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We propose that the late-time tail problem in the Reissner-Nordström (RN) spacetime is dual to a tail
problem in the Schwarzschild spacetime with a different initial data set: at a fixed observation point the
asymptotic decay rate of the fields are equal. This duality is used to find the decay rate for tails in RN. This
decay rate is exactly as in Schwarzschild, including the case of the extremely-charged RN spacetime
(ERN). The only case where any deviation from the Schwarzschild decay rate is found is the case of the
tails along the event horizon of an ERN spacetime, where the decay rate is the same as at future null
infinity. As observed at a fixed location, the decay rate in ERN is the same as in Schwarzschild. We verify
these expectations with numerical simulations.
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I. INTRODUCTION AND SUMMARY

Late-time tails in black hole spacetimes have been
studied extensively since Price’s seminal analysis [1].
Complete understanding is available for the
Schwarzschild spacetime—where it was also found in
fully nonlinear numerical simulations [2,3]—and much
progress has been made recently also in understanding
the tail problem for Kerr black holes [4,5], and even for
spacetimes without any assumption of symmetry (but with
a globally weak field) [6]. The tail of spherically symmet-
ric, electrically charged, static black holes—namely,
Reissner-Nordström (RN) black holes—was studied first
by Bičák for the case of scalar perturbations (for both the
nonextreme and extreme cases) in [7] and for the case of
coupled electromagnetic and gravitational (linearized) per-
turbation in [8] (see also [9]) and revisited by Gundlach,
Price, and Pullin (GPP) [10]. Price’s law has been proved
rigorously in the Schwarzaschild case and a self-
gravitating scalar field by Dafermos and Rodnianski [11].

The late-time tails in black hole spacetimes are under-
stood as a result of the asymptotic form of the effective
potential at great distances from the black hole, and the
exponential drop off of the potential close to the event
horizon. It is the scattering of the waves off the effective
potential at great distances that is responsible for the
creation of the tails. (This picture applies also for the
case of a Kerr spacetime, but this simple behavior is
masked by an intricate mode coupling effect. See [4].)
Indeed, it was implied first by Bičák in Ref. [7] and then
argued explicitly in greater detail by GPP in Ref. [10] that
because in RN the effective potential has the same form at
great distances as in Schwarzschild, the decay rate of the
tails in RN must be the same as in Schwarzschild. It was
further demonstrated numerically in Ref. [10] that this is
indeed the case. (This argument is further reinforced by the
analysis in Ref. [12].)

The GPP argument suggests that all spacetimes that
share the same asymptotic form of the effective potential

have the same decay rate for the late-time tails. The
possible exception of the late-time tails in the extreme
RN (ERN) spacetime is therefore intriguing. Specifically,
Bičák argued in Ref. [7] that the exponent of the tails (as
observed in a fixed observation point) in the ERN space-
time for initial data with an initial static moment ‘ was
‘� 2, whereas in Schwarzschild and (nonextreme) RN
it is 2‘� 2. The asymptotic form of the effective potential
is the same in those three spacetimes. [They differ only
to O�r�3

� �, r� being the tortoise coordinate. To
O�ln�r�=M�r

�3
� � the three effective potentials are identi-

cal.] Applied naively, the GPP argument suggests that the
same exponent for the tails should be observed for all three
cases.

However, it turns out that the effective potential in ERN
is very different from the effective potentials in
Schwarzschild or (nonextreme) RN near the black hole:
instead of dropping off exponentially (in r�, for large and
negative values of r�) towards the event horizon, the ef-
fective potential in ERN is effectively centrifugal asymp-
totically close to the event horizon. Moreover, the
deviations from centrifugality have the same leading-order
form as the deviations from centrifugality at great dis-
tances from the event horizon (large and positive r�).
That is, the effective potential is asymptotically symmetric
[7], such that the tails at r � const are expected to have
contributions both from scatterings at great distances, and
from scatterings very close to the event horizon. [In that
sense, the event horizon is equivalent to future null infinity.
In fact, the close analogy of the event horizon to future null
infinity is even deeper: the tail along the event horizon of
ERN turns out to be the same as along future null infinity
(see below).] Can the contributions to the tails coming
from the close vicinity of the event horizon in ERN over-
whelm the contributions to the tails coming from great
distances, or interfere with them to create tails with the
indices predicted in [7]? In this paper we study this issue,
and show that with adaptations, the GPP argument is
applicable also to the ERN spacetime. We then present
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also numerical simulations of tails in ERN. These simula-
tions indicate that the falloff of these tails in the ERN case
is the same as in the nonextreme case, i.e., quicker than that
predicted in Ref. [7].

