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We obtain new charged rotating multi–black hole solutions on the Eguchi-Hanson space in the five-
dimensional Einstein-Maxwell system with a Chern-Simons term and a positive cosmological constant. In
the two-black holes case, these solutions describe the coalescence of two rotating black holes with the
horizon topologies of S3 into a single rotating black hole with the horizon topology of the lens space
L�2; 1� � S3=Z2. We discuss the differences in the horizon areas between our solutions and the two-
centered Klemm-Sabra solutions which describe the coalescence of two rotating black holes with the
horizon topologies of S3 into a single rotating black hole with the horizon topology of S3.

DOI: 10.1103/PhysRevD.76.104037 PACS numbers: 04.50.+h, 04.70.Bw

I. INTRODUCTION

Since the advent of the TeV gravity scenarios, i.e., the
ADD model [1] and the brane world scenario [2,3], higher
dimensional black objects have been attracting renewed
interest. One of the reasons is that higher dimensional
rotating mini–black holes would be produced by the col-
lision of protons in the Large Hadron Collider (LHC) in
these scenarios. It would be possible that one detect the
Hawking radiation from these black holes [4–8]. Once
such black hole productions occur, we could expect some
of the formed rotating black holes to coalesce. These
physical phenomena are expected to give us new informa-
tions on the extra dimensions. Hence, the discovery of new
higher dimensional black hole solutions would play a
crucial role in opening a window to extra dimensions.

Higher dimensional black hole solutions have more
interesting properties than the four-dimensional ones. For
instance, in the five-dimensional Einstein theory, there are
two types of stationary rotating black hole solutions with
the different horizon topologies, i.e., S3 [9] and S2 � S1

horizons [10–12]. Both of the solutions asymptote to the
five-dimensional Minkowski spacetime at infinity. Fur-
thermore, a lot of asymptotically flat supersymmetric black
object solutions have been found by various authors. The
BMPV (Breckenridge, Myers, Peet, and Vafa) black hole
solutions [13] and the supersymmetric black ring solutions
were also found [14] in the five-dimensional N � 1 super-
gravity theory which is one of effective theories of the
superstring theory and contains the five-dimensional
Maxwell field with a Chern-Simons term [15].

Most authors have considered mainly asymptotically flat
and stationary higher dimensional black hole solutions
since they would be idealized models if such black holes
are small enough for us to neglect the tension of a brane or

effects of compactness of extra dimensions. However, if
not so, we should consider the higher dimensional space-
times which have another asymptotic structures. Therefore,
it is also important to study black hole solutions with a
wide class of asymptotic structures. Recently, black object
solutions with nontrivial asymptotic structures have been
studied by various authors. For example, Kaluza-Klein
black hole solutions with squashed S3 horizons [16–21]
asymptote to the three-dimensional flat space with a com-
pact twisted S1 fiber at infinity. The black ring solutions
with the same asymptotic structures [22–24] were found.
On the other hand, there exist black object solutions whose
spatial infinity has the topological structure of lens spaces
L�n; 1� � S3=Zn. For instance, the solution [25] represents
a pair of nonrotating black holes with the S3=Z2 infinity. It
was also found that the supersymmetric black ring solu-
tions with the same asymptotic structure [26].

There are some dynamical black hole solutions in the
five-dimensional Einstein-Maxwell theory with a positive
cosmological constant. Kastor and Traschen [27] found the
four-dimensional cosmological multi–black hole solutions
which describe the coalescence of charged nonrotating
black holes by virtue of the positive cosmological constant
[27–30]. London generalized the Kastor-Traschen solu-
tions to higher dimensional ones [31], which describe the
coalescence process such that the arbitrary number of non-
rotating black holes with spherical topology coalesce into a
single nonrotating black hole with spherical topology.
Three of the present authors constructed the different
type of black hole solutions in the five-dimensional
Einstein-Maxwell theory with a positive cosmological con-
stant. As shown in Refs. [32,33], though both solutions also
describe the coalescence processes of black holes by virtue
of the existence of the positive cosmological constant, the
coalescence processes are essentially different in the fol-
lowing point. In the five-dimensional Kastor-Traschen so-
lutions, two black holes with the S3 horizon coalesce into a
single black hole with the S3 horizon, while in the solutions
in Ref. [32,33], two black holes with the S3 horizon co-
alesce and convert into a single black hole with the
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L�2; 1� � S3=Z2 horizon on the Eguchi-Hanson space.
Such difference arises from the difference in the asymp-
totic structure between both solutions.

