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We present a covariant decomposition of Einstein’s field equations which is particularly suitable for
perturbations of spherically symmetric—and general locally rotationally symmetric—spacetimes. Based
upon the utility of the 1� 3 covariant approach to perturbation theory in cosmology, the semi-tetrad,
1� 1� 2 approach presented here should be useful for analyzing perturbations of a variety of systems in
a covariant and gauge-invariant manner. Such applications range from stellar objects to cosmological
models such as the spherically symmetric Lemaı̂tre-Tolman-Bondi solutions or the class of locally
rotationally symmetric Bianchi models.
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I. INTRODUCTION

Tetrad formalisms in general relativity have played a
pivotal role in its development as well as our understanding
of the subject. These range from the complex null tetrad of
Newmann and Penrose, to the 1� 3 approach of Ehlers,
Ellis, and others, which includes both a full tetrad approach
as well as a partial ‘‘covariant’’ approach where only one
timelike tetrad vector is chosen (see [1] for a review and
references). These techniques formulate the equations of
general relativity as first-order differential equations in the
physical curvature and dynamic variables of the covariant
derivatives of the tetrad vectors, as opposed to the more
usual coordinate approach involving second-order partial
differential equations in functions appearing in the metric.
The differential operators which appear are convective
derivatives along the tetrad vectors as opposed to partial
derivatives with respect to particular coordinates. Much of
their utility arises in spacetimes with special symmetry. For
example, the 1� 3 covariant approach is perfect for cos-
mology because it covariantly factorizes out the essential
coordinate—time—leaving all the background field equa-
tions as covariant scalar equations. Under perturbations all
3-vectors and tensors (which must vanish in the back-
ground due to homogeneity and isotropy) become gauge-
invariant first-order quantities making a Fourier analysis
easy [1,2].

We formulate here an approach which involves a semi-
tetrad: we keep the timelike threading vector field of the
1� 3 approach and introduce one spatial vector. The
remaining two dimensions are left untouched, rather like
the ‘‘3’’ in the 1� 3 approach. Indeed the formalism
presented here may be considered as halfway between
the 1� 3 tetrad and covariant approaches. A similar ap-
proach has been discussed before in [3–6], and we expand
on this considerably here by presenting the full system of
1� 1� 2 equations.

It is expected that this approach may find use in pertur-
bations of spacetimes with a preferred spatial direction at
each point—so-called locally rotationally symmetric
spacetimes [7]. These include the spherically symmetric
Lemaı̂tre-Tolman-Bondi models, many classes of Bianchi
models, as well as forming the background for most stellar
models. In this paper we provide the algorithm of how to
calculate gravitational perturbations in any locally rota-
tionally symmetric (LRS) spacetime in a covariant and
gauge-invariant (GI) way.

As an example of its utility, such a covariant perturbative
scheme was applied to the Schwarzschild solution in [8].
Despite being a well-understood problem, it was shown
using the 1� 1� 2 approach how both the axial and polar
degrees of freedom may be unified into a single transverse-
traceless tensor which obeys the tensorial form of the
Regge-Wheeler equation [8,9],

 � �Wab �
^̂Wab �AŴab ��2Wab � �2Wab � 0; (1)

where the Regge-Wheeler tensor Wab is a gauge- and
frame-invariant transverse traceless tensor, defined in [8]
(other variables are defined below), and _ ,^, and � are time,
radial, and angular derivatives, respectively. This tensor
contains in compact form the curved space generalization
of the two flat space gravitational wave polarizations h�
and h� [10] (see also [11] for an extension of this work).
The approach here also has been used to study scalar and
electromagnetic perturbations of LRS spacetimes, and
generalized Regge-Wheeler equations were found
[12,13]. Furthermore, it has been used to study the inter-
action of magnetic fields and gravitational waves around a
black hole—a process which produces electromagnetic
radiation mirroring the gravitational waves [10].

In Sec. II we discuss the 1� 1� 2 approach in full
generality, and then in Sec. III we discuss the perturbation
procedure for LRS spacetimes, before summarizing in
Sec. IV.*chris.clarkson@uct.ac.za
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II. FORMALISM

In the 1� 3 approach, a timelike threading vector field
ua (uaua � �1) is introduced, representing the observers’
congruence. Given this vector field, the projection tensor
ha

b � ga
b � uau

b is introduced, which projects all vectors
and tensors orthogonal to ua. Using hab, any 4-vector may
be split into a (1� 3 scalar) part parallel to ua and a (3-
vector) part orthogonal to ua. Any second rank tensor may
be covariantly and irreducibly split into scalar, vector, and
projected, symmetric, trace-free (PSTF) 3-tensor parts,
which requires the alternating tensor "abc � ud�dabc [1].
Tensors of higher rank may be similarly split, but are rarely
used (an important exception being cosmic microwave
background physics [14,15]). These are the fundamental
quantities describing the spacetime, after the introduction
of ua.

We now introduce another vector field and perform
another split, but this time of the 1� 3 equations. The
‘‘1� 1� 2’’ decomposition we develop here has been
partially studied before, mostly in the context of symme-
tries of solutions of the Einstein field equation [5,16]. It
was introduced by [3] and further developed in [4,8,11–
13]. However, there are important differences with the
work presented here. In the following we assume the 1�
3 covariant split of the equations (as given in [1], for
example), with all tensors split into scalars, vectors, and
PSTF tensors with respect to ua.