The organization of this paper is as follows: In Sec. II we
describe the scattering problem and discuss the asymptotic
symmetry of the effective potential. This symmetry was
found in [7] and is presented here for completeness. In
Sec. III we argue that in both Schwarzschild and ERN the
tails along r � const result from the secondary waves (first
scattering). Tertiary waves (second scattering) or higher-
order waves that are present at late times originate only
from scatterings at small values of jr�j; scattering at great
distances leads only to secondary waves. As it is the
scattering at great distances which leads to the tails, we
argue that it is the secondary waves which are responsible
to the tails. In Sec. IV we discuss the tails in ERN when the
initial data have compact support. We argue that the tail
problem along r � const in ERN is dual to a tail problem
in Schwarzschild (for a different, but related, initial value
problem); as the latter is well understood, we may predict
the power-law indices for ERN tails. The meaning of
duality here is as follows: while the value of the field at a
particular event is different in the two spacetimes (because
the intermediate effective potentials of the two dual space-
times are not identical), the scattering dynamics from
regions of spacetime that contribute to the formation of
the tail is similar, so that the same power-law indices for
the tail are expected. We emphasize that the duality argu-
ment pertains only to the tail at a fixed observation point
(along r � const). Then, in Sec. V we consider the tails in
ERN with an initially static moment for the initial data. We
again show that this problem is dual to another tail problem
in Schwarzschild and use this duality to find the decay rate
of the tails in ERN. Finally, in Sec. VI we present numeri-
cal simulations of tails in ERN which are in full agreement
with our expectations based on the arguments brought is
Secs. IV and V. We describe the numerical code and the
convergence tests done in the appendix.

II. THE ERN EFFECTIVE POTENTIAL

The ERN metric is given by

 ds2 � �

�
1�

M
r

�
2
dt2 �

�
1�

M
r

�
�2
dr2 � r2d�2; (1)

where r is the regular radial Schwarzschild coordinate
defined so that spheres of radius r have surface area of
4�r2, and d�2 is the line element of the unit 2-sphere. In
terms of the Regge-Wheeler ‘‘tortoise‘‘ coordinate r�,
defined by

 

dr�
dr
�

�
1�

M
r

�
�2
; (2)

the wave scattering problem is governed by the wave
equation

 �
@2 

@t2
�
@2 

@r2
�

� V�r�r��� � 0;

where the ERN effective potential, for a multipole ‘, is
given by

 V�r� �
�
1�

M
r

�
2
�

2M

r3

�
1�

M
r

�
�
‘�‘� 1�

r2

�
: (3)

For a scalar field �, the dimensionally reduced field  is
defined by � � r . For field spins other than s � 0, the
effective field  is interpreted appropriately [8,9].

To find the asymptotic effective potential, integrate
Eq. (2) to find

 r��r� � r� 2M ln
�
r
M
� 1

�
�

M2

r�M
� const:

Denoting

 � :�
r�M
M

; (4)

 R :�
r� �M
M

; (5)

and choosing the integration constant, the relation between
the radial coordinates is

 R � �� 2 ln��
1

�
: (6)

In order to find V�r�� as r� ! 	1, consider two cases:
Case (a) r
 M (�, R
 1), for which R� �� 2 ln�
[neglecting the term �1=� in Eq. (6)], and
case (b) 0< r�M� M (0< �� 1, R��1, jRj 

1), for which R� 2 ln�� ��1 [neglecting the term � in
Eq. (6)].

A. Case (a): r
M

In this case

 R� �� 2 ln�;

which can be solved as

 �� 2W
�
1

2
eR=2

�
; (7)

where W�x� is the Lambert W function1 [13], defined by
the inverse function of W�x�eW�x� � x [i.e., the (real) func-
tion W�x� which solves this equation]. As by definition

1For the Schwarzschild spacetime in the usual Schwarzschild
coordinates, the ‘‘tortoise‘‘ coordinate is defined by dr� �
dr=�1� 2M=r�. Defining ~� :� r=�2M� � 1 and ~R :�
r�=�2M� � 1, and choosing the integration constant, the two
radial coordinates are related by ~R � ~�� ln~�. In terms of the
Lambert W function we may write ~� � W�exp� ~R��, or

 r�r�� � 2M� 2MW�e�r��2M�=�2M��:
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� > 0, the principal branch of the W function [denoted
W0�x�] is chosen, and one does not have branch ambiguity.
For x
 1, W�x� � lnx� lnlnx�    , so that
 