Klemm and Sabra generalized the BMPV solutions [13]
to the cosmological multi–black hole solutions [34]. The
Klemm-Sabra solutions are also regarded as the general-
ization of the five-dimensional Kastor-Traschen solutions
to rotating solutions. As will be shown later, these solutions
describe the coalescence of charged rotating multi–black
holes with the S3 horizon into a single rotating black hole
with the S3 horizon on the flat space. Similarly, we can
generalize the nonrotating multi–black hole solutions on
the Eguchi-Hanson space in Refs. [32,33] to rotating
multi–black hole solutions as the solutions in the five-
dimensional Einstein-Maxwell theory with a Chern-
Simon term and a positive cosmological constant. This is
the aim of this article. We will show that these solutions
describe the coalescence of two rotating black holes with
the S3 horizon on the Eguchi-Hanson space. We will also
clarify how the difference in asymptotic structure between
our solutions and the Klemm-Sabra solutions reflects the
difference in the coalescence of black holes.

Even if the dynamical properties of such solutions are
driven by the effect of a cosmological constant, the dis-
coveries of such black hole solutions are important since it
is difficult to find exact dynamical black hole solutions in
theories without a positive cosmological constant, and no
one has ever succeeded in it as far as we know. It is
expected that these black hole solutions give us the infor-
mation of dynamical black holes in asymptotically flat
spacetimes in the case of the sufficiently small cosmologi-
cal constant.

This article is organized as follows. In Sec. II, we give
the explicit form of the solutions. In Sec. III, we review the
properties of cosmological BMPV solutions found by
Klemm and Sabra [34]. In Sec. IV, we discuss the coales-
cence processes of two rotating black holes on the Eguchi-
Hanson space. We compare the coalescence of black holes
in our solutions with that in the two-centered Klemm-
Sabra solutions. In particular, we discuss the difference
in the horizon areas after the coalescence between both
solutions. Finally, we give the summary and some
discussions.

II. SOLUTIONS

We consider the five-dimensional Einstein-Maxwell sys-
tem with a positive cosmological constant �> 0 and a
Chern-Simons term. The action is given by
 

S �
1

16�G5

Z
d5x

�������
�g
p

�
R� F��F�� � 4�

�
2

3
���
3
p �

�������
�g
p

��1������A�F��F��

�
; (1)

where R is the five-dimensional scalar curvature, F � dA

is the 2-form of the five-dimensional gauge field associated
with the gauge potential 1-form A and G5 is the five-
dimensional Newton constant. The action (1) with � � 0
is the bosonic part of the ungauged supersymmetric five-
dimensional N � 2 supergravity theory without vector
multiplets [15].

Following this action (1), we can derive the Einstein
equation with the positive cosmological constant �> 0

 R�� �
1
2Rg�� � 2�g�� � 2�F��F�

� � 1
4g��F��F

���;

(2)

and the Maxwell equation

 F��;� �
1

2
���
3
p �

�������
�g
p

��1������F��F�� � 0: (3)

We construct new multi–black hole solutions on the
Eguchi-Hanson base space satisfying Eqs. (2) and (3).
The form of the metric and the gauge potential 1-form are

 ds2 � �H�2�d�� 	V�1�d
 �!��2 �Hds2
EH; (4)

 ds2
EH � V�1�dr2 � r2d�2

S2� � V�d
 �!�2; (5)

 A �

���
3
p

2
H�1�d�� 	V�1�d
 �!��; (6)

where H, V�1 and ! are given by

 H � ���
M1

jr� r1j
�

M2

jr� r2j
; (7)

 V�1 �
N

jr� r1j
�

N
jr� r2j

; (8)

 ! �

�
N�z� z1�

jr� r1j
�
N�z� z2�

jr� r2j

�
d�; (9)

with the constants M1, M2, N, 	, and � � 	2
���������
�=3

p
.

d�2
S2 � d�2 � sin2�d�2 denotes the metric of the unit

two-sphere. The coordinates run the range of �1< �<
1, 0 
 r <1, 0 
 � 
 �, 0 
 � 
 2�, and 0 
 
 

4�N. Equation (5) denotes the metric of the Eguchi-
Hanson space in the Gibbons-Hawking coordinate. ri �
�xi; yi; zi� (i � 1, 2) denote the position vectors of the ith
nut singularity N on the three-dimensional flat space. The
functions H and V�1 are the solutions of the Laplace
equation on the three-dimensional flat space. The 1-form
! is determined by the equation r�! � rV�1.