Take a unit vector na orthogonal to ua: nana � 1,
uana � 0, and define the projection tensor,

 Na
b � ha

b � nan
b � ga

b � uau
b � nan

b; (2)

which project vectors orthogonal to na (and ua): naNab �
0 � uaNab, onto 2-surfaces (Naa � 2) which we refer to as
the sheet. This is also the screen space of the null vector
ka / ua � na.

Any 3-vector  a can now be irreducibly split into a
scalar, �, which is the part of the vector parallel to na,
and a vector, �a, lying in the sheet orthogonal to na;

  a � �na ��a; where � �  ana;

and �a � Nab b �  �a;
(3)

where we use a bar over an index to denote projection with
Nab on that index. Similarly, any PSTF tensor,  ab, can
now be split into scalar, vector, and tensor (which are PSTF
with respect to na) parts:

  ab �  habi � ��nanb �
1
2Nab� � 2��anb� ��ab; (4)

where
 

� � nanb ab � �Nab ab; �a � Nabnc bc � ��a;

�ab �  fabg � �N�a
cNb�

d � 1
2NabN

cd� cd: (5)

We use curly brackets to denote the PSTF with respect to
na part of a tensor. Note that for 2nd-rank tensors in the

1� 1� 2 formalism ‘‘PSTF’’ is precisely equivalent to
‘‘transverse-traceless.’’ Note also that hfabg � 0, Nhabi �
�nhanbi � Nab �

2
3 hab.

We also define the alternating Levi-Cività 2-tensor

 "ab � "abcn
c � ud�dabcn

c; (6)

so that "abnb � 0 � "�ab�, and

 "abc � na"bc � nb"ac � nc"ab; (7)

 "ab"
cd � Na

cNb
d � Na

dNb
c; (8)

 "ac"bc � Nab; "ab"ab � 2: (9)

Note that for a 2-vector �a, "ab may be used to form a
vector orthogonal to �a but of the same length.

With these definitions we may split any object into
scalars, 2-vectors in the sheet, and transverse-traceless 2-
tensors, also defined in the sheet. These three types of
objects are the only objects which appear, after a complete
decomposition. Hereafter, we will assume such a split has
been made, and ‘‘vector’’ will generally refer to a vector
projected orthogonal to ua and na, and ‘‘tensor’’ will
generally mean transverse-traceless tensor, defined by
Eq. (5).

There are two new derivatives of interest now, which na

defines, for any object  ������:

  ̂ a���b
c���d � neDe a���b

c���d; (10)

 �e a���b
c���d � Ne

jNa
f � � �Nb

gNh
c � � �Ni

dDj f���g
h���i:

(11)

The hat derivative is the derivative along the vector field na

in the surfaces orthogonal to ua. This definition represents
a conceptual divergence from the 1� 3 tetrad approach, in
which the basis vectors appear on an equal footing [i.e.,
with ra rather than Da in Eq. (10)]. As a result, the
congruence ua retains the primary importance it has in
the 1� 3 covariant approach. (We choose to think of A �
uanbraub � �u

aubranb as the radial component of the
acceleration of ua, rather than the time component of _na.)
The �-derivative, defined by Eq. (11) is a projected de-
rivative on the sheet, with projection on every free index.

These derivatives then affect our projection tensor Nab
and Levi-Cività tensor as follows:

 

_N ab � 2u�a _ub� � 2n�a _nb� � 2u�aAb� � 2n�a�b�; (12)

 N̂ ab � �2n�an̂b�; (13)

 �cNab � 0; (14)

 _" ab � �2u	a"b
cA
c � 2n	a"b
c�

c; (15)
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 "̂ ab � 2n	a"b
ca
c; (16)

 �c"ab � 0: (17)

We now decompose the covariant derivative of na or-
thogonal to ua into its irreducible form:

 D anb � naab �
1
2�Nab � �"ab � �ab; (18)

where

 aa � ncDcna � n̂a; (19)

 � � �ana; (20)

 � � 1
2"
ab�anb; (21)

 �ab � �fanbg: (22)

We may interpret these as follows: traveling along na, �
represents the sheet expansion, �ab is the shear of na

(distortion of the sheet), and aa its acceleration, while �
represents a ‘‘twisting’’ of the sheet—the rotation of na

[4]. The other derivative of na is its change along ua,

 

_na �Aua � �a;

where �a � _n �a and A � na _ua:
(23)

The new variables aa, �, �, �ab, and �a are fundamental
objects in the spacetime, and their dynamics gives us
information about the spacetime geometry. They are
treated on the same footing as the kinematical variables
of ua in the 1� 3 approach (which also appear here).

For any vector �a orthogonal to na and ua (i.e., �a �
� �a), we may decompose the different parts of its spatial
derivative:
 

Da�b � �nanb�ca
c � na�̂ �b

� nb	
1
2��a � ��"ac � �ac��

c
 � �a�b: (24)

Similarly, for a tensor �ab: �ab � �fabg, we have
 

Da�bc � �2nan�b�c�da
d � na�̂bc

� 2n�b	
1
2��c�a ��c�

d��"ad � �ad�
 � �a�bc:

(25)

Note that for a scalar, we have Da� � �̂na � �a�.
We take na to be arbitrary at this point, and then split the

usual 1� 3 kinematical and Weyl quantities into the irre-
ducible set f�;A;�;�; E;H ;Aa;�a; Ea;H a;�ab;
Eab;H abg using (3) and (4) as follows:

 _u a �Ana �Aa; (26)

 !a � �na ��a; (27)

 �ab � ��nanb �
1
2Nab� � 2�

�anb� ��ab; (28)

 Eab � E�nanb �
1
2Nab� � 2E

�anb� � Eab; (29)

 Hab �H �nanb �
1
2Nab� � 2H

�anb� �H ab: (30)

The shear scalar, �, for example, may be expressed in the
form

 �2 � 1
2�ab�

ab � 3
4�

2 � �a�a � 1
2�ab�ab: (31)

Similarly we may split the fluid variables qa and 	ab,

 qa � Qna �Qa; (32)

 	ab � ��nanb �
1
2Nab� � 2�

�anb� ��ab: (33)

Having described the splitting of the 1� 3 variables to
obtain their 1� 1� 2 parts, and the introduction of the
new 1� 1� 2 variables corresponding to the irreducible
parts of ranb, it only remains to apply this decomposition
procedure to the 1� 3 equations themselves, as well as the
Ricci identities for na. We give these equations in Sec. III.