�� 2 ln
�
1

2
eR=2

�
� 2 ln

�
ln
�
1

2
eR=2

��
�   

� R� 2 ln
R
2
�    ; (8)

or

 r�r�� � r� � 2M ln
r�

2M
�    : (9)

Substituting in Eq. (3), one finds (r� 
 M)

 V�r�r��� �
‘�‘� 1�

r2
�

� 4M
‘�‘� 1�

r3
�

ln
r�

2M
�O�r�3

� �:

(10)

B. Case (b): 0 < r�M�M

In this case

 R��
1

�
� 2 ln�;

which can be solved as

 �� e�jRj=2 exp
�
W
�
1

2
ejRj=2

��
:

Using the definition of the Lambert W function,

 �� e�jRj=2 �
1

2

ejRj=2

W�12 e
jRj=2�

�
1

2W�12 e
jRj=2�

;

so that

 ��
1

2� jRj2 �1�
2
jRj lnjRj2 �   �

�
1

jRj
�

2

R2 ln
jRj
2
�    ;

(11)

and

 r�r�� � M�
M2

r� �M

�
1�

2M
r� �M

ln

��������
r� �M
M

���������  
�
:

(12)

Substituting in Eq. (3), one finds (r� � �M):

 V�r�r��� �
‘�‘� 1�

r2
�

� 4M
‘�‘� 1�

r3
�

ln
jr�j
2M
�O�r�3

� �:

(13)

Combining the results for cases (a) and (b), one finds
(jr�j 
 M)

 V�r�r��� �
‘�‘� 1�

r2
�

� 4M
‘�‘� 1�

jr�j3
ln
jr�j
2M
�O�r�3

� �:

(14)

The last expressions show explicitly that the effective
potential is asymptotically symmetrical under r� $ �r�.
Notably, the asymptotic effective potential for ERN coin-
cides with the Schwarzschild asymptotic effective poten-
tial (for r� 
 M). The same effective potential is also
given in [7]. We add that in terms of the Schwarzschild
radial coordinate r, for r
 M,

 V�r� �
‘�‘� 1�

r2 � 2M
‘2 � ‘� 1

r3 �O�r�4�

is the same in Schwarzschild as in ERN. The ERN and
Schwarzschild effective potentials, for ‘ � 1, are shown in
Fig. 1.

The key step in finding the asymptotic effective potential
was finding r�r��. The latter may be found without invok-
ing the Lambert W function by an iterative solution, in
which one substitutes r��r� into the equation r �
r� � g�r�. After each iteration, the right-hand side will be
a combination of terms in r� and in r, but the latter terms
become smaller with each iteration, and may be neglected.

III. THE LATE-TIME TAILS RESULT FROM
SECONDARY WAVES

Consider an initial perturbation field of compact sup-
port. (We assume compact support here without loss of
generality in order to separate at late times between pri-
mary waves and scattered waves, as we are interested here
only in the latter.) The part of the radiative field at later
times which propagates along the geometrical optics rays
is the primary waves. These waves scatter off the effective
potential. The waves which scatter just once are the sec-
ondary waves, those which scatter twice are the tertiary
waves, and so on. (See Fig. 2.)

In this section we show that in both the Schwarzschild
and the ERN cases the late-time tails are generated by the
secondary waves, and higher-order waves are irrelevant for
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FIG. 1. The effective potential for ‘ � 1 in ERN (solid curve)
and Schwarzschild (dashed curve) as a function of r�.
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their generation. The tails in Schwarzschild are generated
by the scattering of waves off the effective potential at
great distances, i.e., it is the part of the effective potential at
r� 
 M which is responsible for the generation of the tails.
In order to study which order of the waves (i.e., secondary
or higher) is relevant for the generation of the tails, we
write the effective potential in the form

 Veff�r�� �
‘�‘� 1�

r2
�

� V̂�r��; (15)

where the curvature potential

 V̂�r�� � A
4M‘�‘� 1�

r3
�

ln
r�

2M
�O�r3

��: (16)

Here, A equals unity for the Schwarzschild effective po-
tential. (We parametrize here the curvature potential with A
for the analysis of the order of the waves below.)