For the appearance of a constant �, the solution (4) is
dynamical, i.e., it admits no timelike Killing vector field.
The parameter 	 in the metric (4) is an additional parame-
ter for the solution in [32,33]. If	 � 0 then the solution (4)
describes the coalescence of two nonrotating black holes
on the Eguchi-Hanson space [32,33]. So, we expect that
this solution (4) describes the coalescence of extremely
charged two black holes with two equal angular momen-
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tums on the Eguchi-Hanson space. Here and after, we
restrict ourselves to considering the contracting phase
with � � �2

���������
�=3

p
< 0 and the range of time � �

��1; 0�.
In this article, we focus on the regions of the neighbor-

hood of r � ri (i � 1, 2) and the asymptotic region r ’ 1
in the solution (4). In the neighborhood of r � ri, the
above metric (4) approaches that of the Klemm-Sabra
solution [34,35]. Similarly, in the asymptotic region r ’
1, the local geometry of the metric (4) can be regarded as
that of the Klemm-Sabra solution. So, in the next section,
we review the physical properties of the Klemm-Sabra
solution.

III. REVIEW OF KLEMM-SABRA SOLUTION

We review here properties of the Klemm-Sabra solution
[34,35], which is the BMPV black hole [13] with a cos-
mological constant. The form of the metric and the gauge
potential 1-form in the cosmological coordinates ��; R� are
given by
 

ds2 � �

�
���

m

R2

�
�2
�
d��

j

2R2 �d � cos�d��
�

2

�

�
���

m

R2

�

�

�
dR2 �

R2

4
fd�2

S2 � �d � cos�d��2g
�
; (10)

 A �

���
3
p

2

�
���

m

R2

�
�1
�
d��

j

2R2 �d � cos�d��
�
;

(11)

where 0 
  
 4�, m, and j are constants which specify
the mass and the angular momentum. The curvature singu-
larity exist at ��R2 � �m. Indeed, setting � to be �� ��1

and taking the limit �! 0, we find the metric (10) reduces
to the BMPV black hole solution [13].

One obtains the expansions �	 of the outgoing and
ingoing null geodesics for the � � const and R � const
surface as

 �	 � �	
2x�����������������������������

�x�m�3 � j2
p ; (12)

where we introduced a coordinate x � ��R2. Thus, the
horizon occurs at x such that

 �2��x�m�3 � j2� � 4x2 � 0: (13)

The solution (10) seems to be dynamical for the depen-
dence of �, but it is stationary. Actually, one can introduce
stationary coordinates �t̂; r̂;  ̂� for the solution (10) as
follows,

 ��R2 � r̂2 �m; �����1d� � dt̂� f̂�r̂�dr̂;

d � d ̂� ĥ�r̂�dr̂;
(14)

with
 

f̂�r̂� �
2�r̂�r̂6 � j2�=�r̂2 �m�

�2�r̂6 � j2� � 4�r̂2 �m�2
;

ĥ�r̂� �
4�jr̂

�2�r̂6 � j2� � 4�r̂2 �m�2
:

(15)

The form of the metric (10) after the above coordinates
transformation now becomes
 

ds2 �
�2

4
r̂2dt̂2�U2�r̂�

�
dt̂�

j

2r̂2U
�1�r̂��d ̂� cos�d��

�
2

�
dr̂2

W�r̂�
�
r̂2

4

�
d�2

S2 ��d ̂� cos�d��2
�
; (16)

where the functions U�r̂� and W�r̂� are

 U�r̂� � 1�
m

r̂2 ; W�r̂� �
�
1�

m

r̂2

�
2
�
�2

4
r̂2 �

�2j2

4r̂4 :

(17)

From (13), (14), and (17), we see that the horizon occur at r̂
such that W�r̂� � 0.