A. Commutation relations

In general, the three derivatives we now have defined,
‘‘ _ ,’’ ‘‘^,’’ and ‘‘�a’’ do not commute. Instead, when acting
on a scalar  , they satisfy
 

_̂ � _̂ � �A _ � �13���� ̂� ��a � "ab�b � �a��a ;

(34)

 

�a _ � Nab��b �� � �Aa
_ � ��a � �a � "ab�b� ̂

� �13��
1
2���a 

� ��ab ��"ab��b ; (35)

 

�a ̂� Na
b d��b � � ��a � "ab�b� _ � aa ̂

� 1
2��a � ��ab � �"ab��

b ; (36)

 �a�b � �b�a � 2"ab�� _ � � ̂� � 2a
	a�b
 : (37)

The commutation relations for 2-vectors  a are
 

_̂ �a �
_̂ �a � �A _ �a � �

1
3�� �� ̂ �a

� ��b � "bc�c � �b��b a

�Aa��b � "bc�
c� b �H"ab 

b; (38)
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�a _ b � Na
cNb

d��c d�
� � �Aa

_ b � ��a � �a � "ac�
c� ̂ �b � �

1
3��

1
2����a b �  aAb� �H a"bc 

c

� ��ac ��"ac���
c b �  

cAb� �
1
2� aQb � Nab 

cQc� � �
1
2�Nac � �"ac � �ac� 

c�b;

(39)

 

�a ̂b � Na
cNd

b
d��c d� � ��a � "ac�

c� _ �b � aa ̂ �b �
1
2���a b �  aab� � ��ac � �"ac���

c b �  
cab�

� Nab 
c�12�c � Ec� �  a�

1
2�b � Eb�; (40)

 

�a�b c � �b�a c � 2"ab�� _ �c � � ̂ �c� � 2	�13����2 � 1
4�

2 � 1
2�� E � 1

3�
���
 	aNb
c

� 2 	a	��
1
3��

1
2����b
c ��"b
c� �

1
2���b
c � �"b
c� �

1
2�b
c � Eb
c


� 2N	ac	��
1
3��

1
2����b
d ��"b
d� �

1
2���b
d � �"b
d� �

1
2�b
d � Eb
d
 

d

� 2	���	ac ��"	ac���b
d ��"b
d� � ��	ac � �"	ac���b
d � �"b
d�
 d: (41)

These relations are more complicated for tensors. These
last two equations in the case of scalars are the decom-
position of the 1� 3 commutation relation

 c urlDa � 2 _ !a: (42)

From Eq. (37), we see that our sheet will be a genuine 2-
surface in the spacetime (and, in particular, that the deriva-
tive �a will be a true covariant derivative on this surface) if
and only if � � � � aa � 0. (Recall that the 1� 3 spatial
metric hab corresponds to a genuine 3-surface when !a �
0.) Otherwise, the sheet is really just a collection of tangent
planes. In addition, the two vectors ua and na are 2-surface
forming if and only if the commutator 	u; n
 in (34) has no
component in the sheet: that is, when Greenberg’s vector

 �a � "ab�b � �
a (43)

vanishes [16]—see Eq. (34).

III. THE EQUATIONS

Once the vector na has been introduced it is possible,
and necessary, to augment the 1� 3 equations with the
Ricci identities for na; without these we do not have
enough equations to determine the new 1� 1� 2 varia-
bles. The Ricci identities for na are

 Rabc � 2r	arb
nc � Rabcdn
d � 0; (44)

where Rabcd is the Riemann curvature tensor. This third-
rank tensor may be covariantly split using the two vector
fields ua and na, and gives dynamical equations for the
covariant parts of the derivative of na (namely �a, aa,�, �,
and �ab) in the form of evolution equations, involving dot
derivatives of these variables, and propagation equations,
involving hat derivatives. In order to facilitate the calcu-
lation of these Ricci identities, which appear in the follow-
ing section, we give here the expression for the full
covariant derivative of na in terms of the relevant 1� 1�
2 variables:

 

ranb � �Auaub � ua�b � ���
1
3��naub

� ��a � "ac�c�ub � naab �
1
2�Nab

� �"ab � �ab; (45)

which may be inserted into Eq. (44). The full decomposi-
tion of the covariant derivative of ua is
 

raub � �ua�Anb �Ab� � nanb�
1
3�� ��

� na��b � "bc�
c� � ��a � "ac�

c�nb

� Nab�
1
3��

1
2�� ��"ab � �ab; (46)

which in turn implies the useful relation

 û a � �
1
3����na ��a � "ab�b: (47)

We have now assembled all the tools necessary to pro-
vide the full system of equations for the 1� 1� 2 formal-
ism. This consists of evolution equations, propagation
equations, mixtures of both, and constraints. Formulas
which are useful for splitting 1� 3 equations are given
in Appendix A.

