
Bigravity and Lorentz-violating massive gravity

D. Blas,1,* C. Deffayet,2,3,† and J. Garriga1,‡

1ICC, Departament de Fı́sica Fonamental, Universitat de Barcelona, Diagonal 647, 08028 Barcelona, Spain
2APC,x Bâtiment Condorcet, 10 rue Alice Domont et Léonie Duquet, 75205 Paris Cedex 13, France
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Bigravity is a natural arena where a nonlinear theory of massive gravity can be formulated. If the
interaction between the metrics f and g is nonderivative, spherically symmetric exact solutions can be
found. At large distances from the origin, these are generically Lorentz-breaking bi-flat solutions
(provided that the corresponding vacuum energies are adjusted appropriately). The spectrum of linearized
perturbations around such backgrounds contains a massless as well as a massive graviton, with two
physical polarizations each. There are no propagating vectors or scalars, and the theory is ghost free (as
happens with certain massive gravities with explicit breaking of Lorentz invariance). At the linearized
level, corrections to general relativity are proportional to the square of the graviton mass, and so there is no
van Dam-Veltam-Zakharov discontinuity. Surprisingly, the solution of linear theory for a static spherically
symmetric source does not agree with the linearization of any of the known exact solutions. The latter
coincide with the standard Schwarzschild-(anti)-de Sitter solutions of general relativity, with no correc-
tions at all. Another interesting class of solutions is obtained where f and g are proportional to each other.
The case of bi–de Sitter solutions is analyzed in some detail.
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I. INTRODUCTION

In recent years, many proposals to modify gravity at
very large, i.e., cosmological, distances have been put
forward with the hope of finding an alternative explanation
to the observed acceleration of the Universe. Indeed, one
can imagine that this acceleration is not due to some yet
unknown and dark component of the Universe, but to some
failure of general relativity (GR) at large distances (see,
e.g., [1]).

To obtain such a modification of gravity, one of the
simplest ideas—in fact already present in the original
motivation of Einstein to introduce a cosmological con-
stant—is obviously to give some sort of mass to the
graviton. However, it has long been known that theories
of massive gravity are rather problematic. In the linearized
regime, a Lorentz-invariant mass term for the graviton
must have the Fierz-Pauli (FP) form [2], or else ghosts
appear in the spectrum. With the FP mass term, light
deflection caused by static sources differs from that of
general relativity even in the limit of massless gravitons,
a pathology known as the van Dam-Veltam-Zakharov
(vDVZ) discontinuity [3].

Among the recently studied proposals to modify gravity
at large distances, Dvali-Gabadadze-Porrati (DGP) gravity
[4] has been the subject of numerous works, in particular,
because of its ability to produce a late time acceleration of

the expansion of the Universe even with a vanishing cos-
mological constant [5]. Another theory, sharing with DGP
gravity the same tensorial structure of the graviton propa-
gator, and (for that reason) also the vDVZ discontinuity, is
nonlinear massive gravity. The latter theory can be ob-
tained from some bigravity theory, where one of the two
metrics is frozen (see [6] and references therein). On the
other hand, bigravity theories have the ability to produce an
accelerated expansion of the Universe in a nonstandard
way [7], one of the two metrics being then regarded as
some new type of dark energy component (it is interesting
to note that there is an integration constant appearing in the
effective cosmological constant in these models, which
reminds one of unimodular gravity [8]). The vDVZ dis-
continuity, without a cure, would suffice to rule out any
theory in which it appears. It was however proposed that
this discontinuity could disappear nonperturbatively, i.e.,
that it would not be seen in exact solutions of the theory,
but only show up as an artifact of the linearization proce-
dure [9]. While this seems problematic in nonlinear mas-
sive gravity [10,11], there is some evidence that it does
work in DGP gravity [12–14]. It is then of some impor-
tance to better understand exact solutions of various types
of massive gravities, among which are bigravity theories.
In this paper we concentrate on spherically symmetric
solutions of the latter theories. Indeed, in bigravity theo-
ries, nonderivative interactions between two different met-
rics can give a mass to some of the spin-2 polarizations,
and a large class of nontrivial exact solutions are known.
This is not the case for more complicated models such as
DGP gravity, and thus bigravity theories provide an in
valuable framework to investigate various properties of
‘‘massive’’ gravity and related models of large distance
modification of gravity.
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Interestingly there is another motivation to take a closer
look at bigravity theories. Indeed, it has been shown
[15,16] that the vDVZ discontinuity can also be avoided
when the mass term breaks Lorentz invariance. The differ-
ent phases of massive gravity with explicit breaking of
Lorentz invariance have been further analyzed in [16].
Some examples with spontaneous breaking (due to addi-
tional vector field condensates) have also been considered
in Ref. [17] (see also [18]). The construction in [17]
exhibits ghosts and tachyons at low momenta, but it is
nevertheless phenomenologically acceptable for certain
choices of parameters. The question of Lorentz violation
consistent with cosmological observations has been re-
cently studied in [19]. Such Lorentz-violating mass terms
also appear in the so-called ghost condensate scenario with
nontrivial cosmological consequences [20]. It seems
worthwhile, in this context, to explore alternative scenarios
with spontaneous breaking of Lorentz invariance. A
straightforward example is provided again by spherically
symmetric solutions of bigravity theories.

In Ref. [21] we studied the global properties of a wide
class of bigravity solutions, and here we will develop the
theory of linearized perturbations around some of them. A
particularly interesting example is the solution where both
metrics f and g are flat, but with different values of the
‘‘speed of light.’’ This is the simplest case where Lorentz
invariance is spontaneously broken. It is also interesting in
its own right, since it corresponds to the far field in a wider
class of spherically symmetric exact solutions, of the
Schwarzschild form.

The paper is organized as follows. In Sec. II we review
the basics of bigravity. We show that if the interactions
between the two metrics are nonderivative, then there are
always a broad class of solutions in the Schwarzschild-
(anti)-de Sitter family, with Lorentz-breaking asymptotics.
In Sec. III, we study the perturbations to Lorentz-breaking
bi-flat solutions. In Sec. IV we consider perturbations
around solutions where the two metrics are proportional
to each other, concentrating in the case of bi–de Sitter
solutions. Sec. V summarizes our conclusions.

While this paper was being prepared, a related work [22]
appeared where the study of perturbations to bi-flat
Lorentz-breaking backgrounds is outlined. Where we over-
lap, our findings agree with those of Ref. [22] (see also
[23,24]).

II. EXACT SOLUTIONS

Following [25], we consider the action
 

S �
Z

d4x
�������
�g
p

�
�Rg
2�g

� Lg

�
�
Z

d4x
�������
�f

p �
�Rf
2�f

� Lf

�
� Sint�f; g�: (1)

Here Lf and Lg denote generic matter Lagrangians coupled
to the metrics f and g, respectively, and subindices f and g

on the Ricci scalar R indicate which metric we use to
compute it. For the background solutions, we shall restrict
attention to the case where there is only a vacuum energy
term in each matter sector Lf � ��f, Lg � ��g, where
�f and �g are constant. The kinetic terms are invariant
under independent diffeomorphisms of the metrics f and g,
but the interaction term is invariant under ‘‘diagonal’’
diffeomorphisms,1 under which both metrics transform.

There is much freedom in the choice of the interaction
term in (1). For instance, Ref. [25] considered a nonlinear
generalization of the Fierz-Pauli mass term
 

Sint � �
�
4

Z
d4x��g�u��f�v�f�� � g����f�� � g���

� �g��g�� � g��g���; (2)

with

 u� v � 1
2: (3)

As we shall see in the following section, linearized pertur-
bations around asymptotically bi-flat Lorentz-breaking so-
lutions of this particular theory show a singular behavior.
For that reason, it will be instructive to look at general-
izations of (2). The most general interaction potential
which preserves the diagonal diffeomorphism takes the
form [6]

 Sint � �
Z

d4x��g�u��f�vV�f�ng�; (4)

where �n � tr�Mn�, n: 1; . . . ; 4 correspond to the traces of
the first four powers of M�

� � f��g��, and V is an
arbitrary function.