The Eq. (13) has three real roots x�, x�, and xc (x� 

0 
 x� 
 xc), where x�, x�, and xc correspond to the
inner horizon, the black hole horizon and the cosmological
horizon, respectively, if the mass parameter m and the
angular momentum parameter j satisfy the following con-
ditions,

 0 
 m�2 
 2
3; j2

��m� 
 j2 
 j2
��m�; (18)

where
 

j2
	�m� �

4

27�6

�
9m�2�8� 3m�2� � 32

	 8
���
2
p
�2� 3m�2�3=2

�
: (19)

In the case of j � j�, the black hole horizon x� coincides
with the inner horizon x�, and in the case of j � j�, the
black hole horizon x� coincides with the cosmological
horizon xc. The naked singularity appears if m and j are
out of the ranges (18). We draw the region of �m; j�
satisfying the condition (18) in Fig. 1. Next, we focus on
the conditions for the absence of closed timelike curves
(CTCs) outside the black hole horizon x��m; j�. These
CTCs occur if and only if the two dimensional � ;��
part of the metric (10), namely, g2D has a negative eigen-
value. We must check the condition g  > 0 and detg2D >
0 for x > x� > 0. In this case, explicit forms of these
components are given by
 

g  �
�x�m�3 � j2

4�x�m�2
; detg2D �

�x�m�3 � j2

16�x�m�
sin2�:

(20)

Since the numerators of g  and detg2D are monotonically

COALESCENCE OF ROTATING BLACK HOLES ON . . . PHYSICAL REVIEW D 76, 104037 (2007)

104037-3



increasing functions of x, it is sufficient to show g  > 0
and detg2D > 0 on the horizon x�. Actually, we see that

 

g  �
�

x�
��x� �m�

�
2
> 0;

detg2D �
x2
�

4�2�x� �m�
sin2� > 0;

(21)

for x� > 0 and m> 0. Fortunately, we obtain the regular
black hole solutions with parameters �m; j� satisfying the
condition (18) such that there is no CTC outside the black
hole horizon.

The induced metric on the black hole horizon x �
x��m; j� becomes

 

ds2
H �

x� �m
4

�
d�2

S2 �
�x� �m�

3 � j2

�x� �m�
3

� �d � cos�d��2
�
; (22)

which implies the shape of horizon is the squashed S3, a
twisted S1 fiber bundle over an S2 base space with the
different sizes, for the presence of the angular momentum
parameter.

From (13) and (22) we obtain the expression of the area
of the black hole horizon x � x��m; j� as

 AH �
2

�
x��m; j�AS3 ; (23)

where AS3 denotes the area of the unit S3.

IV. COALESCENCE OF TWO ROTATING BLACK
HOLES

A. Asymptotic behavior of black holes at early time and
late time

First, we investigate the asymptotic behaviors of the
metric (4) in the neighborhood of r � ri (i � 1, 2). In
this region, the metric (4) takes the form of
 

ds2 ’�

�
���

mi

~r2

�
�2
�
d��

j

2~r2 �d � cos�d��
�

2

�

�
���

mi

~r2

��
d~r2�

~r2

4
fd�2

S2 ��d � cos�d��2g
�
;

(24)

where we introduced the coordinates ~r2 � 4Nr,  � 
=N,
mi � 4NMi, and j � 8	N3. This metric is equal to that of
the Klemm-Sabra solutions (10) with the mass parameters
mi and the angular momentum parameter j. As discussed
in Sec. III, this solution (24) admits three horizons at x �
x	, xc, in the coordinate x � ��~r2. At the early time � ’
�1, sufficiently small squashed S3 spheres centered at
r � ri are always outer trapped since there are solutions
for �� � 0 at ~r2 � x��mi; j�=����. Since there is an ap-
parent horizon in the neighborhood of each point source
r � ri (i � 1, 2), we can find two rotating black holes with
the horizon topology S3 at the early time.

Next, we focus on the asymptotic region of the solution
(4), r ’ 1. We assume the separation of two black holes
jr1 � r2j is much smaller than r. In this region, the metric
(4) behaves as
 

ds2 ’ �

�
���

2�m1 �m2�

�2

�
�2

�

�
d��

8j

2�2

�
d 
2
� cos�d�

��
2

�

�
���

2�m1 �m2�

�2

�

�

�
d�2 �

�2

4

�
d�2

S2 �

�
d 
2
� cos�d�

�
2
��
; (25)

where we introduced the coordinates �2 � 8Nr,  � 
=N,
and the parameters mi � 4NMi and j � 8	N3, as same as
in (24). This metric (25) resembles that of the Klemm-
Sabra solution (10) with the mass parameter 2�m1 �m2�
and the angular momentum parameter 8j.

