 	y �
b2

n2t2
	0s; �! �� 	t

_b
b
� 	y

b0

b
;

�! �� 	s; (A2)

where dots and primes indicate differentiation with respect
to t and y, respectively. Since a five-vector 	A has three
scalar degrees of freedom 	t, 	y, and 	i � ri	s, only four
of the seven functions ��;�;W; ; �;�; �� are physical.
We can therefore construct four gauge-invariant variables,
which are

 �inv � �� _~� ~
_n
n
� ~�

n0

n
;

�inv � �� ~�0 �
1

t
~� ~

_n
n
� ~�

n0

n
;

Winv � W � ~0 � t2 _~�;

�inv � ��
_b
b

~�
b0

b
~�;

(A3)

where ~ � � b2

n2 _� and ~� � �� b2

n2t2
�0.

In analogy with the four-dimensional case, we then
define five-dimensional longitudinal gauge by � �  �
� � 0, giving

 �inv � �L; �inv � �L;

Winv � WL; �inv � �L;
(A4)
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i.e., the gauge-invariant variables are equal to the values of
the metric perturbations in longitudinal gauge. This gauge
is spatially isotropic in the xi coordinates, although in
general there will be a nonzero t-y component of the
metric.

2. Position of branes

In general, the locations of the branes will be different
for different choices of gauge. In the case where the brane
matter has no anisotropic stresses this is easy to establish.
Working out the Israel matching conditions, we find that �
on the branes is related to the anisotropic part of the brane’s
stress energy. If we consider only perfect fluids, for which
the shear vanishes, then the Israel matching conditions give
��y � �y0� � 0.

From the gauge transformations above, we can trans-
form into the gauge  � � � 0 using only a 	s and a 	t

transformation. We may then pass to longitudinal gauge
( � � � � � 0) with the transformation 	y � ~� alone.
Since � (and hence ~�) vanishes on the branes, 	y must also
vanish leaving the brane trajectories unperturbed. Hence,
in longitudinal gauge the brane locations remain at their
unperturbed values y � �y0. Transforming to a com-
pletely arbitrary gauge, we see that in general the brane
locations are given by

 y � �y0 � ~�: (A5)

APPENDIX B: POLYNOMIAL EXPANSION:
BACKGROUND

Using the expansion in Dirichlet/Neumann polynomials
presented in Sec. V to solve for the background geometry,
we find
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1
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and
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 q6 �
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 q7 �
�13t3y2

0

60
�O�y4

0� (B15)

 q8 � O�y2
0� (B16)

 q9 � O�y2
0�; (B17)

where we have set L � 1 for clarity. (To restore L simply
replace t! t=L.) The solution has been checked to satisfy
all the remaining Einstein equations explicitly.
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APPENDIX C: POLYNOMIAL EXPANSION:
PERTURBATIONS

1. All wavelengths

Throughout this Appendix, we shall set the AdS radius L
to unity. It is then simple to restore L by dimensions where
needed, i.e., by setting t! t=L and k! kL. Note that the
coordinate y is dimensionless.

Using the Dirichlet/Neumann polynomial expansion to
solve for the perturbations, the solution may be expressed
in terms of the original longitudinal gauge variables as

 �L � P �0�� �y; t�F
�0��t� � P �1�� �y; t�F

�1��t� (C1)

where

 F�n��t� � �AJn�kt� � �BYn�kt� (C2)

for n � 0; 1 and 
 � 0:577 . . . is the Euler-Mascheroni
constant. The constants �A and �B are arbitrary functions
of k. In order to be consistent with the series expansion in t
presented in Sec. IV, we must set
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The polynomials P �n�� are then given (for all k and t) by
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Since the F�n� are of zeroth order in y0, the solution for �L to a given order less thanO�y6
0� is found simply by truncating the

polynomials above. [Should they be needed, results up to O�y14
0 � can in addition be found at [31].]