There is also some arbitrariness in the way one introdu-
ces matter fields, since one has two different metrics at
hand. One can at least couple matter minimally to any one
of the two metrics, in which case the other metric can be
regarded as some kind of exotic new type of matter. Those
two choices correspond to the two matter Lagrangians Lg
and Lf, of action (1), where it is understood that the matter
fields entering into Lg and Lf are different. This opens the
possibility to have two types of matter, one which feels the
metric g and the other which feels the metric f. In fact one
can imagine more complicated situations in which matter
fields would be coupled to some composite metric built out
of the two metrics f and g. If one wishes to recover the
standard equivalence principle, one should obviously ask
that standard matter only couples to one metric, and a
minimal choice is thus, e.g., that all matter fields appear

1In principle, we might also include derivative interactions
between the two metrics compatible with the diagonal symmetry,
but in general these terms yield a ghost in the vector sector and
we will not consider them here. An interesting possibility would
be to preserve the independent unimodular diffeomorphisms in
the kinetic terms, in which case the derivative coupling is
possible.
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say in Lf (respectively, Lg), while Lg (respectively, Lf),
will be simply given by a cosmological constant. With such
a choice, matter moves along geodesics of the metric f
(respectively, g), and, provided the solutions for the metric
f are the same as in standard general relativity (which turns
out to be possible as will be seen below), there would be no
deviations from 4D general relativity seen in matter mo-
tion. However, various questions arise, should one wish to
consider bigravity theories as realistic—among those, the
fact that bigravity theories are likely to suffer from the
same type of instability (at the nonlinear level) discovered
by Boulware and Deser in nonlinear massive gravity
[26,27] (see however [6,7]). Our viewpoint here is more
to use those theories as a toy to study properties of more
complicated models, than pushing the idea that bigravity
theories are realistic. Thus, we will not discuss further the
phenomenological consequences of various types of cou-
plings to matter. In the aim of discussing the vDVZ dis-
continuity, we will only consider the possibility of having
two types of matter coupled, respectively, minimally to
metrics f and g, as indicated in the action (1).

Let us then introduce the exact solutions subject of this
study. The general static spherically symmetric ansatz for
bigravity can be written as [28]

 g��dx
�dx� � Jdt2 � Kdr2 � r2�d	2 � sin2	d
2�; (5)

 

f��dx�dx� � Cdt2 � 2Ddtdr� Adr2

� B�d	2 � sin2	d
2�; (6)

where the metric coefficients are functions of r. Note that
in general it is not possible to write both metrics in diago-
nal form in the same coordinate system.

For the potential (2), and for D�r� � 0, it was shown in
[28] that the general solution is given by
 

g��dx�dx� � �1� q�dt2 � �1� q��1dr2

� r2�d	2 � sin2	d
2�; (7)

 

f��dx�dx� �
�
�
�1� p�dt2 � 2Ddtdr� Adr2

� �r2�d	2 � sin2	d
2�; (8)

where

 A �
�
�
�1� q��2�p� �� q� �q�; (9)

 D2 �

�
�
�

�
2
�1� q��2�p� q��p� �� 1� �q�: (10)

Here � is an arbitrary constant, � � 2=3 and the potentials
p and q are functions of r. Somewhat surprisingly, these
potentials turned out to coincide with those of the standard
Schwarzschild-(anti)-de Sitter family. Solutions of the
form (7) and (8) are called Type I.

Substituting the Type I ansatz into the effective energy-
momentum tensors which are obtained by varying Sint, one
readily finds that these take the form of cosmological
terms:

 Tf�� 	
�2�������
�f
p


Sint


f��
�

~�f

�f
f��;

Tg�� 	
�2�������
�g
p


Sint


g��
�

~�g

�g
g��;

(11)

where

 

~�f

�f
�
�
4

�
3

2

�
4u
�uf3v� 9��1� v�g; (12)

 

~�g

�g
�
�
4

�
2

3

�
4v
��vf3u� 9��1� u�g: (13)

Note that the corresponding cosmological constants for the
metrics (7) and (8) are not determined solely by the vac-
uum energies �f and �g. They also contain a contribution
from the interaction term in the Lagrangian. This contri-
bution depends not only on the parameters � and u (recall
that v � 1=2� u), but also on the arbitrary integration
constant �, as seen from (12) and (13).

A crucial observation [21] is that even without assuming
any specific form for the functions p�r� and q�r�, the Type I
ansatz leads to energy-momentum tensors of the form (11).
Here, we would like to clarify the reason for that, and to
show that Type I solutions (as well as some generalizations
thereof) exist also in the generic case (4). Indeed, for
arbitrary metrics f and g

 f��Tf�� � �2��g=f�u
�
vV
�� �

X
n

n�Mn�
�
� V�n�

�
; (14)

 g��Tg�� � �2��g=f��v
�
uV
�� �

X
n

n�Mn�
�
� V�n�

�
;

(15)

where we have introduced the notation

 V�n1;...;nl� 	
@lV

@�n1

 
 
 @�nl

;

where l is the number of derivatives. Moving to the frame
where both metrics are diagonal, the matrix M � f�1 
 g
can be put to the diagonal form with eigenvalues �i. Two
arbitrary metrics g�� and f�� which are solutions of the
vacuum Einstein equations will be solutions for bigravity if
all the �n are constant and the eigenvalues of the matrix

 

X
n�M��� V�n� (16)

entering (14) and (15) are all equal to each other. Note that
for a given ansatz, the constancy of the traces (or of the
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eigenvalues) is a frame independent notion. The equations
of motion will be then satisfied provided that

 �f � �2�f��g=f�u
�
vV �

1

4

X
n

n�nV�n�
�
� �f�f; (17)

 �g � �2�f��g=f�
�v
�
vV �

1

4

X
n

n�nV
�n�
�
� �g�g;

(18)

where �f and �g are the cosmological constants.
Remarkably, the nontrivial background (7) and (8) has

the property that the eigenvalues of M are constant

 �i � f�
�1; ��1; ��1; ���1g;

which implies

 �n � ��n�3� �n�; det�M� � ���4:

Thus, it is enough to impose

 

X
n

n�Mn�
�
� V�n� / 


�
� :

In the frame where M is diagonal the previous combina-
tion is a constant diagonal matrix with only two different
constant eigenvalues

 

�X
n

n�n��nV�n�;
X
n

n��nV�n�
�
:

Both eigenvalues will coincide when

 

X
n

n��n��1� �n�V�n� � 0: (19)

This tells us that for any potential there will exist nontrivial
solutions with certain � and � satisfying (19) (note that the
values of V�n� depend also on � and �). In addition, (17)
and (18) must be satisfied. These are three equations for the
parameters �f, �g, �, and �. Therefore, it is clear that one
of the effective cosmological constants can be chosen
arbitrarily. It has the status of an integration constant.

Another interesting class of solutions is obtained by
taking f and g proportional to each other, but otherwise
arbitrary

 f�� � ��x�g��: (20)

In this case, the matrix M is proportional to the identity
M�

� � ��1
�� and the energy-momentum tensors (14)
and (15) read

 

~� f

�
� 	 �ff��T

f
��

� �2��f�
�4u

�
vV �

X
n

n��nV�n�
�

��

~�g

�
� 	 �gg

��Tg��

� �2��g�
4v
�
uV �

X
n

n��nV�n�
�

�� :

(21)

Thus, for any matter content this term just adds to the
vacuum energy. From Bianchi identities ~�f and ~�g must
be constant, and f and g must then be solutions of the
vacuum Einstein’s equations. Generically, the expressions
for ~�f;g depend on �, so that they imply a constant �. In
this case, the parameter � is determined through Einstein’s
equations by noting that (20) implies

 Rg � �Rf: (22)

Clearly, this class will include solutions in the
Schwarzschild-(anti)-de Sitter family, although nonspheri-
cally symmetric solutions are possible as well. Note also
that such solutions can easily be generalized to multigrav-
ity theories by deconstructing 5D metrics with a warp
factor [29].

Let us now turn to the study of perturbations to some of
these background solutions.