Secondary waves are those which scatter just once.
Therefore, secondary waves are expected to be propor-
tional to A. Therefore, if we study the tails as we vary
the value of A in Eq. (16), we can determine whether the
tails are secondary waves (linear dependence on A), or
include higher-order contributions (deviations from the
linear dependence on A). Primary waves are independent
of A. In practice, we write the toy potential as

 V�r�� �

8<
:
�1� 2M

r ��
‘�‘�1�
r2 � 2M

r3 � r < r0
‘�‘�1�
r2
�
� A 4M‘�‘�1�

r3
�

ln r�
2M r > r0;

(17)

that is, at small distances (r < r0) the potential is the exact
Schwarzschild potential, and at great distances (r > r0) the
potential is approximately Schwarzschild for A � 1, and
non-Schwarzschild for A � 1. [Toy potentials have been
used before to study tail phenomena (in Schwarzschild [1]
and in RN and ERN [7]), although not the same toy
potential as in here.]

We next use a numerical code to study the dependence of
the tails on A and r0. The code we use, and convergence
tests, are described in the appendix. It is a Cauchy code
with each cell computed by a characteristic ‘‘diamond.’’
The code is globally second-order convergent. We vary r0

(in practice from 100M to 200M), and for each value of r0,
we vary A (in practice from 0.25 to 4). For each simulation
(characterized by specific values of r0 and A) we verified
that indeed tails are generated (in all cases with the same
tail exponent; see also Ref. [14]), and then we recorded the
value of the field in the tail regime for a fixed value of time.
In practice, we recorded the fields at t � 3000M at r� � 0,
but the results do not depend on the choice of the evalu-
ation time or evaluation point. Figure 3 shows the magni-
tude of the tail at a fixed time as a function of A for
different values of r0. It is clear from Fig. 3 that the

FIG. 2. A schematic diagram of scattered waves. The initial
pulse is initially outgoing (and is therefore shown on the incom-
ing leg of the characteristic hypersurface), with the primary
waves (p) arriving to scri�. The waves which cross the worldline
of an observer at r � const at late times are scattered waves: the
secondary waves (s) undergo one scattering event, and quater-
nary waves (q) undergo three scattering events. We only display
the waves approaching the observer from the right, hence no
tertiary waves are shown. The abbreviation ‘‘EH’’ stands for the
event horizon.
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FIG. 3. The magnitude of the tail in Schwarzschild at a fixed
value of time as a function of A for different values of r0. Same
initial data and evaluation point were used in all cases. �: r0 �
100M; �: r0 � 125M; �: r0 � 150M; �: r0 � 175M; 4: r0 �
200M. The circles (�) are the Richardson extrapolations of the
data at finite values of r0 to r0 ! 1, and the solid line is a best fit
line of the extrapolated data (circles). The squared correlation
coefficient for the solid line is R2 � 0:9995. The dotted curves
are 3� confidence curves of the extrapolated data.
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dependence of the tail on A is nonlinear for any finite value
of r0. However, by increasing r0 we find that the deviation
from a linear dependence decreases. To find the magnitude
of the field in the limit as r0 ! 1, we apply Richardson’s
deferred approach to the limit (‘‘Richardson’s extrapola-
tion’’) for each value of A, and then fit the extrapolated data
points to a straight line. Figure 3 suggests that the tail field
would depend linearly on A in the limit as r0 ! 1. In fact,
in Fig. 3 we look at successive simulations, in which we
study the dependence of the field on A for scatterings
occurring at r > r0.

Figure 4 schematically shows the spacetime diagram
with three curves corresponding to three different values
of r0. For the smallest value of r0, the tails, as recorded at
the observation point, have contributions from scatterings
at all values of r > r0, i.e., from regions III, II, and I in
Fig. 4. For the intermediate value of r0 the tails have
contributions from regions II and I, and for the largest
value of r0 the contributions come only from region I [15].

Figure 3 suggests that when only scatterings at asymp-
totically large values of r0 are considered, the dependence
of the tail field on A would be linear, which implies that
only secondary waves would be present. The tails are
known to be the outcome of scatterings off the effective
potential at asymptotically great distances, such that our
results imply that indeed the tails in Schwarzschild at
asymptotically late times are caused by waves that are
scattered just once, i.e., secondary waves.