Like the Klemm-Sabra solution (10), at the late time � ’
0, the sufficiently large squashed S3 sphere becomes outer
trapped, since �� � 0 at �2 � x��2�m1 �m2�; 8j�=����,
which give an approximately large sphere. However, we
see this solution (25) differs from the Klemm-Sabra solu-
tion (10) in the following point: each � � const surface in
the � � const hypersurface of the metric (25) denotes
topologically the lens space S3=Z2, while in the Klemm-
Sabra solution (10), it is diffeomorphic to S3. The differ-

FIG. 1. This figure shows the region of parameters such that
the solutions have no naked singularity. The vertical axis and the
horizontal axis denote j2=m3 and m�2, respectively. The curves
CE andDE correspond to j2=m3 � j2

�=m
3 and j2=m3 � j2

�=m
3,

respectively. The solutions lying in the region ODEC have three
horizons. On CE the black hole horizon x� coincides with the
inner horizon x� and on DE the black hole horizon x� coincides
with the cosmological horizon xc. Outside the region ODEC
there exist naked singularities.
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ence between these metrics appears in (24) and (25): a term
d in the S3 metric (24) is replaced by a term d =2 in the
S3=Z2 metric (25). Therefore, at the late time � ’ 0, the
topology of the outer trapped surface is the lens space
S3=Z2.

Hence, from these results, we find that the solution (4)
describes the dynamical situation such that two rotating
black holes with the spatial topologies of S3 coalesce and
convert into a single rotating black hole with the spatial
topology of the lens space S3=Z2. Thus, at the early time,
there are two rotating black holes specified by the parame-
ters �m1; j� and �m2; j�. At the late time, there is a single
rotating black hole specified by the parameters �2�m1 �
m2�; 8j�. Here and after, we call such relations ‘‘mapping
rules.’’

B. Typical processes in Klemm-Sabra solutions

We compare the coalescence processes described by our
solutions (4) with the coalescence of two rotating black
holes with the S3 horizon into a single rotating black hole
with the S3 horizon. For this purpose, let us extend a single
Klemm-Sabra solution (10) to the two-centered Klemm-
Sabra solution which denotes two rotating black holes with
the mass parameters m1, m2, and the angular momentum
parameters j1, j2 at the early time,

 ds2 � �H�2�d�� dxaJab@bK�2 �Hdx � dx; (26)

with

 H � ���
m1

jx� x1j
2 �

m2

jx� x2j
2 ; (27)

 K �
j1=2

jx� x1j
2 �

j2=2

jx� x2j
2 ; (28)

where J is a complex structure, x � �x; y; z; w�, xi (i � 1,
2) are the position vectors in E4 and mi, ji are positive
constants. The mapping rule for this solution (26) becomes
as follows: At the early time, there are two rotating black
holes specified by �m1; j1� and �m2; j2�. At the late time,
there is a single rotating black hole specified by �m1 �
m2; j1 � j2�.

Here, to compare our solution (4) with this solution (26),
we restrict ourselves to the solution (26) with the same
mass parameters m � m1 � m2 and the same angular mo-
mentum parameters j � j1 � j2. According to this ‘‘map-
ping rule,’’ we discuss types of process by using
dimensionless parameters m�2 and j2=m3. These parame-
ters are mapped as �m�2; j2=m3� ! �2m�2; �j2=m3�=2�
(see Fig. 2).

Any solutions lying in the region ODEC describe a
regular initial condition that there exist two isolated appar-
ent horizons. In contrast, according to the above ‘‘mapping
rule,’’ any solutions lying in the region OGKL describe a

single rotating black hole with the S3 horizon at the late
time. So, any solutions lying in the region OGHC describe
a coalescence of two rotating black holes. There are four
types of regions, namely, OGHC, GDEH, CHKL, and
outside of DEHKL. These regions correspond to the four
kinds of process. The blue (dark gray) dashed arrows
represent typical processes.

The process a! a0 describes the situation such that two
rotating black holes with the S3 horizon coalesce and
convert into a single rotating black hole with the S3 hori-
zon. The arrow b! b0 describes the situation such that
there are two isolated apparent horizons at the early time,
and there exist a naked singularity at the late time. The
process c! c0 describes the situation such that there is not
an apparent horizon and CTCs appear at the early time, and
at the late time, there exist a single rotating black hole with
the S3 horizon and there is no CTC outside the horizon.