III. PERTURBATIONS AROUND LORENTZ-
BREAKING BI-FLAT METRICS

In a theory with two metrics with Einstein-Hilbert ki-
netic terms and no interaction, there are 4� 4 Arnowitt-
Deser-Misner Lagrange multipliers. When we add a non-
derivative interaction which preserves diagonal diffeomor-
phisms, 4 combinations of these may in principle appear
nonlinearly in the action [6]. For these, their equation of
motion relates them to the other variables, but they do not
lead to further constraints. Thus, we have a minimum of 4
and a maximum of 8 Lagrange multipliers for 20 metric
components. Hence, we generically expect a maximum of
�10� 4� � �10� 8� � 6� 2 � 8 degrees of freedom and
a minimum of �10� 8� � 2 � 2� 2 � 4. In a Lorentz-
invariant context, the first possibility corresponds to a
massless and a massive graviton, whereas the second
would correspond to two massless gravitons. In the
Lorentz-breaking context, it is possible to have a massive
graviton with just two physical polarizations [30,31].

Let us consider a general potential V�f�ng� as in (4). As
we showed in the last section, the vacuum energies �f and
�g can be tuned so that the previous potential has asymp-
totically bi-flat solutions. At large distances from the ori-
gin, these take the form

 g�� � ���; f�� � �~���; (23)

where
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 ~��� � ��� �
�� 1

�

0
�
0

�; (24)

and ��� � diag�1;�1;�1;�1�. The parameters � and �
are related by Eq. (19). For � � 1,2 we cannot simulta-
neously write both metrics in the canonical form ���, and
Lorentz invariance breaks down to spatial rotations. It will
be convenient to introduce the general perturbation in the
form

 f�� � ��1�~��� � hf
���; (25)

 g�� � ��� � h
g
��; (26)

where ~��� is the inverse of ~���. The perturbation to the
metric f has been defined with the upper indices, just
because this simplifies the manipulations which yield the
action quadratic in the perturbations shown below. For the
remainder of this section, all space-time indices will be
raised and lowered with the canonical Minkowski metric
���. The interaction Lagrangian quadratic in perturbations
then reads

 

~Lint 	 Lint �
�������
�g
p

�g �
�������
�f

p
�f

� �
M4

8
fn2�hgij � hf

ij��hgij � hf
ij�

� n0�hg00 � �
�1hf

00��hg00 � �
�1hf

00�

� 2n4�hg00 � �
�1hf

00��hgii � hf
ii�

� n3�hgii � hf
ii�2g; (27)

where, after imposing (19)

 

M4 � 4�
�
�4

�

�
v
;

n0 � 3n3 � 2n4 � n2 � �
@
@�

�X
n

n��n��1� �n�V�n�0

�
;

n2 � �
X
n2��nV�n�0 ;

n3 � uvV0 �
X
n

n�v� u���nV�n�0 �
X
m;n

nm���n�m�V�n;m�0 ;

n4 � n0 � �
@
@�

�X
n

n��n��1� �n�V�n�0

�
: (28)

For the sake of simplicity, we will restrict to potentials
V�f�ng� for which Eq. (19) is independent3 of � and
determines �. From Eq. (28), this implies n0 � n4. In
particular, this class includes the interaction (2), which,
as we shall see, leads to a rather pathological behavior for
the perturbations. On the other hand, it is general enough to
be representative of generic choices of potentials.

In Refs. [15,16] the case of a single graviton with a
Lorentz-violating mass term has been discussed. For com-
parison with those references, it will be useful to introduce

 m2
0 � �cn0; m2

1 � 0; m2
2 � cn2;

m2
3 � �cn3; m2

4 � �cn4;

where c > 0 is an irrelevant constant which has the dimen-
sions of mass squared.

Note that the components hg0i and hf
0i are absent from

(27). As noted in [22] the absence of such terms is a
consequence of invariance under diagonal diffeomor-
phisms in this background. In the case of a single graviton
(with a Fierz-Pauli kinetic term), the absence of h0i in the
mass term leads to a very interesting behavior [16,30,32],
where the two polarizations of the massless graviton ac-
quire mass, while all the other modes do not propagate.4

Let us now investigate whether a similar phenomenon
occurs in our model. The situation is not directly reducible
to that of a single graviton, since the equations of motion
are not diagonal. Also, the kinetic term breaks the Lorentz
invariance. It is convenient to decompose the perturbations
into irreducible representations of the spatial rotations,

 hX00 � 2AX; hX0i � BX;i � V
X
i ;

hXij � 2 X
ij � 2EX;ij � 2FX
�i;j� � t

X
ij;

(30)

where tXii � tXij;i � VXi;i � FXi;i � 0 for X � f, g, and
all space-time indices are raised and lowered with the
metric ���.

2For � � 1, we have proportional flat metrics, the perturba-
tions of which can be obtained from the flat space-time limit of
the calculations done in the next section.

3The case where (19) is satisfied independently of � or � leads
to the condition

 3n3 � 3n0 � n2 � 0; n4 � n0; (29)

which, as we shall see, corresponds to the case of no corrections
to the Newton law. An example of an interaction where these
conditions are satisfied is a potential which is only a function of
the ratio of determinants of f and g; that is V�f�ng� � V�f=g�. In
this particular case, there is an enhanced symmetry under inde-
pendent ‘‘nondiagonal’’ unimodular diffeomorphisms, which do
not change the value of the determinants of the respective
metrics.

4It should be stressed that the absence of 0i components is a
peculiarity of the background considered. By suitable adjustment
of the vacuum energies, the theory we are considering also
admits the Lorentz preserving vacuum of type II, where f�� �
g�� � ���. In that case, the interaction term leads to the Fierz-
Pauli mass term for a combination of the two gravitons. This
mass term does contain the 0i components.
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To second order in the perturbations, the kinetic terms in
(1) can be written in terms of these scalar, vector, and
tensor variables as:
 

LK �
1

2�g

�
�

1

4
tgij�t

g
ij�

1

2
�Vgi � _Fgi ���V

g
i � _Fgi �

� 4� g�Ag� _Bg� �Eg� � 2 g� g� 6� _ g�2
�

�
1

2~�f

�
�

1

4
tfij ~�tfij�

��1

2
�Vfi �� _Ffi ���V

f
i �� _Ffi �

� 4��1� f�Af�� _Bf��2 �Ef�

� 2 f� f� 6�� _ f�2
�

(31)

where ~� � ~���@�@�, ~�f � ��1�1=2�f and dot means a
derivative with respect to time. At the linear level, the
transformations generated by independent diffeomor-
phisms 
x� � ��X in each one of the metrics can be ex-
pressed as

 
hg�� � 2@���
g
��; 
hf�� � 2����j ~���@��

f
j��: (32)

Note that the kinetic term is written in terms of the follow-
ing quantities:

 tgij; V
g
i �

_Fgi ;  ; A
g � _Bg � �Eg;

tfij; V
f
i � � _Ffi ;  ; A

f � � _Bf � �2 �Ef;
(33)

which are invariant under both gauge symmetries. On the
other hand, the full action (including the mass terms) is
invariant only under the diagonal gauge symmetry

 �g� � �f�: (34)

No second-order scalar combination of hX0i is invariant
under this gauge symmetry, which implies that those terms
are always absent (cf. (27)). We may now analyze the
propagating degrees of freedom.