A. Evolution equations

We find evolution equations for the 1� 1� 2 variables
�, �, and �ab from the projection uaRabc.
uaNbcRabc:

 

_� � �23�����A� 1
2�� � 2��� �a�a �Aa��a � aa�

� �aa �Aa���a � "ab�b� � �ab�ab �Q; (48)

ua"bcRabc:
 

_� � �12��
1
3���� �A� 1

2���

� 1
2�a

a �Aa�	�a � "ab��
b ��b�
 � 1

2"ab�
a�b

� 1
2"ca�

c
b�ab � 1

2H ; (49)
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ucRcfabg:
 

_� fabg � �
1
2��

1
3���ab ��"cfa�bg

c � �A� 1
2���ab

� �"cfa�bg
c � �cfa�bg

c � �fa�bg

� �Afa � afa��bg � �Afa � afa���bg � "bgd�d�

� "cfaH bg
c: (50)

Then a 1� 1� 2 decomposition of the standard 1� 3
evolution equations gives us the remaining evolution equa-
tions, which cannot be found from Rabc.

Vorticity evolution equation:

 

_� � 1
2"ab�

aAb �A������ 2
3�� ��a��

a � �a�:

(51)

Shear evolution:
 

_�fabg � �faAbg �AfaAbg � �fa	�bg � 2�bg


��fa�bg �A�ab � �
2
3��

1
2���ab ��cfa�bg

c

� Eab �
1
2�ab: (52)

B. Mixture of propagation and evolution

uanbRab �c � naubRab �c:
 

�̂ �a � _a �a � ��
1
2��A��a � �"ab�

b

� �13�� ���Aa � aa�

� �12��A���a � "ab�b�

� ��"ab�b ��a� � �ab���b � �b � "bc�c�

� 1
2Qa � "abH

b; (53)

uanbucRabc � �naubucRabc:
 

Â� 1
3

_�� _� � �A2 � �13����2 � 2�a�a � �a�a

��a�a � aaA
a � "ab�

a�b

� 1
6�
� 3p� 2�� � E � 1

2�: (54)

Raychaudhuri equation:
 

Â� _� � ��aAa � �A���A� �aa �Aa�A
a

� 1
3�

2 � 3
2�

2 � 2�2 � 2�a�a � 2�a�a

� �ab�ab � 1
2�
� 3p� ��: (55)

Vorticity evolution:

 

_� �a �
1
2"abÂ

b � ��23��
1
2���a ����a � �a�

� 1
2�Aa �

1
2"ab	�Aab � �bA

� 1
2�A

b
 � 1
2"ab�

bcAc � �ab�b:

(56)

Shear evolution:

 

_�� 2
3Â � 1

3�2A���A� �23��
1
2����

2
3�

2

� 1
3�aA

a ��a	2�
a � 1

3�
a


� 1
3Aa	2a

a �Aa
 � 1
3�a�a � 1

3�ab�ab

� E � 1
2� (57)

 

_� �a �
1
2Â �a �

1
2�aA� �A� 1

4��Aa � �
2
3��

1
2���a

� 1
2Aaa �

3
2��a ���a

� 1
2��"ab � �ab�A

b � �ab��b ��b� � Ea

� 1
2�a: (58)

Energy conservation:

 

_
� Q̂ � ��aQa � ��
� p� � ��� 2A�Q� 3
2��

� �aa � 2Aa�Qa � 2�a�a � �ab�ab: (59)

Momentum conservation:

 

_Q� p̂� �̂ � ��a�a � �32��A��� �43�� ��Q

� �
� p�A� ��a ��a � "ab�b�Qa

� �2aa �Aa��
a � �ab�ab (60)

 

_Q �a � �̂ �a � ��ap�
1
2�a�� �b�ab

�Q��a ��a � "ab�b� � 3
2�aa

� �43��
1
2��Qa ��"abQ

b � �32��A��a

� �"ab�b � �
� p� 1
2��Aa � �abQ

b

� �ab�b ��ab�a
b �Ab�: (61)

Electric Weyl evolution:

 

_E � 1
2

_�� 1
3Q̂ � �"ab�

aH c � 1
6�aQ

a � �32�� ��E �
1
2�

1
3��

1
2����

1
3�

1
2�� 2A�Q� 3�H � 1

2�
� p��

� �2�a � �a � "ab�b�Ea � ��a �
1
6�a �

1
2"ab�b��a � 1

3�aa �Aa�Qa � 2"abAaH c

��ab�E
ab � 1

2�
ab� � "abH

bc�ac (62)
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_E �a�
1
2"abĤ

b
� 1

2
_� �a�

1
4Q̂ �a �

3
4"ab�

bH � 1
2"bc�

bH c
a�

1
4�aQ�

1
2�
� p�

3
2E�

1
4���a�

3
4�E�

1
2��"ab�b

� 1
2QAa�

3
2H"abAb� 3

2�E�
1
2���a�

1
4Qaa�

3
4H"abab� �

3
4�� ��Ea�

1
2�"abE

b

� 5
2�H a� �

1
4��A�"abH

b� 1
2�

1
4��A�Qa�

1
4�"abQ

b� 1
2�

1
3��

1
4���a�

1
4�"ab�b

� 1
2�ab�3E

b� 1
2�

b� � 1
2�3Eab�

1
2�ab��

b� �Eab�
1
2�ab���b�

1
2"
bc�c� �

1
2�ab�"

bcH c

�Qb� �H ab"bcAc (63)