C. Typical processes in our solutions

Our solutions (4) also describe similar processes to those
described by the two-centered Klemm-Sabra solution (26).
Now, we compare our cases with the two-centered Klemm-
Sabra’s cases. We restrict ourselves to the solution (4) with
the same mass parametersm � m1 � m2. According to the
mapping rule of our solutions (4), the dimensionless pa-
rameters m�2 and j2=m3 are mapped as �m�2; j2=m3� !
�4m�2; j2=m3� (see Fig. 3).

As shown in Fig. 3, any solutions lying in the region
ODEC describe a regular initial condition that there exist
two isolated apparent horizons. In contrast, according to
the mapping rule of our solution (4), any solutions lying in
the regionOAFC describe a single rotating black hole with
the S3=Z2 horizon at the late time. So, any solutions lying
in the region OABC describe a coalescence of two rotating
black holes. There are four types of regions, namely,
OABC, ADEB, CBF, and outside of DEBFC. These re-
gions correspond to the four kinds of process. The red
(gray) dashed arrows represent typical processes.

FIG. 2 (color online). This figure shows typical processes
described by the two-centered Klemm-Sabra solutions (26).
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The process d! d0 describes the situation such that two
rotating black holes with the S3 horizon coalesce and
convert into a single rotating black hole with the S3=Z2

horizon. The arrow e! e0 describes the situation such that
there are two isolated apparent horizons at the early time,
and there exist a naked singularity at the late time. The
process f ! f0 describes the situation such that there is not
an apparent horizon and CTCs appear at the early time,
while at the late time, there exists a single rotating black
hole with the S3=Z2 horizon and there is no CTC outside
the horizon.

From the above discussions, there is the featuring dif-
ference in the ‘‘mapping rules’’ between our solution (4)
and the two-centered Klemm-Sabra solution (26) in the
region BHKLCF in Fig. 4. At the early time, both solu-
tions in this region have no apparent horizon. At the late
time, the two-centered Klemm-Sabra solution (26) de-
scribes a single rotating black hole with the S3 horizon
while our solution (4) describes a naked singularity.

D. Comparison of horizon areas

We compare the area of a single rotating black hole
formed by the coalescence of two rotating black holes at
the late time. We assume that each black hole in our
solution (4) has the same mass, angular momentum, and
horizon area as that in the two-centered Klemm-Sabra
solution at the early time. Then, using Eq. (23), we com-
pute below the change in the horizon area due to the
coalescence. The horizon areas in the two-centered
Klemm-Sabra solutions and our solutions at the early
time, A�e�Flat and A�e�EH, are given by

 A�e�Flat � A�e�EH � 2�
2

�
x��m; j�AS3 : (29)

On the other hand, according to the mapping rule of both
solutions, the horizon areas at the late time, A�l�Flat and A�l�EH,
are given by

 A�l�Flat �
2

�
x��2m; 2j�AS3 ; (30)

 A�l�EH �
2

�
x��4m; 8j�

AS3

2
; (31)

respectively. Note the factor 1=2 in Eq. (31) reflects the fact
that the black hole at the late time after coalescence of two
black holes is topologically the lens space S3=Z2.

Now, we consider the ratio of horizon areas at the early
time to at the late time A�l�=A�e� in both solutions. The
dependence of the ratio on �m�2; j2=m3� in the two-
centered Klemm-Sabra solution is shown in Fig. 5. The
same in our solution is shown in Fig. 6. In all regions,

FIG. 4 (color online). This figure shows the superposition of
Figs. 2 and 3.

FIG. 5 (color online). This figure shows the dependence of the
ratio A�l�Flat=A

�e�
Flat on m�2 (horizontal axis) and j2=m3 (vertical

axis). The curves in this figure denote A�l�Flat=A
�e�
Flat � const.

FIG. 3 (color online). This figure shows typical processes
described by our solutions (4).
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A�l�Flat=A
�e�
Flat > 1 and A�l�EH=A

�e�
EH > 1. This means that the

horizon areas increase by the coalescence. Qualitative
behavior of the ratio near the boundary GH in Fig. 5 is
similar to that near the boundary AB in Fig. 6.

However, the behaviors of the ratio near OC are differ-
ent. Here, we focus on the behaviors in �! 0 limit. From

Fig. 5, the ratio A�l�Flat=A
�e�
Flatj�!0 �

���������������������������������������������
�2m3 � j2�=�m3 � j2�

p
depends on the ratio j2=m3 along the line OC. In contrast,
from Fig. 6, the ratio of horizon is independent of the ratio
j2=m3, i.e., A�l�EH=A

�e�
EHj�!0 � 2 on the line OC.