A. Tensor modes

The linearized Lagrangian for the tensor and vector
modes can be expressed as
 

Lt;v�
1

2�g

�
�

1

4
tgij�t

g
ij�

1

2
�Vgi � _Fgi ���V

g
i �

_Fgi �
�

�
1

2~�f

�
�

1

4
tfij ~�tfij�

��1

2
�Vfi �� _Ffi ���V

f
i �� _Ffi �

�

�
M4

8

�
n2�t

g
ij� t

f
ij�

2�2n2�F
g
i �F

f
i ���F

g
i �F

f
i �

�
;

(35)

where ~�f � ��1�1=2�f. The corresponding equations of
motion in Fourier space read

 !2tgij � k2tgij � �gM
4n2�t

g
ij � t

f
ij�; (36)

 �!2tfij � k2tfij � ~�fM
4n2�t

g
ij � t

f
ij�; (37)

from which we obtain the dispersion relations

 !2
� �

1

2�
���� 1�k2 � �0M

4

�
������������������������������������������������������������������������������������������
���� 1�k2 � �0M4�2 � 4�k2��1M4 � k2�

q
�

(38)

where �0 � n2���g � ~�f� and �1 � n2��g � ~�f�.
At high energies, we have

 !2
� � k2; !2

� � ��1k2: (39)

In this limit, each one of the two gravitons propagates in its
own metric (with the corresponding ‘‘speed of light’’5)
along null directions k� � �!;k� satisfying

 g��X k�k� � 0:

The low energy expansion of (38) is given by

 !2
� �

�1

�0
k2 �O�k4�; (40)

 !2
� �

�0M4

�
�

�
~�f � �

2�g
�~�f � �2�g

�
k2 �O�k4�: (41)

The first dispersion relation corresponds to two massless
polarizations which propagate at the ‘‘intermediate’’ speed

 c2
s �

!2
�

k2 �
�1

�0
�

�g � ~�f
��g � ~�f

:

Note that for �> 1 we have ��1 < c2
s < 1, while for �<

1 we have 1< c2
s < ��1. The second dispersion relation,

Eq. (41), corresponds to two massive polarizations. It is
easy to check that the graviton polarizations are stable and
tachyon free as long as �0 > 0, in the whole range of
momenta k. The second dispersion relation (41) corre-
sponds to the massive graviton.

B. Vector modes

From the Lagrangian (35), we find that Vgi and Vfi do not
appear in the interaction term. Varying with respect to the
vector fields we have,

 ��Vgi � _Fgi � � 0 (42)

5Superluminal propagation has previously been considered in
several contexts (see, e.g., [33] for a recent discussion). Clearly,
such propagation cannot by itself be considered pathological.
Indeed, in the present case we always have superluminal propa-
gation from the point of view of one of the metrics, whereas
there is not any superluminal propagation from the point of view
of the other metric. Nevertheless, the global structure of non-
linear bigravity solutions is complicated in general, and its
interpretation is far from trivial [21,23].
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 �� _Vgi � �Fgi � � �M
4n2�g��Fgi � F

f
i � (43)

 ��Vfi � � _Ffi � � 0 (44)

 �� _Vfi � � �Ffi � � �M
4n2 ~�f��Fgi � F

f
i �: (45)

We can always use the diagonal diffeomorphism invari-
ance to work in the gauge where Vgi � 0. It then follows
from (42) that Fgi � Fi� ~x� � f

g
i �t�, where Fi are arbitrary

functions of position and fi are arbitrary functions of time.
The latter are in fact irrelevant, because FXi enters the
metric only through spatial derivatives. Formally, we
may describe this as a gauge symmetry FXi ! FXi �
fXi �t�, which we can use in order to write, without loss of
generality,

 Fgi � Fi� ~x�:

It then follows from (43) that

 Ffi � �Fi� ~x�;

where again we eliminate the additive time-dependent part.
Finally, from (44) we obtain

 Vfi � ~fi�t�;

where ~fi are new arbitrary functions of time. This is not a
desirable situation, since it means that the initial conditions
do not determine the future evolution of Vfi . Technically,
the absence of the fields Vgi and Vfi in the mass term leads
to an enhanced gauge symmetry in the linearized
Lagrangian. Indeed, we can consider independent gauge
transformations for each of the metrics

 h�� � h�� � 2@���h��; l�� � l�� � 2@���l��; (46)

of the form �Xi � �Xi �t�. As we have discussed, these do not
affect the FXi , but can be used to give both of the VXi an
arbitrary time dependence.

C. Scalar modes

The Lagrangian for the scalar modes can be expressed as
 

Ls �
1

�g
f2� g�Ag � _Bg � �Eg� �  g� g � 3� _ g�2g

�
1

~�f
f2��1� f�Af � � _Bf � �2 �Ef� �  f� f

� 3�� _ f�2g �
M4

2
fn2f3� 

g �  f�2

� ���Eg � Ef��2 � 2� g �  f���Eg � Ef�g

� n0f�A
g � ��1Af��Ag � ��1Af

� 2�3� g �  f� � ��Eg � Ef���g

� n3f3� g �  f� � ��Eg � Ef�g2g:

Let us first study the nonhomogeneous modes. The mass
terms do not depend on Bg nor on Bf, so those fields are
Lagrange multipliers, just as in Einstein’s gravity.
Variation with respect to these fields yields

 � _ g � � _ f � 0: (47)

The variation with respect to Ag and Af yields the
constraints

 Ag � ���1Af � 3� g �  f� ���Eg � Ef�

�
2

M4n0�g
� g;

 g �
�g
~�f
 f � f�t�:

(48)

Once we substitute the first of these constraints in the
Lagrangian, the quadratic term in Eh and El takes the form

 �n2 � n0 � n3��Eh � El�2: (49)

We can now distinguish two different cases, neither of
them with propagating scalar degrees of freedom. First, if
the coefficient n2 � n0 � n3 does not cancel, the equations
of motion for Eh and El result in a new constraint which
determines these fields, and upon substitution into the
Lagrangian we are left without any scalar degrees of free-
dom. If the coefficient cancels, as happens for the potential
(2), Eg and Ef are Lagrange multipliers appearing in the
gauge-invariant combination Eh � El. After using (48), the
variation with respect to Eh yields

 � g � � f � 0: (50)

The Lagrangian cancels after substitution of these con-
straints, and there are no propagating degrees of freedom.
Note that in this last case the combination Eh � El is not
determined by the equations of motion. Again, this is not a
desirable feature, since it means that the value of this
combination, which is gauge invariant under the diagonal
diffeomorphisms, is not predicted by the linear theory.
Nevertheless, we expect that higher-order terms in the
expansion will determine Eh � El, since there is no sym-
metry in the nonlinear Lagrangian under which this quan-
tity can be ‘‘gauged’’ to arbitrary space-time dependence.

Concerning the homogeneous modes, after using the
constraints we are left with two modes  f and  g which
have a negative definite kinetic term. Nevertheless, the
dispersion relations for the degrees of freedom which
diagonalize the equations of motion are !2 � 0 and !2 �

M4n2�~�f � �g�> 0, so there is no classical instability
associated to these modes.

D. Coupling to matter and vDVZ discontinuity

All known explicit and nonsingular exact solutions of
bigravity (which we reviewed in Sec. I) are also solutions
of GR. This immediately suggests that the vDVZ disconti-
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nuity may be absent altogether in this theory at the non-
linear level. Also, from the analysis of perturbations done
in the previous section around the Lorentz-breaking back-
ground, it is clear that the situation here is very different
from that of ordinary massive gravity. The massive spin-2
graviton has only two physical polarizations (as opposed to
the five polarizations of the ordinary FP massive graviton),
and there are no propagating vectors or scalars.

Let us consider the coupling of the linearized theory to
conserved sources. To this end, we introduce the couplings

 Smatt �
1

4

Z
d4x��gh

g
��T

��
g � �fh

f
��T

��
f �; (51)

where T��g and Tf�� are conserved, i.e., @�T
��
g � 0 and

��� ~���@�T
��
f � 0. In terms of the decomposition (30),

we have
 

Smatt �
�g
4

Z
d4x��tgijT

ij
g � 2T0i

g �V
g
i �

_Fgi � � 2T00
g �g

� 2Tiig  
g� �

�f
4

Z
d4x��tfijT

ij
f

� 2T0i
f �V

f
i � � _Ffi � � 2T00

f �f � 2Tiif  
f�; (52)

where we have introduced the gauge-invariant combina-
tions

 �g 	 Ag � _Bg � �Eg; �f 	 Af � � _Bf � �2 �Ef:

Inverting the equations of motion for the tensor modes in
the presence of the source Tij, we find

 tgij �
�g�k2 � �!2 � ~�fM

4n2�T
g
ij � �f�gM

4n2T
f
ij

!2f�!2 � �~�f � ��g�M
4n2g � k2f�~�f � �g�M

4n2 � ��� 1�!2g � k4 ; (53)

and an analogous expression for tfij:

 tfij �
�f�k2 �!2 � �gM4n2�T

f
ij � �g~�fM4n2T

g
ij

!2f�!2 � �~�f � ��g�M4n2g � k2f�~�f � �g�M4n2 � ��� 1�!2g � k4 : (54)

In the limit M4 ! 0 this reduces to the standard expression
for linearized GR.