Figure 5 shows for the ERN spacetime the same infor-
mation as Fig. 3 does for Schwarzschild. We infer that in
ERN too, the late-time tails are caused by secondary
waves. In the ERN case the toy potential was taken as

 V�r�� �

8<
:
�1� M

r �
2�‘�‘�1�

r2 � 2M
r3 �1� M

r �� r < r0
‘�‘�1�
r2
�
� A 4M‘�‘�1�

r3
�

ln�r�=�2M�� r > r0:

(18)

For both Figs. 3 and 5 we used momentarily stationary
initial data with compact support, but similar results were
obtained also for other choices. In practice, we used initial
data which are nonzero only between r�i and r�f , where the
field has the form

  �
��r� � r�i��r� � r�f��

8

��r�c � r�i��r�c � r�f��
8

where r�c � �r�i � r�f�=2, and r�i � 10M, r�f � 30M.
In fact, as for the Schwarzschild curvature potential A �

1, it is the linearity of the field with A in the neighborhood
of unity which is important. Indeed, in both Figs. 3 and 5
the local linearity in the neighborhood of the physical
curvature potential is implied.

The domination of secondary waves for the ERN tails
for initial data that include a static moment is illustrated in
Fig. 6, that shows the field as a function of A for a number
of evaluation times at r� � 0. Here, the toy potential is as
in (18), except that the first equation in (18) is taken for
r��r0�> r� >�r��r0� and the second for jr�j> r��r0�. As
shown in Fig. 6, at early evaluation times the field is
nonlinear in A, and at later times it becomes linear in A.
Also, for A� 1, the field is effectively linear already at
earlier times. Also for the case of an initially static moment
present in the initial data, the conclusion is that the tails in
ERN are governed by secondary waves. Again, also for
early times (in the tail regime) the local linearity with A in
the neighborhood of the physical curvature potential is
implied by Fig. 6.

scri+EH

III III

FIG. 4. The spacetime diagram with three curves correspond-
ing to three different values of r0, dividing spacetime into three
regions I, II, and III. See text for more information.
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FIG. 5. Same as Fig. 3 for the ERN spacetime. The squared
correlation coefficient for the solid line is R2 � 0:9987.
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An important result is that for all A � 0, the tail power-
law index remains unchanged. It is only the amplitude of
the tail that is sensitive to A, not the decay rate. The same
conclusions are found also for the case of initial data that
include an initially static moment.

IV. ERN WITH INITIAL DATA OF COMPACT
SUPPORT

In this section we adapt the GPP argument to the case of
ERN, when the initial data have compact support. In Sec. V
we consider the case of initial data which include an
initially static moment.

Motivated by the preceding considerations, we define
spacetime duality as follows:

Definition.—Two spacetimes (fixed background geome-
try and an initial data set for linearized perturbations) are
said to be dual if the asymptotic contributions of secondary
waves to the late-time tails in the two spacetimes (at a fixed
observation point) have the same decay rate.

Consider an ERN spacetime, with initial data of compact
support. The tails observed on r � const at time t have
contributions ‘‘coming from the right’’ (incoming waves)
and contributions ‘‘coming from the left’’ (outgoing
waves) (see the diagram on the left of the top row of
Fig. 7). (We first consider the observation point to coincide
with the maximum of the effective potential for reasons to
be discussed below, but then our results for the tail are
independent of the evaluation point such that this assump-
tion does not jeopardize the generality of our discussion.)
Because these are linear waves, we may separate the waves
on r � const at time t into the two types of waves, incom-

ing and outgoing, which make them. We next argue, that
the tails of the original problem (i.e., ERN with perturba-
tions of compact support, and waves which are a combi-
nation of outgoing and incoming waves) are the same as
the tails of two superposed problems: ERN with the same
initial data but only waves coming from the right, and ERN
with the same initial data but only waves coming from the
left (right-hand side of the top row in Fig. 7). Such a
decomposition can be done because of two reasons:
(i) the linearity of the problem, and (ii) our previous result
that it is only the secondary waves which are important for
the generation of the tails. (It is important that we discuss
only secondary waves. If higher-order waves were allowed,
then there would be no clear separation of waves coming
from the right and waves coming from the left, as the two
would be coupled in an intricate manner.)