In turn, to clarify the differences in the ratio of the
horizon areas of the two-centered Klemm-Sabra solution
to that of our solution, we consider the ratio A�l�EH=A

�l�
Flat.

Figure 7 shows the dependence of A�l�EH=A
�l�
Flat on (m�2,

j2=m3). Figures 8 and 9 show the behaviors of A�l�EH=A
�l�
Flat

along the two boundaries, the line OA, and the line OC,
respectively. Figure 8 corresponds to the j � 0 case which
was discussed in [32,33]. In the nonrotating case, the ratio
always satisfies

���
2
p

< A�l�EH=A
�l�
Flat < 4. However, in the ro-

tating case, there is a situation such that 0<A�l�EH=A
�l�
Flat <���

2
p

in the region OSC in Fig. 7.

FIG. 6 (color online). This figure shows the dependence of the
ratio A�l�EH=A

�e�
EH on m�2 (horizontal axis) and j2=m3 (vertical

axis). The curves in this figure denote A�l�EH=A
�e�
EH � const.

FIG. 7 (color online). This figure shows the dependence of the
ratio A�l�EH=A

�l�
Flat on m�2 (horizontal axis) and j2=m3 (vertical

axis). The curves in this figure denote A�l�EH=A
�l�
Flat � const. Here,

the ratio of horizon area becomes 0< A�l�EH=A
�l�
Flat <

���
2
p

in the
region OSC. This behavior is one of the unique properties of the
solution (4) with a presence of rotations.

FIG. 8. This figure shows the dependence of A�l�EH=A
�l�
Flatjj!0 on

m�2 on the line OA. We see that A�l�EH=A
�l�
Flatjj!0 is as same as in

the nonrotating case [32,33].

FIG. 9. This figure shows that the dependence of
A�l�EH=A

�l�
Flatj�!0 on j2=m3 on the line OC. For large angular

momenta, i.e., 2=3< j2=m3 < 1, the area of black hole horizon
after coalescence on the Eguchi-Hanson space is smaller than
that on the flat space, i.e., 0< A�l�EH=A

�l�
Flat < 1.

COALESCENCE OF ROTATING BLACK HOLES ON . . . PHYSICAL REVIEW D 76, 104037 (2007)

104037-7



V. SUMMARY AND DISCUSSION

We have constructed new charged rotating multi–black
hole solutions on the Eguchi-Hanson space in the five-
dimensional Einstein-Maxwell system with a Chern-
Simons term and a positive cosmological constant. These
solutions have the mass parameter mi for each black hole
and the common angular momentum parameter j. In the
case of two black holes with m1 � m2 � m for simplicity,
by virtue of the positive cosmological constant, these
solutions within some region of the parameters �m; j�
describe the situation such that two rotating black holes
with the S3 horizon coalesce and convert into a single
rotating black hole with the S3=Z2 horizon. On the other
hand, two-centered Klemm-Sabra solutions describe the
physical situation such that two rotating black holes with
the S3 horizon coalesce into a single rotating black hole
with the S3 horizon.

We have also discussed the difference in the horizon area
between our solutions and the two-centered Klemm-Sabra
solutions. We have set the same initial condition in both
solutions as follows: two black holes have the same masses
and angular momentum. In nonrotating case, the ratio of
the horizon areas of the black hole after coalescence is���

2
p

< A�l�EH=A
�l�
Flat < 4 [32,33]. In contrast, for the large an-

gular momentum in the rotating case, there is the region of
parameters where the ratio of the horizon areas becomes
0<A�l�EH=A

�l�
Flat <

���
2
p

.
As mentioned in Sec. I, both solutions in this article

describe the coalescence of rotating black holes by virtue
of a positive cosmological constant. Nevertheless, in the
�! 0 limit, our results would suggest some information
about the coalescence of two rotating supersymmetric
black holes on the flat space (BMPV solutions) and on
the Eguchi-Hanson space. Therefore, let us discuss the
limit �! 0. Two rotating supersymmetric black holes
characterized by the parameters �m; j� with a total
horizon area A�e� coalesce into a single rotating supersym-

metric black hole with a horizon area A�l�Flat ����������������������������������������������
�2m3 � j2�=�m3 � j2�

p
A�e�Flat on the flat space, while on

the Eguchi-Hanson space A�l�EH � 2A�e�EH, which is indepen-
dent of the parameters �m; j�. If 2=3< j2=m3 < 1, the area
of black hole horizon after the coalescence on the Eguchi-
Hanson space is smaller than that on the flat space, i.e.,
0<A�l�EH=A

�l�
Flat < 1.