For the vector modes, the equations of motion read

 ��Vgi � _Fgi � � �g�gT
0i
g

�� _Vgi � �Fgi � � �M
4n2�g��Fgi � F

f
i � � �g�g _T0i

g ;
(55)

 ��Vfi � � _Ffi � � �f�~�fT
0i
f

�� _Vfi � � �Ffi � � �~�f�
�1M4n2��Fgi � F

f
i � � �f ~�f� _T0i

f :

(56)

It follows immediately that ��Fgi � F
f
i � � 0, and therefore

the term proportional toM4 vanishes. This means that there
is no difference with the GR results for each one of the
metrics.

For the scalar part, we may start with variation with
respect to BXi , which yields the constraints

 

_CX � 0; (57)

where

 Cg 	 4� g � �g�gT00
g ; Cf 	 4� f � �f ~�f�T

00
f :

Variation with respect to AX gives

 Cf � Cg (58)

and

 C� 	 Cf � Cg � 2M4�~�f � �g��A� � 3 � ��E��n0;

(59)

where A� � Ag � ��1Af,  � �  f �  g, and E� �
Ef � Eg. Variation with respect to �EX yields, with the
help of (57),

 n0A� � �n2 � 3n3� � � �n2 � n3��E�: (60)

Substituting into (59), we have
 

C� � 2M4�~�f � �g���n2 � 3n3 � 3n0� �

� �n2 � n3 � n0��E��

and using (57), we have
 

4�n2 � n0 � n3��
2 _E� � ��n2 � 3n3 � 3n0�

� ��f ~�f� _T00
f � �g�g _T00

g �: (61)

For �n2 � n0 � n3� � 0, this determines _E� in terms of the
sources. The solution will depend on an arbitrary time-
independent mode E0�x�.

For the singular case �n2 � n0 � n3� � 0, Eq. (61) does
not determine E� at all. Instead, it imposes some nontrivial
equations to be satisfied by the sources,

 �f ~�f� _T00
f � ��g�g _T00

g ; (62)

which seem hard to motivate. Thus, coupling to the sources
seems rather inconsistent in this case, unless �n2 � 3n3 �
3n0� � 0 as well. But this would imply n2 � 0, in which
case the tensor modes are massless.
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In the generic case, the solution for the  potentials is of
the form

 � g � �
�g�g

4
T00
g �

1

8
C�� ~x�;

� f � �
~�f�f�

4
T00
f �

1

8
C�� ~x�;

(63)

where C�� ~x� is entirely determined by initial conditions.
Finally, variation with respect to  f and  g leads (after

use of (63)) to the following equations for the gauge-
invariant potentials:

 ��g � �
�g�g

4

�
T00
g � T

ii
g �

3

�
�T00
g

�
�

1

8
C�

� �gM4n2�E�; (64)

 

��1��f � �
~�f�f

4

�
�T00

f � T
ii
f �

3

�
�2 �T00

f

�

�
1

8
C� � ~�fM4n2�E�; (65)

where
 

�E� � �
1

n2 � n3 � n0

�
n2 � 3n3 � 3n0

4�
��g�gT00

g

� ~�f�f�T
00
f � C�� �

1

2M4�~�f � �g�
C�

�
: (66)

In general, the solution depends on an arbitrary ‘‘initial’’
function C�� ~x�. This corresponds to a mode with disper-
sion relation !2 � 0 in the linear theory. It was argued in
[16] that in such cases from higher-order terms the ex-
pected dispersion relation will be of the form!2 
 p4, and
in this sense C� corresponds to a slowly varying ‘‘ghost
condensate’’ [34]. In what follows, we shall take the initial
condition C�� ~x� � 0.

For n2 � n0 � n3 � 0, the solution is of the form

 � g � �
�g�g

4
T00
g ; � f � �

~�f�f�

4
T00
f ; (67)

and
 

��g � �
�g�g

4

�
T00
g � T

ii
g �

3

�
�T00
g

�
�

��gM4n2

4�

�

�
n2 � 3n3 � 3n0

n2 � n3 � n0
��g�gT

00
g � ~�f�f�T

00
f �;

��f � �
~�f�f�

4

�
�T00

f � T
ii
f �

3

�
�2 �T00

f

�

�

�
~�f�M

4n2

4�

�
n2 � 3n3 � 3n0

n2 � n3 � n0

� ��g�gT00
g � ~�f�f�T00

f �: (68)

Hence, there is a well-behaved massless limit, with cor-
rections of order M4��2 to the gauge-invariant potentials

� and  . This means, in particular, that there is no vDVZ
discontinuity. This is quite analogous to the ‘‘half massive
gravity’’ model discussed by Gabadadze and Grisa [31]
(see also [30]). The additional terms lead to corrections to
the Newtonian potential. The sign of this correction can be
positive or negative, depending on the values of the nu-
merical coefficients ni. For isolated sources, such correc-
tions scale like the square of the graviton mass m2 
 �M4

times the ‘‘Schwarzschild’’ radius rs corresponding to the
given source, and grow linearly with the distance r.
Parametrically, the potential takes the form

 �

N �m2rsr;

where 
N is the standard Newtonian potential. Linear
theory breaks down at large distances, when the second
term is of order unity. It would be interesting to try and
match this solution to a nonperturbative exact solution
which is well behaved at infinity.

As we stated before, the case of no correction to the
Newton law corresponds to the case where (19) is inde-
pendent of � or � (cf. (29)).

Finally, we note that the simple interaction term (2) first
considered in [25,28] happens to land on the special case

 n2 � n0 � n3 � 0;

where the above expressions for the gauge-invariant po-
tentials are singular. The origin of the singularity is the
following. After substitution of the constraints (60), the
linearized action no longer depends on �E�. In particular,
the absence of this variable results in the unwanted restric-
tion (62) on the sources.6 Nevertheless, beyond the linear
order, the action will depend on �E�, and hence the
‘‘restriction’’ will no longer exist. Rather, a nonlinear
equation will determine the value of �E�. Can we never-
theless try to find classical solutions in a perturbative
expansion? The above considerations suggest an expansion
scheme for the singular case n2 � n0 � n3 � 0, where E�
is treated as a much bigger quantity than the rest of the
linearized fields7 (such as  ). Heuristically, the size of
�E� can be estimated as follows. Instead of perturbing
the flat solution Eq. (23), we may consider the quadratic
action for perturbations around a solution which differs
from the original by O�h�. The expansion around this new
solution will have8

6This accidental symmetry is similar to that which exists in
ordinary massive gravity where the linear action propagates
5 dof whereas a new ghostlike dof appears at the nonlinear level
[26,35]. However, in that case the accidental symmetry corre-
sponds to a symmetry of the massless theory and no further
constraints are needed in the sources.

7Some of the linearized fields will be of the order of E as is
clear from (60).

8All the coefficients will have corrections of order O�h�.
However, for the rest of coefficients one expects that they will
yield second-order small corrections.
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 n2 � n0 � n3 � O�h�:

From (63), we have

 � 
 �T 	 �
N;

where 
N stands for the potential corresponding to the
given source in Newton’s theory. From (69), ��

O��T� �O�m2�E�, where m2 
 �M4 denotes the gravi-
ton mass squared. From (66), we have �E�O�h� 

O��T=��. This suggests the hierarchy

 �E�  ; �
max� ;m2E�:

Taking n2�n0�n3
max��;�E�
max� ;m2E;�E�

�E�1�m2=��, this leads to the estimate

 ��E�2 

 

1�m2=�
:

For distances shorter than the inverse graviton mass, we
have �E

1=2

N , and hence we may expect

 �

N � �m
2=��
1=2

N : ��� m2�:

At distances which are large compared with the inverse
graviton mass, �E
 ��
N=m2�1=2, and we expect

 �
 �m2=��1=2
1=2
N : ��� m2�:

These very crude arguments seem to indicate that, also in
this special case, there is no vDVZ discontinuity. However,
for finite m, there are significant modifications to the value
of the ‘‘gauge-invariant’’ potential � which determines the
motion of slowly moving particles. For isolated sources,
such modifications scale like r1=2

s , where rs is the
Schwarzschild radius corresponding to the given source.
They grow with the distance as r3=2 below the graviton
Compton wavelength m�1, and as r1=2 for larger distances.
The potential � becomes of order 1 for r * m�2r�1

s ,
beyond which we enter a nonperturbative regime. It would
be interesting to confirm this heuristic analysis in a nu-
merical study of a spherically symmetric solution with
sources. This is left for further research.