 

_Efabg � "cfaĤ bg
c
� 1

2
_�fabg � �"cfa�cH bg �

1
2�faQbg �

1
2�
� p� 3E � 1

2���ab �
1
2Q�ab �

3
2H"cfa�bg

c

� ��� 3
2��Eab ��"cfaEbg

c � �16��
1
4���ab �

1
2�"cfa�bg

c � �H ab

� �12�� 2A�"cfaH bg
c �AfaQbg � ��fa �

1
2"cfa�c��2Ebg ��bg� � �fa�3Ebg �

1
2�bg�

� 2"cfaH bg�ac �Ac� � �cfa�3Ebg
c � 1

2�bg
c� � "cfaH bgd�cd: (64)

Magnetic Weyl evolution:

 

_H � �"ab�aEb �
1
2"ab�

a�b � 3�E � �32�� ��H ��Q� 3
2��� 2"abAaEb � �2�a ��a � "ab�b�H a

� 1
2��a � "ab�b�Qa � �abH

ab � 1
2"abE

bc�ac (65)

 

_H �a �
1
2"abÊ

b � 1
4"ab�̂b � �3

4"ab�
bE � 3

8"ab�
b�� 1

2"bc�
bEca �

1
4"bc�

b�c
a �

3
4H�a �

1
4Q"ab�b � 3

4Q�a

� 3
4H"ab�b � 3

2E"abA
b � 3

2H�a �
3
4�E �

1
2��"aba

b � 5
2�Ea � �

1
4��A�"abEb

� �34�� ��H a �
1
2�"abH

b � 3
4�Qa �

3
8�"abQ

b � 5
4��a �

1
8�"ab�b

��ab�
3
2H

b � 1
4"
bcQc� �

3
2"ab�

bc�Ec �
1
2�c �

2
3Ac� �H ab��

b � 3
2�

b � 1
2"
bc�c� (66)

 

_H fabg � "cfaÊbg
c � 1

2"cfa�̂bg
c � "cfa�cEbg �

1
2"cfa�

c�bg �
3
2H�ab �

1
2Q"cfa�bg

c � 3
2�E �

1
2��"cfa�bg

c � �Eab

� �12�� 2A�"cfaEbg
c � ��� 3

2��H ab ��"cfaH bg
c � 1

2��ab �
1
4�"cfa�bg

c

� �fa�3H bg � "bgcQ
c� ��fa

3
2Qbg � "bgcH

c� � 2�faH bg � Efa2"bgc�a
c �Ac�

��fa"bgca
c � 3�cfaH bg

c � "cfa�
cd�Ebgd �

1
2�bgd�: (67)

C. Propagation equations

Propagation and constraint equations are formed from
either projecting Rabc as indicated, or from projections of
the 1� 3 constraint equations, denoted Ci, as given in [1].
naNbcRabc:

 

�̂ � �1
2�

2 � 2�2 � �13�� ���23�� �� � �aa
a � aaa

a

� �ab�
ab � 2"ab�

a�b � �a�a ��a�a

� 2
3�
��� � 1

2�� E; (68)

na"bcRabc:
 

�̂ � ���� �13������ 1
2"ab�

aab � 1
2"ab�aab

� �12aa � �a��
a (69)

naRafbcg:

 �̂ fabg � ���ab � �cfa�bgc � �faabg � afaabg

� 2�fa"bgc�
c ��fa�bg ��fa�bg � �

1
3�

� ���ab �
1
2�ab � Eab: (70)

Shear divergence �C1�
ana:

 

�̂� 2
3�̂ � �

3
2��� 2��� �a�a � "ab�a�b � 2�aaa

� 2"abAa�b � �ab�ab �Q (71)
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and �C1� �a:

 �̂ �a � "ab�̂b � 1
2�a�� 2

3�a�� "ab�
b�� 3

2��a

� �"ab�b � ��a � ��� 2A�"ab�b

� 3
2�aa ��"ab	a

b � 2Ab
 � �b�ab

� �ab�b � �abab � "ab�bc�c �Qa:

(72)

Vorticity divergence equation (C2):

 �̂ � ��a�a � �A����� �aa �Aa��
a (73)

�C3�fabg:

 

�̂fabg � �fa�bg � "cfa�c�bg �
1
2��ab � �"cfa�bg

c

� 3
2��ab ��"cfa�bg

c � 2�faabg � 2"cfaAc�bg

� �cfa�bg
c � "cfaH bg

c: (74)

Electric Weyl divergence �C4�
ana:

 

Ê� 1
3
̂�

1
2�̂���aE

a� 1
2�a�a� 3

2��E�
1
2��

� �12��
1
3��Q� 3�H ��2Ea��a�aa

� 1
2�aQa� 3�aH

a� 3
2"ab�aQb

�"ab�acH c
b��Eab�

1
2�ab��ab (75)

�C4� �a:

 

Ê �a �
1
2�̂ �a �

1
2�aE �

1
3�a
�

1
4�a�� �bEab �

1
2�

b�ab

� 1
2Q�a �H"ab�b � 3

2H�a �
3
2Q"ab�b

� 3
2�E �

1
2��aa �

3
2��Ea �

1
2�a�

� �"ab�Eb �
1
2�

b� � 3�H a ��"abH
b

� �13��
1
4��Qa �

3
2�"abQ

b � 1
2�abQb

� �ab�Eb �
1
2�

b� � �Eab �
1
2�ab�ab

� 3H ab�b: (76)

Magnetic Weyl divergence �C5�
ana:

 

Ĥ � ��aH
a � 1

2"ab�
aQb � 3

2�H

� �3E �
� p� 1
2����Q�� 2H aaa

� 3�a�E
a � 1

6�
a� � �abH

ab

� "ab�a
c�E

bc � 1
2�

bc� (77)

�C5� �a:
 

Ĥ �a �
1
2"abQ̂

b � 1
2�aH � �bH ab �

1
2"ab�

bQ

� 3
2�E �

1
2��"ab�b

� ��3
2E �
� p�

1
4���a �

3
2Haa

�Q"abab � 3�Ea �
3
2�"abE

b

� 3
2�H a � �"abH

b � 1
2�Qa

� 1
4�"abQ

b � 1
2��a �

3
4�"ab�b

�H aba
b � �abH

b

� 3�Eab �
1
6�ab��

b � 1
2"ab�

bcQc: (78)

D. Constraint

"abucRabc:
 

�a�a � "ab�a�b � �2A����� 3��� "ab�ac�b
c

�H (79)

NbcR �abc:
 

1
2�a�� "ab�

b�� �b�ab � �2�"aba
b

����a � "ab�b � 2"ab�
b�

� �13��
1
2����a � "ab�b�

� ��b � "bc�c��ab �
1
2�a

� Ea: (80)

From �C3�abn
b and �C1� �a, or naucRa �bc

 

�a�� 2
3�a�� 2"ab�b�� 2�b�ab

� ����a � "ab�b� � 2���a � 3"ab�b� � 4�"abAb

� 2�ab�b � 2"ab�bc�c ��abab � 2"abH
b �Qa:

(81)

Finally, we note that the equation formed from
�C3�abn

anb is equivalent to Eqs. (79) and (109).
It is worth noting that one of Eqs. (54), (55), and (57) is

redundant since �54� � 1
3 �55�–�57�. Also, note that there

are no evolution equations for A, Aa, �a, and there is no
propagation equation for aa; these all must be determined
by specifying a choice of frame.

E. Maxwell’s equations

For completeness we also give the decomposition of
Maxwell’s equations, previously given in [10]. We decom-
pose the electric and magnetic field vectors as

 Ea � Ena � E a; (82)

 Ba � Bna �Ba; (83)

while the 3-current may be written as
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 ja � J na � J a: (84)

Maxwell’s equations then become

 Ê � �aE a � ��E � E aaa � 2�B � 2�aBa

�
0�e;
(85)

 B̂ � �aBa � ��B� E aaa � 2�E � 2�aE a; (86)

 

_E � "ab�aBb � 2�B� E a�a � �
2
3����E � �aE a

� "ab�A
aBb ��aE b� �
0J ; (87)

 

_B� "ab�aE b � �2�E �Ba�a � �
2
3�� ��B� �aBa

� "ab�A
aE b ��aBb�; (88)

 

_E �a � "ab�B̂b � �bB� � �Ba � �
1
2��A�"abBb

� �23��
1
2��E a ��"abE b

� E ���a � �a � "ab�b�

�B"ab�Ab � ab� ��abE b

� "ab�bcBc �
0J a; (89)

 

_B �a � "ab�Ê b � �bE � � ��E a � �
1
2��A�"abE b

� �23��
1
2��Ba ��"abBb

�B���a � �a � "ab�b�

� E"ab�Ab � ab� � �abBb

� "ab�
bcE c: (90)

Here, SI units are used (
0), and �e is the charge density.
The first two equations arise from the constraint Maxwell
equations (ME), while the rest are the evolution ME. In flat
space in the absence of currents and charges the rhs of
these equations vanish (for a static ‘‘natural’’ choice of
frame). Thus, gravity modifies ME in the form of general-
ized currents. Note how the rotation terms �, �, and �a

flip the parities of the electromagnetic fields.

IV. PERTURBATIONS OF SPHERICALLY
SYMMETRIC AND LRS SPACETIMES

The utility of the approach presented here is that for LRS
spacetimes, for which all quantities are rotationally sym-
metric about a preferred spatial direction (i.e., they admit a
one-dimensional isotropy group), all the nonzero 1� 1�
2 variables are scalars. This direction may be specified, for
example, by a nondegenerate eigenvector of the electric
Weyl tensor, or by the vorticity vector. A full discussion of
LRS spacetimes in the covariant approach is given in [7];
see their Table 1 for a summary of the different cases which
can occur, in a notation similar to that presented here.

The fact that background quantities are scalars in LRS
spacetimes means that under linear perturbations, all vec-
tor and tensor quantities are automatically gauge invariant,
by the Stewart-Walker lemma [17]. We shall now give an
overview of how to set up the perturbation equations.

In the background, which we shall take as a general LRS
spacetime, all vector and tensor equations are automati-
cally zero, resulting in the set

 

_� � �23�� ���A� 1
2�� � 2���Q; (91)

 

_� � �12��
1
3���� �A� 1

2����
1
2H ; (92)

 

_� � �A������ 2
3��; (93)

 

Â� _� � ��A���A� 1
3�

2 � 3
2�

2 � 2�2

� 1
2�
� 3p� ��; (94)

 

_�� 2
3Â � 1

3�2A���A� �23��
1
2����

2
3�

2

� E � 1
2�; (95)

 _
� Q̂ � ���
� p� � ��� 2A�Q� 3
2��; (96)

 

_Q� p̂� �̂ � ��32��A��� �43����Q� �
� p�A;

(97)

 