In a similar fashion we may express the solution for �L as

 �L � P �0�� �y; t�F
�0��t� � P �1�� �y; t�F

�1��t�; (C7)

where F�n� is defined as above and
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Finally, writing
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we find
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2. Long wavelengths

On long wavelengths, F�n� reduces to
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t
�

9ty2
0

4
�

233ty4
0

90

�
B
�
k�O�k2�

�O�y6
0�: (C14)

For convenience, we provide here a separate listing of the
metric perturbations truncated at O�k2�:

 

�L �

�
A�

B

t2

�
�

�
By
t
� Aty

�
�

1

8
�B�y2

0 � 4y2� � 4At2�y2
0 � y

2�� �
y

24t

�
B�3y2

0��4� t2� � 4y2�

� 4At2�3y2
0��19� 3t2� � 19y2� �

�
1

6
At2�y4

0�29� 6t2� � 3y2
0�13� 2t2�y2 � 10y4� �

1

240
�B�y4

0�56� 45t2�

� 15y2
0��16� 5t2�y2 � 100y4�

��
�

y
240t

�2At2�5y4
0�905� 1338t2 � 75t4� � 10y2

0��181� 219t2�y2 � 181y4�

� B�y4
0�50� 3509t2 � 135t4� � 5y2

0��4� 235t2�y2 � �2� 12t2�y4�� �O�y6
0�; (C15)

 

�L � 2A�
y
t
�B� At2� �

1

4
�2At2�y2

0 � y
2� � B��y2

0 � 2y2�� �
y

24t
�4At2�3y2

0��1� 3t2� � y2� � B�3y2
0��4� t2�

� 4y2�� �
1

48
�8At2�2y4

0�17� 3t2� � 3y2
0��7� 2t2�y2 � y4� � B�y4

0�8� 15t2� � 3y2
0��8� 5t2�y2 � 8y4��

�
y

240t
�2At2�25y4

0�1� 42t2 � 15t4� � 10y2
0�1� 39t2�y2 � y4� � B�y4

0�50� 721t2 � 135t4�

� 5y2
0�4� 47t2�y2 � �2� 12t2�y4�� �O�y6

0�; (C16)

 

WL � 6At2��y2
0 � y

2� � t�B� 3At2�y��y2
0 � y

2� �
1

4
t2��y2

0 � y
2���9By2

0 � 20A�y2
0��5� 3t2� � y2��

�
1

120
ty��y2

0 � y
2��120At2�y2

0��26� 9t2� � 3y2� � B�y2
0��152� 105t2� � 48y2�� �O�y6

0�: (C17)

Terms up to O�y14
0 � are available at [31].

APPENDIX D: PERTURBATIONS FROM
EXPANSION ABOUT THE SCALING SOLUTION

Following the method presented in Sec. VI, the pertur-
bations were computed to O�y4

0�. On long wavelengths, the
five-dimensional longitudinal gauge variables take the
form
 

�L � f�
0 � y

2
0�f

�
1 � f

�
2 ln�1� x4� � f

�
3 ln�1� x4�

� f�4 ln�1�!x4�; (D1)

 

�L � f�
0 � y

2
0�f

�
1 � f

�
2 ln�1� x4� � f�

3 ln�1� x4�

� f�
4 ln�1�!x4�; (D2)

 

WL � e��1=2�x2
4�fW0 � y

2
0�f

W
1 � f

W
2 ln�1� x4�

� fW3 ln�1� x4� � f
W
4 ln�1�!x4��; (D3)

where the f are rational functions of x4 and !. For �L, we
have
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f�
0 �

1

16x2
4��1� x2

4�
�16 ~B� 16 ~B!x4� 2�8A� ~B� 4 ~B!2�x2

4� 2��8A� 3 ~B�!x3
4� �8A� 3 ~B��3�!2�x4

4�; (D4)

 

f�
1 �

1

960x4
4��1� x2

4�
5
�8Ax5

4��580x4 � 95x3
4 � 576!5x4

4 � 281x5
4 � 96!6x5

4 � 60x7
4 � 5!4x4�40� 167x2

4 � 39x4
4�

� 20!3��19� 5x2
4 � 48x4

4� � 10!2x4��78� 117x2
4 � x

4
4 � 2x6

4� � 4!�285� 100x2
4 � 25x4

4 � 29x6
4 � 5x8

4��

� ~B��1920� x4�480!� 80�91� 15!2�x4 � 160!�5� 4!2�x2
4 � 40��273� 116!2 � 7!4�x3

4

� 20!��649� 127!2�x4
4 � 4�1231� 3285!2 � 2060!4�x5

4 � 4!�2036� 2115!2 � 1152!4�x6
4

� �1107� 8102!2 � 4905!4 � 768!6�x7
4 � 12!�233� 48!2��5� 3!2��x8

4

� �3131� 1582!2 � 585!4 � 288!6�x9
4 � 772!x10

4 � 20�85� 29!2�x11
4 � 180!x12

4 � 120�3�!2�x13
4 ���;

(D5)