IV. PERTURBATION THEORY OF
PROPORTIONAL DE SITTER METRICS

As stated in Sec. II, another interesting class of solutions
of bigravity can be constructed from two proportional
metrics with a constant proportionality factor. Let us define
our perturbations as

 g�� � ��� � h
g
��; (69)

 f�� � ��1���� � h��f �: (70)

All indices will be handled with the ��� metric.
We first focus in the interaction term for a general

potential (4). Using (21) we can write
 

~Lint � ���g�u��f�vV�f�ng� �
�������
�g
p ~�g

�g
�

�������
�f

p ~�f

�f

� �
1

8��

���������
��
p

fm2
t �h

��
g � h

��
f ��h

g
�� � h

f
���

�m2
s�h

g � hf�
2g; (71)

where indices are manipulated with the metric ���, e.g.,
hg � ���hg��, and

 m2
s � 4����4v

�
�uvV0 � �u� v�

X
n

n��nV�n�

�
X
n;m

nm���n�m�V�n;m�
�
;

m2
t � �4����

4v
X
n

n2��nV�n�:

(72)

We have also introduced an effective Newtons’s constant
�� for later convenience.

Note that the massive graviton corresponds to h��� �

�hg � hf���. This is to be expected, as for hg�� � �h
f
�� the

metrics are still proportional and therefore the perturba-
tions are standard massless gravitons of GR in vacuum.
Also, in the present setup, h��� are the quantities invariant
under the diagonal diffeomorphisms. Notice also that the
mass term does not have in general a Pauli-Fierz form,

 m2�h2
� � h

��
� h

�
���: (73)

This particular form can only be achieved by properly
tuning the parameters. This is in contrast with other ways
of getting massive gravitons, such as dimensional reduc-
tion, where the original symmetry group is much larger.
Here, the degrees of freedom of the original theory are 8
which can be split into a massless graviton with 2 polar-
izations and a massive graviton with 6 polarizations.9 The
expression of the massless graviton as a linear combination
of the metric perturbations will be given below.

From Eq. (71) we note that whenever mt � 0 there is an
enhancement of the gauge symmetry, which now admits all
transformations which leave the traces hg and hf invari-
ant.10 This corresponds to the transverse subgroup of the

9The number of degrees of freedom coincides with that of
higher derivative gravity [36].

10This happens in the case when the derivative of Eq. (19) with
respect to � vanishes at � � 1. For the case (2) this amounts to
� � 2=3.
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diffeomorphisms, which has been recently considered in
[37]. In this special case the gauge symmetry is enough to
have just two massless gravitons propagating.11

Let us now consider the case of generic ms and mt. For
simplicity we will concentrate on perturbations around de
Sitter solutions which will be foliated by spatially flat
sections,

 ���dx�dx� � a���2�d�2 � 
ijdx
idx2�; (74)

where a��� � ��H���1,H2 � �g=3 being a constant and
� 2 ��1; 0�. The kinetic term in (1) will be given by
(cf. (71))

 LK 	 �
1

2�g

�������
�g
p

�Rg � 2�g� �
1

2�f

�������
�f

p
�Rf � 2�f�;

(75)

with �f � ��1�g. To second order in perturbations we
can rewrite the kinetic term in terms of a massive and a
massless field,
 

LK � �
1

2��

�����������
�g�
p

�Rg� � 2�g�

�
1

2��

�����������
�g�
p

�Rg� � 2�g� �O�h
3�; (76)

where �� �
�g

1�� , �� � �g��1�1� ��, with � � ��g��1
f ,

g��� � ��� � h
�
��, and g��� � ��� � h

�
��. Besides,

we have introduced the massive and massless combina-
tions

 h��� � hg�� � h
f
��; h��� � �1� ���1�hg�� � �h

f
���:

(77)

The dynamics of the massless part is well known. One
easily finds that only the tensor modes are dynamical. For
the generic massive theory in de Sitter space, studying the
longitudinal mode of the massive representation we would
argue that the only ghost-free possibility is the Fierz-Pauli
mass term, m2

t � �m2
s [2,41]. However, in general, this

mode decouples only at high energies (larger than a com-
bination of the rest of relevant mass scales). For intermedi-
ate energy scales, the longitudinal mode is coupled to
another scalar mode which can modify this picture
[16,27]. Also, the curvature scale H could play a role in
making these intermediate scales phenomenologically
relevant. We will study this possibility directly in the
unitary gauge.

Let us first split the degrees of freedom of the massive
combination into scalar, vectorial, and tensorial modes,

 h�00 � 2a���2A; h�0i � a���2�B;i � Vi�;

h�ij � a���2�2 
ij � 2E;ij � 2F�i;j� � tij�;
(78)

where  , B, and E are the scalar modes, Fi and Vi are
vector modes, and tij is a tensor mode. The vector modes
are divergenceless and the tensor modes are transverse and
traceless.

The expansion of the kinetic term in this foliation can be
extracted from the usual expansion in de Sitter space (see,
e.g., [42], notice however the difference of convention).
One finds
 

�
1

2��

Z
d4x

�����������
�g�
p

�R� � 2�g�

� �
1

2��

Z
d4xa2���

�
1

4
tij�tij �

1

2
�Vi � F0i�

� ��Vi � F0i� � 6� 0 �HA�2 � 2� �2A�  �

� 4��B� E0�� 0 �HA�
�
; (79)

where H � a���0=a��� � a���H and the prime refers to
derivative with respect to the conformal time �. We have
also introduced the d’Alembertian � � ���@�@� and the
Laplacian 4 � @i@i. The interaction term (71) reads
 

~Lint �
1

2��
a���4

�
m2
s�A��E� 3 �2

�
1

4
m2
t

�
tijtij � 2�ViVi � Fi�Fi�

� 4
�
A2 �

B�B
2
� ��E�2 � 3 2 � 2 �E

���
: (80)

We can now analyze the different components in turn.

A. Tensor and vector modes

The action for the massive tensorial modes is simply
 

�t�
S2��
1

8��

Z
dx4a2����tij�tij�a���2m2

t tijtij�: (81)

From this equation we can read the mass of the graviton
which will be given by m2

t , and the tachyon-free condition
will simply read

 m2
t � 0:

Regarding the vector modes, their action is

 

�v�
S2 � �
1

4��

Z
dx4a2�����Vi � F

0
i���Vi � F

0
i�

� a2���m2
t �ViVi � Fi�Fi��: (82)

The field Vm enters the action without time derivatives, and
thus its variation yields the constraint,

11At first sight, this seems to contradict the results of Ref. [38],
where it is shown that we cannot have two massless interacting
gravitons. However, the starting point in [38] is a free
Lagrangian invariant under linearized diffeomorphisms. As
shown in [37], there are Lagrangians invariant under transverse
diffeomorphisms which propagate just massless spin-two parti-
cles. An extension of the analysis of [38] to the transverse
subgroup is currently under investigation [39] (see also [40]).
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 4 �Vi � F0i� � a���2m2
t Vi 	 m2���Vi: (83)

Taking this constraint into account, the action for the
vectorial modes up to second order can be written as
 

�v�
S2 �
1

4��

Z
d4xa2���m2���

�
F0i

�

��m���2
F0i

� Fi�Fi

�
: (84)

This Lagrangian has the usual signs, and thus no ghost or
tachyons appear in the theory form2

t � 0. More concretely,
we can canonically normalize the previous field equation
with the field redefinition

 Fci � m���

������������������������������
�

����m���2�

s
Fi: (85)

We conclude that the only constraint we get from the
analysis of the vector and tensor modes is m2

t � 0.