At first sight, the mapping rule �m; j� ! �4m; 8j� for our
solutions seems to be inconsistent with the conservation
laws of the angular momentum. Further, in the �! 0 limit,
since there exists the timelike Killing vector field @=@�, the
total energy is also conserved. Hence, let us check the
consistency between the conservation laws and the map-
ping rule in the �! 0 limit. As discussed in the previous
section, we suppose that each black hole on the flat space
has the same mass, angular momentum, and horizon area
as that on the Eguchi-Hanson space at the early time. Then,

the total mass and angular momentum at the early time,
M�e� and J�e�, for two black holes on the flat space and on
the Eguchi-Hanson space are given by

 M�e�Flat � M�e�EH � 2�
3m

8�G5
AS3 ; (32)

 J�e�Flat � J�e�EH � �2�
j

4�G5
AS3 ; (33)

where it is noted that J�e�Flat and J�e�EH are the angular momenta
associated with the Killing vector field @=@ . Of course,
these amounts are conserved during the processes, i.e., the
total mass and the angular momentum at the late time, M�l�

and J�l�, becomeM�l� � M�e� and J�l� � J�e�. ThenM�l� and
J�l� for a single black hole on the flat space and on the
Eguchi-Hanson space are given by

 M�l�Flat � M�l�EH �
3m

4�G5
AS3 ; (34)

 J�l�Flat � J�l�EH � �
j

2�G5
AS3 : (35)

On the other hand, according to the mapping rule of the
two-centered Klemm-Sabra solutions (26) in the �! 0
limit, the mass and the angular momentum of a single
rotating black hole with the parameters �2m; 2j� after the
coalescence are given by

 M�l�Flat �
3� 2m
8�G5

AS3 �
3m

4�G5
AS3 ; (36)

 J�l�Flat � �
2j

4�G5
AS3 � �

j
2�G5

AS3 : (37)

According to the mapping rule of our solutions (4) in the
�! 0 limit, while the mass and the angular momentum of
a single rotating black hole with the parameters �4m; 8j�
after the coalescence are given by

 M�l�EH �
3� 4m
8�G5

AS3=Z2
�

3m
4�G5

AS3 ; (38)

 J�l�EH � �
8j=2

4�G5

AS3

2
� �

j
2�G5

AS3 ; (39)

where the factor 1=2 in 8j=2 of Eq. (39) reflects that the
Killing vector we used to compute the angular momentum
is @=@ rather than @=@� =2�, and the factor 1=2 in AS3=2
reflect that the spatial infinity is topologically the lens
space S3=Z2. Then, we see that M�l�Flat � M�l�EH from (36)
and (38) and J�l�Flat � J�l�EH from (37) and (39). These rela-
tions are the same as (34) and (35), respectively. Thus, the
mapping rule of our solutions (4) means only the conser-
vation laws of mass and angular momentum in the �! 0
case.
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Finally, we mention that one can generalize our solution
(4) by replacing the harmonics in (7)–(9) by

 H � ���
X
i

Mi

jr� rij
; V�1 � ��

X
i

Ni
jr� rij

;

(40)

and

 ! �
X
i

Ni�z� zi�
jr� rij

�x� xi�dy� �y� yi�dx

�x� xi�2 � �y� yi�2
; (41)

respectively. Here, the constant � takes the value 0 or 1.
Black hole solutions on the multicentered Eguchi-Hanson
spaces are obtained by � � 0 with the sum i � 2. Black
hole solutions on the multicentered-Taub-NUT spaces are

obtained by � � 1 with the sum i � 1. These solutions
include some previously known solutions, i.e., cosmologi-
cal nonrotating multi–black hole solutions on the multi-
centered-Taub-NUT space [36] and rotating multi–black
hole solutions on the multi-centered-Taub-NUT space with
no cosmological constant [37]. We will study the coales-
cence of rotating multi–black holes on the multi-centered-
Taub-NUT space in the near future.
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