 

f�
2 �

1

48x5
4��1� x2

4�
3
� ~B�48� �36� 48!�x4 � 12��7� 6!� 2!2�x2

4 � 4��13� 6!� 9!2�x3
4

� �60� 80!� 12!2�x4
4 � 4��8� 6!� 9!2�x5

4 � 3�8� 7!� 4!2�x6
4 � ��11� 5!2�x7

4 � 3!x8
4�

� 8Ax6
4�x4 �!2x4 �!�1� x2

4���; (D6)

 

f�
3 �

1

48x5
4��1� x2

4�
3
� ~B��48� 12�3� 4!�x4 � 12��7� 6!� 2!2�x2

4 � 4��13� 6!� 9!2�x3
4

� 4��15� 20!� 3!2�x4
4 � 4��8� 6!� 9!2�x5

4 � 3�8� 7!� 4!2�x6
4 � ��11� 5!2�x7

4 � 3!x8
4�

� 8Ax6
4�x4 �!

2x4 �!�1� x
2
4���; (D7)

 f�4 �
3 ~B��1�!x4�

2

2x4
4��1� x2

4�
2 : (D8)

Similarly, for �L, we find

 f�
0 �

1

16x4��1� x2
4�
�16 ~B!� 4�8A� ~B��1� 2!2��x4 � 2�8A� 3 ~B�!x2

4 � ��8A� 3 ~B���3�!2�x3
4�; (D9)

 

f�
1 �

1

960x3
4��1� x2

4�
5
��480 ~B!� 240 ~B��7� 5!2�x4 � 160 ~B!�5� 4!2�x2

4 � 40 ~B�143� 104!2 �!4�x3
4

� 20!� ~B�197� 155!2� � 8A��3�!2��x4
4 � 20��8A�34� 21!2 �!4� � ~B�98� 369!2 � 101!4��x5

4

� 4!�200A��14� 5!2� � ~B�34� 975!2 � 288!4��x6
4 � �40A�55� 234!2 � 67!4� � ~B�2455� 838!2

� 1005!4 � 192!6��x7
4 � 4!�3 ~B�53� 120!2 � 36!4� � 8A�155� 120!2 � 36!4��x8

4

� � ~B��3515� 1042!2 � 225!4 � 72!6� � 8A�89� 170!2 � 75!4 � 24!6��x9
4 � 4�232A� 193 ~B�!x10

4

� 20�8A�1�!2� � ~B��91� 29!2��x11
4 � 20�8A� 9 ~B�!x12

4 � 120 ~B��3�!2�x13
4 �; (D10)

 

f�
2 �

�1

48x4
4��1� x2

4�
3 �8Ax

5
4�x4 �!

2x4 �!�1� x
2
4�� �

~B�36� 60x4 � 36x2
4 � 84x3

4 � 24x5
4 � 5x6

4

�!2x4�24� 36x4 � 12x2
4 � 36x3

4 � 12x4
4 � 5x5

4� �!��48� 72x4 � 24x2
4 � 80x3

4 � 24x4
4 � 21x5

4 � 3x7
4���;

(D11)
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f�
3 �

1

48x4
4��1� x2

4�
3 �8Ax

5
4��x4 �!2x4 �!�1� x2

4�� �
~B��36� 60x4 � 36x2

4 � 84x3
4 � 24x5

4 � 5x6
4

�!2x4��24� 36x4 � 12x2
4 � 36x3

4 � 12x4
4 � 5x5

4� �!��48� 72x4 � 24x2
4 � 80x3

4 � 24x4
4 � 21x5

4 � 3x7
4���;

(D12)

 f�
4 �

�3 ~B��1�!x4�
2

2x4
4��1� x2

4�
2 : (D13)

Finally, for WL, we have

 fW0 �
��1�!2�x4��24Ax4��2�!x4� � ~B��18x4 �!��8� 9x2

4���

8��1� x2
4�

2 ; (D14)

 

fW1 �
��1�!2�

480x2
4��1� x2

4�
7 �8Ax

4
4�1500� 84!4x4

4��12� x2
4� � 6!2�50� 100x2

4 � 427x4
4 � x

6
4� � 3!3x4�60� 585x2

4

� 160x4
4 � 3x6

4� �!
5�168x5

4 � 36x7
4� � 6x2

4��590� 243x2
4 � 201x4

4 � 4x6
4 � 10x8

4� �!x4��1560� 4935x2
4

� 2000x4
4 � 265x6

4 � 92x8
4�� �

~B�1440� x4��84!4x5
4�24� 28x2

4 � 3x4
4� � 12!5x6

4�40� 6x2
4 � 9x4

4�

� 6!2x3
4��450� 964x2

4 � 863x4
4 � 3x6

4� � 3!3x2
4��40� 748x2

4 � 2333x4
4 � 672x6

4 � 9x8
4�

� 6x4�2160� 5490x2
4 � 3770x4

4 � 2249x6
4 � 597x8

4 � 588x10
4 � 90x12

4 � �!��2160� 18 920x2
4 � 53 216x4

4

� 20 629x6
4 � 11 216x8

4 � 5579x10
4 � 2236x12

4 � 360x14
4 ����; (D15)