Next, consider the case of ERN with the waves coming
from the right. We argue that the (partial) tails in this case
are the same as the tails in Schwarzschild for the same
initial data, because at great distances the effective poten-
tial in Schwarzschild is the same as in ERN. [Deviations
are only at O�r�3

� �.] Therefore, we can replace the first
diagram on the right-hand side of the top row of Fig. 7 with
the first diagram on the second row. Similarly, the (partial)
tails coming from the left in ERN (second diagram on
right-hand side of the top row) are the same as the tails
in Schwarzschild, if we reflect the initial data to the other
side of the potential barrier, and change the initial data to
be initially incoming (second diagram on the second row).
This is the case because the effective potential in ERN
close to the event horizon is the same as the effective
potential in ERN at great distances, and the latter in its
turn is the same as the effective potential at great distances
in Schwarzschild. Consequently, the ERN effective poten-
tial close to the event horizon is asymptotically the same as
the effective potential at great distances in Schwarzschild.
It is important that we reflect the initial data because we
need to keep the property of the original diagram, that the
direction of the waves is the same as the original direction
of the initial pulse. (The wave propagation is strictly speak-
ing not the same in these three spacetimes, because the
effective potentials at finite distances are not identical.
However, the tails are generated only by the asymptotic
parts of the curvature potential, and these are the same in
these three spacetimes.)

The original tail problem in ERN is then dual to the
suporposition of two Schwarzschild problems, which, be-
cause of the linearity of the problem, we can recombine
into a single problem by adding together the original initial
data and the reflected initial data. There is one more subtle
point, though: The tails we obtained are not the full tails,
because in the recombined diagrams we only have waves
coming from the right, whereas in the full picture in
Schwarzschild we would have waves coming both from
the right and from the left. Adding the waves in
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FIG. 6. The magnitude of the tail in ERN at a fixed evaluation
point as a function of A for different values of t, for the same
choice of r0. Same initial data and evaluation point (r� � 0)
were used in all cases. Here, ‘ � 1, and r0 � 100M. The
evaluation times are *: t � 300M; �: t � 400M; �: t �
500M; �: t � 600M; �: t � 800M; and 4: t � 1000M.

CARL J. BLAKSLEY AND LIOR M. BURKO PHYSICAL REVIEW D 76, 104035 (2007)

104035-6



Schwarschild which come from the left, we argue, would
not change the tails. Allowing for waves coming from the
left in Schwarzschild would add only negligible amount of
secondary waves, because in Schwarzschild the effective
potential drops off exponentially near the event horizon. In
addition, because the original pulse has compact support,
there will be no primary waves coming from the left at late
times. Therefore, we argue that we can add to our diagram
also the waves coming form the left in Schwarzschild,
because they will not change the tails. This way, we obtain
the last diagram in Fig. 7 (third row), which is the full
diagram for a tail problem in Schwarzschild for initial data
different from the original one (the original initial data
superposed with their reflection). As the tail problem in
Schwarzschild is completely understood (the exponent of
the tails is 2‘� 3), we argue that the same exponent for the
tails is expected also in ERN. Below, in Sec. A1, we show,
using numerical simulations, that this is indeed the case.

V. ERN WITH INITIAL DATA OF AN INITIAL
STATIC MOMENT

The arguments in this case follow closely those of the
preceding section and will therefore be described here
briefly. For initial data with an ‘‘initially static moment’’
(i.e., a multipole moment of the static solution is present on

the initial data hypersurface), for Schwarschild

  Sch � Q‘

�
r�M
M

�
�

1

r‘�1
�

�r
 M�;

where Q‘ is the Legendre function of the second kind,
while for ERN [7]

  ERN
� �

1

�r�M�‘�1
�

1

r‘�1
�

�r
 M�;

and

  ERN
� � �r�M�‘ �

1

jr�j
‘ �0< r�M� M�:

Recall that the form of the initial data with an initially
static moment is important only for jr�j 
 M. That is, it is
only the asymptotic drop off rate of the field (on the initial
hypersurface) away from the peak of the effective potential
that determines whether an initially static moment is
present or not. Remarkably, the initially static moment
initial data are the same for ERN as they are for
Schwarzschild for r� 
 M. We may therefore take the
initial data in ERN to be  ERN

� for r� > 0 and ERN
� for r� <

0. Notice that  ERN
� is consistent with the dynamical re-

quirement that a local observer sees a regular field as she is
crossing the event horizon. This requirement is presented

FIG. 7. The duality transformations of the tail problem for ERN with initial data of compact support. See text for details.
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in [7] as  � const� const=u for all ‘, which at t � 0
becomes  � const� const=jr�j. This requirement yields,
in fact, the slowest drop off of the field. Faster drop off is
not disallowed and will lead to a vanishing field on the EH,
instead of a nonvanishing constant. Notice, however, that
the dynamical requirement is consistent with our initial
data (at t � 0) only for ‘ � 0, 1, such that for ‘ � 2 it does
not represent our choice for initial data.