_E � 1
2

_�� 1
3Q̂ � ��

3
2�� ��E �

1
2�

1
3��

1
2���

� 1
3�

1
2�� 2A�Q� 3�H � 1

2�
� p��;

(98)

 

_H � �3�E � ��� 3
2��H ��Q� 3

2��; (99)

 

�̂ � �1
2�

2 � 2�2 � �13�����23���� � 2
3�
��� � 1

2�

� E; (100)

 �̂ � ���� �13�� ���; (101)

 �̂� 2
3�̂ � �

3
2��� 2���Q; (102)

 �̂ � ��A����; (103)

 Ê � 1
3
̂�

1
2�̂ � �

3
2��E �

1
2�� � �

1
2�� ��Q� 3�H ;

(104)
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 Ĥ � �3
2�H � �3E �
� p� 1

2����Q�; (105)

 0 � �2A����� 3���H : (106)

These equations were first presented in this form in [12] for
LRS class II models (which satisfy � � � � 0)H �
0), and were shown to be consistent with the commutation
relation (34).

It is perhaps easier to think of these in matrix form. Let

 X �

�
�
�
A
�
�
E
H


p
Q
�

0
BBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCA

(107)

be the column matrix of all nonzero scalar quantities.
Depending on the LRS model in question X will not be
this big. For example, for the Schwarzschild solution we
have just X � ��;A; E�T . Then, in general, this system of
equations may be cast in the form

 � _X� �X̂ � �X� XT�X; (108)

where the constant matrices �, �, �, � may be read off
from the above equations.

We can now set up the perturbative procedure schemati-
cally as follows:

(1) Find a complete set of gauge-invariant perturbation
variables.—This may be achieved by defining

 � a � �aX; (109)

i.e., by taking angular derivatives of the background
variables we find a new set of gauge-invariant var-
iables. The remaining GI variables are all the 1�
1� 2 vectors and tensors: �a � �Ea; aa; . . .�, �ab �
��ab; Eab;H ab; . . .�, which obey linearized versions
of the above 1� 1� 2 equations. Under perturba-
tions Eq. (108) becomes

 � _X� �X̂ � �X� XT�X�A�a�a

� B"ab�a�b; (110)

where the matrices A, B have constant coefficients.
Evolution and propagation equations for the new GI
variables �a may be found by taking the angular
derivative of Eq. (110), and using the commutation
relations (35) and (36), giving

 

� _�a � ��̂a � 	�� �12��
1
3��

1
2���
�a

� ���� ���"ab�b �XT��a

��T
a�X�A�a�b�b

� B"bc�a�b�c: (111)

These equations replace the corresponding system
(110) in the 1� 1� 2 equations.

(2) Harmonic analysis.—Two parities of harmonics
may be introduced, generalizing the axial and polar
modes for spherical symmetry. These were first
defined in [8,12], and are discussed in
Appendix B. These are analogous to the scalar-
vector-tensor decomposition in Friedman-
Lemaı̂tre-Robertson-Walker models. After this, all
variables become scalars, which are functions of
two affine parameters associated with ua and na.

(3) Master variables.—At this stage the governing sys-
tem of equations is linear in the perturbation varia-
bles � and ��, which are the column vectors
containing all the even and odd harmonically de-
composed variables, and splits into two parities. We
then have two linear systems of equations looking
like

 � _�� ��̂ � ��; (112)

where � is a matrix with coefficients depending
only on the background parameters (as well as the
harmonic index k), and �, � are constant matrices.
The true degrees of freedom of this system will be
governed by a reduced set of frame independent
master variables, which will obey a closed set of
wave equations. Finding these can be tricky. All
other variables are related to the master variables
by quadrature, plus frame degrees of freedom. See
[8] for the full details in the Schwarzschild case.

These are the key steps required given a particular LRS
model is chosen. Steps 1 and 2 are algorithmic; step 3 can
be very difficult.

V. SUMMARY

We have presented a new semi-tetrad approach to ana-
lyzing Einstein’s field equations. By introducing a single
spacelike vector into the 1� 3 approach we decomposed
the 1� 3 equations into a system of evolution, propaga-
tion, and constraint equations. These were supplemented
by a 1� 1� 2 decomposition of the Ricci equations for
the spatial vector. Although presented in restricted form
elsewhere, the full system was presented here for the first
time.

A key feature of the approach is that under a complete
decomposition all objects are covariantly defined scalars,
2-vectors in the sheet and transverse-traceless 2-tensors,
also in the sheet. In an LRS spacetime, provided the spatial
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vector is chosen appropriately, all the vectors and tensors
vanish, leaving just scalars. Under perturbations all in-
dexed objects are first-order ensuring that there are no
tensorial products; this ensures that we can introduce natu-
ral harmonic functions on the background which remove
all tensorial properties of the equations. Finally, we are left
with a system of gauge-invariant and covariant first-order
partial differential equations to manipulate. The solution of
this system provides the solution of the perturbation
problem.
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APPENDIX A: USEFUL RELATIONS FOR
DECOMPOSING EQUATIONS

Given any 1� 3 vectors and tensors, we may decom-
pose them as

 xa � Xna � Xa; (A1)

 ya � Yna � Ya; (A2)

  ab �  habi � ��nanb �
1
2Nab� � 2��anb� ��ab;

(A3)

 �ab � �habi � ��nanb �
1
2Nab� � 2��anb� ��ab:

(A4)

Then we have the following expansions from 1�
3 quantities ! 1� 1� 2 variables:

 xax
a � X2 � XaX

a; (A5)

 �abcx
byc � �"bcX

bYc�na � "ab�YX
b � XYb�; (A6)