 

fW2 �
�1�!�

24�x4 � x
3
4�

4 �
~B��144� 108��1� 2!�x4 � 24��5�!��3� 2!�x2

4 � 36��11�!�16�!��x3
4

� 24!��29� 7!�x4
4 � 36��2�!��2� 7!��x5

4 � 3�1�!��3� 32!�x6
4 � 7!�1�!�x7

4

� 27�1�!�x8
4 � 9!�1�!�x9

4� � 24A�1�!�x6
4��1� 3x2

4 �!�x4 � x3
4���; (D16)

 

fW3 �
�1�!�

24x4
4��1� x2

4�
4 �

~B��144� 108�1� 2!�x4 � 24�5�!���3� 2!�x2
4 � 36��11� ��16�!�!�x3

4

� 24!�29� 7!�x4
4 � 36��2�!�2� 7!��x5

4 � 3��1�!���3� 32!�x6
4 � 7��1�!�!x7

4

� 27��1�!�x8
4 � 9��1�!�!x9

4� � 24A��1�!�x6
4��1� 3x2

4 �!�x4 � x
3
4���; (D17)

 fW4 �
3 ~B��1�!x4�

2�4� 10x2
4 �!x4��1� 7x2

4��

x4
4��1� x2

4�
4 :

(D18)

Results including the ~k2 corrections can be found at [31].

APPENDIX E: BULK GEODESICS

To calculate the affine distance between the branes along
a spacelike geodesic we must solve the geodesic equations
in the bulk. Let us first consider the situation in Birkhoff-
frame coordinates for which the bulk metric is static and
the branes are moving. The Birkhoff-frame metric takes
the form [24]

 d s2 � dY2 � N2�Y�dT2 � A2�Y�d ~x2; (E1)

where for AdS–Schwarzschild with a horizon at Y � 0,

 A2�Y� �
cosh�2Y=L�
cosh�2Y0=L�

;

N2�Y� �
cosh�2Y0=L�
cosh�2Y=L�

�
sinh�2Y=L�
sinh�2Y0=L�

�
2
:

(E2)

At T � 0, the Y coordinate of the branes is represented by
the parameter Y0; their subsequent trajectories Y��T� may
then be determined by integrating the Israel matching

conditions, which read tanh�2Y�=L� � �
����������������
1� V2

�

q
, where

V� � �dY�=dT�=N�Y�� are the proper speeds of the posi-
tive- and negative-tension branes, respectively. From this,
it further follows that Y0 is related to the rapidity y0 of the
collision by tanhy0 � sech�2Y0=L�.

For the purpose of measuring the distance between the
branes, a natural choice is to use spacelike geodesics that
are orthogonal to the four translational Killing vectors of
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the static bulk, corresponding to shifts in ~x and T. Taking
the ~x and T coordinates to be fixed along the geodesic then,
we find that Y;� is constant for an affine parameter � along
the geodesic.

To make the connection to our original brane-static
coordinate system, recall that the metric function
b2�t; y� � A2�Y�, and thus

 Y2
;� �

�bb;tt;� � bb;yy;��2

b4 � �2 � n2��t2;� � t
2y2
;��; (E3)

where we have introduced the constant � � tanhy0 � V=c.
Adopting y now as the affine parameter, we have
 

0 � �b2
;tb

2 � n2�b4 � �2��t2;y � 2b;tb;yb
2t;y

� �b2
;yb

2 � n2t2�b4 � �2��; (E4)

where t is to be regarded now as a function of y.
We can solve this equation order by order in y0 using the

series Ansatz

 t�y� �
X1
n�0

cnyn; (E5)

where the constants cn are themselves series in y0. Using
the series solution for the background geometry given in
Appendix B, and imposing the boundary condition that
t�y0� � t0, we obtain
 

c0 � t0 �
t0y2

0

2
� 2t20y

3
0 �
�t0 � 36t30�y

4
0

24
� t20�1� 5t20�y

5
0

�

�
t0

720
�

17t30
4
� 4t50

�
y6

0

�
t20�13� 250t20 � 795t40�y

7
0

60
�O�y8

0� (E6)