In Fig. 8 we describe the duality transformations as
follows. First, the initial value problem, being a linear
one, is equivalent to the superposition of two problems:

in the first,  �  ERN
� for r� > 0 and  � 0 for r� < 0, and

in the second,  � 0 for r� > 0 and  �  ERN
� for r� < 0.

At the next step, because of the asymptotic symmetry of
the ERN effective potential, the tail problem in ERN in the
second problem above ( � 0 for r� > 0 and  �  ERN

�

for r� < 0) is dual to an ERN problem with  �  ERN
� for

r� > 0 and � 0 for r� < 0. Because of the linearity of the
scattering problem, we may now combine the two prob-
lems into a single one, for which  �  ERN

� �  ERN
� for

r� > 0 and  � 0 for r� < 0. As for r� 
 M  ERN
� 


 ERN
� , the initial data are dominated at large distances

by  ERN
� , so that the tail problem is dual to ERN with

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
−3

2

3

4

5

6

l = 1

0 0.5 1 1.5 2 2.5 3
x 10

−3

4

5

6

7

8

 n
 (

 t 
) l = 2

0 0.5 1 1.5 2
x 10

−3

6

7

8

9

10

 M / t

l = 3

FIG. 9. The local power index n�t� as a function of m=t in
Schwarzschild, for initial data given by  � r�‘� for r� > 0 and
 � 0 for r� < 0, for a scalar field (s � 0), for ‘ � 1 (upper
panel), ‘ � 2 (middle panel), and ‘ � 3 (lower panel). See text
for details.
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FIG. 8. The duality transformations of the tail problem for ERN with initial data of an initial static moment. See text for details.
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FIG. 10. The field along r� � 0 as a function of t, for initial
data with an initially static moment, for a scalar field (s � 0), for
‘ � 1 (upper panel), ‘ � 3 (middle panel), and ‘ � 4 (lower
panel). See text for details.
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 �  ERN
� for r� > 0 and  � 0 for r� < 0. Lastly, be-

cause of the duality of the tail problem in ERN and in
Schwarzschild, the original tail problem is dual to a
Schwarzschild tail problem, where the initial data are given
by  � r�‘� for r� > 0 and  � 0 for r� < 0.

The last tail problem is not a trivial one. It has initial data
that are stronger than that of an initially static moment, but
it is similar to the initially static moment in having non-
compact initial data. A numerical solution of this problem,
that is Schwarzschild with  � r�‘� for r� > 0 and  � 0
for r� < 0, is presented in Fig. 9, which displays the local
power index n�t� :� �t _ = [3] as a function of time for
three values of ‘.

VI. NUMERICAL SIMULATIONS OF TAILS IN ERN

The preceding discussion provides us with the expecta-
tion that initial data in ERN with an initial static moment
present lead to the same indices of power-law tails as in
Schwarzschild, namely, at late times  � t��2‘�2�. To test
whether these expectations are indeed realized, we present
in Fig. 10 the field along r � const as a function of time for
initial data of an initial static moment ‘, for various values
of the latter. In Fig. 11 we present the local power index
n�t� for the same data. The numerical results agree with our
prediction: the late-time tails in ERN for initial data that
are those of an initial static moment drop off with time as
 � t��2‘�2�. Finally, in Table I we confront our prediction
for the tail power-law index in ERN with numerical results.

The numerical results for the power-law indices are ex-
trapolations to t! 1 of the local power indices n�t�.

The effective equivalence of the event horizon and fu-
ture null infinity is further demonstrated by the tails along
outgoing and incoming null rays at large values of ad-
vanced and retarded times, respectively. While the tails
along a r� � const curve fall off at late times as t��2‘���1�

for both Schwarzschild and ERN, where � � 1, 2 depend-
ing whether an initially static moment is present or not,
along future null infinity the Schwarzschild tails fall off as
u��‘���, where u � t� r� is retarded time. We find this
result to remain unchanged also for ERN (Fig. 12). The
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FIG. 11. The local power index n along r� � 0 as a function of M=t, for initial data with an initially static moment, for a scalar field
(s � 0), for ‘ � 1 (left upper panel), ‘ � 2 (right upper panel), ‘ � 3 (left lower panel), and ‘ � 4 (right lower panel). See text for
details.