B. Scalar modes

From (79) and (80), the second-order Lagrangian for the
scalar part reads

 

�2�
S2 �
1

2��

�Z
d4xa2���f�6� 0 �HA�2

� 2� �2A�  � � 4��B� E0�� 0 �HA�g

�
Z

d4xa4���
�
m2
s�A��E� 3 �2

�m2
t

�
3 2 � ��E�2 � 2 �E�

B�B
2
� A2

���
:

(86)

B is nondynamical, and for m2
t � 0 it is determined in

terms of the other fields. For m2
t � m2

s , A appears only
linearly in the mass term. For the flat case H � 0 and
a��� � 1, this makes A a Lagrange multiplier and thus
its variation gives rise to a constraint between the fields E
and  , leaving just one scalar propagating degree of free-
dom. In the de Sitter case, the result is the same, although
this is not so obvious from the previous expression for the
action until one substitutes the constraints.

The variation with respect to A and B yields the con-
straints

 B �
4� 0 �HA�

a���2m2
t

; (87)

 A �
�2a���2m2

t �H �

0 � 3 0� � � � � a���4m2

sm
2
t �
� 3 � � 8�H 0

m2
t �m2

s �m2
t �a���4 � 8�H 2 � 6m2

t a���2H
2

; (88)

where 
 � �E. Let us first consider the kinetic part of the
action, which after insertion of the constraints reads

 K �
a���2

2��
�M1���
 0 �M2��� 02 �M3��� 0
0

�M4���

02�; (89)

where we have performed a partial integration to eliminate
the term 
0 . The functions Mi��� are given by

 M1��� �
8��m2

t � 2m2
s�a���

2H

m2
t �m

2
s �m

2
t �a���

4 � 8�H 2 � 6m2
t a���

2H 2
;

(90)

 M2��� �
2�m2

s �m
2
t �a���

2�4�� 3m2
t a���

2�

m2
t �m2

s �m2
t �a���4 � 8�H 2 � 6m2

t a���2H
2
;

(91)

 M3��� �
4m2

t �m2
s �m2

t �a���4

m2
t �m

2
s �m

2
t �a���

4 � 8�H 2 � 6m2
t a���

2H 2
;

(92)

 M4��� �
�4m2

t a���
2H 2

m2
t �m2

s �m2
t �a���4 � 8�H 2 � 6m2

t a���2H
2
:

(93)

A difference between the flat and the de Sitter backgrounds
is that the coefficients M1��� and M4��� cancel in the
former case, and this automatically yields a kinetic term
with a negative eigenvalue unless M3��� � 0 which hap-
pens for the Fierz-Pauli combination m2

s � m2
t . The situ-

ation in de Sitter is slightly more complicated.
Let us now show that the previous kinetic term gives a

positive contribution to the Hamiltonian in the range of
parameters

 m2
t � 0; 0 � m2

s �m2
t � 6H2: (94)

Indeed, the kinetic term can be written as

 K �
a���2

2��

�
M1���
 0 �

�
M2��� �

M2
3���

4M4���

�
 02

�M4���
�

0 �

M3���
2M4���

 0
�

2
�
: (95)

In the range (94), M4��� and 4M4���M2��� �M2
3��� are

positive. By Euler’s theorem, the corresponding
Hamiltonian
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 H K 	 �


0 ��  

0 � K (96)

is numerically equal to the two last terms in the
Lagrangian, which are quadratic in generalized velocities,
and hence it is positive definite. The second condition in
(94) for a positive kinetic term reduces to the usual m2

s �
m2
t for the Minkowski limit H � 0. For H > 0 the end-

points of the interval are of a different nature: the condition
m2
s �m

2
t � 0 is a necessary condition for positivity of

M2 �M2
3=M4 at any value of the momentum, whereas

the upper bound on the range ofm2
s �m2

t can be somewhat
relaxed depending on the value of the momentum. Indeed,
what we need is that

 m2
s �m

2
t � 6H2

�
1�

4�

3a2m2
t

�
; (97)

so the condition is considerably relaxed at wavelengths
shorter than the inverse graviton mass.

Once we have established the positivity of part of the
Hamiltonian, let us see what happens to the rest of it,
namely, to the potential part. This part will be given by

 V 	 K � L

�
a���2

2��
�M5���
2 �M6���
 �M7��� 2�; (98)

where the coefficients are rather cumbersome and we omit
them. Before proceeding, it should be noted that the
Hamiltonian we are considering is time dependent, and
hence not conserved. Its positivity and boundedness are a
useful criterion only as long as we consider time scales
shorter than the expansion time, or energies larger than H.
This is what we may call the adiabatic limit. Hence, let us
assume that ms, mt � H, even if their difference is much
smaller m2

s �m
2
t & H2, so that we can satisfy the positiv-

ity of the kinetic term as discussed above. We have checked
that within this adiabatic limit, the potential V grows

negative and unbounded below for ��=a2 � m2.
Instabilities at high momenta have been previously studied
in [43], and they are just as bad as ghost instabilities.
Unlike the case of tachyons, the phase space for instability
is infinite and this yields infinite decay rates.

If the masses mt and ms are small, of order of the
expansion rate H, then we are outside of the adiabatic
limit, and the Hamiltonian above is not a very useful
indicator of stability. Instead, we should use a conserved
charge associated to the timelike Killing vector for length
scales smaller than the horizon [44]. Because of the exis-
tence of the cosmological scale, it is in principle possible
(although by no means clear) that there may be some range

 m2

�
H
m

�
�

* ��=a2 * H2 * m2; (99)

(with �> 2) where this conserved charge is positive defi-
nite. The effective theory would then be well defined for
momenta larger thanH (corresponding to modes within the
horizon), provided that the theory is cut off at the energy
scale m�H=m��=2. We leave the study of this conserved
charge for further research. We note, however, that we need
a theory which is applicable to wavelengths much smaller
than the horizon ��=a2 � H2, where the adiabatic ap-
proximation should again be valid. We have checked that
for ��=a2 � H2 * m2, the potential V grows negative
and unbounded below, so the possibility of a range of the
form (99) where the conserved charge is positive does not
look particularly promising.

Finally, for the case m2
s � m2

t the analysis of the degrees
of freedom has already been performed in another foliation
in [45] (see also [46]). In our analysis for this case we find
M2��� � M3��� � 0 and thus  is not a propagating field.
After varying the action with respect to  we obtain a
constraint which after substitution yields the Lagrangian

 �
�

02 �

9m4
t a���4�H � 21m2

t a���2�H�� 4��H � 6m2
t a���2��2 � 2�3

�9m2
t a���2�H � 6�H�� 2�2�


2

�
;

where 2�H � 2H 2 �m2
t a���

2 and

 � �
3a���4m2

t �H

���9m
2
t a���

2�H � 6�H�� 2�2�
:

This Lagrangian will be ghost-free and tachyon-free for
�H � 0. This reduces to the well-known condition m2 �
2H2 [47].

Another case which differs from the usual Fierz-Pauli
term and is still well defined is the case of Lorentz-
breaking mass terms [15,16]. These mass terms arise
from solutions of the form sketched in Sec. II. A simple
example would be given by two de Sitter metrics with �i �
f���1; ��1; ��1; ��1g. The interesting ranges propagating
only one scalar or no scalars at all are the same as those in

[15,16], and for generic mass terms with two scalars, there
is always a gradient instability at high energies as happens
in the Lorentz preserving case [39].

V. CONCLUSIONS

Bigravity is a natural arena where a nonlinear theory of
massive gravity can be formulated. This theory is invariant
under the diagonal group of diffeomorphisms, under which
both metrics transform.

We have shown that if the interaction between the two
metrics is nonderivative, we can always find exact solu-
tions in the Schwarzschild-(anti)-de Sitter family, with
Lorentz-breaking asymptotics. These are ‘‘Type I’’ solu-
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tions [28], in which both metrics cannot (generically) be
brought to diagonal form in the same coordinate system.
For a given interaction potential, the degree of Lorentz-
breaking is an adjustable parameter.