 

c1 � 2t20y
2
0 �

�
5t20
3
� 5t40

�
y4

0 � 8t30y
5
0

�

�
91t20
180
�

23t40
6
�

53t60
4

�
y6

0 �O�y
7
0� (E7)

 

c2 � �
t0
2
�
t0�1� 6t20�y

2
0

4
� t20y

3
0 �

�
t0
48
� 2t30 � 4t50

�
y4

0

�
�t20 � 23t40�y

5
0

2
�O�y6

0� (E8)

 c3 � �
5t20y

2
0

3
�
t20�25� 201t20�y

4
0

18
�O�y5

0� (E9)

 c4 �
5t0
24
�

�
5t0
48
�

7t30
4

�
y2

0 �
5t20y

3
0

12
�O�y4

0� (E10)

 c5 �
61t20y

2
0

60
�O�y3

0� (E11)

 c6 � �
61t0
720
�O�y2

0� (E12)

 c7 � 0�O�y0�: (E13)

Substituting t0 � x0=y0 and y � !y0 we find x�!� �
x0=y0 �O�y0�, i.e., to lowest order in y0, the geodesics
are trajectories of constant time lying solely along the !
direction. Hence in this limit, the affine and metric sepa-
ration of the branes [defined in (81)] must necessarily
agree. To check this, the affine distance between the branes
is given by

 

da
L
�
Z y0

�y0

n
���������������
t2 � t02

p
dy

� 2t0y0 �
�t0 � 5t30�y

3
0

3
� 4t20y

4
0

�
�t0 � 10t30 � 159t50�y

5
0

60
�

2�t20 � 30t40�y
6
0

3

�
�t0 � 31 115t30 � 5523t50 � 12 795t70�y

7
0

2520
�O�y8

0�;

(E14)

which to lowest order in y0 reduces to

 

da
L
� 2x0 �

5x3
0

3
�

53x5
0

20
�

853x7
0

168
�O�x8

0� �O�y
2
0�;

(E15)

in agreement with the series expansion of (81). (Note
however that the two distance measures differ nontrivially
at order y2

0.)
To evaluate the perturbation �da in the affine distance

between the branes, consider

 �
Z ������������������

g�� _x� _x�
q

d� �
1

2

Z d�������������������
g�� _x� _x�

p ��g�� _x� _x�

� g��;��x
� _x� _x� � 2g�� _x�� _x��

�

�
_x��x

�������������������
g�� _x� _x�

p �
�

1

2

Z �g�� _x� _x�������������������
g�� _x� _x�

p d�;

(E16)

where dots indicate differentiation with respect to the
affine parameter �, and in going to the second line we
have integrated by parts and made use of the background
geodesic equation �x� �

1
2 g��;� _x� _x� and the constraint

g�� _x� _x� � 1. If the end points of the geodesics on the
branes are unperturbed, this expression is further simplified
by the vanishing of the surface term. Converting to coor-
dinates where t0 � x0=y0 and y � !y0, to lowest order in
y0 the unperturbed geodesics lie purely in the ! direction,
and so the perturbed affine distance is once again identical
to the perturbed metric distance (88).

Explicitly, we find

SOLUTION OF A BRANEWORLD BIG CRUNCH/BIG BANG . . . PHYSICAL REVIEW D 76, 104038 (2007)

104038-25



 

�da
L
� �

2�B� At20�y0

t0
�

�
B�4� 3t20�

12t0
�
A�t0 � 9t30�

3

�
y3

0 � ��4B� 4At20�y
4
0

�

�
B�2� 2169t20 � 135t40� � 2At20�1� 1110t20 � 375t40�

120t0

�
y5

0 �

�
4At20�1� 42t20� � B�4� 57t20�

6

�
y6

0

�

�
B�4� 88 885t20 � 952 866t40 � 28 875t60� � 4At20�1� 152 481t20 � 293 517t40 � 36 015t60�

10 080t0

�
y7

0 �O�y
8
0�;

(E17)

which, substituting t0 � x0=y0 and dropping terms of O�y2
0�, reduces to

 

�da
L
� �

2 ~B
x0
� 2Ax0 �

~B
4
x0 � 3Ax3

0 �
9

8
~Bx3

0 �
25

4
Ax5

0 �
275

96
~Bx5

0 �
343

24
Ax7

0 �O�x
8
0�; (E18)

where ~B � By2
0. Once again, this expression is in accordance with the series expansion of (88). However, the perturbed

affine and metric distances do not agree at O�y2
0�.
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