TABLE I. Confrontation of the prediction of this paper based
on duality arguments (2‘� 2) for the power-law index along
r� � const with our numerical results for ERN and initial data of
an initially static moment. The relative error is computed as the
difference between the numerical result and 2‘� 2, divided by
the latter.

‘ Mode

Prediction
based on

duality (2‘� 2)
Numerical

result
Relative

error

0 2 1.9972 1� 10�3

1 4 3.9996 1� 10�4

2 6 5.9999 2� 10�5

3 8 7.9998 3� 10�5

4 10 9.9974 3� 10�4
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main difference between Schwarzschild tails and ERN tails
occurs along the event horizon: while in Schwarzschild the
tails fall off as v��2‘���1�, in ERN they fall off as v��‘���,
the same as along future null infinity (Fig. 12). Here, v �
t� r� is advanced time.
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APPENDIX: NUMERICAL CODE AND
CONVERGENCE TESTS

We have used two versions of the code, that allow us to
use either Cauchy or characteristic data. For the latter, we
used a standard characteristic code in 1� 1D in double-
null coordinates u, v. To use Cauchy data, we modified the
code so that initial data (for  and for _ ) are specified at
t � 0, but each computational cell is calculated using the
regular characteristic diamond. The computational domain
is the domain of influence of the initial data (characteristic
or Cauchy), so that no boundary conditions are specified.

In what follows we denote  S �  �u; v�,  E �
 �u; v��v�,  W �  �u� �u; v�, and  N �

 �u��u; v��v�. In each computational cell we use
the second-order algorithm

  N �  E �  W �  S �
1
4V0 0�u�v:

In practice, we take  0 � � E �  W �  N �  S�=4, so
that we still need to solve for  N . Collecting the coeffi-
cients of the fours field points, one finds that

  N �
1� 1

16V0�u�v

1� 1
16V0�u�v

� E �  W� �  S: (A1)

This scheme is second order.
Characteristic data can now be evolved by straightfor-

ward marching. Cauchy data presents us with the problem
of evolving the initial time step, as no fields are specified
on  S. To determine the first time step according to the
given initial data, consider first the case of momentarily
stationary initial data. In that case, _ � 0 at t � 0, or
 N �  S on the initial slice. Substituting into (A1), we
find for momentarily stationary initial data

  N �
1

2

1� 1
16V0�u�v

1� 1
16V0�u�v

� E �  W�: (A2)

Two other special cases to consider are  ;v � 0 and  ;u �
0. In the former case,  E �  S on the initial slice, which
we write as  S � � W �  N �  E, so that

  N �
 W �

1
16V0�u�v E

1� 1
16V0�u�v

: (A3)

Similarly, if  ;u � 0, one may take  W �  S on the initial
slice, or  S �  W �  N �  E, so that
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FIG. 13. Convergence test for a scalar field (s � 0) and dipole
mode (‘ � 1), for Schwarzschild (solid) and for ERN (dashed)
for initial data with an initial static moment. Shown are the
convergence order N as a function of time along r� � 0.
Oscillations of the convergence order at the quasinormal mode
epoch are typical of oscillatory data.
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FIG. 12. The field along r� � 0 (solid curve), along the event
horizon (dotted curve), and along future null infinity (dashed
curve). Upper panel: initial data of a pure initially static moment.
Lower panel: initial data of an initially incoming pulse of
compact support between �10M< r� < 10M. For both cases
‘ � 1. The ‘‘bending’’ of the curves along the event horizon and
along future null infinity for late advanced and retarded times,
correspondingly, occurs because these two asymptotic regions of
spacetimes are represented by large (but finite) retarded and
advanced times, respectively.
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  N �
 E �

1
16V0�u�v W

1� 1
16V0�u�v

: (A4)

General initial data for _ can now be obtained by a linear
combination of (A3) and (A4). In particular, the momen-
tarily stationary initial data are obtained from (A3) and
(A4) by averaging them.

We have done numerous convergence tests. First, we
checked our code for a known exact solution (static solu-
tion in Schwarzschild). Then, we tested the global conver-
gence order by finding the behavior of vector Lp norms,
and by monitoring the convergence order globally,

throughout the entire computational domain. As an illus-
tration for the convergence tests we have done, Fig. 13
shows the local convergence order along an r� � const
worldline as a function of time. For grid spacings of h,
ah, a2h, we calculate the convergence order as

 N � loga

��������
 ah �  h
 ah �  a2h

��������;

where each of the three fields is evaluated at the same
physical grid point. In all cases we found global second-
order convergence throughout the computational domain.
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