 

xhaybi �
1
3�2XY � XcY

c��nanb �
1
2Nab�

� 	XY�a � YX�a
nb� � XfaYbg; (A7)

  abxb � �X�� Xb�b�na �
1
2�Xa � X�a ��abXb;

(A8)

 

�cdhax
c bi

d � "cdX
c�d�nanb �

1
2Nab�

� 	�X�c � 3
2�X

c�"c�a � "cdXc�d
�a
nb�

� X"cfa�bg
c � Xc"cfa�bg; (A9)

  ab 
ab � 3

2�
2 � 2�a�a ��ab�ab; (A10)

  cha�bi
c � �12��� 1

3�c�
c � 1

3�cd�cd��nanb �
1
2Nab�

� 	12���a �
1
2���a ��c�c�a ��c�c�a
nb�

� 1
2��ab �

1
2��ab ��a�b ��ca�bg

c;

(A11)

 �abc bd�
dc � na"bc�b

d�dc � 3
2"ab���b ���b�:

(A12)

For 1� 3 derivatives we find

 _x hai � � _X� Xb�b�na � X�a � _X �a; (A13)

 

_ habi � � _�� 2�c�
c�nanb �

1
2

_�Nab

� 	3���a � 2 _�� �a � 2�c�c�a
nb� � 2��a�b�

� _�fabg; (A14)

 D axa � X̂� X�� Xaaa � �aXa; (A15)

 

�abcDbxc � �2X�� "bc�bXc�na � �Xa

� "ab	�Xa
b � �bX� X̂b � 1

2�X
b � �bcXc
;

(A16)

 

Dhaxbi �
1
3	2X̂��X � 2Xcac � �cXc
�nanb �

1
2Nab�

� 	Xa�a � ��aX� X̂� �a �
1
2�X�a

� Xc��"c�a � �c�a�
nb� � X�ab � �faXbg; (A17)

 

Db ab � ��̂�
3
2��� 2�ba

b � �b�b ��bc�
bc�na

� �̂ �a �
3
2��a �

3
2�aa �

1
2�a���aba

b

� 	��"ab � �ab
�
b � �b�ab; (A18)

 

�cdhaDc bi
d � �3��� "cd�

c�d � "cd�de�ce�

� �nanb �
1
2Nab� � f	�

3
2�

c�� 3
2�a

c

� �̂c � 1
2��c � 2�d�

cd
"c�a � 5���a

� "cd	�d�c�a � �c�d�a
gnb� � "cfa�
c�ag

� 2"cfaa
c�bg � "cfa�̂c

bg �
1
2�"cfa�c

bg

� 3
2�"cfa�

c
bg � ��ab � "cfa�bgd�

cd:

(A19)
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Given any relation in 1� 3 notation, these relations may
be substituted directly to aid decomposition.

APPENDIX B: HARMONIC FUNCTIONS

We introduce dimensionless harmonic functions Q, de-
fined on any LRS background, as eigenfunctions of the 2-
dimensional Laplace-Beltrami operator:

 �2Q � �
k2

r2 Q; Q̂ � 0 � _Q �0 � k2�: (B1)

The function r is, up to an irrelevant constant, covariantly
defined by

 

r̂
r
�

1

2
�;

_r
r
�

1

3
��

1

2
�; �ar � 0: (B2)

While we have not chosen a specific basis for Q, we can
now expand any first-order scalar  in terms of these
functions schematically as

  �
X
k

 �k�S Q
�k� �  SQ; (B3)

where the sum (or integral) over k is implicit in the last
equality. The S subscript reminds us that  is a scalar, and
that a harmonic expansion has been made.

We also need to expand vectors in harmonics. We there-
fore define the even (electric) parity vector harmonics as
 

Q�k�a � r�aQ
�k� ) Q̂ �a � 0 � _Q �a;

�2Qa � �1� k2�r�2Qa;
(B4)

where the �k� superscript is implicit, and we define odd
(magnetic) parity vector harmonics as
 

�Q�k�a � r"ab�bQ�k� ) �̂Q �a � 0 � _�Q �a;

�2 �Qa � �1� k2�r�2 �Qa:
(B5)

Note that �Qa � "abQ
b , Qa � �"ab �Qb, so that "ab is a

parity operator. The crucial difference between these two
types of vector harmonics is that �Qa is solenoidal, so

 �a �Qa � 0; (B6)

while

 �aQa � �k2r�1Q: (B7)

Note also that

 "ab�aQb � 0; and "ab�a �Qb � �k2r�1Q: (B8)

The harmonics are orthogonal: Qa �Qa � 0 (for each k),
which implies that any first-order vector  a can now be
written

  a �
X
k

 �k�V Q
�k�
a � � �k�V

�Q�k�a �  VQa � � V
�Qa: (B9)

Again, we implicitly assume a sum over k in the last
equality, and the V subscript reminds us that  a is a vector
expanded in harmonics.

Similarly we define even and odd tensor spherical har-
monics as

 Qab � r2�fa�bgQ) Q̂ab � 0 � _Qab; (B10)

 

�Qab � r2"cfa�
c�bgQ) �̂Qab � 0 � _�Qab; (B11)

which are orthogonal: Qab
�Qab � 0, and are parity inver-

sions of one another: Qab � �"cfa �Qbg
c , �Qab �

"cfaQbg
c. Any first-order tensor may be expanded:

 �ab �
X
k

��k�T Q
�k�
ab �

���k�T
�Q�k�ab � �TQab � ��T

�Qab:

(B12)
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