Perturbations around Lorentz-breaking bi-flat (or bi–de
Sitter [39]) solutions lead to gravitons with Lorentz-
breaking mass terms. Because of the invariance under
diagonal diffeomorphisms [22], mass terms with compo-
nents h0i are absent from the second-order Lagrangian.
This, in turn, leads to a well-behaved theory of linearized
perturbations [22,31], which is not afflicted by the vDVZ
discontinuity. It is somewhat puzzling that in the linear
theory, there are corrections to the Newtonian potential
which are proportional to the square of the graviton mass
and which grow linearly with the distance to the origin. On
the other hand, as mentioned above, these theories admit
the Schwarzschild metric as an exact solution for the same
values of the parameters. Thus, the linearized solutions for
static spherically symmetric sources do not coincide with
the linearization of the known vacuum solutions. This
seems to indicate that this theory has a linearization insta-
bility such as the one which is found in other contexts [48],
some of which are related to massive gravity and may have
important phenomenological consequences [49]. Another

possibility is that there may be other exact solutions which
coincide with the linearized approximation at large dis-
tances, and those may be the relevant ones which can be
matched to spherically symmetric matter sources near the
origin. This issue clearly deserves further investigation.

We have also considered perturbations to solutions
where both metrics are proportional to each other, focusing
in the case of de Sitter. This has led us to consider generic
mass terms for gravitons in de Sitter space, beyond the
Fierz-Pauli case. We find that for the case of Lorentz-
invariant mass terms, only the Fierz-Pauli combination is
free from instabilities at high momenta��=a2 � m2 (and
only for m2 � 2H2). For the Lorentz-breaking case, the
situation is analogous to that in flat space [15,16,39].

ACKNOWLEDGMENTS

It is a pleasure to thank Alberto Iglesias, Oriol Pujolas
and Joan Soto for useful discussions. D. B. thanks the
Institut d’Astrophysique de Paris for its hospitality while
this work was being concluded. The work of D. B. has been
supported by MEC (Spain) through a FPU grant. J. G. and
D. B. acknowledge support from CICYT Grant No. FPA
2004-04582-C02-02 and No. DURSI 2005SGR 00082.

[1] A. Albrecht et al., arXiv:astro-ph/0609591.
[2] M. Fierz and W. Pauli, Proc. R. Soc. A 173, 211 (1939).
[3] H. van Dam and M. J. Veltman, Nucl. Phys. B22, 397

(1970); V. I. Zakharov, JETP Lett. 12, 312 (1970); Y.
Iwasaki, Phys. Rev. D 2, 2255 (1970).

[4] G. R. Dvali, G. Gabadadze, and M. Porrati, Phys. Lett. B
485, 208 (2000).

[5] C. Deffayet, Phys. Lett. B 502, 199 (2001); C. Deffayet,
G. R. Dvali, and G. Gabadadze, Phys. Rev. D 65, 044023
(2002).

[6] T. Damour and I. I. Kogan, Phys. Rev. D 66, 104024
(2002).

[7] T. Damour, I. I. Kogan, and A. Papazoglou, Phys. Rev. D
66, 104025 (2002).

[8] S. Weinberg, Rev. Mod. Phys. 61, 1 (1989).
[9] A. I. Vainshtein, Phys. Lett. B 39, 393 (1972).

[10] J. H. Jun and I. Kang, Phys. Rev. D 34, 1005 (1986).
[11] T. Damour, I. I. Kogan, and A. Papazoglou, Phys. Rev. D

67, 064009 (2003).
[12] C. Deffayet, G. R. Dvali, G. Gabadadze, and A. I.

Vainshtein, Phys. Rev. D 65, 044026 (2002).
[13] A. Gruzinov, New Astron. Rev. 10, 311 (2005); A. Lue,

Phys. Rev. D 66, 043509 (2002); M. Porrati, Phys. Lett. B
534, 209 (2002); T. Tanaka, Phys. Rev. D 69, 024001
(2004); G. Gabadadze and A. Iglesias, Phys. Rev. D 72,
084024 (2005).

[14] G. Dvali, G. Gabadadze, O. Pujolas, and R. Rahman, Phys.
Rev. D 75, 124013 (2007).

[15] V. A. Rubakov, arXiv:hep-th/0407104.

[16] S. L. Dubovsky, J. High Energy Phys. 10 (2004) 076.
[17] M. V. Libanov and V. A. Rubakov, Phys. Rev. D 72,

123503 (2005).
[18] B. M. Gripaios, J. High Energy Phys. 10 (2004) 069.
[19] G. Dvali, O. Pujolas, and M. Redi, Phys. Rev. D 76,

044028 (2007).
[20] N. Arkani-Hamed, H. C. Cheng, M. A. Luty, and S.

Mukohyama, J. High Energy Phys. 05 (2004) 074.
[21] D. Blas, C. Deffayet, and J. Garriga, Classical Quantum

Gravity 23, 1697 (2006).
[22] Z. Berezhiani, D. Comelli, F. Nesti, and L. Pilo, Phys. Rev.

D 99, 131101 (2007).
[23] D. Blas, Int. J. Theor. Phys. 46, 2258 (2007)
[24] D. Blas, AIP Conf. Proc. 841, 397 (2006).
[25] C. J. Isham, A. Salam, and J. Strathdee, Phys. Rev. D 3,

867 (1971).
[26] D. G. Boulware and S. Deser, Phys. Rev. D 6, 3368 (1972).
[27] P. Creminelli, A. Nicolis, M. Papucci, and E. Trincherini,

J. High Energy Phys. 09 (2005) 003.
[28] C. J. Isham and D. Storey, Phys. Rev. D 18, 1047 (1978).
[29] C. Deffayet and J. Mourad, Classical Quantum Gravity 21,

1833 (2004); Phys. Lett. B 589, 48 (2004).
[30] S. L. Dubovsky, P. G. Tinyakov, and I. I. Tkachev, Phys.

Rev. Lett. 94, 181102 (2005).
[31] G. Gabadadze and L. Grisa, Phys. Lett. B 617, 124 (2005).
[32] S. L. Dubovsky, P. G. Tinyakov, and I. I. Tkachev, Phys.

Rev. D 72, 084011 (2005).
[33] E. Babichev, V. F. Mukhanov, and A. Vikman, J. High

Energy Phys. 09 (2006) 061.

D. BLAS, C. DEFFAYET, AND J. GARRIGA PHYSICAL REVIEW D 76, 104036 (2007)

104036-14



[34] N. Arkani-Hamed, H. C. Cheng, M. A. Luty, and S.
Mukohyama, J. High Energy Phys. 05 (2004) 074.

[35] C. Deffayet and J. W. Rombouts, Phys. Rev. D 72, 044003
(2005).

[36] K. S. Stelle, Gen. Relativ. Gravit. 9, 353 (1978).
[37] E. Alvarez, D. Blas, J. Garriga, and E. Verdaguer, Nucl.

Phys. B756, 148 (2006).
[38] N. Boulanger, T. Damour, L. Gualtieri, and M. Henneaux,

Nucl. Phys. B597, 127 (2001).
[39] D. Blas (in progress).
[40] D. Blas, J. Phys. A 40, 6965 (2007).
[41] N. Arkani-Hamed, H. Georgi, and M. D. Schwartz, Ann.

Phys. (N.Y.) 305, 96 (2003).

[42] V. F. Mukhanov, H. A. Feldman, and R. H. Brandenberger,
Phys. Rep. 215, 203 (1992).

[43] S. Dubovsky, T. Gregoire, A. Nicolis, and R. Rattazzi, J.
High Energy Phys. 03 (2006) 025.

[44] L. F. Abbott and S. Deser, Nucl. Phys. B195, 76 (1982).
[45] S. Deser and A. Waldron, Phys. Lett. B 508, 347 (2001).
[46] I. Bengtsson, J. Math. Phys. (N.Y.) 36, 5805 (1995).
[47] A. Higuchi, Nucl. Phys. B282, 397 (1987).
[48] V. Moncrief, J. Math. Phys. (N.Y.) 17, 1893 (1976); D.

Kastor and J. H. Traschen, Phys. Rev. D 47, 480 (1993); A.
Higuchi, Classical Quantum Gravity 8, 2023 (1991).

[49] C. Deffayet, G. Gabadadze, and A. Iglesias, J. Cosmol.
Astropart. Phys. 08 (2006) 012.

BIGRAVITY AND LORENTZ-VIOLATING MASSIVE GRAVITY PHYSICAL REVIEW D 76, 104036 (2007)

104036-15


